SlideShare a Scribd company logo
Device Modeling Report




COMPONENTS: OPERATIONAL AMPLIFIER
PART NUMBER: HA17558B
MANUFACTURER: RENESAS
REMARK TYPE: (OPAMP)




               Bee Technologies Inc.




All Rights Reserved Copyright (c) Bee Technologies Inc. 2008
Spice Model




       All Rights Reserved Copyright (c) Bee Technologies Inc. 2008
Output Voltage Swing

Simulation result

    20V




     0V




   -20V
     -500mV                     -250mV                                           0V               250mV       500mV
          V(Vout)
                                                                             V_V1

Evaluation circuit


            Rl oa d 10 k         Vo ut                      U1
                                                OU T1                                 VCC


                                                   -IN1          -                    OU T2
                                                                     +
                                                   + IN 1                             -IN2
                                                                         +   -

                                                   VEE                                + IN 2


                                                                 HA 175 58 B
                                                                                                   V+

                           V1              V-
                 0V dc                                                                             15 Vd c
                                         -15 Vdc




                                                                                                   0




Comparison table

   Output Voltage Swing                            Measurement                                 Simulation     %Error
        +Vout(V)                                         14.000                                      13.999    -0.007
         -Vout(V)                                       -14.000                                     -13.999    -0.007




           All Rights Reserved Copyright (c) Bee Technologies Inc. 2008
Input Offset Voltage

Simulation result

    20V



    14V




     0V




   -14V



   -20V
     -1.0mV                        0V                                   1.0mV                  2.0mV
          V(Vout)
                                             V_Vin

Evaluation circuit

                                               Rl oa d
                                                               2k

                                                           U1
                                            OU T1                         VCC
                                    Vo ut
                                            -IN1                         OU T2
                                                           +
                                                       -

                                            + IN 1                       -IN2
                                                                +   -

                            Vi n            VEE                          + IN 2
          Vi
                VO FF = 0       VO FF = 0
                                                     HA 175 58 B
               VA MPL = 0      VA MPL = 0                                           V+
                FREQ = 0        FREQ = 0     V-
                  AC = 0          AC = 0
                  DC = 0          DC = 0                                          15 Vd c
                                            -15 Vdc



               0



Comparison table

                            Measurement                         Simulation                  %Error
       Vos(mV)
                                      0.500                            0.498                 -0.400




           All Rights Reserved Copyright (c) Bee Technologies Inc. 2008
Slew Rate

Simulation result

    20V




     0V




   -20V
          0s                     50us                  100us                                       150us       200us
               V(Vout)
                                                        Time

Evaluation circuit


                                                            Vo ut            U1
                                                                    OU T1                          VCC

                                                                    -IN1                           OU T2
                                                                               -   +
                                                                    + IN 1                         -IN2
                                                                                           +   -

                                                                    VEE                            + IN 2     V+
                            Vi   V1 = -1 4    Vi n
                                 V2 = 14
                                                                             HA 175 58 B
                VO FF = 0        TD = 0 .1m                                                                 15 Vd c
               VA MPL = 0         TR = 1 0n
                FREQ = 0           TF = 10n
                   AC = 0          PW = 1 m            V-
                   DC = 0         PE R = 2m
                                                     -15 Vdc




                                                                                       0



Comparison table

        Slew                     Measurement                          Simulation                            %Error
      Rate(v/us)                         3.000                                3.017                              0.567




               All Rights Reserved Copyright (c) Bee Technologies Inc. 2008
Input current Ib, Ibos

Simulation result

   75nA




   70nA




   65nA




   60nA
          0s              0.2ms                0.4ms                0.6ms                           0.8ms       1.0ms
               I(Vi)     I(Vin)
                                                        Time

Evaluation circuit


                                                        Vo ut            U1
                                                                OU T1                      VCC


                                                                -IN1                       OU T2
                                                                           -   +
                                                                + IN 1                     -IN2
                                                                                   +   -

