Pro with Swadhin
beg Aa¨vq
mvgwMÖK Avq I e¨q
A_ŠbxwZ
¸iÃĻZÂĄc~YŠ eÃģwbeŠvPbx cÖkœDËi
1. wZb LvZ wewkÃŗ A_ŠbxwZ‡Z RvZxq Avq cwigv‡ci m~Î
†KvbwU?
(K) Y=C+I+G+(X+M) (L) Y=C+I+G
(M) Y=C+I+G+(X-M) (N) Y=C+1
DËi: L
2. ‡`‡k KgŠiZ we‡`wk‡`i Avq wb‡Pi †KvbwU‡Z AÅĄÃfŠ~Âŗ?
(K) GNI (L) NNI
(M) GDR (N) CCA
DËi: M
3. Av‡qi cwieZ©‡b †Kvb ai‡bi wewb‡qvM cwieZ©b nq
bv?
(K) wbU wewb‡qvM (L) ‡gvU wewb‡qvM
(M) cÃ–â€ĄivwPZ wewb‡qvM (N) AbybœZ wewb‡qvM
DËi: N
4. GNP Gi c~YŠiƒc †KvbwU?
(K) Gross New Product
(L) Gross Net Product
(M) Gross National Product
(N) Gross Nominal Product
DËi: M
5. S=-50+(1-0.5) Y: mÂq mgxKi‡Y Y = 100 n‡j
mÃ‚â€Ąqi cwigvY KZ?
(K) -50 (L) 0
(M) 50 (N) 100
DËi: L
6. e¨wÂŗMZ Avq n‡Z AvqKi ev` w`‡j cvIqv hvq-
(K) ‡gvU RvZxq Avq (L) ‡gvU †`kR Avq
(M) e¨q‡hvM¨ Avq (N) wbU RvZxq Avq
DËi: M
7. wb‡Pi †KvbwU NNP Gi m~Î?
(K) NNP = GNP – CCA
(L) NNP = GNP + CCA
(M) NNP = C + I + G
(N) NNP = CCA – GNP
DËi: K
8. Av‡qi Dci wbf©ikxj †fvM e¨q‡K Kx e‡j?
(K) ¯^qâ„ĸÂĸ~Z †fvM (L) Mo †fvM cÖeYZnx
(M) cÃ–â€ĄivwPZ †fvM (N) cÖvwÅĄÃK †fvM cÖeYZv
DËi: M
9. cÖevmx‡`i Avq wnmv‡e Kiv nq †KvbwU‡Z?
(K) GNP (L) GDP
(M) NDP (N) CCA
DËi: K
10. k~b¨¯’v‡b †KvbwU em‡e? e¨q‡hvM¨ Avq= {?] Ñ Ki|
(K) RvZxq Avq (L) mvgwMÖK Avq
(M) mvgwMÖK e¨q (N) e¨wÂŗMZ Avq
DËi: N
11. C=50 + 0.75Y n‡j cÖvwÅĄÃK mÂq cÖeYZv (MPS)
KZ n‡e?
(K) 0.25 (L) 0.50
(M) 0.75 (N) 1.75
DËi: K
12. wb‡Pi †Kvb e¨qwU DbÂĨyÂŗ A_ŠbxwZi mv‡_ m¤ÃēwKŠZ?
(K) ‡fvM e¨q (C) (L) miKvwi e¨q (G)
(M) wbU ißvwb (Xn) (N) wewb‡qvM e¨q (I)
DËi: M
13. ‡Kvb Dcv`vbwU Ave× A_ŠbxwZ‡Z Abycw¯’Z?
(K) wbU ißvwb (L) miKvwi e¨q
(M) ‡fvM e¨q (N) wewb‡qvM e¨q
DËi: K
14. mÃ‚â€Ąqi g~j Dâ€ĄÃk¨ †KvbwU?
(K) eZ©gv‡bi †fvM (L) AZx‡Zi †fvM
(M) fwel¨‡Zi †fvM (N) ‡fv‡Mi DØ„Ë
DËi: M
15. e¨wÂŗMZ AvqÑe¨wÂŗMZ cÖZ¨Ãŋ Ki=?
(K) cÖZ¨Ãŋ Avq (L) c‡ivÃŋ e¨q
(M) e¨q‡hvM¨ Avq (N) Avq‡hvM¨ e¨q
DËi: M
16. Òg~jab mvgMÖx e„w× ev bZzb mvR-miÄvg ˆZwi‡K
wewb‡qvM ejv nq|ÓÑ gÅĄÃe¨wU Kvi?
(K) Aa¨vcK wnKm (L) Aa¨vcK gvkŠvj
(M) Aa¨vcK wc¸ (N) Aa¨vcK cviwKb
DËi: K
17. ‡Kvb m¤ÃēKŠwU mwVK?
(K) I = G (L) C = S
Pro with Swadhin
(M) S = I (N) Xo = X + M
DËi: M
18. NDP = ?
(K) GNI=GDPO–CCA (L) NNP=GNP –
CCA
(M) NNI = GNI – DC (N) CCA = GNI – NNP
DËi: N
19. wb‡Pi †KvbwU‡Z †`‡k Ae¯’vbiZ we‡`wk‡`i Avq
AÅĄÃfŠyÂŗ nq?
(K) GNP (L) GDP
(M) NNP (N) NI
DËi: L
20. wbâ€ĄÂ¤Å“i †KvbwU‡K wewb‡qv‡Mi c~eŠ_gŠ ejv nq?
(K) Avq (L) e¨q
(M) mÂq (N) ‡fvM
DËi: M
21. GDP †Z AÅĄÃfŠ~Âŗ n‡eÑ
(i) f~Lâ€ĄÃ› Ae¯’vbiZ †`kxq bvMwiK‡`i Avq
(ii) ‡`‡k Ae¯’vbiZ we‡`wk bvMwiK‡`i Avq
(iii) we‡`‡k Kg©iZ †`kxq bvMwiK‡`i Avq
wbPi †KvbwU mwVK?
(K) i I ii (L) ii I iii
(M) i I iii (N) i, ii I iii
DËi: K
22. GNI wnmve Kivi mgq AÅĄÃfŠ~Âŗ nqÑ
(i) ‡`‡ki AfÂ¨ÅĄÃâ€Ąi †`kxq‡`i Avq
(ii) we‡`‡k Ae¯’vbiZ ‡`kxq‡`i Avq
(iii) ‡`‡ki AfÂ¨ÅĄÃâ€Ąi we‡`wk‡`i Avq
wbPi †KvbwU mwVK?
(K) i (L) i I ii
(M) ii I iii (N) i, ii I iii
DËi: L
wPÎwU jÃŋ Ges 23 I 24 bs cÃ–â€Ąkœi DËi `vI:
23.DÏxc‡Ki Av‡jv‡K fvimvg¨ RvZxq Avq¯Íi KZ?
(K) 100 (L) 200
(M) 300 (N) 400
DËi: M
24. wewb‡qv‡Mi cwigvY e„w× †c‡q 10 n‡j, fvimvg¨ RvZxq
Avq KZ n‡e?
(K) 200 (L) 300
(M) 400 (N) 500
DËi: N
25. ‘X’ †`‡ki fvimvg¨ RvZxq Avq KZ?
(K) 500 (L) 100
(M) 2000 (N) 5000
DËi: M
26.DÏxcK Abyhvqx ‘X’ †`‡kÑ
(i) e¨q c×wZ‡Z RvZxq Avq MYbv Kiv n‡q‡Q
(ii) Ave× A_ŠbxwZ weivRgvb
(iii) RbMY Zv‡`i Av‡qi Ãŋz`ÂĒ Ask †fv‡Mi Rb¨ e¨q
K‡i
wbPi †KvbwU mwVK?
(K) i I ii (L) i I iii
(M) ii I iii (N) i, ii I iii
DËi: K
27. Y = C + I + G + (X – M) Kx n‡e?
(K) GDP (L) GNP
(M) NNP (N) NDP
DËi: L
28.GNI Gi c~YŠiƒc Kx?
(K) Gross Net Investment
(L) Gross Net Income
(M) Lross National Investment
(N) Gross National Income
DËi: N
29. NNP Gi c~YŠiƒc †KvbwU?
(K) New National Product
(L) Net National Product
(M) Normal National Product
(N) Natural National Product
DËi: N
Pro with Swadhin
30.‡KvbwU mvgwMÖK e¨‡qi GKwU ¸iÃĻZÂĄc~YŠ Ask?
(K) e¨wÂŗMZ e¨q (L) miKvwi e¨q
(M) mvgwiK e¨q (N) cvwievwiK e¨q
DËi: L
31. mvaviYZ mvgwMÖK e¨‡q (AE) wmsnfvM Ask wb‡Pi
†Kvb Dcv`v‡bi?
(K) ‡fvM (L) wewb‡qvM
(M) miKvwi e¨q (N) wbU ißvwb g~j¨
DËi: K
32.e¨q c×wZ‡Z RvZxq Avq Kx?
(K) ‡fvM + mÂq + wewb‡qvM + wbU ißvwb
(L) ‡fvM + wewb‡qvM + miKvwi e¨q + wbU ißvwb
(M) wewb‡qvM + gybvdv + miKvi e¨q + wbU ißvwb
(N) gybvdv + miKvwi e¨q + †fvM + wbU ißvwb
DËi: L
33.e¨wÂŗMZ Avq †_‡K Ki ev` w`‡j Kx cvIqv hvq?
(K) ‡gvU RvZxq Avq (L) e¨q‡hvM¨ Avq
(M) wbU RvZxq Avq (N) ‡gvU †`kR Avq
DËi: L
34. ¯^íKvjxb †fvM A‡cÃŋK †KvbwU?
(K) S = Y – C (L) Y = C + I
(M) C = bY (N) C = a + bY
DËi: N
35. fvimvg¨ Avq¯Íi ( )
Y
( ) wba©viYKvix kZ© †KvbwU?
(K) Qd = Qs (L) AD = AS
(M) MR = MC (N) Dt = St
DËi: L
36. Ave× A_ŠbxwZ‡Z †KvbwU Abycw¯’Z?
(K) wbU mßvwb )
X
( (L) miKvi e¨q (G)
(M) †fvM e¨q (C) (N) wewb‡qvM e¨q (I)
DËi: K
37. GDP wbY©‡qi wnmve Kiv nqÑ
(i) we‡`‡k Ae¯’vbiZ †`kxq‡`i Avq
(ii) ‡`‡ki AfÂ¨ÅĄÃâ€Ąi we‡`wk‡`i Avq
(iii) ‡`‡ki AfÂ¨ÅĄÃâ€Ąi †`kxq‡`i Avq
wbPi †KvbwU mwVK?
(K) i I ii (L) i I iii
(M) ii I iii (N) i, ii I iii
DËi: M
38.e× A_ŠbxwZi †Ãŋâ€ĄÃŽÃ‘
(i) GNP = GDP
(ii) X – M Abycw¯’Z
(iii) GNP > GDP
wbPi †KvbwU mwVK?
(K) i I ii (L) i I iii
(M) ii I iii (N) i, ii I iii
DËi: K
41. ‡Kvb †fvM e¨q Avq †_‡K ¯^vaxb?
(K) cÃ–â€ĄivwPZ †fvM e¨q (L) ¯^q¤ÂĸyZ †fvM e¨q
(M) ‡fvMcY¨ Av‡qi Rb¨ e¨q (N) miKvwi †fvM e¨q
DËi: L
42. GKwU DbÂĨyÂŗ A_ŠbxwZZ mvgwMÖK Av‡qi mgxKiY
†KvbwU?
(K) C + I (L) C + I + G
(M) C+I+G+(X–M) (N) C = I + (X – M)
DËi: M
43. †KvbwU‡Z we‡`wk‡`i Avq AÅĄÃfŠ~Âŗ nq?
(K) GDP (L) GNP
(M) NNP (N) NI
DËi: K
44. †KBb‡mi g‡Z Ave× A_ŠbxwZi †Ãŋâ€ĄÃŽ †KvbwU mZ¨?
(K) Y = C (L) Y = C + I
(M) Y = C + 1 + G (N) Y=C+I+G+(x–M)
DËi: M
45. e× A_ŠbxwZ‡Z KqwU LvZ _v‡K?
(K) GK (L) `yB
(M) wZb (N) Pvi
DËi: M
46. S = Y – C mgxKiYwU †Kvb ai‡bi A‡cÃŋK?
(K) ‡fvM (L) wewb‡qvM
(M) Avq (N) mÂq
DËi: N
47. †KvbwU NNI Gi wnmv‡e AÅĄÃfŠ~Âŗ nq bv?
(K) ‡emiKvwi †fvM e¨q (L) ‡emiKvwi wbU wewb‡qvM
(M) c‡ivÃŋ Ki (N) AePq e¨q
DËi: N
48. mÂq wnmve Kivi m~Î †KvbwU?
(K) S = Y + C (L) S = Y – C
Pro with Swadhin
(M) S = C – Y (N) S = C + Y
DËi: L
49. wb‡Pi †KvbwU n¯ÍvÅĄÃi cvIbv bq?
(K) eq¯‚ fvZv (L) weaev fvZv
(M) Aemi fvZv (N) Aewâ€ēUZ gybvdv
DËi: N
50. 1930 mv‡ji gnvgâ€ē`vi ci †Kvb A_ŠbxwZi gvBjdjK
ïiÃĻ nq?
(K) e¨wÃŗK A_ŠbxwZi (L) mvgwÃŗK A_ŠbxwZi
(M) bMi A_ŠbxwZi (N) Kâ€Ļwl A_ŠbxwZi
DËi: L
51. mvgwMÖK Avq cwigv‡c gva¨wgK `ÂĒe¨ we‡`Pbv Ki‡j Kx
ai‡bi mgm¨v?
(K) ‰ØZ MYbv (L) Kg MYbv
(M) GDP nÂĢvm (N) GDP AmsMwZ
DËi: K
52. mvgwMÖK Av‡qi mgxKiY †KvbwU?
(K) Y = CI+G (L) Y=C+ I – G
(M) Y = C + I (N) Y = C + NNI
DËi: K
53. mvgwMÖK Avq mvaviYZ KZ eQ‡ii cÖvß Av‡qi mgwÃŗ?
(K) 1 eQ‡ii (L) 2 eQ‡ii
(M) 3 eQ‡ii (N) 4 eQ‡ii
DËi: K
54. †Kvb aviYvwU e„nËi `„wÃŗâ€ĄKvY †_‡K wePvi-we‡ePbv Kiv
nq?
(K) wewb‡qvM e¨q (L) mvgwMÖK Avq
(M) K‡c©v‡iU Avq (N) e¨emvwqK Avq
DËi: L
55. ‘The economics of Cycle and Growth’ MÃ–ÅĄâ€™wU
Kvi †`Lv?
(K) jWŠ †R. Gg. †KBÝ (L) Avi.Gg. eevi
(M) Gj. iweÝ (N) A¨vWvg w¯§_
DËi: L
56. gybvdv‡K fvM Kiv nq KqwU As‡k?
(K) 2wU (L) 3wU
(M) 4wU (N) 5wU
DËi: K
57. n¯ÍvÅĄÃi cvIbv Kx‡mi AÅĄÃfŠŠyÂŗ nq?
