EuroVis 2016
18th EG/VGTC Conference on Visualization
6-10 June 2016, Groningen, the Netherlands
Hierarchical Stochastic Neighbor Embedding
Nicola Pezzotti1, Thomas Höllt1, Boudewijn P.F. Lelieveldt2,
Elmar Eisemann1, Anna Vilanova1
1. Computer Graphics & Visualization, Delft University of Technology, Delft, The Netherlands
2. Division of Image Processing, Leiden Medical Center, Leiden, The Netherlands
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //EuroVis 2016
Hierarchical organization of data
Image Collection
Nature
Man-made
Ships
Vehicles
2
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
• Visualizing relationships between data points
• Parallel-Coordinate Plots do not scale
Dimensionality Reduction (DR)
3
EmbeddingHigh-Dimensional
Feature Vectors
Dimensionality
Reduction
Dim-1
Dim-2
Data
Feature
Extraction
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //EuroVis 2016
Non-linear Dimensionality Reduction
• Data often lay on a non-linear manifold in the high-dimensional space
• Widely used on real-world data
• Computationally intensive
4
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Non-Linear DR with Landmarks
5
[Landmark-SNE, Landmark-ISOMAP]
[LSP, P-LSP, LAMP, LoCH, Pekalska]
Hybrid techniques
Non linear
Dim-1
Dim-2
Emb-Dim-1
Emb-Dim-1
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
•Multiscale Dimensionality Reduction
• Non-linear DR
• Landmark based
• Hierachical exploration of the data
• Overview-first & Details-on-Demand
• Filter & Drill-in
• Proabilistic framework
Hierarchical Stochastic Neighbor Embedding
6
Hierarchical SNE
Emb-Dim-1
EuroVis 2016
Algorithm
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Hierarchical SNE - Algorithm
8
Similarity
Based
Embedding
tSNE1
1: Van der Maaten et al. - Visualizing data using t-SNE -
Journal of Machine Learning Research - 2008.
• Localized Similarities
• Low memory footprint
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Hierarchical SNE - Algorithm
9
Dim-1
Dim-2
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Hierarchical SNE - Algorithm
10
Dim-1
Dim-2
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Hierarchical SNE - Algorithm
11
Dim-1
Dim-2
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Hierarchical SNE - Algorithm
12
Dim-1
Dim-2
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Hierarchical SNE - Algorithm
13
Dim-1
Dim-2
Low High
Distribution
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Hierarchical SNE - Algorithm
14
Dim-1
Dim-2
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Hierarchical SNE - Algorithm
15
Dim-1
Dim-2
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Hierarchical SNE - Algorithm
16
Dim-1
Dim-2
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Hierarchical SNE - Algorithm
17
Dim-1
Dim-2
66%
33%
• Localized Area of Influence
• Low memory footprint
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Hierarchical SNE - Algorithm
18
Similarity
Based
Embedding
tSNE
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Hierarchical SNE - Algorithm
19
Similarity
Based
Embedding
tSNE
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Hierarchical SNE - Algorithm
20
•Random walks
• More than 1k per ms
•Hierarchical Analysis
• Top-down
• Link between scale given by the area
of influence
EuroVis 2016
Use Case 1
Deep Learning
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Use case I: Deep Learning
22
Feature vector
4096 Dimensions
Are the images processed by AlexNet [1] organized hierarchically
by the network?
1: Krizhevsky et al. - ImageNet Classification with Deep Convolutional Neural Networks -
Advances in neural information processing systems - 2012.
Label
+
Image
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //EuroVis 2016
Use case I: Deep Learning
Test set
Nature
Man-made
100k Images
92s
23
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //EuroVis 2016
Use case I: Deep Learning
Nature
Vehicles
Appliances
Ships
Man-made
24
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //EuroVis 2016
Use case I: Deep Learning
Appliances
Ships
Vehicles Trains
Cars
Buses
25
EuroVis 2016
Use Case 2
Hyperspectral Images
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Use case II: Hyperspectral images
27
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Use case II: Hyperspectral images
28
• Pixels
• 1M Data points (1024x1024)
• Images
• 12 Dimensions
• Clusters in the Embedding
• Group of pixels that
correspond to the same
phenomenon
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Use case II: Hyperspectral images
29
Surface
Space
Low High
Influence
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Use case II: Hyperspectral images
30
Outer space
Corona
Low High
Influence
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Use case II: Hyperspectral images
31
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Use case II: Hyperspectral images
32
Low High
Influence
EuroVis 2016
Conclusion
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
• Hierarchical Stochastic Neighbor Embedding
• Novel hierarchical analysis of non-linear data
• Outperforms existing techniques
• Computation time
• Size of the data to be computed
• K-Nearest Neighbor Preservation
• Stability of the embeddings
34
Conclusions
EuroVis 2016 Pezzotti et al. // Hierarchical Stochastic Neighbor Embedding //
Questions?