                                                                VEE                        + IN 2
                                  Vi n                                                                          V+
                                            VO FF = 0
                                                                         HA 175 58 B
                             Vi            VA MPL = 0
                VO FF = 0                   FREQ = 0                                                           15 Vd c
                VA MPL = 0                     AC = 0      V-
                FREQ = 0                       DC = 0
                AC = 0                      V1            -15 Vdc
                DC = 0
                                         0.4 98m



                                                          0



Comparison table

                              Measurement                       Simulation                                  %Error
       Ib(nA)                        65.000                            64.999                                   -0.002
      Ibos(nA)                        5.000                             5.007                                    0.142




               All Rights Reserved Copyright (c) Bee Technologies Inc. 2008
Open Loop Voltage Gain vs. Frequency , Av-dc, f-0dB

Simulation result

   120




    80




    40




     0
    1.0Hz           100Hz                            10KHz                             1.0MHz     100MHz
        DB(V(Vout)/V(Vin:+))
                                                   Frequency


Evaluation circuit


                              RL    2k     Vo ut                  U1
                                                         OU T1                      VCC


                                                         -IN1                       OU T2
                                                                        +
                                                                    -

                                                         + IN 1                     -IN2
                                                                            +   -

                                                         VEE                        + IN 2
                                                                                                 V+
                                  Vi n
                                                                  HA 175 58 B
            Vi
                      VO FF = 0       VO FF = 0     V-                                          15 Vd c
                     VA MPL = 0      VA MPL = 0
                      FREQ = 0        FREQ = 0
                        AC = 0        AC = 1 m     -15 Vdc
                        DC = 0     DC = 0 .498 m




                 0




Comparison table

                                    Measurement                             Simulation                %Error
         f-0dB(MHz)                          7.000                                  6.670                 -4.714
          Av-dc(dB)                        110.000                               110.097                   0.088




            All Rights Reserved Copyright (c) Bee Technologies Inc. 2008
Common-Mode Rejection Voltage gain

Simulation result

    4.0V




      0V




   -4.0V
           0s                   1.0s                       2.0s                       3.0s               4.0s
                V(Vout)
                                                           Time


Evaluation circuit

                                       Vo ut               U1
                                                 OU T1                       VCC

                                                  -IN1                       OU T2
                                                             -   +
                                                  + IN 1                     -IN2
                                                                     +   -
                 V1
                          -0.49 8m                VEE                        + IN 2
                                                                                                V+
                                                           HA 175 58 B
                                                 V-
                                                                                               15 Vd c
                  V
                        VO FF = 0               -15 Vdc
                      VA MPL = 0 .5
                        FREQ = 1
                           AC = 0
                           DC = 0


                                        0
   Common Mode Reject Ratio=20*LOG(319779.1441/3.3789) = 99.5214 dB

                CMRR                 Measurement                         Simulation                  %Error
                 (dB)                          100.000                                99.521              -0.479