(K) PjwZ Avq (L) LyPiv Avq
(M) e¨wÂŗMZ Avq (N) RvZxq Avq
DËi: M
58.GKwU †`‡ki AfÂ¨ÅĄÃâ€Ąi Drcvw`Z `ÂĒe I †mevi mgwÃŗâ€ĄK
Kx e‡j?
(K) ‡gvU †`kR Drcv`b (L) ‡gvU RvZxq Drcv`b
(M) ‡bU †`kR Drcv`b (N) wbU RvZxq Drcv`b
DËi: K
59. e¨‡qi `„wÃŗâ€ĄKvY †_‡K eÜ A_ŠbxwZ‡Z wb‡Pi †KvbwU
mwVK?
(K) GDP=C+I+G (L) GDP=C+I+G(X-
M)
(M) GDP = C+I – G (N) GDP=C+I+G-(X-
M)
DËi: K
60. GDP wnmv‡ei mgq wb‡Pi †Kvb KiwU ev` w`‡Z nq?
(K) cÖZ¨Ãŋ Ki (L) c‡ivÃŋ Ki
(M) f¨vU (N) f~wg ivR¯^
DËi: L
61. wb‡Pi †KvbwU‡Z †`‡ki AfÂ¨ÅĄÃixY Drcv`b cÖwZdwjZ
nq?
(K) GNP (L) GDP
(M) NNI (N) CCA
DËi: L
62. †Kvb A_©bxwZ‡Z GDP I GNP me©`v mgvb nq?
(K) cuywRev`x A_©bxwZ‡Z (L) ‡Lvjv A_©bxwZ‡Z
(M) wb‡`„kg~jK A_ŠbxwZ‡K (N) e× A_ŠbxwZ‡Z
DËi: N
63. GDP wnmv‡ei †Ãŋâ€ĄÃŽ ¸iÃχZÂĄi mv‡_ †Kvb welqwU
we‡ePbv Kiv nq?
(K) ‡fÅ â€ĄMvwjK mxgvbv (L) cÖvKâ€ĻwZK m¤Ãē`
(M) g~jab `ÂĒe¨ (N) RbkwÂŗ
DËi: K
64. GDP = ?
(K) C + I + G (L) C + I + Z
(M) Y + C + I (N) I + Y + G
DËi: K
65. †gvU †`kR Drcv`‡bi mv‡_ wbU Dcv`vb Avq †hvM
K‡i Kx cvIqv hvq?
(K) ‡gvU RvZxq Avq (L) wbU RvZxq Avq
(M) ‡gvU †`kR Drcv`b (N) AePvqRwbZ e¨q
Pro with Swadhin
DËi: K
66. ‡gvU RvZxq Avq Kx?
(K) GK eQ‡ii Drcvw`Z `ÂĒe¨mvgMÖx I †mevKv‡hŠi
†gvU g~j¨
(L) `ÂĒe¨ I †mevKv‡hŠi weÂĩqjä A_Š
(M) GK eQ‡i †`‡ki evB‡i Drcvw`Z `ÂĒe¨mvgwMÂĒi
Avw_ŠK g~j¨
(N) ißvwb `ÂLJe¨i Øviv AwRŠZ A_Š
DËi: K
67. GKwU †`‡ki A_©‰bwZK Ae¯’v Kxiƒc Zv Rvbvi Rb¨
‡KvbwU cwigvc Kiv Avek¨K?
(K) ‡gvU †`kR Drcv`b (L) wbU RvZxq Drcv`b
(M) ‡gvU RvZxq Drcv`b (N) ‡gvU RvZxq Avq
DËi: N
68. †gvU †`kR Drcv`b + we‡`‡k Ae¯’vbiZ †`wk
RbM‡Yi AvqÑ †`‡k Ae¯’vbiZ we‡`wk‡`i Avq= Kx?
(K) ‡gvU †`kR Drcv`b (L) ‡gvU RvZxq Avq
(M) ‡gvU Avq (N) wbU †`kR Drcv`b
DËi: L
69. cÖevwm‡`i Avq wn‡me Kiv nqÑ
(K) wRGbwc‡Z (L) wRwWwc‡Z
(M) GbwWwc‡Z (N) GbGbwc‡Z
DËi: K
70. NNI cwigv‡ci m~ÎwU Kx?
(K) C+I+G (L) C+I+G+(X-M)
(M) C+I+G-CCA (N) C+I+G+(X-M)-CCA
DËi: N
71. CCA Kx?
(K) Consumption Capital Assumed
(L) Capital consumption Allowance
(M) Cost of Capital in Average
(N) Current Consumption Allowances
DËi: L
72. NNP †_‡K Kx ev` w`‡j wbU RvZxq Avq cvIqv hvq?
(K) cÖZ¨Ãŋ Ki (L) c‡ivÃŋ Ki
(M) e¨emvwqK Ki (N) AePq e¨q
DËi: L
73. gv_vwcQz Avq wbYŠq Kiv nq wb‡Pi †KvbwU Øviv?
(K) CCA (L) GDP
(M) NNI (N) NI
DËi: M
74. NNI Gi c~YŠiƒc †KvbwU?
(K) National Net Income
(L) Need National Investment
(M) Net National Income
(N) Net National Investment
DËi: M
75. ‡Kvb A_ŠbxwZ‡Z NNI ‡ei Kivi mgq wbU ißvwb g~j¨
†hvM Kiv nq?
(K) gyÂŗ A_ŠbxwZ (L) e× A_ŠbxwZ
(M) wb‡`©kg~jK A_©bxwZ (N) Bmjvwg A_©bxwZ
DËi: K
76. RvZxq Avq aviYvi g‡a¨ †KvbwU wbY©q KwVb?
(K) 10wU (L) 12wU
(M) 15wU (N) 20wU
DËi: M
77. Y = C+I+G+(X-M) GB mgxKi‡Y (X-M) Kx?
(K) wewb‡qvM Ñ Avg`vwb
(L) ‡gvU †fvM Ñ wbU ißvwb
(M) ißvwb Ñ Avg`vwb
(N) ‡gvU †`kR Drcv`b-Avg`vwb
DËi: M
78. RvZxq Avq MYbvi g~jZ c×wZ KqwU?
(K) `yB (L) wZb
(M) Pvi (N) cuvP
DËi: L
79. Avq c×wZ Abymv‡i g~jab †_‡K Av‡m †KvbwU?
(K) Dc‡hvM (L) gRywi
(M) my` (N) wewb‡qvM
DËi: M
80. wb‡Pi †KvbwU msMV‡bi cÖvß Avq?
(K) gybvdv (L) my`
(M) gRywi (N) LvRbv
DËi: K
81. †hme `ÂĒe¨ Drcv`‡Ki ci mivmwi †fv‡M e¨eÃŧZ nq,
Zv‡`i‡K Kx e‡j?
(K) cÖv_wgK `ÂĒe¨ (L) gva¨wgK `ÂĒe¨
Pro with Swadhin
(M) P~ovÅĄÃ `ÂĒe¨ (N) cÖvc-cÖv_wgK `ÂĒe¨
DËi: M
82. GKB cY¨ `yBevi MYbv Ki‡j Kx mgm¨vi Dâ„ĸÂĸe nq?
(K) GKK MYbvi (L) ‰ØZ MYbvi
(M) DØ„Ë (N) e¨qMZ
DËi: L
83. RvZxq Avq MYbvq †Kvb chŠv‡qi `ÂĒe¨ I †mev we‡ewPZ
nq?
(K) cÖv_wgK (L) gva¨wgK
(M) cÖvK-gva¨wgK (N) P~ovÅĄÃ
DËi: N
84. RvZxq Av‡q gva¨wgK chŠv‡qi `ÂĒe¨ I †mev we‡ePbv
Ki‡j †Kvb mgm¨v †`Lv †`q?
(K) NvUwZ mgm¨v (L) ‰ØZ MYbvi mgm¨v
(M) DØ„Ë mgm¨v (N) e¨qMZ mgm¨v
DËi: L
85. wg. Rb GKRbi MvqK| wZwb cÖvqB Zvi eÜz‡`i Mvb
†kvbvb| Zvi GB KgŠKvÐ GDP wbaŠvi‡Y Kx n‡e?
(K) we‡eP¨ (L) Awe‡eP¨
(M) wbÂŽÃēÃ–â€ĄqvRb (N) MÖnY‡hvM¨
DËi: L
86. A_ŠbxwZ‡Z gq`v‡K †Kvb `ÂĒe¨ wn‡m‡e we‡ePbv Kiv
nq?
(K) P~ovÅĄÃ `ÂĒe¨ (L) mvgwiK e¨q
(M) cÖv_wgK `ÂĒe¨ (N) g~jabx `ÂĒe¨
DËi: L
87. wØLvZ wewkÃŗ A_ŠbxwZ‡Z mvgwMÖK e¨‡qi mgxKiY
†KvbwU?
(K) AE = C + I +G
(L) AE = C + I
(M) AE = C+I+G+(X-M)
(N) AE=C+I+G+(X-M)-CCA
DËi: L
88. wZb Lv‡Zi A_ŠbxwZ‡Z mvgwMÖK e¨‡qi ¯’vqxKiY
†KvbwU?
(K) AE=C+I+(X-M) (L) AE=C+I+G
(M) AE=C+A+G (N) AE = A + I + G
DËi: L
89. GKwU †`‡ki A_ŠbxwZ KqwU Lv‡Z wefÂŗ?
(K) `yB Lv‡Z (L) wZb Lv‡Z
(M) Pvi Lv‡Z (N) cuvP Lv‡Z
DËi: L
90. †Lvjv A_ŠbxwZ‡Z mvgwMÖK e¨q we‡ePbvi mgq
†KvbwU‡K GKwU LvZ wn‡m‡e we‡ePbv Kiv nq?
(K) AfÂ¨ÅĄÃixY evwYR¨‡K (L) cvwievwiK Avq‡K
(M) AvÅĄÃRŠvwZK evwYR¨‡K (N) cvwievwiK e¨q‡K
DËi: M
91. (X – M) †K Kx wn‡m‡e we‡ePbv Kiv nq?
(K) wbU ißvwb (L) AePq e¨q
(M) wbU Avg`vwb (N) Dcv`b e¨q
DËi: K
92. ¯^q¤Âĸ~Z †fvM †iLvi AvKâ€ĻwZ †Kgb?
(K) j¤Âĸ A‡Ãŋi mgvÅĄÃivj
(L) f~wg A‡Ãŋi mgvÅĄÃivj
(M) evg n‡Z Wvbw`‡K DaŸŠMvgx
(N) evg n‡Z Wvbw`‡K wb¤œMvgx
DËi: L
93. †fvM e¨q (C) Avq (Y) Gi Ici wbf©ikxj nq
Zvn‡j †fvM e¨‡qi A‡cÃŋK n‡e?
(K) C = f(x) (L) Q = f(L,K)
(M) f(C) = Y (N) C = f(Y)
DËi: N
94. C = a +bY †fvM A‡cÃŋ‡K bY †K ejv nqÑ
(K) ¯^q¤Âĸ~Z †fvM (L) cÖvwÅĄÃK †fvM
(M) cÃ–â€ĄivwPZ †fvM (N) wbU †fvM
DËi: M
95. wb‡Pi †KvbwU ¯^íKvjxb †fvM A‡cÃŋK?
(K) C = bY (L) C = a + bY
(M) C = Y – S (N) C = Y + S
DËi: L
96. wewb‡qvM e¨q‡K Kq fv‡M fvM Kiv nq?
(K) 2 fv‡M (L) 4 fv‡M
(M) 6 fv‡M (N) 8 fv‡M
DËi: K
97. wewb‡qvM Kx‡mi Ici wbf©i K‡i?
(K) Drcv`‡bi Ici (L) mÃ‚â€Ąqi Ici
(M) m¤Ãē‡`i Ici (N) kÃ–â€Ągi Ici
DËi: L
98. wewb‡qv‡Mi g~j Dâ€ĄÃk¨ Kx?
Pro with Swadhin
(K) cY¨ Drcv`b (L) gybvdv jvf
(M) AwaK `v‡g weÂĩq (N) cY¨ I †mev eâ€ēUb
DËi: L
99. wbw`ÂŠÃŗ AvqÂ¯Ãâ€Ąi ¯^q¤Âĸ~Z wewb‡qvM I cÃ–â€ĄivwPZ wewb‡qvM
†hvM K‡i Kx cvIqv hvq?
(K) wbU wewb‡qvM (L) ‡gvU wewb‡qvM
(M) wbU †fvM e¨q (N) ‡gvU †fvM
DËi: L
100. †Kvb wewb‡qvM Avq Øviv cÖfvweZ bq?
(K) cÃ–â€ĄivwPZ wewb‡qvM (L) ¯^q¤Âĸ~Z wewb‡qvM
(M) ‡gvU wewb‡qvM (N) wbU wewb‡qvM
DËi: L
101. †Kvb e¨q Av‡qj nÂĢvm-e„w× Øviv cÖfvweZ nq?
(K) ¯^q¤Âĸ~Z wewb‡qvM e¨q (L) wewb‡qvM e¨q
(M) cÃ–â€ĄivwPZ wewb‡qvM e¨q (N) †fvM eÂĒq
DËi: M
102. cÃ–â€ĄivwPZ wewb‡qvM ‡iLv Kxiƒc?
(K) wb¤œMvgx (L) DaŸŠMvgx
(M) Avbf~wgK (N) Dj¤^
DËi: L
103. wewb‡qvM e¨q‡K fvM Kiv nqÑ
(i) cÃ–â€ĄivwPZ †fvM e¨q
(ii) ¯^q¤Âĸ~Z wewb‡qvM e¨q
(iii) cÂLJivwPZ wewb‡qvM e¨q
wbPi †KvbwU mwVK?
(K) i I ii (L) i I iii
(M) ii I iii (N) i, ii I iii
DËi: M
104. wewb‡qvM mgxKiYwU †Kvb wewb‡qvM wb‡`©kK?
(K) ¯^q¤Âĸ~Z wewb‡qvM (L) cÂLJivwPZ wewb‡qvM
(M) wbU wewb‡qvM (N) ‡gvU wewb‡qvM
DËi: N
105. DÏxc‡Ki Av‡jv‡K wb‡Pi †KvbwU wbU wewb‡qvM?
(K) 15 (L) 25
(M) 50 (N) 60
DËi: N
106. miKvwi e¨q‡K Kx aiv nq?
(K) cÃ–â€ĄivwPZ wewb‡qvM (L) ¯^q¤Âĸ~Z
(M) ¯^q¤Âĸ~Z wewb‡qvM (N) ‡fvM e¨q
DËi: L
107. †`k cwiPvjbv Kivi Rb¨ miKvi †h e¨q K‡i Zv‡K
Kx e‡j?