This project is founded by STW
through the V.An.P.I.Re project

Hierarchical Stochastic Neighbor Embedding

  • 1.
    EuroVis 2016 18th EG/VGTCConference on Visualization 6-10 June 2016, Groningen, the Netherlands Hierarchical Stochastic Neighbor Embedding Nicola Pezzotti1, Thomas Höllt1, Boudewijn P.F. Lelieveldt2, Elmar Eisemann1, Anna Vilanova1 1. Computer Graphics & Visualization, Delft University of Technology, Delft, The Netherlands 2. Division of Image Processing, Leiden Medical Center, Leiden, The Netherlands
  • 2.
    EuroVis 2016 Pezzottiet al. // Hierarchical Stochastic Neighbor Embedding //EuroVis 2016 Hierarchical organization of data Image Collection Nature Man-made Ships Vehicles 2
  • 3.
    EuroVis 2016 Pezzottiet al. // Hierarchical Stochastic Neighbor Embedding // • Visualizing relationships between data points • Parallel-Coordinate Plots do not scale Dimensionality Reduction (DR) 3 EmbeddingHigh-Dimensional Feature Vectors Dimensionality Reduction Dim-1 Dim-2 Data Feature Extraction
  • 4.
    EuroVis 2016 Pezzottiet al. // Hierarchical Stochastic Neighbor Embedding //EuroVis 2016 Non-linear Dimensionality Reduction • Data often lay on a non-linear manifold in the high-dimensional space • Widely used on real-world data • Computationally intensive 4
  • 5.
    EuroVis 2016 Pezzottiet al. // Hierarchical Stochastic Neighbor Embedding // Non-Linear DR with Landmarks 5 [Landmark-SNE, Landmark-ISOMAP] [LSP, P-LSP, LAMP, LoCH, Pekalska] Hybrid techniques Non linear Dim-1 Dim-2 Emb-Dim-1 Emb-Dim-1
  • 6.
    EuroVis 2016 Pezzottiet al. // Hierarchical Stochastic Neighbor Embedding // •Multiscale Dimensionality Reduction • Non-linear DR • Landmark based • Hierachical exploration of the data • Overview-first & Details-on-Demand • Filter & Drill-in • Proabilistic framework Hierarchical Stochastic Neighbor Embedding 6 Hierarchical SNE Emb-Dim-1
  • 7.
  • 8.
    EuroVis 2016 Pezzottiet al. // Hierarchical Stochastic Neighbor Embedding // Hierarchical SNE - Algorithm 8 Similarity Based Embedding tSNE1 1: Van der Maaten et al. - Visualizing data using t-SNE - Journal of Machine Learning Research - 2008. • Localized Similarities • Low memory footprint
  • 9.
    EuroVis 2016 Pezzottiet al. // Hierarchical Stochastic Neighbor Embedding // Hierarchical SNE - Algorithm 9 Dim-1 Dim-2
  • 10.
    EuroVis 2016 Pezzottiet al. // Hierarchical Stochastic Neighbor Embedding // Hierarchical SNE - Algorithm 10 Dim-1 Dim-2
  • 11.
    EuroVis 2016 Pezzottiet al. // Hierarchical Stochastic Neighbor Embedding // Hierarchical SNE - Algorithm 11 Dim-1 Dim-2
  • 12.
    EuroVis 2016 Pezzottiet al. // Hierarchical Stochastic Neighbor Embedding // Hierarchical SNE - Algorithm 12 Dim-1 Dim-2
  • 13.
    EuroVis 2016 Pezzottiet al. // Hierarchical Stochastic Neighbor Embedding // Hierarchical SNE - Algorithm 13 Dim-1 Dim-2 Low High Distribution
  • 14.
    EuroVis 2016 Pezzottiet al. // Hierarchical Stochastic Neighbor Embedding // Hierarchical SNE - Algorithm 14 Dim-1 Dim-2
  • 15.