                All Rights Reserved Copyright (c) Bee Technologies Inc. 2008

More Related Content

What's hot

SPICE MODEL of NJM2407 in SPICE PARK
SPICE MODEL of NJM2407 in SPICE PARKSPICE MODEL of NJM2407 in SPICE PARK
SPICE MODEL of NJM2407 in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of uPC4074C in SPICE PARK
SPICE MODEL of uPC4074C in SPICE PARKSPICE MODEL of uPC4074C in SPICE PARK
SPICE MODEL of uPC4074C in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of BA4560R in SPICE PARK
SPICE MODEL of BA4560R in SPICE PARKSPICE MODEL of BA4560R in SPICE PARK
SPICE MODEL of BA4560R in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of uPC4091G2 in SPICE PARK
SPICE MODEL of uPC4091G2 in SPICE PARKSPICE MODEL of uPC4091G2 in SPICE PARK
SPICE MODEL of uPC4091G2 in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of TC7W04FU in SPICE PARK
SPICE MODEL of TC7W04FU in SPICE PARKSPICE MODEL of TC7W04FU in SPICE PARK
SPICE MODEL of TC7W04FU in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of TC7W04F in SPICE PARK
SPICE MODEL of TC7W04F in SPICE PARKSPICE MODEL of TC7W04F in SPICE PARK
SPICE MODEL of TC7W04F in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of TC7W04FK in SPICE PARK
SPICE MODEL of TC7W04FK in SPICE PARKSPICE MODEL of TC7W04FK in SPICE PARK
SPICE MODEL of TC7W04FK in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of LA6324N in SPICE PARK
SPICE MODEL of LA6324N in SPICE PARKSPICE MODEL of LA6324N in SPICE PARK
SPICE MODEL of LA6324N in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of uPC4091C in SPICE PARK
SPICE MODEL of uPC4091C in SPICE PARKSPICE MODEL of uPC4091C in SPICE PARK
SPICE MODEL of uPC4091C in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of NJM2120 in SPICE PARK
SPICE MODEL of NJM2120 in SPICE PARKSPICE MODEL of NJM2120 in SPICE PARK
SPICE MODEL of NJM2120 in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of uPC1458C in SPICE PARK
SPICE MODEL of uPC1458C in SPICE PARKSPICE MODEL of uPC1458C in SPICE PARK
SPICE MODEL of uPC1458C in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of uPC1458G2 in SPICE PARK
SPICE MODEL of uPC1458G2 in SPICE PARKSPICE MODEL of uPC1458G2 in SPICE PARK
SPICE MODEL of uPC1458G2 in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of uPC4061C in SPICE PARK
SPICE MODEL of uPC4061C in SPICE PARKSPICE MODEL of uPC4061C in SPICE PARK
SPICE MODEL of uPC4061C in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of uPC4061G2 in SPICE PARK
SPICE MODEL of uPC4061G2 in SPICE PARKSPICE MODEL of uPC4061G2 in SPICE PARK
SPICE MODEL of uPC4061G2 in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of NJM2403 in SPICE PARK
SPICE MODEL of NJM2403 in SPICE PARKSPICE MODEL of NJM2403 in SPICE PARK
SPICE MODEL of NJM2403 in SPICE PARK
Tsuyoshi Horigome
 
MUSES01(PSpice Model)
MUSES01(PSpice Model)MUSES01(PSpice Model)
MUSES01(PSpice Model)
Tsuyoshi Horigome
 
SPICE MODEL of NJM4580E in SPICE PARK
SPICE MODEL of NJM4580E in SPICE PARKSPICE MODEL of NJM4580E in SPICE PARK
SPICE MODEL of NJM4580E in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of uPC4560G2 in SPICE PARK
SPICE MODEL of uPC4560G2 in SPICE PARKSPICE MODEL of uPC4560G2 in SPICE PARK
SPICE MODEL of uPC4560G2 in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of TC7WH04FU in SPICE PARK
SPICE MODEL of TC7WH04FU in SPICE PARKSPICE MODEL of TC7WH04FU in SPICE PARK
SPICE MODEL of TC7WH04FU in SPICE PARK
Tsuyoshi Horigome
 

What's hot (19)

SPICE MODEL of NJM2407 in SPICE PARK
SPICE MODEL of NJM2407 in SPICE PARKSPICE MODEL of NJM2407 in SPICE PARK
SPICE MODEL of NJM2407 in SPICE PARK
 
SPICE MODEL of uPC4074C in SPICE PARK
SPICE MODEL of uPC4074C in SPICE PARKSPICE MODEL of uPC4074C in SPICE PARK
SPICE MODEL of uPC4074C in SPICE PARK
 
SPICE MODEL of BA4560R in SPICE PARK
SPICE MODEL of BA4560R in SPICE PARKSPICE MODEL of BA4560R in SPICE PARK
SPICE MODEL of BA4560R in SPICE PARK
 
SPICE MODEL of uPC4091G2 in SPICE PARK
SPICE MODEL of uPC4091G2 in SPICE PARKSPICE MODEL of uPC4091G2 in SPICE PARK
SPICE MODEL of uPC4091G2 in SPICE PARK
 