(K) miKvwi wewb‡qvM (L) miKvwi e¨q
(M) miKvwi FY (N) miKvwi fyZŠwK
DËi: L
108. S = Y – C mgxKiYwU †Kvb ai‡bi A‡cÃŋK?
(K) ‡fvM (L) wewb‡qvM
(M) Avq (N) mÂq
DËi: K
109. Avq †Z‡K †fvM eÂĒq ev` w`‡j †KvbwU _v‡K?
(K) Avq (L) ‡gvU e¨q
(M) mÂq (N) my‡hvM e¨q
DËi: M
110. Dr‡mi w`K †_‡K mÂq‡K Kq fv‡M fvM Kiv nq?
(K) 2 fv‡M (L) 3 fv‡M
(M) 4 fv‡M (N) 5 fv‡M
DËi: L
111. GKwU †`k g~jZ Kq ai‡bi mÂq wb‡q g~jab MwVZ
nq?
(K) `yB ai‡bi (L) wZb ai‡bi
(M) Pvi ai‡bi (N) cuvP ai‡bi
DËi: L
112. e¨wÂŗi e¨q‡hvM¨ Avq †_‡K Kx ev` w`‡j e¨wÂŗMZ
mÂq cvIqv hvq?
(K) wewb‡qvM e¨q (L) ‡fvM e¨q
(M) F‡Yi my` (N) miKvwi e¨q
DËi: L
113. Avq Kg‡j mÂq Kx nq?
(K) fvimvg¨nxb (L) K‡g
(M) ev‡o (N) w¯’wZkxj
DËi: L
114. Avq evo‡j mÂq Kx nq?
(K) fvimvg¨nxb (L) K‡g
(M) ev‡o (N) w¯’wZkxj
DËi: M
115. gvbyl hv Avq K‡i Zvi meUvB †m Kx K‡i bv?
(K) mÂq (L) Drcv`b
(M) e¨q (N) wewb‡qvM
DËi: M
Pro with Swadhin
116. Av‡qi †h Ask eZ©gv‡b †fvM bv K‡i fwel¨‡Zi Rb¨
ivLv nq Zv‡K Kx e‡j?
(K) gRyZ (L) mÂq
(M) wewbgq (N) ‡fvM
DËi: L
117. mÂq I wewb‡qvM m¤Ãē‡KŠ Ávb ARŠb Kivi Rb¨ KqwU
aviYv Rvbv cÃ–â€ĄqvRb?
(K) 2wU (L) 3wU
(M) 4wU (N) 5wU
DËi: K
118. †Kvb gZev` Abymv‡i mÂq I wewb‡qvM †Ãŋâ€ĄÃŽ mgZv
cÃ–â€ĄqvR?
(K) gvK©mxq (L) ‡KBbmxq
(M) wdkvixq (N) GwiÃˇUjxq
DËi: L
120. ‡Kvb ai‡bi mÂq I wewb‡qv‡Mi †Ãŋâ€ĄÃŽ mgZv
cÃ–â€ĄqvR¨?
(K) e¨wÂŗMZ (L) mvgwMÖK
(M) cwiKwíZ (N) e¨emvqMZ
DËi: L
121. †Kv‡bv e¨wÂŗ cÖZ¨vwkZ Avq †_‡K †h mÂq K‡i Zv‡K
Kx e‡j?
(K) cÖKâ€ĻZ mÂq (L) cwiKwíZ mÂq
(M) e¨wÂŗMZ mÂq (N) mvgwMÖK mÂq
DËi: L
122. cwiKwíZ mÂq I wewb‡qvM †Kvb AvqÂ¯Ãâ€Ąi ci¯Ãēi
mgvb n‡Z cv‡i?
(K) RvZxq AvqÂ¯Ãâ€Ąi (L) e¨wÂŗMZ AvqÂ¯Ãâ€Ąi
(M) miKvwi AvqÂ¯Ãâ€Ąi (N) fvimvg¨ AvqÂ¯Ãâ€Ąi
DËi: N
123. wewb‡qvM †_‡K cwiKwíZ mÂq †ewk n‡j †KvbwU
Kg‡e?
(K) Avq (L) wewb‡qvM
(M) Pvwn`v (N) mÂq
DËi: K
124. AwaK wewb‡qvM AwaK Avq m„wÃŗ K‡i e‡j Kx ev‡o?
(K) wewb‡qvM (L) mÂq
(M) Pvwn`v (N) ‡hvMvb
DËi: L
125. A_ŠbxwZ‡Z AE = AI n‡j †KvbwU ci¯Ãēi mgvb nq?
(K) mÂq I Drcv`b (L) e¨q I mÂq
(M) mÂq I gybvdv (N) mÂq I wewb‡qvM
DËi: N
126. †KvbwU †fvM eÂĒq I mÂq Gi mgwÃŗi mgvb?
(K) mvgwMÖK e¨q (L) mvgwMÖK Avq
(M) wewb‡qvM e¨q (N) wbU Avq
DËi: L
127. fvimvg¨ n‡jv Ggb GKUv Ae¯’v hvi gva¨‡g KqwU
wecixZ kwÂŗ ci¯Ãēi mgvb nq?
(K) 2wU (L) 3wU
(M) 4wU (N) 5wU
DËi: K
128. Kx Av‡jvPbv ewnfŠ~Z ivL‡j mvgwMÖK e¨q n‡jv †gvU
†fvM e¨q I wewb‡qvM e¨‡qi mgvb?
(K) ‡emiKvwi LvZ (L) AfÂ¨ÅĄÃixY evwYR¨
(M) miKvwi LvZ (N) wkí LvZ
DËi: M
129. wb‡Pi †KvbwU mwVK fvimvg¨ Avq Â¯Ãâ€Ąi?
(K) mÂq ī€ž wewb‡qvM (L) mÂq ī€ŧ wewb‡qvM
(M) mÂq = wewb‡qvM (N) ‡Kv‡bvwUB bq
DËi: M
130. †Kvb Â¯Ãâ€Ąi mswkÃ¸Ãŗ KvhŠvewj cwieZ©‡bi †Kv‡bv cÖeYZv
_v‡K bv?
(K) `vgÂ¯Ãâ€Ąi (L) Drcv`b Â¯Ãâ€Ąi
(M) AvhÂ¯Ãâ€Ąi (N) fvimvg¨ Â¯Ãâ€Ąi
DËi: N
131. mÂq I wewb‡qv‡Mi mgZv Øviv Kx wbaŠvwiZ nq?
(K) ‡fvM e¨q (L) wbU Avq
(M) wewb‡qvM e¨q (N) fvimvg¨ RvZxq Avq
DËi: N
132. fvimvg¨ RvZxq Avq wbaŠvi‡Yi cÖPwjZ c×wZ KqwU?
(K) `ywU (L) wZbwU
(M) PviwU (N) cuvPwU
DËi: K
133. mvgwMK Av‡qi mgwÃŗ n‡jvÑ
(i) wewb‡qvM e¨q (ii) ‡fvM e¨q
(iii) mÂq
wbPi †KvbwU mwVK?
(K) i I ii (L) i I iii
Pro with Swadhin
(M) ii I iii (N) i, ii I iii
DËi: K
134. A_ŠbxwZ wefÂŗ n‡Z cv‡iÑ
(i) GK LvZ wfwËK A_ŠbxwZ‡Z
(ii) wØ LvZwfwËK A_ŠbxwZ‡Z
(iii) wZb LvZwfwËK A_ŠbxwZ‡Z
wbPi †KvbwU mwVK?
(K) i I ii (L) i I iii
(M) ii I iii (N) i, ii I iii
DËi: M
135.
b
1
(
G
I
a o
o
−
+
+
mgxKiYwU Øviv wb‡Pi †KvbwU wb‡`Šk
K‡i?
(K) fvimvg¨ Avq (L) mvgwMÖK Avq
(M) cÖKâ€ĻZ Avq (N) wewb‡qvM
DËi: K
136. Ave× A_ŠbxwZ‡Z mvgwMÖK e¨‡qi KqwU Dcv`vb
i‡q‡Q?
(K) `yBwU (L) wZbwU
(M) PviwU (N) cuvPwU
DËi: L
137. A †`‡ki GDP = 5 wewjqb Rjvi Avg`vwb 2
wewjqb Wjvi Ges ißvwb 3 wewjqb Wjvi| A †`‡ki
GNP KZ?
(K) 4 wewbqb (L) 5 wewjqb
(M) 6 wewjqb (N) 8 wewjqb
DËi: M
138. wØLvZ wewkÃŗ A_ŠbxwZ‡Z mvgwMÖK e¨q (AE)?
(K) C + I (L) C+I+G
(M) G+I (N) C+G
DËi: K
139. GKwU gyÂŗ A_ŠbxwZ‡Z C+I+G+(X-M) Øviv wK
†evSvq?
(K) wRwWwc (L) wRGbwc
(M) GbGbwc (N) gv_vwcQz Avq
DËi: L
140. wZb Lv‡Zi A_©bxwZ‡Z fvimvg¨ RvZxq Avq wba©vwiZ
nq Kxfv‡e?
(K) mÂq I wewb‡qvM c×wZ‡Z
(L) mÂq I Avq c×wZ‡Z
(M) wewb‡qvM I Avq c×wZ‡Z
(N) gybvdv I mvgwMÖK e¨q c×wZ‡Z
DËi: K
141. fvimvg¨ Avq wba©vi‡Y †KvbwU we‡ePbv Kiv nq?
(K) wewb‡qvM e¨q (L) mvgwMÖK e¨q
(M) ‡emiKvwi e¨q (N) ‡fvM e¨q
DËi: L
142. †gvU ‡fvM e¨q I wewb‡qvM e¨‡qi mgwÃŗ Øviv †KvbwU
cÖKvwkZ nq?
(K) Pvwn`v (L) Drcv`b
(M) gRyZ (N) mÂq
DËi: K
143. wZbLvZ wewkÃŗ A_ŠbxwZ‡Z †KvbwU Av‡jvPbv ewnfŠ~Z?
(K) miKvwi e¨q (L) wewb‡qvM
(M) e¨wÂŗMZ †fvM e¨q (N) AvÅĄÃRŠvwZK evwYR¨
DËi: N
144. gyÂŗ evRvi A_ŠbxwZ‡Z RvZxq Av‡qi m~Î †KvbwU?
(K) C (L) C+I
(M) C+I+G (N) C+I+G+Xn
DËi: N
145. Ave× A_ŠbxwZ‡Z mvgwMÖK Pvwn`vi Dcv`vb n‡jv-
(i) miKvwi e¨q
(ii) ‡emiKvwi wewb‡qvM e¨q
(iii) ‡emiKvwi †fvM e¨q
wbPi †KvbwU mwVK?
(K) i I ii (L) i I iii
(M) ii I iii (N) i, ii I iii
DËi: N
AwZ ¸iÃĻZÂĄc~YŠ welqÂĩg Abyhvqx cÃ–â€ĄkœvËi
mvgwMÖK Avq ev AI
1. Av‡gwiKvi A_ŠbxwZ‡Z gnvgâ€ē`vi m„wÃŗ nqÑ 1930
mv‡j|
2. mvgwMÖK Avq we‡ePbv Kiv nqÑ e„nËi `„wÃŗâ€ĄKvY †_‡K
3. mvgwMÖK Av‡qi mgxKiYÑ Y = C+I+G
4. mvgwMÖK Avq mvaviYZÑ 1 eQ‡ii cÖvß Av‡qi mgwÃŗ|
5. e¨emv-evwYR¨ †_‡K gybvdv AwRŠZ nqÑ 3wU Dcv‡q|
6. gybvdv‡K fvM Kiv hvqÑ 2 fv‡M|
Pro with Swadhin
7. GKK I Askx`vwi e¨emv †_‡K cÖvß Avq n‡jvÑ
†cÖvcvBUwi Avq|
8. K‡cŠv‡iU gybvdv ewâ€ēUZ nqÑ 3 fv‡M|
9. K‡cŠv‡iU e¨emv n‡Z AwRŠZ gybvdv‡K e‡jÑ K‡cŠv‡iU
gybvdv|
10. GKwU A_ŠbxwZ m¤ÃēKŠ cÖv_wgK aviYv cvIqv hvqÑ
mvgwMÖK Avq †_‡K|
‡gvU †`kR Drcv`b ev GDP
1. GKwU †`‡ki AfÂ¨ÅĄÃâ€Ąi Drcvw`Z `ÂĒe¨ I †mevi mgwÃŗâ€ĄK
e‡jÑ †gvU †`kR Drcv`b|
2. e¨‡qi `„wÃŗâ€ĄKvY ‡_‡K e× A_ŠbxwZ‡ZÑ GDP =
C+I+G.
3. wRwWwc wnmv‡ei mgq ev` w`‡Z nqÑ c‡ivÃŋ Ki|
4. ‡`‡ki AfÂ¨ÅĄÃixY Drcv`b cÖwZdwjZ nqÑ GDP
†_‡K|
5. e× A_ŠbxwZ‡Z GDP Ges GNP meŠ`vBÑ mgvb nq|
6. GDP = C + I + G
7. we‡`wk bvMwiK‡`i Avq AÅĄÃfŠ~Âŗ nqÑ GDP †Z|
8. GDP †Z we‡`‡k Ae¯’vbiZ †`kxq bvMwiK‡`i AvqÑ
AÅĄÃfŠ~Âŗ nq bv|
9. GDP wnmv‡ei †Ãŋâ€ĄÃŽ ¸iÃĻZÂĄc~YŠ we‡eP¨ welq n‡jvÑ
†fÅ â€ĄMvwjK mxgvbv|
10. wbU ißvwb k~b¨ n‡jÑ GDP = GDP nq|
‡gvU RvZxq Avq ev GNI
1. ‡gvU †`kR Drcv`‡bi mv‡_ wbU Dcv`vb Avq‡hvM K‡i
cvIqv hvqÑ GNI
2. GK eQ‡ii Drcvw`Z `ÂĒe¨mgvMÖx I †mevKv‡hŠi †gvU
g~j¨ n‡jvÑ †gvU RvZxq Avq|
3. ‡gvU RvZxq Av‡qj gva¨‡g Rvbv hvq †`‡kiÑ
A_©‰bwZK Ae¯’v|
4. we‡`‡k Ae¯’vbiZ †`kxq bvMwiK‡`i Avq AÅĄÃfŠ~Âŗ
nqÑ GNI †Z|
5. Drcv`b e¨‡qi Ask bqÑ c‡ivÃŋ Ki|
6. miKvi †`k cwiPvjbv I Dbœq‡bi Rb¨ †h e¨q K‡i
_v‡K Zv n‡jvÑ miKvwi e¨q|
7. GNI-Gi Dcv`vbÑ 4wU|
8. miKvwi †fvM e¨q n‡jvÑ GNI Gi Dcv`vb|
wbU RvZxq Avq ev NNI
1. NNI cwigv‡ci m~Î n‡jv= C+I+G+(X-M)-CCA
2. CCA ej‡Z †evSv‡bv nqÑ g~ja‡bi e¨enviRwbZ
AePq e¨q|
3. GNI †_‡K CCA ev` w`‡q cvIqv hvqÑ NNI.
4. gv_vwcQz Avq wbYŠq Kiv hvqÑ NNI Øviv|
5. NNI Gi c~YŠiƒcÑ Net National Income.
6. gyÂŗ A_ŠbxwZ‡Z NNI †ei Kivi mgq †hvM Ki‡Z
nqÑ wbU ißvwb g~j¨|
7. ‡`‡ki A_ŠbxwZi cÖKâ€ĻZ Ae¯’v Rvbv hvqÑ wbU RvZxq
Drcv`b †_‡K|
8. NNP †_‡K c‡ivÃŋ Ki ev` w`‡j hv _v‡K ZvBÑ
NNI.