    EuroVis 2016 Pezzottiet al. // Hierarchical Stochastic Neighbor Embedding // Hierarchical SNE - Algorithm 15 Dim-1 Dim-2
  • 16.
    EuroVis 2016 Pezzottiet al. // Hierarchical Stochastic Neighbor Embedding // Hierarchical SNE - Algorithm 16 Dim-1 Dim-2
  • 17.
    EuroVis 2016 Pezzottiet al. // Hierarchical Stochastic Neighbor Embedding // Hierarchical SNE - Algorithm 17 Dim-1 Dim-2 66% 33% • Localized Area of Influence • Low memory footprint
  • 18.
    EuroVis 2016 Pezzottiet al. // Hierarchical Stochastic Neighbor Embedding // Hierarchical SNE - Algorithm 18 Similarity Based Embedding tSNE
  • 19.
    EuroVis 2016 Pezzottiet al. // Hierarchical Stochastic Neighbor Embedding // Hierarchical SNE - Algorithm 19 Similarity Based Embedding tSNE
  • 20.
    EuroVis 2016 Pezzottiet al. // Hierarchical Stochastic Neighbor Embedding // Hierarchical SNE - Algorithm 20 •Random walks • More than 1k per ms •Hierarchical Analysis • Top-down • Link between scale given by the area of influence
  • 21.
    EuroVis 2016 Use Case1 Deep Learning
  • 22.
    EuroVis 2016 Pezzottiet al. // Hierarchical Stochastic Neighbor Embedding // Use case I: Deep Learning 22 Feature vector 4096 Dimensions Are the images processed by AlexNet [1] organized hierarchically by the network? 1: Krizhevsky et al. - ImageNet Classification with Deep Convolutional Neural Networks - Advances in neural information processing systems - 2012. Label + Image
  • 23.
    EuroVis 2016 Pezzottiet al. // Hierarchical Stochastic Neighbor Embedding //EuroVis 2016 Use case I: Deep Learning Test set Nature Man-made 100k Images 92s 23
  • 24.
    EuroVis 2016 Pezzottiet al. // Hierarchical Stochastic Neighbor Embedding //EuroVis 2016 Use case I: Deep Learning Nature Vehicles Appliances Ships Man-made 24
  • 25.
    EuroVis 2016 Pezzottiet al. // Hierarchical Stochastic Neighbor Embedding //EuroVis 2016 Use case I: Deep Learning Appliances Ships Vehicles Trains Cars Buses 25
  • 26.
    EuroVis 2016 Use Case2 Hyperspectral Images
  • 27.
    EuroVis 2016 Pezzottiet al. // Hierarchical Stochastic Neighbor Embedding // Use case II: Hyperspectral images 27
  • 28.
    EuroVis 2016 Pezzottiet al. // Hierarchical Stochastic Neighbor Embedding // Use case II: Hyperspectral images 28 • Pixels • 1M Data points (1024x1024) • Images • 12 Dimensions • Clusters in the Embedding • Group of pixels that correspond to the same phenomenon
  • 29.
    EuroVis 2016 Pezzottiet al. // Hierarchical Stochastic Neighbor Embedding // Use case II: Hyperspectral images 29 Surface Space Low High Influence
  • 30.
    EuroVis 2016 Pezzottiet al. // Hierarchical Stochastic Neighbor Embedding // Use case II: Hyperspectral images 30 Outer space Corona Low High Influence
  • 31.
    EuroVis 2016 Pezzottiet al. // Hierarchical Stochastic Neighbor Embedding // Use case II: Hyperspectral images 31
  • 32.
    EuroVis 2016 Pezzottiet al. // Hierarchical Stochastic Neighbor Embedding // Use case II: Hyperspectral images 32 Low High Influence
  • 33.
  • 34.
    EuroVis 2016 Pezzottiet al. // Hierarchical Stochastic Neighbor Embedding // • Hierarchical Stochastic Neighbor Embedding • Novel hierarchical analysis of non-linear data • Outperforms existing techniques • Computation time • Size of the data to be computed • K-Nearest Neighbor Preservation • Stability of the embeddings 34 Conclusions
  • 35.
    EuroVis 2016 Pezzottiet al. // Hierarchical Stochastic Neighbor Embedding // Questions? This project is founded by STW through the V.An.P.I.Re project

Editor's Notes

  • #3 Images, they can be organized hierarchically based on the objects that they represent. And we can do that for different data This kind of hierarchies arise when we