SPICE MODEL of TC7W04FU in SPICE PARK
SPICE MODEL of TC7W04FU in SPICE PARKSPICE MODEL of TC7W04FU in SPICE PARK
SPICE MODEL of TC7W04FU in SPICE PARK
 
SPICE MODEL of TC7W04F in SPICE PARK
SPICE MODEL of TC7W04F in SPICE PARKSPICE MODEL of TC7W04F in SPICE PARK
SPICE MODEL of TC7W04F in SPICE PARK
 
SPICE MODEL of TC7W04FK in SPICE PARK
SPICE MODEL of TC7W04FK in SPICE PARKSPICE MODEL of TC7W04FK in SPICE PARK
SPICE MODEL of TC7W04FK in SPICE PARK
 
SPICE MODEL of LA6324N in SPICE PARK
SPICE MODEL of LA6324N in SPICE PARKSPICE MODEL of LA6324N in SPICE PARK
SPICE MODEL of LA6324N in SPICE PARK
 
SPICE MODEL of uPC4091C in SPICE PARK
SPICE MODEL of uPC4091C in SPICE PARKSPICE MODEL of uPC4091C in SPICE PARK
SPICE MODEL of uPC4091C in SPICE PARK
 
SPICE MODEL of NJM2120 in SPICE PARK
SPICE MODEL of NJM2120 in SPICE PARKSPICE MODEL of NJM2120 in SPICE PARK
SPICE MODEL of NJM2120 in SPICE PARK
 
SPICE MODEL of uPC1458C in SPICE PARK
SPICE MODEL of uPC1458C in SPICE PARKSPICE MODEL of uPC1458C in SPICE PARK
SPICE MODEL of uPC1458C in SPICE PARK
 
SPICE MODEL of uPC1458G2 in SPICE PARK
SPICE MODEL of uPC1458G2 in SPICE PARKSPICE MODEL of uPC1458G2 in SPICE PARK
SPICE MODEL of uPC1458G2 in SPICE PARK
 
SPICE MODEL of uPC4061C in SPICE PARK
SPICE MODEL of uPC4061C in SPICE PARKSPICE MODEL of uPC4061C in SPICE PARK
SPICE MODEL of uPC4061C in SPICE PARK
 
SPICE MODEL of uPC4061G2 in SPICE PARK
SPICE MODEL of uPC4061G2 in SPICE PARKSPICE MODEL of uPC4061G2 in SPICE PARK
SPICE MODEL of uPC4061G2 in SPICE PARK
 
SPICE MODEL of NJM2403 in SPICE PARK
SPICE MODEL of NJM2403 in SPICE PARKSPICE MODEL of NJM2403 in SPICE PARK
SPICE MODEL of NJM2403 in SPICE PARK
 
MUSES01(PSpice Model)
MUSES01(PSpice Model)MUSES01(PSpice Model)
MUSES01(PSpice Model)
 
SPICE MODEL of NJM4580E in SPICE PARK
SPICE MODEL of NJM4580E in SPICE PARKSPICE MODEL of NJM4580E in SPICE PARK
SPICE MODEL of NJM4580E in SPICE PARK
 
SPICE MODEL of uPC4560G2 in SPICE PARK
SPICE MODEL of uPC4560G2 in SPICE PARKSPICE MODEL of uPC4560G2 in SPICE PARK
SPICE MODEL of uPC4560G2 in SPICE PARK
 
SPICE MODEL of TC7WH04FU in SPICE PARK
SPICE MODEL of TC7WH04FU in SPICE PARKSPICE MODEL of TC7WH04FU in SPICE PARK
SPICE MODEL of TC7WH04FU in SPICE PARK
 