9. wbU RvZxq Av‡q AÅĄÃfŠ~Âŗ nqÑ e¨emv‡qi Avq|
‡gvU RvZxq Avq I wbU RvZxq Av‡qi g‡a¨ cv_©K¨
1. RvZxq Avq aviYvi g‡a¨ cwigvc Kiv KwVbÑ NNI
2. gv_vwcQz Av‡qi mwVK wnmve cvIqv hvqÑ NNI-‡Z|
3. A_©‰bwZK Ae¯’v AvkvcÖ` bvI n‡Z cv‡iÑ GNI †ewk
n‡j|
4. ‡gvU wewb‡qvM †_‡K AePq ev` w`‡j cvIqv hvqÑ wbU
wewb‡qvM e¨q|
5. GKwU †`‡ki A_ŠbxwZi mwVK wPÎ cvIqv hvqÑ NNI
†_‡K|
6. g~jabmvgMÖxi ÃŋqÃŋwZ AÅĄÃfŠ~Âŗ _v‡KÑ †gvU RvZxq
Av‡q|
7. GDP I we‡`k †_‡K cÖvß wbU Av‡qi mgwÃŗ n‡jvÑ
NNI
8. GbGbAvB-Gi cwigvc wewfbœ iKg n‡Z cv‡iÑ
wRGbAvB †`Iqv _vK‡jI|
mvgwMÖK Avq cwigv‡ci c×wZmg~n
1. evsjv‡`‡ki A_ŠbxwZÑ 15wU Lv‡Z wefÂŗ|
2. Y = C+I+G+(X-M) GB mgxKiY (X-M) n‡jvÑ
ißvwbÑ Avg`vwb|
3. e¨q c×wZ‡Z wRwWwcÑ †fvM + wewb‡qvM + miKvwi
e¨q + wbU ißvwb|
4. RvZxq Avq cwigvc Kiv hvqÑ 3 c×wZ‡Z|
Pro with Swadhin
5. Avq c×wZ Abymv‡i g~jab †_‡K Av‡mÑ my`|
6. msMV‡bi cÖvß AvqÑ gybvdv|
7. RvZxq Avq n‡jv Drcv`b Kv‡hŠ e¨eÃŧZ DcKi‡Yi
cÖvß Av‡qi mgwÃŗÃ‘ Avq c×wZ|
8. Avq c×wZ‡Z wRwWwcÑ LvRbv + gRywi + my` +
gybvdv|
9. ‡gvU †`kR Drcv`b cwigvc Kiv nqÑ 15wU Lv‡Zi
Drcv`b g~j¨ †hvM K‡i|
10. Drcv`b c×wZ‡Z we‡ePbvq Avbv nqÑ P~ovÅĄÃ `ÂĒe¨|
mvgwMÖK Avq cwigv‡ci mgm¨vmg~n
1. ‡hme `ÂĒe¨ Drcv`‡bi ci mivmwi †fv‡M e¨eÃŧZ nq
Zv‡`i‡K ejv nqÑ P~ovÅĄÃ `ÂĒe¨|
2. GKB wRwbm `yBevi MYbv Kiv n‡j Zv‡K e‡jÑ ˆØZ
MYbv mgm¨v|
3. RvZxq Avq MYbvq `ÂĒe¨ I †mev we‡ewPZ nqÑ P~ovÅĄÃ
ch©v‡qi|
4. g~jabx jvfÃŋwZ we‡ewPZ nq bvÑ RvZxq Drcv`‡b|
5. ‰ØZ MYbvq mgm¨v m„wÃŗ n‡eÑ gva¨wgK `ÂĒe¨ we‡ePbv
Ki‡j|
6. hy×Kvjxb FY †Kv‡bv f~wgKv iv‡L bvÑ GNI wbY©‡qi
†Ãŋâ€ĄÃŽ|
7. ‰Zwi †cvkvK‡KÑ PzovÅĄÃ `ÂĒe¨ wn‡m‡e we‡ePbv Kiv nq|
8. GDP MYbvi †Ãŋâ€ĄÃŽ AÅĄÃfŠ~Âŗ nq bvÑ AZx‡Z Drcvw`Z
cY¨|
9. A_ŠbxwZ‡Z gq`v‡K we‡ePbv Kiv nqÑ gva¨wgK `ÂĒe¨
wn‡m‡e|
mvgwMÖK e¨q
1. wØLvZ wewkÃŗ A_ŠbxwZ‡Z mvgwMÖK e¨‡qi mgxKiYÑ
AE=C+I
2. GKwU †`‡ki A_ŠbxwZ wefÂŗÃ‘ wZb Lv‡Z|
3. wØLvZ wewkÃŗ A_ŠbxwZ‡Z †fv‡Mi Rb¨ e¨envi Kiv
nqÑ P~ovÅĄÃ `ÂĒe¨ I †mev|
4. ‡Lvjv A_ŠbxwZ‡Z mvgwMÖK e¨q we‡ePbvi mgq LvZ
wn‡m‡e we‡ewPZ nqÑ AvÅĄÃRŠvwZK evwYR¨|
5. (X-M) †K we‡ePbv Kiv nqÑ wbU ißvwb wn‡m‡e|
6. wZb Lv‡Zi A_ŠbxwZ‡Z mvgwMÖK e¨qÑ C+I+G
7. PviLv‡Zi A_ŠbxwZ‡Z mvgwMÖK e¨q n‡jvÑ
C+I+G+NX
8. ‰ØZMYbv Gov‡bvi Rb¨ C+I+G †_‡K ev` †`qv nqÑ
cÖv_wgK I gva¨wgK `ÂĒe¨ g~j¨|
9. mvgwMÖK e¨‡qi ¸iÃĻZÂĄc~YŠ Ask n‡jvÑ miKvwi e¨q|
‡fvM e¨q I Z`m¤ÃēwKŠZ †iLvmg~n
1. ¯^q¤Âĸ~Z †fvM †iLvi AvKâ€ĻwZÑ f~wg A‡Ãŋi mgvÅĄÃivj|
2. ‡fvM e¨q A‡cÃŋKÑ C=/(Y)
3. ¯^íKvjxb †fvM A‡cÃŋKÑ C=a + dY.
4. ¯^q¤Âĸ~Z †fvM eRvq _v‡KÑ ¯^íKv‡j|
5. Avq k~b¨ n‡jI wKQz cwigvY †fvM _vK‡eÑ ¯^q¤Âĸ~Z
†fvM|
6. cÃ–â€ĄivwPZ †fvM e¨q †iLvÑ Wvbw`‡K DaŸŠMvgx|
8. gvbyl Zvi Pvwn`v †gUv‡bvi Rb¨ †hme `ÂĒe¨ I †mev Âĩq
K‡i A_Š e¨q K‡i Zvi mgwÃŗBÑ †fvM e¨q|
9. ‡fvM e¨q wbfŠikxjÑAv‡qj Ici|
10. Av‡qi †P‡q Kg nv‡i ev‡oÑ †fvM e¨q|
11. Av‡qi Ici wbfŠi K‡i bvÑ ¯^q¤Âĸ~Z ‡fvM|
12. k~b¨ Av‡qI eRvq _v‡KÑ ¯^q¤Âĸ~Z †fvM|
wewb‡qvM e¨q
1. wewb‡qvM e¨q‡K fvM Kiv nqÑ 2 fv‡M|
2. wewb‡qv‡Mi wfwË n‡jvÑ mÂq|
3. wewb‡qv‡Mi Dâ€ĄÃk¨ n‡jvÑ gybvdv jvf|
4. Ab¨vb¨ Ae¯’v AcwiewZŠZ †Z‡K Avq evo‡jÑ wewb‡qvM
ev‡o|m
5. ¯^q¤Âĸ~Z wewb‡qvM I cÃ–â€ĄivwPZK wewb‡qv‡Mi mgwÃŗ n‡jvÑ
‡gvU wewb‡qvM|
6. Av‡qi nÂĢvm-e„w× Øviv cÖfvweZ nqÑ cÃ–â€ĄivwPZ
wewb‡qvM|
7. cyivZb g~ja‡bi mv‡_ AwZwiÂŗ wKQz g~jab †hvM Kiv
n‡j Zv‡KÑ wewb‡qvM e‡j|
8. cÃ–â€ĄivwPZ wewb‡qvM †iLvÑ DaŸŠMvgx|
9. wewb‡qvM e¨q‡K fvM Kiv hvqÑ ¯^qÚzZ I cÃ–â€ĄivwPZ
wn‡m‡e|
miKvwi e¨q I mÂq
1. miKvwi e¨q‡K aiv nqÑ ¯^q¤Âĸ~Z e¨q wn‡m‡e|
Pro with Swadhin
2. ‡`k cwiPvjbvi Rb¨ miKvi †h A_Š e¨q K‡i ZvBÑ
miKvwi e¨q|
3. mÂq †iLvi mgxKiY n‡jvÑ S = Y – C.
4. miKvwi e¨q ev‡oÑ Ki evo‡j|
5. miKvi e¨‡qi Rb¨ cÃ–â€ĄqvRbxq A_Š †c‡q _v‡KÑ Ki
‡_‡K|
6. Avq †_‡K †fvM e¨q ev` w`‡j hv _v‡K ZvB n‡jvÑ
mÂq|
7. mÂq †iLv evg †_‡K Wvbw`‡KÑ DaŸŠgyLx|
8. Avq evo‡j, evo‡eÑ mÂq|
9. Av‡qi mv‡_ mÃ‚â€Ąqi m¤ÃēKŠÑ abvZÂĨK|
miKvwi e¨q I mÂq
1. miKvwi e¨q‡K aiv nqÑ ¯^q¤Âĸ~Z e¨q wn‡m‡e|
2. ‡`k cwiPvjbvi Rb¨ miKvi †h A_Š e¨q K‡i ZvBÑ
miKvwi e¨q|
3. mÂq †iLvi mgxKiY n‡jvÑ S = Y – C
4. miKvwi e¨q ev‡oÑ Ki evo‡j|
5. miKvi e¨‡qi Rb¨ cÃ–â€ĄqvRbxq A_Š ‡c‡q _v‡KÑ Ki
†_‡K|
6. Avq †_‡K †fvM e¨q ev` w`‡j hv _v‡K ZvB n‡jvÑ
mÂq|
7. mÂq †iLv evg †_‡K Wvbw`‡K Ñ DaŸŠgyLx|
8. Avq evo‡j, evo‡eÑ mÂq|
9. Av‡qi mv‡_ mÃ‚â€Ąqi m¤ÃēKŠÑ abvZÂĨK|
mÃ‚â€Ąqi †kÖwYwefvM
1. Avq †_‡K †fvM e¨q ev` w`‡j _v‡KÑ mÂq|
2. Dr‡mi w`K †_‡K mÂq‡K fvM Kiv hvqÑ 3 fv‡M|
3. GKwU †`‡k mÂq wb‡q g~jab MwVZ nqÑ 3 ai‡bi|
4. e¨q‡hvM¨ Avq †_‡K †fvM e¨q ev` w`‡j _v‡KÑ
e¨wÂŗMZ mÂq|
5. Avq I mÃ‚â€Ąqi m¤ÃēKŠÑ mggyLx|
6. miKv‡ii ivR¯^ †_‡K miKvwi e¨q ev` w`‡j _v‡KÑ
miKvwi mÂq|
7. e¨emv evwYR¨ I KjKviLvbvi Aewâ€ēUZ gybvdv n‡jvÑ
e¨emvMZ mÂq|
8. e¨emvMZ mÂq miKvwi mÂq wb‡q MwVZ nqÑg~jab|
9. cÖZ¨vwkZ Avq †_‡K cÖZ¨vwkZ mÂq‡K e‡jÑ
cwiKwíZ mÂq|
10. cÖvß I cÖvße¨Zvi wfwÃ‹â€ĄZ mÂqÑ `yB cÖKvi|
11. mgv‡Ri cÖZ¨vwkZ mÂq‡K ejv nqÑ cwiKwíZ mÂq|
mÂq I wewb‡qv‡Mi g‡a¨ m¤ÃēKŠ
1. mÂq I wewb‡qvM m¤Ãē‡KŠ cÖPwjZ i‡q‡QÑ 2wU aviYv|
2. mÂq I wewb‡qvM ci¯Ãēi mgvbÑ †KBbmxq gZev‡`|
3. wewb‡qvM wbfŠikxjÑ mÃ‚â€Ąqi Ici|
4. wewb‡qvM cwiKwíZ mÂq †ewk n‡jÑ Avq Kg‡e|
5. GKwU †`‡k wewb‡qvM †ewk n‡e hw` †ewk nqÑ mÂq|
6. mÂq I wewb‡qv‡Mi mgZv cÃ–â€ĄhvR¨ bqÑ e¨wÂŗMZ mÂq
I wewb‡qv‡Mi †Ãŋâ€ĄÃŽ|
7. mÂq I wewb‡qvM me mgq mgvb nqÑ cÖKâ€ĻZ mÂq I
wewb‡qv‡M|
8. mÂq I wewb‡qvM Kg †ewk n‡Z cv‡iÑ cwiKwíZ
mÂq I wewb‡qv‡M|
fvimvg¨ RvZxq Avq
1. A_ŠbxwZ‡Z AE = AI n‡j ci¯Ãēi mgvb nqÑ S I I.
2. ‡fvMe¨q I mÃ‚â€Ąqi mgwÃŗâ€ĄK ejv nqÑ mvgwMÖK Avq|
3. ‡gvU †fvM e¨q I wewb‡qvM e¨q mgvb bqÑ miKvwi
Lv‡Z|
4. fvimvg¨ Avq Â¯Ãâ€ĄiÑ mÂq + wewb‡qvM|
5. fvimvg¨ Avq wbaŠvwiZ nqÑ AI = AE n‡j|
6. C+I+G †`Lv hvqÑ †KBbmxq A_ŠbxwZ‡Z|
7. mÂq I wewb‡qv‡Mi mgZv Øviv wbaŠvwiZ nqÑ fvimvg¨
RvZxq Avq|
8. S = I Â¯Ãâ€Ąi wbaŠvwiZ nqÑ fvimvg¨ Avq|
9. fvimvg¨ RvZxq Avq wbaŠvi‡Y cÖPwjZÑ `ywU c×wZ|
10. fvimvg¨ve¯’vqÑ AD = AS nq|
Ave× A_ŠbxwZ‡Z fvimvg¨ Avq wbaŠviY
1.