Similar to SPICE MODEL of HA17558B in SPICE PARK

SPICE MODEL of uPC4558C in SPICE PARK
SPICE MODEL of uPC4558C in SPICE PARKSPICE MODEL of uPC4558C in SPICE PARK
SPICE MODEL of uPC4558C in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of NJM2711 in SPICE PARK
SPICE MODEL of NJM2711 in SPICE PARKSPICE MODEL of NJM2711 in SPICE PARK
SPICE MODEL of NJM2711 in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of uPC4560C in SPICE PARK
SPICE MODEL of uPC4560C in SPICE PARKSPICE MODEL of uPC4560C in SPICE PARK
SPICE MODEL of uPC4560C in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of NJM4565V in SPICE PARK
SPICE MODEL of NJM4565V in SPICE PARKSPICE MODEL of NJM4565V in SPICE PARK
SPICE MODEL of NJM4565V in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of NJM4565 in SPICE PARK
SPICE MODEL of NJM4565 in SPICE PARKSPICE MODEL of NJM4565 in SPICE PARK
SPICE MODEL of NJM4565 in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of NJM4565M in SPICE PARK
SPICE MODEL of NJM4565M in SPICE PARKSPICE MODEL of NJM4565M in SPICE PARK
SPICE MODEL of NJM4565M in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of NJM072 in SPICE PARK
SPICE MODEL of NJM072 in SPICE PARKSPICE MODEL of NJM072 in SPICE PARK
SPICE MODEL of NJM072 in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of uPC4558G2 in SPICE PARK
SPICE MODEL of uPC4558G2 in SPICE PARKSPICE MODEL of uPC4558G2 in SPICE PARK
SPICE MODEL of uPC4558G2 in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of NJM022B in SPICE PARK
SPICE MODEL of NJM022B in SPICE PARKSPICE MODEL of NJM022B in SPICE PARK
SPICE MODEL of NJM022B in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of NJM2742RB1 in SPICE PARK
SPICE MODEL of NJM2742RB1 in SPICE PARKSPICE MODEL of NJM2742RB1 in SPICE PARK
SPICE MODEL of NJM2742RB1 in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of NJM2115 in SPICE PARK
SPICE MODEL of NJM2115 in SPICE PARKSPICE MODEL of NJM2115 in SPICE PARK
SPICE MODEL of NJM2115 in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of NJM2712 in SPICE PARK
SPICE MODEL of NJM2712 in SPICE PARKSPICE MODEL of NJM2712 in SPICE PARK
SPICE MODEL of NJM2712 in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of NJM2742V in SPICE PARK
SPICE MODEL of NJM2742V in SPICE PARKSPICE MODEL of NJM2742V in SPICE PARK
SPICE MODEL of NJM2742V in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of uPC4071G2 in SPICE PARK
SPICE MODEL of uPC4071G2 in SPICE PARKSPICE MODEL of uPC4071G2 in SPICE PARK
SPICE MODEL of uPC4071G2 in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of NJM2742M in SPICE PARK
SPICE MODEL of NJM2742M in SPICE PARKSPICE MODEL of NJM2742M in SPICE PARK
SPICE MODEL of NJM2742M in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of NJM4560M in SPICE PARK
SPICE MODEL of NJM4560M in SPICE PARKSPICE MODEL of NJM4560M in SPICE PARK
SPICE MODEL of NJM4560M in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of NJM2138 in SPICE PARK
SPICE MODEL of NJM2138 in SPICE PARKSPICE MODEL of NJM2138 in SPICE PARK
SPICE MODEL of NJM2138 in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of uPC4071C in SPICE PARK
SPICE MODEL of uPC4071C in SPICE PARKSPICE MODEL of uPC4071C in SPICE PARK
SPICE MODEL of uPC4071C in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of uPC4062C in SPICE PARK
SPICE MODEL of uPC4062C in SPICE PARKSPICE MODEL of uPC4062C in SPICE PARK
SPICE MODEL of uPC4062C in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of uPC4062G2 in SPICE PARK
SPICE MODEL of uPC4062G2 in SPICE PARKSPICE MODEL of uPC4062G2 in SPICE PARK
SPICE MODEL of uPC4062G2 in SPICE PARK
Tsuyoshi Horigome
 

Similar to SPICE MODEL of HA17558B in SPICE PARK (20)

SPICE MODEL of uPC4558C in SPICE PARK
SPICE MODEL of uPC4558C in SPICE PARKSPICE MODEL of uPC4558C in SPICE PARK
SPICE MODEL of uPC4558C in SPICE PARK
 
SPICE MODEL of NJM2711 in SPICE PARK
SPICE MODEL of NJM2711 in SPICE PARKSPICE MODEL of NJM2711 in SPICE PARK
SPICE MODEL of NJM2711 in SPICE PARK
 
SPICE MODEL of uPC4560C in SPICE PARK
SPICE MODEL of uPC4560C in SPICE PARKSPICE MODEL of uPC4560C in SPICE PARK
SPICE MODEL of uPC4560C in SPICE PARK
 
SPICE MODEL of NJM4565V in SPICE PARK
SPICE MODEL of NJM4565V in SPICE PARKSPICE MODEL of NJM4565V in SPICE PARK
SPICE MODEL of NJM4565V in SPICE PARK
 
SPICE MODEL of NJM4565 in SPICE PARK
SPICE MODEL of NJM4565 in SPICE PARKSPICE MODEL of NJM4565 in SPICE PARK
SPICE MODEL of NJM4565 in SPICE PARK
 
SPICE MODEL of NJM4565M in SPICE PARK
SPICE MODEL of NJM4565M in SPICE PARKSPICE MODEL of NJM4565M in SPICE PARK
SPICE MODEL of NJM4565M in SPICE PARK
 
SPICE MODEL of NJM072 in SPICE PARK
SPICE MODEL of NJM072 in SPICE PARKSPICE MODEL of NJM072 in SPICE PARK
SPICE MODEL of NJM072 in SPICE PARK
 
SPICE MODEL of uPC4558G2 in SPICE PARK
SPICE MODEL of uPC4558G2 in SPICE PARKSPICE MODEL of uPC4558G2 in SPICE PARK
SPICE MODEL of uPC4558G2 in SPICE PARK
 
SPICE MODEL of NJM022B in SPICE PARK
SPICE MODEL of NJM022B in SPICE PARKSPICE MODEL of NJM022B in SPICE PARK
SPICE MODEL of NJM022B in SPICE PARK
 
SPICE MODEL of NJM2742RB1 in SPICE PARK
SPICE MODEL of NJM2742RB1 in SPICE PARKSPICE MODEL of NJM2742RB1 in SPICE PARK
SPICE MODEL of NJM2742RB1 in SPICE PARK
 
SPICE MODEL of NJM2115 in SPICE PARK
SPICE MODEL of NJM2115 in SPICE PARKSPICE MODEL of NJM2115 in SPICE PARK
SPICE MODEL of NJM2115 in SPICE PARK
 
SPICE MODEL of NJM2712 in SPICE PARK
SPICE MODEL of NJM2712 in SPICE PARKSPICE MODEL of NJM2712 in SPICE PARK
SPICE MODEL of NJM2712 in SPICE PARK
 
SPICE MODEL of NJM2742V in SPICE PARK
SPICE MODEL of NJM2742V in SPICE PARKSPICE MODEL of NJM2742V in SPICE PARK
SPICE MODEL of NJM2742V in SPICE PARK
 
SPICE MODEL of uPC4071G2 in SPICE PARK
SPICE MODEL of uPC4071G2 in SPICE PARKSPICE MODEL of uPC4071G2 in SPICE PARK
SPICE MODEL of uPC4071G2 in SPICE PARK
 
SPICE MODEL of NJM2742M in SPICE PARK
SPICE MODEL of NJM2742M in SPICE PARKSPICE MODEL of NJM2742M in SPICE PARK
SPICE MODEL of NJM2742M in SPICE PARK
 
SPICE MODEL of NJM4560M in SPICE PARK
SPICE MODEL of NJM4560M in SPICE PARKSPICE MODEL of NJM4560M in SPICE PARK
SPICE MODEL of NJM4560M in SPICE PARK
 
SPICE MODEL of NJM2138 in SPICE PARK
SPICE MODEL of NJM2138 in SPICE PARKSPICE MODEL of NJM2138 in SPICE PARK
SPICE MODEL of NJM2138 in SPICE PARK
 