)
b
I
(
G
I
a 0
a
−
+
+
= fvimvg¨ Avq (Y)|
2. Ave× A_ŠbxwZ‡Z mvgwMÖK e¨‡qi Dcv`vbÑ 3wU|
3. wØLvZ wewkÃŗ A_ŠbxwZ‡Z mvgwMÖK e¨qÑ C+I
4. e× A_ŠbxwZ‡Z fvimvg¨ n‡jvÑ Y = C + I + G
5. Ave× A_ŠbxwZ MwVZÑ 3wU LvZ wb‡q|
Pro with Swadhin
6. fvimvg¨ Avq wbaŠvi‡Y we‡ewPZ nqÑ mvgwMÖK e¨q|
7. Ave× A_ŠbxwZ‡Z we‡ePbv ewnfŠ~Z _v‡KÑ AvÅĄÃRŠvwZK
evwYR¨|
8. cÃ–â€ĄivwPZ †fvM wbfŠikxjÑ Av‡qi Ici|
9. wZb LvZ wewkÃŗ AZŠbxwZ‡ZÑ AvÅĄÃRŠvwZK evwYR¨
cÃ–â€ĄhvR¨ bq|

economics 1st Paper chapter 9 MCQ

  • 1.
    Pro with Swadhin begAa¨vq mvgwMÖK Avq I e¨q A_ŠbxwZ ¸iÃĻZÂĄc~YŠ eÃģwbeŠvPbx cÖkœDËi 1. wZb LvZ wewkÃŗ A_ŠbxwZ‡Z RvZxq Avq cwigv‡ci m~Î †KvbwU? (K) Y=C+I+G+(X+M) (L) Y=C+I+G (M) Y=C+I+G+(X-M) (N) Y=C+1 DËi: L 2. ‡`‡k KgŠiZ we‡`wk‡`i Avq wb‡Pi †KvbwU‡Z AÅĄÃfŠ~Âŗ? (K) GNI (L) NNI (M) GDR (N) CCA DËi: M 3. Av‡qi cwieZ©‡b †Kvb ai‡bi wewb‡qvM cwieZŠb nq bv? (K) wbU wewb‡qvM (L) ‡gvU wewb‡qvM (M) cÃ–â€ĄivwPZ wewb‡qvM (N) AbybœZ wewb‡qvM DËi: N 4. GNP Gi c~YŠiƒc †KvbwU? (K) Gross New Product (L) Gross Net Product (M) Gross National Product (N) Gross Nominal Product DËi: M 5. S=-50+(1-0.5) Y: mÂq mgxKi‡Y Y = 100 n‡j mÃ‚â€Ąqi cwigvY KZ? (K) -50 (L) 0 (M) 50 (N) 100 DËi: L 6. e¨wÂŗMZ Avq n‡Z AvqKi ev` w`‡j cvIqv hvq- (K) ‡gvU RvZxq Avq (L) ‡gvU †`kR Avq (M) e¨q‡hvM¨ Avq (N) wbU RvZxq Avq DËi: M 7. wb‡Pi †KvbwU NNP Gi m~Î? (K) NNP = GNP – CCA (L) NNP = GNP + CCA (M) NNP = C + I + G (N) NNP = CCA – GNP DËi: K 8. Av‡qi Dci wbfŠikxj †fvM e¨q‡K Kx e‡j? (K) ¯^qâ„ĸÂĸ~Z †fvM (L) Mo †fvM cÖeYZnx (M) cÃ–â€ĄivwPZ †fvM (N) cÖvwÅĄÃK †fvM cÖeYZv DËi: M 9. cÖevmx‡`i Avq wnmv‡e Kiv nq †KvbwU‡Z? (K) GNP (L) GDP (M) NDP (N) CCA DËi: K 10. k~b¨¯’v‡b †KvbwU em‡e? e¨q‡hvM¨ Avq= {?] Ñ Ki| (K) RvZxq Avq (L) mvgwMÖK Avq (M) mvgwMÖK e¨q (N) e¨wÂŗMZ Avq DËi: N 11. C=50 + 0.75Y n‡j cÖvwÅĄÃK mÂq cÖeYZv (MPS) KZ n‡e? (K) 0.25 (L) 0.50 (M) 0.75 (N) 1.75 DËi: K 12. wb‡Pi †Kvb e¨qwU DbÂĨyÂŗ A_ŠbxwZi mv‡_ m¤ÃēwKŠZ? (K) ‡fvM e¨q (C) (L) miKvwi e¨q (G) (M) wbU ißvwb (Xn) (N) wewb‡qvM e¨q (I) DËi: M 13. ‡Kvb Dcv`vbwU Ave× A_ŠbxwZ‡Z Abycw¯’Z? (K) wbU ißvwb (L) miKvwi e¨q (M) ‡fvM e¨q (N) wewb‡qvM e¨q DËi: K 14. mÃ‚â€Ąqi g~j Dâ€ĄÃk¨ †KvbwU? (K) eZŠgv‡bi †fvM (L) AZx‡Zi †fvM (M) fwel¨‡Zi †fvM (N) ‡fv‡Mi DØ„Ë DËi: M 15. e¨wÂŗMZ AvqÑe¨wÂŗMZ cÖZ¨Ãŋ Ki=? (K) cÖZ¨Ãŋ Avq (L) c‡ivÃŋ e¨q (M) e¨q‡hvM¨ Avq (N) Avq‡hvM¨ e¨q DËi: M 16. Òg~jab mvgMÖx e„w× ev bZzb mvR-miÄvg ˆZwi‡K wewb‡qvM ejv nq|ÓÑ gÅĄÃe¨wU Kvi? (K) Aa¨vcK wnKm (L) Aa¨vcK gvkŠvj (M) Aa¨vcK wc¸ (N) Aa¨vcK cviwKb DËi: K 17. ‡Kvb m¤ÃēKŠwU mwVK? (K) I = G (L) C = S
  • 2.
    Pro with Swadhin (M)S = I (N) Xo = X + M DËi: M 18. NDP = ? (K) GNI=GDPO–CCA (L) NNP=GNP – CCA (M) NNI = GNI – DC (N) CCA = GNI – NNP DËi: N 19. wb‡Pi †KvbwU‡Z †`‡k Ae¯’vbiZ we‡`wk‡`i Avq AÅĄÃfŠyÂŗ nq? (K) GNP (L) GDP (M) NNP (N) NI DËi: L 20. wbâ€ĄÂ¤Å“i †KvbwU‡K wewb‡qv‡Mi c~eŠ_gŠ ejv nq? (K) Avq (L) e¨q (M) mÂq (N) ‡fvM DËi: M 21. GDP †Z AÅĄÃfŠ~Âŗ n‡eÑ (i) f~Lâ€ĄÃ› Ae¯’vbiZ †`kxq bvMwiK‡`i Avq (ii) ‡`‡k Ae¯’vbiZ we‡`wk bvMwiK‡`i Avq (iii) we‡`‡k KgŠiZ †`kxq bvMwiK‡`i Avq wbPi †KvbwU mwVK? (K) i I ii (L) ii I iii (M) i I iii (N) i, ii I iii DËi: K 22. GNI wnmve Kivi mgq AÅĄÃfŠ~Âŗ nqÑ (i) ‡`‡ki AfÂ¨ÅĄÃâ€Ąi †`kxq‡`i Avq (ii) we‡`‡k Ae¯’vbiZ ‡`kxq‡`i Avq (iii) ‡`‡ki AfÂ¨ÅĄÃâ€Ąi we‡`wk‡`i Avq wbPi †KvbwU mwVK? (K) i (L) i I ii (M) ii I iii (N) i, ii I iii DËi: L wPÎwU jÃŋ Ges 23 I 24 bs cÃ–â€Ąkœi DËi `vI: 23.DÏxc‡Ki Av‡jv‡K fvimvg¨ RvZxq Avq¯Íi KZ? (K) 100 (L) 200 (M) 300 (N) 400 DËi: M 24. wewb‡qv‡Mi cwigvY e„w× †c‡q 10 n‡j, fvimvg¨ RvZxq Avq KZ n‡e? (K) 200 (L) 300 (M) 400 (N) 500 DËi: N 25. ‘X’ †`‡ki fvimvg¨ RvZxq Avq KZ? (K) 500 (L) 100 (M) 2000 (N) 5000 DËi: M 26.DÏxcK Abyhvqx ‘X’ †`‡kÑ (i) e¨q c×wZ‡Z RvZxq Avq MYbv Kiv n‡q‡Q (ii) Ave× A_ŠbxwZ weivRgvb (iii) RbMY Zv‡`i Av‡qi Ãŋz`ÂĒ Ask †fv‡Mi Rb¨ e¨q K‡i wbPi †KvbwU mwVK? (K) i I ii (L) i I iii (M) ii I iii (N) i, ii I iii DËi: K 27. Y = C + I + G + (X – M) Kx n‡e? (K) GDP (L) GNP (M) NNP (N) NDP DËi: L 28.GNI Gi c~YŠiƒc Kx? (K) Gross Net Investment (L) Gross Net Income (M) Lross National Investment (N) Gross National Income DËi: N 29. NNP Gi c~YŠiƒc †KvbwU? (K) New National Product (L) Net National Product (M) Normal National Product (N) Natural National Product DËi: N
  • 3.
    Pro with Swadhin 30.‡KvbwUmvgwMÖK e¨‡qi GKwU ¸iÃĻZÂĄc~YŠ Ask? (K) e¨wÂŗMZ e¨q (L) miKvwi e¨q (M) mvgwiK e¨q (N) cvwievwiK e¨q DËi: L 31. mvaviYZ mvgwMÖK e¨‡q (AE) wmsnfvM Ask wb‡Pi †Kvb Dcv`v‡bi? (K) ‡fvM (L) wewb‡qvM (M) miKvwi e¨q (N) wbU ißvwb g~j¨ DËi: K 32.e¨q c×wZ‡Z RvZxq Avq Kx? (K) ‡fvM + mÂq + wewb‡qvM + wbU ißvwb (L) ‡fvM + wewb‡qvM + miKvwi e¨q + wbU ißvwb (M) wewb‡qvM + gybvdv + miKvi e¨q + wbU ißvwb (N) gybvdv + miKvwi e¨q + †fvM + wbU ißvwb DËi: L 33.e¨wÂŗMZ Avq †_‡K Ki ev` w`‡j Kx cvIqv hvq? (K) ‡gvU RvZxq Avq (L) e¨q‡hvM¨ Avq (M) wbU RvZxq Avq (N) ‡gvU †`kR Avq DËi: L 34. ¯^íKvjxb †fvM A‡cÃŋK †KvbwU? (K) S = Y – C (L) Y = C + I (M) C = bY (N) C = a + bY DËi: N 35. fvimvg¨ Avq¯Íi ( ) Y ( ) wbaŠviYKvix kZŠ †KvbwU? (K) Qd = Qs (L) AD = AS (M) MR = MC (N) Dt = St DËi: L 36. Ave× A_ŠbxwZ‡Z †KvbwU Abycw¯’Z? (K) wbU mßvwb ) X ( (L) miKvi e¨q (G) (M) †fvM e¨q (C) (N) wewb‡qvM e¨q (I) DËi: K 37. GDP wbY©‡qi wnmve Kiv nqÑ (i) we‡`‡k Ae¯’vbiZ †`kxq‡`i Avq (ii) ‡`‡ki AfÂ¨ÅĄÃâ€Ąi we‡`wk‡`i Avq (iii) ‡`‡ki AfÂ¨ÅĄÃâ€Ąi †`kxq‡`i Avq wbPi †KvbwU mwVK? (K) i I ii (L) i I iii (M) ii I iii (N) i, ii I iii DËi: M 38.e× A_ŠbxwZi †Ãŋâ€ĄÃŽÃ‘ (i) GNP = GDP (ii) X – M Abycw¯’Z (iii) GNP > GDP wbPi †KvbwU mwVK? (K) i I ii (L) i I iii (M) ii I iii (N) i, ii I iii DËi: K 41. ‡Kvb †fvM e¨q Avq †_‡K ¯^vaxb? (K) cÃ–â€ĄivwPZ †fvM e¨q (L) ¯^q¤ÂĸyZ †fvM e¨q (M) ‡fvMcY¨ Av‡qi Rb¨ e¨q (N) miKvwi †fvM e¨q DËi: L 42. GKwU DbÂĨyÂŗ A_ŠbxwZZ mvgwMÖK Av‡qi mgxKiY †KvbwU? (K) C + I (L) C + I + G (M) C+I+G+(X–M) (N) C = I + (X – M) DËi: M 43. †KvbwU‡Z we‡`wk‡`i Avq AÅĄÃfŠ~Âŗ nq? (K) GDP (L) GNP (M) NNP (N) NI DËi: K 44. †KBb‡mi g‡Z Ave× A_ŠbxwZi †Ãŋâ€ĄÃŽ †KvbwU mZ¨? (K) Y = C (L) Y = C + I (M) Y = C + 1 + G (N) Y=C+I+G+(x–M) DËi: M 45. e× A_ŠbxwZ‡Z KqwU LvZ _v‡K? (K) GK (L) `yB (M) wZb (N) Pvi DËi: M 46. S = Y – C mgxKiYwU †Kvb ai‡bi A‡cÃŋK? (K) ‡fvM (L) wewb‡qvM (M) Avq (N) mÂq DËi: N 47. †KvbwU NNI Gi wnmv‡e AÅĄÃfŠ~Âŗ nq bv? (K) ‡emiKvwi †fvM e¨q (L) ‡emiKvwi wbU wewb‡qvM (M) c‡ivÃŋ Ki (N) AePq e¨q DËi: N 48. mÂq wnmve Kivi m~Î †KvbwU? (K) S = Y + C (L) S = Y – C
  • 4.