SPICE MODEL of uPC4071C in SPICE PARK
SPICE MODEL of uPC4071C in SPICE PARKSPICE MODEL of uPC4071C in SPICE PARK
SPICE MODEL of uPC4071C in SPICE PARK
 
SPICE MODEL of uPC4062C in SPICE PARK
SPICE MODEL of uPC4062C in SPICE PARKSPICE MODEL of uPC4062C in SPICE PARK
SPICE MODEL of uPC4062C in SPICE PARK
 
SPICE MODEL of uPC4062G2 in SPICE PARK
SPICE MODEL of uPC4062G2 in SPICE PARKSPICE MODEL of uPC4062G2 in SPICE PARK
SPICE MODEL of uPC4062G2 in SPICE PARK
 

More from Tsuyoshi Horigome

KGIとKPIについて(営業の目標設定とKPIの商談プロセス) About KGI and KPI
KGIとKPIについて(営業の目標設定とKPIの商談プロセス) About KGI and KPIKGIとKPIについて(営業の目標設定とKPIの商談プロセス) About KGI and KPI
KGIとKPIについて(営業の目標設定とKPIの商談プロセス) About KGI and KPI
Tsuyoshi Horigome
 
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
Tsuyoshi Horigome
 
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
Tsuyoshi Horigome
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
Tsuyoshi Horigome
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Tsuyoshi Horigome
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
Tsuyoshi Horigome
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Tsuyoshi Horigome
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
Tsuyoshi Horigome
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
Tsuyoshi Horigome
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
Tsuyoshi Horigome
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
Tsuyoshi Horigome
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
Tsuyoshi Horigome
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
Tsuyoshi Horigome
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
Tsuyoshi Horigome
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
Tsuyoshi Horigome
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
Tsuyoshi Horigome
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
Tsuyoshi Horigome
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
Tsuyoshi Horigome
 

More from Tsuyoshi Horigome (20)

KGIとKPIについて(営業の目標設定とKPIの商談プロセス) About KGI and KPI
KGIとKPIについて(営業の目標設定とKPIの商談プロセス) About KGI and KPIKGIとKPIについて(営業の目標設定とKPIの商談プロセス) About KGI and KPI
KGIとKPIについて(営業の目標設定とKPIの商談プロセス) About KGI and KPI
 
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
 
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
 

Recently uploaded

UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
DianaGray10
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Product School
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
Jemma Hussein Allen
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
ThousandEyes
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
James Anderson
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
Alison B. Lowndes
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
RTTS
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Thierry Lestable
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance
 
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Albert Hoitingh
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
Laura Byrne
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
DanBrown980551
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Inflectra
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Ramesh Iyer
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Product School
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
Kari Kakkonen
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
Prayukth K V
 
Connector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonConnector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a button
DianaGray10
 

Recently uploaded (20)

UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
 
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
 
Connector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonConnector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a button
 

SPICE MODEL of HA17558B in SPICE PARK

  • 1. Device Modeling Report COMPONENTS: OPERATIONAL AMPLIFIER PART NUMBER: HA17558B MANUFACTURER: RENESAS REMARK TYPE: (OPAMP) Bee Technologies Inc. All Rights Reserved Copyright (c) Bee Technologies Inc. 2008
  • 2. Spice Model All Rights Reserved Copyright (c) Bee Technologies Inc. 2008
  • 3. Output Voltage Swing Simulation result 20V 0V -20V -500mV -250mV 0V 250mV 500mV V(Vout) V_V1 Evaluation circuit Rl oa d 10 k Vo ut U1 OU T1 VCC -IN1 - OU T2 + + IN 1 -IN2 + - VEE + IN 2 HA 175 58 B V+ V1 V- 0V dc 15 Vd c -15 Vdc 0 Comparison table Output Voltage Swing Measurement Simulation %Error +Vout(V) 14.000 13.999 -0.007 -Vout(V) -14.000 -13.999 -0.007 All Rights Reserved Copyright (c) Bee Technologies Inc. 2008
  • 4. Input Offset Voltage Simulation result 20V 14V 0V -14V -20V -1.0mV 0V 1.0mV 2.0mV V(Vout) V_Vin Evaluation circuit Rl oa d 2k U1 OU T1 VCC Vo ut -IN1 OU T2 + - + IN 1 -IN2 + - Vi n VEE + IN 2 Vi VO FF = 0 VO FF = 0 HA 175 58 B VA MPL = 0 VA MPL = 0 V+ FREQ = 0 FREQ = 0 V- AC = 0 AC = 0 DC = 0 DC = 0 15 Vd c -15 Vdc 0 Comparison table Measurement Simulation %Error Vos(mV) 0.500 0.498 -0.400 All Rights Reserved Copyright (c) Bee Technologies Inc. 2008
  • 5. Slew Rate Simulation result 20V 0V -20V 0s 50us 100us 150us 200us V(Vout) Time Evaluation circuit Vo ut U1 OU T1 VCC -IN1 OU T2 - + + IN 1 -IN2 + - VEE + IN 2 V+ Vi V1 = -1 4 Vi n V2 = 14 HA 175 58 B VO FF = 0 TD = 0 .1m 15 Vd c VA MPL = 0 TR = 1 0n FREQ = 0 TF = 10n AC = 0 PW = 1 m V- DC = 0 PE R = 2m -15 Vdc 0 Comparison table Slew Measurement Simulation %Error Rate(v/us) 3.000 3.017 0.567 All Rights Reserved Copyright (c) Bee Technologies Inc. 2008
  • 6. Input current Ib, Ibos Simulation result 75nA 70nA 65nA 60nA 0s 0.2ms 0.4ms 0.6ms 0.8ms 1.0ms I(Vi) I(Vin) Time Evaluation circuit Vo ut U1 OU T1 VCC -IN1 OU T2 - + + IN 1 -IN2 + - VEE + IN 2 Vi n V+ VO FF = 0 HA 175 58 B Vi VA MPL = 0 VO FF = 0 FREQ = 0 15 Vd c VA MPL = 0 AC = 0 V- FREQ = 0 DC = 0 AC = 0 V1 -15 Vdc DC = 0 0.4 98m 0 Comparison table Measurement Simulation %Error Ib(nA) 65.000 64.999 -0.002 Ibos(nA) 5.000 5.007 0.142 All Rights Reserved Copyright (c) Bee Technologies Inc. 2008
  • 7. Open Loop Voltage Gain vs. Frequency , Av-dc, f-0dB Simulation result 120 80 40 0 1.0Hz 100Hz 10KHz 1.0MHz 100MHz DB(V(Vout)/V(Vin:+)) Frequency Evaluation circuit RL 2k Vo ut U1 OU T1 VCC -IN1 OU T2 + - + IN 1 -IN2 + - VEE + IN 2 V+ Vi n HA 175 58 B Vi VO FF = 0 VO FF = 0 V- 15 Vd c VA MPL = 0 VA MPL = 0 FREQ = 0 FREQ = 0 AC = 0 AC = 1 m -15 Vdc DC = 0 DC = 0 .498 m 0 Comparison table Measurement Simulation %Error f-0dB(MHz) 7.000 6.670 -4.714 Av-dc(dB) 110.000 110.097 0.088 All Rights Reserved Copyright (c) Bee Technologies Inc. 2008
  • 8. Common-Mode Rejection Voltage gain Simulation result 4.0V 0V -4.0V 0s 1.0s 2.0s 3.0s 4.0s V(Vout) Time Evaluation circuit Vo ut U1 OU T1 VCC -IN1 OU T2 - + + IN 1 -IN2 + - V1 -0.49 8m VEE + IN 2 V+ HA 175 58 B V- 15 Vd c V VO FF = 0 -15 Vdc VA MPL = 0 .5 FREQ = 1 AC = 0 DC = 0 0 Common Mode Reject Ratio=20*LOG(319779.1441/3.3789) = 99.5214 dB CMRR Measurement Simulation %Error (dB) 100.000 99.521 -0.479 All Rights Reserved Copyright (c) Bee Technologies Inc. 2008