    Pro with Swadhin (M)S = C – Y (N) S = C + Y DËi: L 49. wb‡Pi †KvbwU n¯ÍvÅĄÃi cvIbv bq? (K) eq¯‚ fvZv (L) weaev fvZv (M) Aemi fvZv (N) Aewâ€ēUZ gybvdv DËi: N 50. 1930 mv‡ji gnvgâ€ē`vi ci †Kvb A_ŠbxwZi gvBjdjK ïiÃĻ nq? (K) e¨wÃŗK A_ŠbxwZi (L) mvgwÃŗK A_ŠbxwZi (M) bMi A_ŠbxwZi (N) Kâ€Ļwl A_ŠbxwZi DËi: L 51. mvgwMÖK Avq cwigv‡c gva¨wgK `ÂĒe¨ we‡`Pbv Ki‡j Kx ai‡bi mgm¨v? (K) ‰ØZ MYbv (L) Kg MYbv (M) GDP nÂĢvm (N) GDP AmsMwZ DËi: K 52. mvgwMÖK Av‡qi mgxKiY †KvbwU? (K) Y = CI+G (L) Y=C+ I – G (M) Y = C + I (N) Y = C + NNI DËi: K 53. mvgwMÖK Avq mvaviYZ KZ eQ‡ii cÖvß Av‡qi mgwÃŗ? (K) 1 eQ‡ii (L) 2 eQ‡ii (M) 3 eQ‡ii (N) 4 eQ‡ii DËi: K 54. †Kvb aviYvwU e„nËi `„wÃŗâ€ĄKvY †_‡K wePvi-we‡ePbv Kiv nq? (K) wewb‡qvM e¨q (L) mvgwMÖK Avq (M) K‡cŠv‡iU Avq (N) e¨emvwqK Avq DËi: L 55. ‘The economics of Cycle and Growth’ MÃ–ÅĄâ€™wU Kvi †`Lv? (K) jWŠ †R. Gg. †KBÝ (L) Avi.Gg. eevi (M) Gj. iweÝ (N) A¨vWvg w¯§_ DËi: L 56. gybvdv‡K fvM Kiv nq KqwU As‡k? (K) 2wU (L) 3wU (M) 4wU (N) 5wU DËi: K 57. n¯ÍvÅĄÃi cvIbv Kx‡mi AÅĄÃfŠŠyÂŗ nq? (K) PjwZ Avq (L) LyPiv Avq (M) e¨wÂŗMZ Avq (N) RvZxq Avq DËi: M 58.GKwU †`‡ki AfÂ¨ÅĄÃâ€Ąi Drcvw`Z `ÂĒe I †mevi mgwÃŗâ€ĄK Kx e‡j? (K) ‡gvU †`kR Drcv`b (L) ‡gvU RvZxq Drcv`b (M) ‡bU †`kR Drcv`b (N) wbU RvZxq Drcv`b DËi: K 59. e¨‡qi `„wÃŗâ€ĄKvY †_‡K eÜ A_ŠbxwZ‡Z wb‡Pi †KvbwU mwVK? (K) GDP=C+I+G (L) GDP=C+I+G(X- M) (M) GDP = C+I – G (N) GDP=C+I+G-(X- M) DËi: K 60. GDP wnmv‡ei mgq wb‡Pi †Kvb KiwU ev` w`‡Z nq? (K) cÖZ¨Ãŋ Ki (L) c‡ivÃŋ Ki (M) f¨vU (N) f~wg ivR¯^ DËi: L 61. wb‡Pi †KvbwU‡Z †`‡ki AfÂ¨ÅĄÃixY Drcv`b cÖwZdwjZ nq? (K) GNP (L) GDP (M) NNI (N) CCA DËi: L 62. †Kvb A_ŠbxwZ‡Z GDP I GNP meŠ`v mgvb nq? (K) cuywRev`x A_ŠbxwZ‡Z (L) ‡Lvjv A_ŠbxwZ‡Z (M) wb‡`„kg~jK A_ŠbxwZ‡K (N) e× A_ŠbxwZ‡Z DËi: N 63. GDP wnmv‡ei †Ãŋâ€ĄÃŽ ¸iÃχZÂĄi mv‡_ †Kvb welqwU we‡ePbv Kiv nq? (K) ‡fÅ â€ĄMvwjK mxgvbv (L) cÖvKâ€ĻwZK m¤Ãē` (M) g~jab `ÂĒe¨ (N) RbkwÂŗ DËi: K 64. GDP = ? (K) C + I + G (L) C + I + Z (M) Y + C + I (N) I + Y + G DËi: K 65. †gvU †`kR Drcv`‡bi mv‡_ wbU Dcv`vb Avq †hvM K‡i Kx cvIqv hvq? (K) ‡gvU RvZxq Avq (L) wbU RvZxq Avq (M) ‡gvU †`kR Drcv`b (N) AePvqRwbZ e¨q
  • 5.
    Pro with Swadhin DËi:K 66. ‡gvU RvZxq Avq Kx? (K) GK eQ‡ii Drcvw`Z `ÂĒe¨mvgMÖx I †mevKv‡hŠi †gvU g~j¨ (L) `ÂĒe¨ I †mevKv‡hŠi weÂĩqjä A_Š (M) GK eQ‡i †`‡ki evB‡i Drcvw`Z `ÂĒe¨mvgwMÂĒi Avw_ŠK g~j¨ (N) ißvwb `ÂLJe¨i Øviv AwRŠZ A_Š DËi: K 67. GKwU †`‡ki A_©‰bwZK Ae¯’v Kxiƒc Zv Rvbvi Rb¨ ‡KvbwU cwigvc Kiv Avek¨K? (K) ‡gvU †`kR Drcv`b (L) wbU RvZxq Drcv`b (M) ‡gvU RvZxq Drcv`b (N) ‡gvU RvZxq Avq DËi: N 68. †gvU †`kR Drcv`b + we‡`‡k Ae¯’vbiZ †`wk RbM‡Yi AvqÑ †`‡k Ae¯’vbiZ we‡`wk‡`i Avq= Kx? (K) ‡gvU †`kR Drcv`b (L) ‡gvU RvZxq Avq (M) ‡gvU Avq (N) wbU †`kR Drcv`b DËi: L 69. cÖevwm‡`i Avq wn‡me Kiv nqÑ (K) wRGbwc‡Z (L) wRwWwc‡Z (M) GbwWwc‡Z (N) GbGbwc‡Z DËi: K 70. NNI cwigv‡ci m~ÎwU Kx? (K) C+I+G (L) C+I+G+(X-M) (M) C+I+G-CCA (N) C+I+G+(X-M)-CCA DËi: N 71. CCA Kx? (K) Consumption Capital Assumed (L) Capital consumption Allowance (M) Cost of Capital in Average (N) Current Consumption Allowances DËi: L 72. NNP †_‡K Kx ev` w`‡j wbU RvZxq Avq cvIqv hvq? (K) cÖZ¨Ãŋ Ki (L) c‡ivÃŋ Ki (M) e¨emvwqK Ki (N) AePq e¨q DËi: L 73. gv_vwcQz Avq wbYŠq Kiv nq wb‡Pi †KvbwU Øviv? (K) CCA (L) GDP (M) NNI (N) NI DËi: M 74. NNI Gi c~YŠiƒc †KvbwU? (K) National Net Income (L) Need National Investment (M) Net National Income (N) Net National Investment DËi: M 75. ‡Kvb A_ŠbxwZ‡Z NNI ‡ei Kivi mgq wbU ißvwb g~j¨ †hvM Kiv nq? (K) gyÂŗ A_ŠbxwZ (L) e× A_ŠbxwZ (M) wb‡`Škg~jK A_ŠbxwZ (N) Bmjvwg A_ŠbxwZ DËi: K 76. RvZxq Avq aviYvi g‡a¨ †KvbwU wbYŠq KwVb? (K) 10wU (L) 12wU (M) 15wU (N) 20wU DËi: M 77. Y = C+I+G+(X-M) GB mgxKi‡Y (X-M) Kx? (K) wewb‡qvM Ñ Avg`vwb (L) ‡gvU †fvM Ñ wbU ißvwb (M) ißvwb Ñ Avg`vwb (N) ‡gvU †`kR Drcv`b-Avg`vwb DËi: M 78. RvZxq Avq MYbvi g~jZ c×wZ KqwU? (K) `yB (L) wZb (M) Pvi (N) cuvP DËi: L 79. Avq c×wZ Abymv‡i g~jab †_‡K Av‡m †KvbwU? (K) Dc‡hvM (L) gRywi (M) my` (N) wewb‡qvM DËi: M 80. wb‡Pi †KvbwU msMV‡bi cÖvß Avq? (K) gybvdv (L) my` (M) gRywi (N) LvRbv DËi: K 81. †hme `ÂĒe¨ Drcv`‡Ki ci mivmwi †fv‡M e¨eÃŧZ nq, Zv‡`i‡K Kx e‡j? (K) cÖv_wgK `ÂĒe¨ (L) gva¨wgK `ÂĒe¨
  • 6.
    Pro with Swadhin (M)P~ovÅĄÃ `ÂĒe¨ (N) cÖvc-cÖv_wgK `ÂĒe¨ DËi: M 82. GKB cY¨ `yBevi MYbv Ki‡j Kx mgm¨vi Dâ„ĸÂĸe nq? (K) GKK MYbvi (L) ‰ØZ MYbvi (M) DØ„Ë (N) e¨qMZ DËi: L 83. RvZxq Avq MYbvq †Kvb chŠv‡qi `ÂĒe¨ I †mev we‡ewPZ nq? (K) cÖv_wgK (L) gva¨wgK (M) cÖvK-gva¨wgK (N) P~ovÅĄÃ DËi: N 84. RvZxq Av‡q gva¨wgK chŠv‡qi `ÂĒe¨ I †mev we‡ePbv Ki‡j †Kvb mgm¨v †`Lv †`q? (K) NvUwZ mgm¨v (L) ‰ØZ MYbvi mgm¨v (M) DØ„Ë mgm¨v (N) e¨qMZ mgm¨v DËi: L 85. wg. Rb GKRbi MvqK| wZwb cÖvqB Zvi eÜz‡`i Mvb †kvbvb| Zvi GB KgŠKvÐ GDP wbaŠvi‡Y Kx n‡e? (K) we‡eP¨ (L) Awe‡eP¨ (M) wbÂŽÃēÃ–â€ĄqvRb (N) MÖnY‡hvM¨ DËi: L 86. A_ŠbxwZ‡Z gq`v‡K †Kvb `ÂĒe¨ wn‡m‡e we‡ePbv Kiv nq? (K) P~ovÅĄÃ `ÂĒe¨ (L) mvgwiK e¨q (M) cÖv_wgK `ÂĒe¨ (N) g~jabx `ÂĒe¨ DËi: L 87. wØLvZ wewkÃŗ A_ŠbxwZ‡Z mvgwMÖK e¨‡qi mgxKiY †KvbwU? (K) AE = C + I +G (L) AE = C + I (M) AE = C+I+G+(X-M) (N) AE=C+I+G+(X-M)-CCA DËi: L 88. wZb Lv‡Zi A_ŠbxwZ‡Z mvgwMÖK e¨‡qi ¯’vqxKiY †KvbwU? (K) AE=C+I+(X-M) (L) AE=C+I+G (M) AE=C+A+G (N) AE = A + I + G DËi: L 89. GKwU †`‡ki A_ŠbxwZ KqwU Lv‡Z wefÂŗ? (K) `yB Lv‡Z (L) wZb Lv‡Z (M) Pvi Lv‡Z (N) cuvP Lv‡Z DËi: L 90. †Lvjv A_ŠbxwZ‡Z mvgwMÖK e¨q we‡ePbvi mgq †KvbwU‡K GKwU LvZ wn‡m‡e we‡ePbv Kiv nq? (K) AfÂ¨ÅĄÃixY evwYR¨‡K (L) cvwievwiK Avq‡K (M) AvÅĄÃRŠvwZK evwYR¨‡K (N) cvwievwiK e¨q‡K DËi: M 91. (X – M) †K Kx wn‡m‡e we‡ePbv Kiv nq? (K) wbU ißvwb (L) AePq e¨q (M) wbU Avg`vwb (N) Dcv`b e¨q DËi: K 92. ¯^q¤Âĸ~Z †fvM †iLvi AvKâ€ĻwZ †Kgb? (K) j¤Âĸ A‡Ãŋi mgvÅĄÃivj (L) f~wg A‡Ãŋi mgvÅĄÃivj (M) evg n‡Z Wvbw`‡K DaŸŠMvgx (N) evg n‡Z Wvbw`‡K wb¤œMvgx DËi: L 93. †fvM e¨q (C) Avq (Y) Gi Ici wbfŠikxj nq Zvn‡j †fvM e¨‡qi A‡cÃŋK n‡e? (K) C = f(x) (L) Q = f(L,K) (M) f(C) = Y (N) C = f(Y) DËi: N 94. C = a +bY †fvM A‡cÃŋ‡K bY †K ejv nqÑ (K) ¯^q¤Âĸ~Z †fvM (L) cÖvwÅĄÃK †fvM (M) cÃ–â€ĄivwPZ †fvM (N) wbU †fvM DËi: M 95. wb‡Pi †KvbwU ¯^íKvjxb †fvM A‡cÃŋK? (K) C = bY (L) C = a + bY (M) C = Y – S (N) C = Y + S DËi: L 96. wewb‡qvM e¨q‡K Kq fv‡M fvM Kiv nq? (K) 2 fv‡M (L) 4 fv‡M (M) 6 fv‡M (N) 8 fv‡M DËi: K 97. wewb‡qvM Kx‡mi Ici wbfŠi K‡i? (K) Drcv`‡bi Ici (L) mÃ‚â€Ąqi Ici (M) m¤Ãē‡`i Ici (N) kÃ–â€Ągi Ici DËi: L 98. wewb‡qv‡Mi g~j Dâ€ĄÃk¨ Kx?
  • 7.
    Pro with Swadhin (K)cY¨ Drcv`b (L) gybvdv jvf (M) AwaK `v‡g weÂĩq (N) cY¨ I †mev eâ€ēUb DËi: L 99. wbw`ÂŠÃŗ AvqÂ¯Ãâ€Ąi ¯^q¤Âĸ~Z wewb‡qvM I cÃ–â€ĄivwPZ wewb‡qvM †hvM K‡i Kx cvIqv hvq? (K) wbU wewb‡qvM (L) ‡gvU wewb‡qvM (M) wbU †fvM e¨q (N) ‡gvU †fvM DËi: L 100. †Kvb wewb‡qvM Avq Øviv cÖfvweZ bq? (K) cÃ–â€ĄivwPZ wewb‡qvM (L) ¯^q¤Âĸ~Z wewb‡qvM (M) ‡gvU wewb‡qvM (N) wbU wewb‡qvM DËi: L 101. †Kvb e¨q Av‡qj nÂĢvm-e„w× Øviv cÖfvweZ nq? (K) ¯^q¤Âĸ~Z wewb‡qvM e¨q (L) wewb‡qvM e¨q (M) cÃ–â€ĄivwPZ wewb‡qvM e¨q (N) †fvM eÂĒq DËi: M 102. cÃ–â€ĄivwPZ wewb‡qvM ‡iLv Kxiƒc? (K) wb¤œMvgx (L) DaŸŠMvgx (M) Avbf~wgK (N) Dj¤^ DËi: L 103. wewb‡qvM e¨q‡K fvM Kiv nqÑ (i) cÃ–â€ĄivwPZ †fvM e¨q (ii) ¯^q¤Âĸ~Z wewb‡qvM e¨q (iii) cÂLJivwPZ wewb‡qvM e¨q wbPi †KvbwU mwVK? (K) i I ii (L) i I iii (M) ii I iii (N) i, ii I iii DËi: M 104. wewb‡qvM mgxKiYwU †Kvb wewb‡qvM wb‡`ŠkK? (K) ¯^q¤Âĸ~Z wewb‡qvM (L) cÂLJivwPZ wewb‡qvM (M) wbU wewb‡qvM (N) ‡gvU wewb‡qvM DËi: N 105. DÏxc‡Ki Av‡jv‡K wb‡Pi †KvbwU wbU wewb‡qvM? (K) 15 (L) 25 (M) 50 (N) 60 DËi: N 106. miKvwi e¨q‡K Kx aiv nq? (K) cÃ–â€ĄivwPZ wewb‡qvM (L) ¯^q¤Âĸ~Z (M) ¯^q¤Âĸ~Z wewb‡qvM (N) ‡fvM e¨q DËi: L 107. †`k cwiPvjbv Kivi Rb¨ miKvi †h e¨q K‡i Zv‡K Kx e‡j? (K) miKvwi wewb‡qvM (L) miKvwi e¨q (M) miKvwi FY (N) miKvwi fyZŠwK DËi: L 108. S = Y – C mgxKiYwU †Kvb ai‡bi A‡cÃŋK? (K) ‡fvM (L) wewb‡qvM (M) Avq (N) mÂq DËi: K 109. Avq †Z‡K †fvM eÂĒq ev` w`‡j †KvbwU _v‡K? (K) Avq (L) ‡gvU e¨q (M) mÂq (N) my‡hvM e¨q DËi: M 110. Dr‡mi w`K †_‡K mÂq‡K Kq fv‡M fvM Kiv nq? (K) 2 fv‡M (L) 3 fv‡M (M) 4 fv‡M (N) 5 fv‡M DËi: L 111. GKwU †`k g~jZ Kq ai‡bi mÂq wb‡q g~jab MwVZ nq? (K) `yB ai‡bi (L) wZb ai‡bi (M) Pvi ai‡bi (N) cuvP ai‡bi DËi: L 112. e¨wÂŗi e¨q‡hvM¨ Avq †_‡K Kx ev` w`‡j e¨wÂŗMZ mÂq cvIqv hvq? (K) wewb‡qvM e¨q (L) ‡fvM e¨q (M) F‡Yi my` (N) miKvwi e¨q DËi: L 113. Avq Kg‡j mÂq Kx nq? (K) fvimvg¨nxb (L) K‡g (M) ev‡o (N) w¯’wZkxj DËi: L 114. Avq evo‡j mÂq Kx nq? (K) fvimvg¨nxb (L) K‡g (M) ev‡o (N) w¯’wZkxj DËi: M 115. gvbyl hv Avq K‡i Zvi meUvB †m Kx K‡i bv? (K) mÂq (L) Drcv`b (M) e¨q (N) wewb‡qvM DËi: M
  • 8.
    Pro with Swadhin 116.Av‡qi †h Ask eZŠgv‡b †fvM bv K‡i fwel¨‡Zi Rb¨ ivLv nq Zv‡K Kx e‡j? (K) gRyZ (L) mÂq (M) wewbgq (N) ‡fvM DËi: L 117. mÂq I wewb‡qvM m¤Ãē‡KŠ Ávb ARŠb Kivi Rb¨ KqwU aviYv Rvbv cÃ–â€ĄqvRb? (K) 2wU (L) 3wU (M) 4wU (N) 5wU DËi: K 118. †Kvb gZev` Abymv‡i mÂq I wewb‡qvM †Ãŋâ€ĄÃŽ mgZv cÃ–â€ĄqvR? (K) gvKŠmxq (L) ‡KBbmxq (M) wdkvixq (N) GwiÃˇUjxq DËi: L 120. ‡Kvb ai‡bi mÂq I wewb‡qv‡Mi †Ãŋâ€ĄÃŽ mgZv cÃ–â€ĄqvR¨? (K) e¨wÂŗMZ (L) mvgwMÖK (M) cwiKwíZ (N) e¨emvqMZ DËi: L 121. †Kv‡bv e¨wÂŗ cÖZ¨vwkZ Avq †_‡K †h mÂq K‡i Zv‡K Kx e‡j? (K) cÖKâ€ĻZ mÂq (L) cwiKwíZ mÂq (M) e¨wÂŗMZ mÂq (N) mvgwMÖK mÂq DËi: L 122. cwiKwíZ mÂq I wewb‡qvM †Kvb AvqÂ¯Ãâ€Ąi ci¯Ãēi mgvb n‡Z cv‡i? (K) RvZxq AvqÂ¯Ãâ€Ąi (L) e¨wÂŗMZ AvqÂ¯Ãâ€Ąi (M) miKvwi AvqÂ¯Ãâ€Ąi (N) fvimvg¨ AvqÂ¯Ãâ€Ąi DËi: N 123. wewb‡qvM †_‡K cwiKwíZ mÂq †ewk n‡j †KvbwU Kg‡e? (K) Avq (L) wewb‡qvM (M) Pvwn`v (N) mÂq DËi: K 124. AwaK wewb‡qvM AwaK Avq m„wÃŗ K‡i e‡j Kx ev‡o? (K) wewb‡qvM (L) mÂq (M) Pvwn`v (N) ‡hvMvb DËi: L 125. A_ŠbxwZ‡Z AE = AI n‡j †KvbwU ci¯Ãēi mgvb nq? (K) mÂq I Drcv`b (L) e¨q I mÂq (M) mÂq I gybvdv (N) mÂq I wewb‡qvM DËi: N 126. †KvbwU †fvM eÂĒq I mÂq Gi mgwÃŗi mgvb? (K) mvgwMÖK e¨q (L) mvgwMÖK Avq (M) wewb‡qvM e¨q (N) wbU Avq DËi: L 127. fvimvg¨ n‡jv Ggb GKUv Ae¯’v hvi gva¨‡g KqwU wecixZ kwÂŗ ci¯Ãēi mgvb nq? (K) 2wU (L) 3wU (M) 4wU (N) 5wU DËi: K 128. Kx Av‡jvPbv ewnfŠ~Z ivL‡j mvgwMÖK e¨q n‡jv †gvU †fvM e¨q I wewb‡qvM e¨‡qi mgvb? (K) ‡emiKvwi LvZ (L) AfÂ¨ÅĄÃixY evwYR¨ (M) miKvwi LvZ (N) wkí LvZ DËi: M 129. wb‡Pi †KvbwU mwVK fvimvg¨ Avq Â¯Ãâ€Ąi? (K) mÂq ī€ž wewb‡qvM (L) mÂq ī€ŧ wewb‡qvM (M) mÂq = wewb‡qvM (N) ‡Kv‡bvwUB bq DËi: M 130. †Kvb Â¯Ãâ€Ąi mswkÃ¸Ãŗ KvhŠvewj cwieZ©‡bi †Kv‡bv cÖeYZv _v‡K bv? (K) `vgÂ¯Ãâ€Ąi (L) Drcv`b Â¯Ãâ€Ąi (M) AvhÂ¯Ãâ€Ąi (N) fvimvg¨ Â¯Ãâ€Ąi DËi: N 131. mÂq I wewb‡qv‡Mi mgZv Øviv Kx wbaŠvwiZ nq? (K) ‡fvM e¨q (L) wbU Avq (M) wewb‡qvM e¨q (N) fvimvg¨ RvZxq Avq DËi: N 132. fvimvg¨ RvZxq Avq wbaŠvi‡Yi cÖPwjZ c×wZ KqwU? (K) `ywU (L) wZbwU (M) PviwU (N) cuvPwU DËi: K 133. mvgwMK Av‡qi mgwÃŗ n‡jvÑ (i) wewb‡qvM e¨q (ii) ‡fvM e¨q (iii) mÂq wbPi †KvbwU mwVK? (K) i I ii (L) i I iii
  • 9.
    Pro with Swadhin (M)ii I iii (N) i, ii I iii DËi: K 134. A_ŠbxwZ wefÂŗ n‡Z cv‡iÑ (i) GK LvZ wfwËK A_ŠbxwZ‡Z (ii) wØ LvZwfwËK A_ŠbxwZ‡Z (iii) wZb LvZwfwËK A_ŠbxwZ‡Z wbPi †KvbwU mwVK? (K) i I ii (L) i I iii (M) ii I iii (N) i, ii I iii DËi: M 135. b 1 ( G I a o o − + + mgxKiYwU Øviv wb‡Pi †KvbwU wb‡`Šk K‡i? (K) fvimvg¨ Avq (L) mvgwMÖK Avq (M) cÖKâ€ĻZ Avq (N) wewb‡qvM DËi: K 136. Ave× A_ŠbxwZ‡Z mvgwMÖK e¨‡qi KqwU Dcv`vb i‡q‡Q? (K) `yBwU (L) wZbwU (M) PviwU (N) cuvPwU DËi: L 137. A †`‡ki GDP = 5 wewjqb Rjvi Avg`vwb 2 wewjqb Wjvi Ges ißvwb 3 wewjqb Wjvi| A †`‡ki GNP KZ? (K) 4 wewbqb (L) 5 wewjqb (M) 6 wewjqb (N) 8 wewjqb DËi: M 138. wØLvZ wewkÃŗ A_ŠbxwZ‡Z mvgwMÖK e¨q (AE)? (K) C + I (L) C+I+G (M) G+I (N) C+G DËi: K 139. GKwU gyÂŗ A_ŠbxwZ‡Z C+I+G+(X-M) Øviv wK †evSvq? (K) wRwWwc (L) wRGbwc (M) GbGbwc (N) gv_vwcQz Avq DËi: L 140. wZb Lv‡Zi A_ŠbxwZ‡Z fvimvg¨ RvZxq Avq wbaŠvwiZ nq Kxfv‡e? (K) mÂq I wewb‡qvM c×wZ‡Z (L) mÂq I Avq c×wZ‡Z (M) wewb‡qvM I Avq c×wZ‡Z (N) gybvdv I mvgwMÖK e¨q c×wZ‡Z DËi: K 141. fvimvg¨ Avq wbaŠvi‡Y †KvbwU we‡ePbv Kiv nq? (K) wewb‡qvM e¨q (L) mvgwMÖK e¨q (M) ‡emiKvwi e¨q (N) ‡fvM e¨q DËi: L 142. †gvU ‡fvM e¨q I wewb‡qvM e¨‡qi mgwÃŗ Øviv †KvbwU cÖKvwkZ nq? (K) Pvwn`v (L) Drcv`b (M) gRyZ (N) mÂq DËi: K 143. wZbLvZ wewkÃŗ A_ŠbxwZ‡Z †KvbwU Av‡jvPbv ewnfŠ~Z? (K) miKvwi e¨q (L) wewb‡qvM (M) e¨wÂŗMZ †fvM e¨q (N) AvÅĄÃRŠvwZK evwYR¨ DËi: N 144. gyÂŗ evRvi A_ŠbxwZ‡Z RvZxq Av‡qi m~Î †KvbwU? (K) C (L) C+I (M) C+I+G (N) C+I+G+Xn DËi: N 145. Ave× A_ŠbxwZ‡Z mvgwMÖK Pvwn`vi Dcv`vb n‡jv- (i) miKvwi e¨q (ii) ‡emiKvwi wewb‡qvM e¨q (iii) ‡emiKvwi †fvM e¨q wbPi †KvbwU mwVK? (K) i I ii (L) i I iii (M) ii I iii (N) i, ii I iii DËi: N AwZ ¸iÃĻZÂĄc~YŠ welqÂĩg Abyhvqx cÃ–â€ĄkœvËi mvgwMÖK Avq ev AI 1. Av‡gwiKvi A_ŠbxwZ‡Z gnvgâ€ē`vi m„wÃŗ nqÑ 1930 mv‡j| 2. mvgwMÖK Avq we‡ePbv Kiv nqÑ e„nËi `„wÃŗâ€ĄKvY †_‡K 3. mvgwMÖK Av‡qi mgxKiYÑ Y = C+I+G 4. mvgwMÖK Avq mvaviYZÑ 1 eQ‡ii cÖvß Av‡qi mgwÃŗ| 5. e¨emv-evwYR¨ †_‡K gybvdv AwRŠZ nqÑ 3wU Dcv‡q| 6. gybvdv‡K fvM Kiv hvqÑ 2 fv‡M|
  • 10.
    Pro with Swadhin 7.GKK I Askx`vwi e¨emv †_‡K cÖvß Avq n‡jvÑ †cÖvcvBUwi Avq| 8. K‡cŠv‡iU gybvdv ewâ€ēUZ nqÑ 3 fv‡M| 9. K‡cŠv‡iU e¨emv n‡Z AwRŠZ gybvdv‡K e‡jÑ K‡cŠv‡iU gybvdv| 10. GKwU A_ŠbxwZ m¤ÃēKŠ cÖv_wgK aviYv cvIqv hvqÑ mvgwMÖK Avq †_‡K| ‡gvU †`kR Drcv`b ev GDP 1. GKwU †`‡ki AfÂ¨ÅĄÃâ€Ąi Drcvw`Z `ÂĒe¨ I †mevi mgwÃŗâ€ĄK e‡jÑ †gvU †`kR Drcv`b| 2. e¨‡qi `„wÃŗâ€ĄKvY ‡_‡K e× A_ŠbxwZ‡ZÑ GDP = C+I+G. 3. wRwWwc wnmv‡ei mgq ev` w`‡Z nqÑ c‡ivÃŋ Ki| 4. ‡`‡ki AfÂ¨ÅĄÃixY Drcv`b cÖwZdwjZ nqÑ GDP †_‡K| 5. e× A_ŠbxwZ‡Z GDP Ges GNP meŠ`vBÑ mgvb nq| 6. GDP = C + I + G 7. we‡`wk bvMwiK‡`i Avq AÅĄÃfŠ~Âŗ nqÑ GDP †Z| 8. GDP †Z we‡`‡k Ae¯’vbiZ †`kxq bvMwiK‡`i AvqÑ AÅĄÃfŠ~Âŗ nq bv| 9. GDP wnmv‡ei †Ãŋâ€ĄÃŽ ¸iÃĻZÂĄc~YŠ we‡eP¨ welq n‡jvÑ †fÅ â€ĄMvwjK mxgvbv| 10. wbU ißvwb k~b¨ n‡jÑ GDP = GDP nq| ‡gvU RvZxq Avq ev GNI 1. ‡gvU †`kR Drcv`‡bi mv‡_ wbU Dcv`vb Avq‡hvM K‡i cvIqv hvqÑ GNI 2. GK eQ‡ii Drcvw`Z `ÂĒe¨mgvMÖx I †mevKv‡hŠi †gvU g~j¨ n‡jvÑ †gvU RvZxq Avq| 3. ‡gvU RvZxq Av‡qj gva¨‡g Rvbv hvq †`‡kiÑ A_©‰bwZK Ae¯’v| 4. we‡`‡k Ae¯’vbiZ †`kxq bvMwiK‡`i Avq AÅĄÃfŠ~Âŗ nqÑ GNI †Z| 5. Drcv`b e¨‡qi Ask bqÑ c‡ivÃŋ Ki| 6. miKvi †`k cwiPvjbv I Dbœq‡bi Rb¨ †h e¨q K‡i _v‡K Zv n‡jvÑ miKvwi e¨q| 7. GNI-Gi Dcv`vbÑ 4wU| 8. miKvwi †fvM e¨q n‡jvÑ GNI Gi Dcv`vb| wbU RvZxq Avq ev NNI 1. NNI cwigv‡ci m~Î n‡jv= C+I+G+(X-M)-CCA 2. CCA ej‡Z †evSv‡bv nqÑ g~ja‡bi e¨enviRwbZ AePq e¨q| 3. GNI †_‡K CCA ev` w`‡q cvIqv hvqÑ NNI. 4. gv_vwcQz Avq wbYŠq Kiv hvqÑ NNI Øviv| 5. NNI Gi c~YŠiƒcÑ Net National Income. 6. gyÂŗ A_ŠbxwZ‡Z NNI †ei Kivi mgq †hvM Ki‡Z nqÑ wbU ißvwb g~j¨| 7. ‡`‡ki A_ŠbxwZi cÖKâ€ĻZ Ae¯’v Rvbv hvqÑ wbU RvZxq Drcv`b †_‡K| 8. NNP †_‡K c‡ivÃŋ Ki ev` w`‡j hv _v‡K ZvBÑ NNI. 9. wbU RvZxq Av‡q AÅĄÃfŠ~Âŗ nqÑ e¨emv‡qi Avq| ‡gvU RvZxq Avq I wbU RvZxq Av‡qi g‡a¨ cv_ŠK¨ 1. RvZxq Avq aviYvi g‡a¨ cwigvc Kiv KwVbÑ NNI 2. gv_vwcQz Av‡qi mwVK wnmve cvIqv hvqÑ NNI-‡Z| 3. A_©‰bwZK Ae¯’v AvkvcÖ` bvI n‡Z cv‡iÑ GNI †ewk n‡j| 4. ‡gvU wewb‡qvM †_‡K AePq ev` w`‡j cvIqv hvqÑ wbU wewb‡qvM e¨q| 5. GKwU †`‡ki A_ŠbxwZi mwVK wPÎ cvIqv hvqÑ NNI †_‡K| 6. g~jabmvgMÖxi ÃŋqÃŋwZ AÅĄÃfŠ~Âŗ _v‡KÑ †gvU RvZxq Av‡q| 7. GDP I we‡`k †_‡K cÖvß wbU Av‡qi mgwÃŗ n‡jvÑ NNI 8. GbGbAvB-Gi cwigvc wewfbœ iKg n‡Z cv‡iÑ wRGbAvB †`Iqv _vK‡jI| mvgwMÖK Avq cwigv‡ci c×wZmg~n 1. evsjv‡`‡ki A_ŠbxwZÑ 15wU Lv‡Z wefÂŗ| 2. Y = C+I+G+(X-M) GB mgxKiY (X-M) n‡jvÑ ißvwbÑ Avg`vwb| 3. e¨q c×wZ‡Z wRwWwcÑ †fvM + wewb‡qvM + miKvwi e¨q + wbU ißvwb| 4. RvZxq Avq cwigvc Kiv hvqÑ 3 c×wZ‡Z|
  • 11.
    Pro with Swadhin 5.Avq c×wZ Abymv‡i g~jab †_‡K Av‡mÑ my`| 6. msMV‡bi cÖvß AvqÑ gybvdv| 7. RvZxq Avq n‡jv Drcv`b Kv‡hŠ e¨eÃŧZ DcKi‡Yi cÖvß Av‡qi mgwÃŗÃ‘ Avq c×wZ| 8. Avq c×wZ‡Z wRwWwcÑ LvRbv + gRywi + my` + gybvdv| 9. ‡gvU †`kR Drcv`b cwigvc Kiv nqÑ 15wU Lv‡Zi Drcv`b g~j¨ †hvM K‡i| 10. Drcv`b c×wZ‡Z we‡ePbvq Avbv nqÑ P~ovÅĄÃ `ÂĒe¨| mvgwMÖK Avq cwigv‡ci mgm¨vmg~n 1. ‡hme `ÂĒe¨ Drcv`‡bi ci mivmwi †fv‡M e¨eÃŧZ nq Zv‡`i‡K ejv nqÑ P~ovÅĄÃ `ÂĒe¨| 2. GKB wRwbm `yBevi MYbv Kiv n‡j Zv‡K e‡jÑ ˆØZ MYbv mgm¨v| 3. RvZxq Avq MYbvq `ÂĒe¨ I †mev we‡ewPZ nqÑ P~ovÅĄÃ chŠv‡qi| 4. g~jabx jvfÃŋwZ we‡ewPZ nq bvÑ RvZxq Drcv`‡b| 5. ‰ØZ MYbvq mgm¨v m„wÃŗ n‡eÑ gva¨wgK `ÂĒe¨ we‡ePbv Ki‡j| 6. hy×Kvjxb FY †Kv‡bv f~wgKv iv‡L bvÑ GNI wbY©‡qi †Ãŋâ€ĄÃŽ| 7. ‰Zwi †cvkvK‡KÑ PzovÅĄÃ `ÂĒe¨ wn‡m‡e we‡ePbv Kiv nq| 8. GDP MYbvi †Ãŋâ€ĄÃŽ AÅĄÃfŠ~Âŗ nq bvÑ AZx‡Z Drcvw`Z cY¨| 9. A_ŠbxwZ‡Z gq`v‡K we‡ePbv Kiv nqÑ gva¨wgK `ÂĒe¨ wn‡m‡e| mvgwMÖK e¨q 1. wØLvZ wewkÃŗ A_ŠbxwZ‡Z mvgwMÖK e¨‡qi mgxKiYÑ AE=C+I 2. GKwU †`‡ki A_ŠbxwZ wefÂŗÃ‘ wZb Lv‡Z| 3. wØLvZ wewkÃŗ A_ŠbxwZ‡Z †fv‡Mi Rb¨ e¨envi Kiv nqÑ P~ovÅĄÃ `ÂĒe¨ I †mev| 4. ‡Lvjv A_ŠbxwZ‡Z mvgwMÖK e¨q we‡ePbvi mgq LvZ wn‡m‡e we‡ewPZ nqÑ AvÅĄÃRŠvwZK evwYR¨| 5. (X-M) †K we‡ePbv Kiv nqÑ wbU ißvwb wn‡m‡e| 6. wZb Lv‡Zi A_ŠbxwZ‡Z mvgwMÖK e¨qÑ C+I+G 7. PviLv‡Zi A_ŠbxwZ‡Z mvgwMÖK e¨q n‡jvÑ C+I+G+NX 8. ‰ØZMYbv Gov‡bvi Rb¨ C+I+G †_‡K ev` †`qv nqÑ cÖv_wgK I gva¨wgK `ÂĒe¨ g~j¨| 9. mvgwMÖK e¨‡qi ¸iÃĻZÂĄc~YŠ Ask n‡jvÑ miKvwi e¨q| ‡fvM e¨q I Z`m¤ÃēwKŠZ †iLvmg~n 1. ¯^q¤Âĸ~Z †fvM †iLvi AvKâ€ĻwZÑ f~wg A‡Ãŋi mgvÅĄÃivj| 2. ‡fvM e¨q A‡cÃŋKÑ C=/(Y) 3. ¯^íKvjxb †fvM A‡cÃŋKÑ C=a + dY. 4. ¯^q¤Âĸ~Z †fvM eRvq _v‡KÑ ¯^íKv‡j| 5. Avq k~b¨ n‡jI wKQz cwigvY †fvM _vK‡eÑ ¯^q¤Âĸ~Z †fvM| 6. cÃ–â€ĄivwPZ †fvM e¨q †iLvÑ Wvbw`‡K DaŸŠMvgx| 8. gvbyl Zvi Pvwn`v †gUv‡bvi Rb¨ †hme `ÂĒe¨ I †mev Âĩq K‡i A_Š e¨q K‡i Zvi mgwÃŗBÑ †fvM e¨q| 9. ‡fvM e¨q wbfŠikxjÑAv‡qj Ici| 10. Av‡qi †P‡q Kg nv‡i ev‡oÑ †fvM e¨q| 11. Av‡qi Ici wbfŠi K‡i bvÑ ¯^q¤Âĸ~Z ‡fvM| 12. k~b¨ Av‡qI eRvq _v‡KÑ ¯^q¤Âĸ~Z †fvM| wewb‡qvM e¨q 1. wewb‡qvM e¨q‡K fvM Kiv nqÑ 2 fv‡M| 2. wewb‡qv‡Mi wfwË n‡jvÑ mÂq| 3. wewb‡qv‡Mi Dâ€ĄÃk¨ n‡jvÑ gybvdv jvf| 4. Ab¨vb¨ Ae¯’v AcwiewZŠZ †Z‡K Avq evo‡jÑ wewb‡qvM ev‡o|m 5. ¯^q¤Âĸ~Z wewb‡qvM I cÃ–â€ĄivwPZK wewb‡qv‡Mi mgwÃŗ n‡jvÑ ‡gvU wewb‡qvM| 6. Av‡qi nÂĢvm-e„w× Øviv cÖfvweZ nqÑ cÃ–â€ĄivwPZ wewb‡qvM| 7. cyivZb g~ja‡bi mv‡_ AwZwiÂŗ wKQz g~jab †hvM Kiv n‡j Zv‡KÑ wewb‡qvM e‡j| 8. cÃ–â€ĄivwPZ wewb‡qvM †iLvÑ DaŸŠMvgx| 9. wewb‡qvM e¨q‡K fvM Kiv hvqÑ ¯^qÚzZ I cÃ–â€ĄivwPZ wn‡m‡e| miKvwi e¨q I mÂq 1. miKvwi e¨q‡K aiv nqÑ ¯^q¤Âĸ~Z e¨q wn‡m‡e|
  • 12.
    Pro with Swadhin 2.‡`k cwiPvjbvi Rb¨ miKvi †h A_Š e¨q K‡i ZvBÑ miKvwi e¨q| 3. mÂq †iLvi mgxKiY n‡jvÑ S = Y – C. 4. miKvwi e¨q ev‡oÑ Ki evo‡j| 5. miKvi e¨‡qi Rb¨ cÃ–â€ĄqvRbxq A_Š †c‡q _v‡KÑ Ki ‡_‡K| 6. Avq †_‡K †fvM e¨q ev` w`‡j hv _v‡K ZvB n‡jvÑ mÂq| 7. mÂq †iLv evg †_‡K Wvbw`‡KÑ DaŸŠgyLx| 8. Avq evo‡j, evo‡eÑ mÂq| 9. Av‡qi mv‡_ mÃ‚â€Ąqi m¤ÃēKŠÑ abvZÂĨK| miKvwi e¨q I mÂq 1. miKvwi e¨q‡K aiv nqÑ ¯^q¤Âĸ~Z e¨q wn‡m‡e| 2. ‡`k cwiPvjbvi Rb¨ miKvi †h A_Š e¨q K‡i ZvBÑ miKvwi e¨q| 3. mÂq †iLvi mgxKiY n‡jvÑ S = Y – C 4. miKvwi e¨q ev‡oÑ Ki evo‡j| 5. miKvi e¨‡qi Rb¨ cÃ–â€ĄqvRbxq A_Š ‡c‡q _v‡KÑ Ki †_‡K| 6. Avq †_‡K †fvM e¨q ev` w`‡j hv _v‡K ZvB n‡jvÑ mÂq| 7. mÂq †iLv evg †_‡K Wvbw`‡K Ñ DaŸŠgyLx| 8. Avq evo‡j, evo‡eÑ mÂq| 9. Av‡qi mv‡_ mÃ‚â€Ąqi m¤ÃēKŠÑ abvZÂĨK| mÃ‚â€Ąqi †kÖwYwefvM 1. Avq †_‡K †fvM e¨q ev` w`‡j _v‡KÑ mÂq| 2. Dr‡mi w`K †_‡K mÂq‡K fvM Kiv hvqÑ 3 fv‡M| 3. GKwU †`‡k mÂq wb‡q g~jab MwVZ nqÑ 3 ai‡bi| 4. e¨q‡hvM¨ Avq †_‡K †fvM e¨q ev` w`‡j _v‡KÑ e¨wÂŗMZ mÂq| 5. Avq I mÃ‚â€Ąqi m¤ÃēKŠÑ mggyLx| 6. miKv‡ii ivR¯^ †_‡K miKvwi e¨q ev` w`‡j _v‡KÑ miKvwi mÂq| 7. e¨emv evwYR¨ I KjKviLvbvi Aewâ€ēUZ gybvdv n‡jvÑ e¨emvMZ mÂq| 8. e¨emvMZ mÂq miKvwi mÂq wb‡q MwVZ nqÑg~jab| 9. cÖZ¨vwkZ Avq †_‡K cÖZ¨vwkZ mÂq‡K e‡jÑ cwiKwíZ mÂq| 10. cÖvß I cÖvße¨Zvi wfwÃ‹â€ĄZ mÂqÑ `yB cÖKvi| 11. mgv‡Ri cÖZ¨vwkZ mÂq‡K ejv nqÑ cwiKwíZ mÂq| mÂq I wewb‡qv‡Mi g‡a¨ m¤ÃēKŠ 1. mÂq I wewb‡qvM m¤Ãē‡KŠ cÖPwjZ i‡q‡QÑ 2wU aviYv| 2. mÂq I wewb‡qvM ci¯Ãēi mgvbÑ †KBbmxq gZev‡`| 3. wewb‡qvM wbfŠikxjÑ mÃ‚â€Ąqi Ici| 4. wewb‡qvM cwiKwíZ mÂq †ewk n‡jÑ Avq Kg‡e| 5. GKwU †`‡k wewb‡qvM †ewk n‡e hw` †ewk nqÑ mÂq| 6. mÂq I wewb‡qv‡Mi mgZv cÃ–â€ĄhvR¨ bqÑ e¨wÂŗMZ mÂq I wewb‡qv‡Mi †Ãŋâ€ĄÃŽ| 7. mÂq I wewb‡qvM me mgq mgvb nqÑ cÖKâ€ĻZ mÂq I wewb‡qv‡M| 8. mÂq I wewb‡qvM Kg †ewk n‡Z cv‡iÑ cwiKwíZ mÂq I wewb‡qv‡M| fvimvg¨ RvZxq Avq 1. A_ŠbxwZ‡Z AE = AI n‡j ci¯Ãēi mgvb nqÑ S I I. 2. ‡fvMe¨q I mÃ‚â€Ąqi mgwÃŗâ€ĄK ejv nqÑ mvgwMÖK Avq| 3. ‡gvU †fvM e¨q I wewb‡qvM e¨q mgvb bqÑ miKvwi Lv‡Z| 4. fvimvg¨ Avq Â¯Ãâ€ĄiÑ mÂq + wewb‡qvM| 5. fvimvg¨ Avq wbaŠvwiZ nqÑ AI = AE n‡j| 6. C+I+G †`Lv hvqÑ †KBbmxq A_ŠbxwZ‡Z| 7. mÂq I wewb‡qv‡Mi mgZv Øviv wbaŠvwiZ nqÑ fvimvg¨ RvZxq Avq| 8. S = I Â¯Ãâ€Ąi wbaŠvwiZ nqÑ fvimvg¨ Avq| 9. fvimvg¨ RvZxq Avq wbaŠvi‡Y cÖPwjZÑ `ywU c×wZ| 10. fvimvg¨ve¯’vqÑ AD = AS nq| Ave× A_ŠbxwZ‡Z fvimvg¨ Avq wbaŠviY 1. ) b I ( G I a 0 a − + + = fvimvg¨ Avq (Y)| 2. Ave× A_ŠbxwZ‡Z mvgwMÖK e¨‡qi Dcv`vbÑ 3wU| 3. wØLvZ wewkÃŗ A_ŠbxwZ‡Z mvgwMÖK e¨qÑ C+I 4. e× A_ŠbxwZ‡Z fvimvg¨ n‡jvÑ Y = C + I + G 5. Ave× A_ŠbxwZ MwVZÑ 3wU LvZ wb‡q|
  • 13.
    Pro with Swadhin 6.fvimvg¨ Avq wbaŠvi‡Y we‡ewPZ nqÑ mvgwMÖK e¨q| 7. Ave× A_ŠbxwZ‡Z we‡ePbv ewnfŠ~Z _v‡KÑ AvÅĄÃRŠvwZK evwYR¨| 8. cÃ–â€ĄivwPZ †fvM wbfŠikxjÑ Av‡qi Ici| 9. wZb LvZ wewkÃŗ AZŠbxwZ‡ZÑ AvÅĄÃRŠvwZK evwYR¨ cÃ–â€ĄhvR¨ bq|