SlideShare a Scribd company logo
1 of 109
fMRI Data Analysis  Sonia Pujol, Ph.D. Wendy Plesniak, Ph.D. Randy Gollub, M.D., Ph.D.
Acknowledgments National Alliance for Medical Image Computing NIH U54EB005149  Neuroimage Analysis Center   NIH P41RR013218  FIRST Biomedical Informatics Research Network  NCRR/NIH 5 MOI RR 000827 Harvard Center for Neurodegeneration and Repair Brain Imaging Laboratory, Dartmouth Medical School Surgical Planning Lab, Harvard Medical School Sandy Wells, Steve Pieper, Cindy Wible, Haiying Liu, Carsten Richter
Disclaimer It is the responsibility of the user of 3DSlicer to comply with both the terms of the license and with the applicable laws, regulations and rules.
Goal of the tutorial Guiding you step by step through the process of using the fMRIEngine to  analyze fMRI data  and  visualize results  within Slicer. A sensory motor paradigm was used for the tutorial dataset.
fMRI engine Module ,[object Object],[object Object],[object Object],[object Object]
Prerequisites ,[object Object],[object Object],[object Object],[object Object],[object Object]
Computer Resources ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Tutorial datasets The fMRI tutorial dataset is composed of  Structural scans .………….(anatomical3T.img) Functional scans………….(functionalxx.img) www.na-mic.org/Wiki/index.php/Slicer:Workshops:User_Training_101
fMRI Data pre-processing (SPM) c Realignment Motion Correction Normalization to MNI Smoothing
Data description Structural (MPRAGE):  ANALYZE format 135 slices 1.0 mm x 1.0 mm x 1.0 mm voxels Normalized to MNI Pre-processed Functional (EPI): NIfTI format 68 slices 2.0 mm x 2.0 mm x 2.0 mm voxels Repetition Time TR = 2s
Paradigm description ,[object Object],[object Object],[object Object],[object Object]
Paradigm design 0 TRs 10 30 20 40 50 60 70 80 90 Cycle 1  Cycle 2  Cycle 3   Three cycles  rest | right hand | left hand right left rest right left rest right left rest
fMRI Engine compatibilities SPM fMRI pre-processing FSL fMRI pre-processing 3DSlicer fMRI full analysis and visualization
fMRI Engine compatibilities SPM fMRI  full  analysis FSL fMRI  full  analysis 3DSlicer visualization and modeling
fMRIEngine workflow Load preprocessed functional data Describe paradigm and stimulus schedule Specify linear modeling & estimate model parameters Define contrasts and compute parametric map Statistical inference Inspect data & combine with other analyses
Overview Part 1: Loading and Previewing Data  Part 2: Describing stimulus schedule Part 3: Linear modeling & estimation Part 4: Contrasts & computing SPMs Part 5: Inference & inspection
Loading the structural dataset Click on Add Volume in the main menu
Loading the structural dataset Click on Browse, select the file  Anatomical3T.hdr  in the directory/structural.  The anatomical volume in the short and long datasets are identical. Select the reader  Generic Reader  in the Props Panel of the module  Volumes .
Loading the structural dataset
fMRI Engine Select  Modules  in the main menu Select  Application  fMRIEngine
Load Image Sequence Pick  Sequence   Load  tab Click on Browse and select the file  functional01.hdr  from either dataset.  Select  Load Multiple Files Enter the sequence name  testFunctional  and click on  Apply.
Load Image Sequence Slicer displays the load status of  the 30 (short dataset) or 90 (long dataset) functional volumes .
Load Image Sequence Slicer loads the functional volumes in the Viewer.
Set Image Display Click on the module  Volumes ,  and select the panel  Display Adjust  Win  and  Lev  to get best display of image data
Set Image Display Slicer updates the Window and Level settings. Click on the  V  button to display the axial slice in the Viewer.
Set Image Display Click on the letter  I  in the control window to display the Inferior view.
Set Image Display Adjust the low threshold  Lo  to mask out background
Set Image Display The display settings apply to currently  viewed image in the sequence only
Set Sequence Display Click on  Set Window/Level/Thresholds  to apply to all volumes in the sequence Visually inspect sequence using the  Volume index  to check for intensities aberrations Click on  fMRIEngine ,   select the panel  Sequence,  and pick the tab  Select
Inspect Image Display Slicer displays the volumes of the sequence.
Select Image Sequence Specify the  number of runs = 1 , select the sequence  testFunctional Click on  Add  to assign the sequence to run 1
Select Image Sequence Slicer assigns the sequence to run 1
Overview Part 1: Loading and Previewing Data  Part 2: Describing stimulus schedule Part 3: Linear modeling & estimation Part 4: Contrasts & computing SPMs Part 5: Inference & inspection
Stimulus schedule Pick  Set Up  Tab in the fMRIEngine and choose the  Linear Modeling  detector
Linear Modeling The  General Linear Modeling  is a class of statistical tests assuming that the experimental data are composed of the linear combination of different model factors, along with uncorrelated noise Y = BX + e B = set of experimental parameters Y = Observed data X = Design Matrix e  = noise
Stimulus schedule Select the design type  Blocked
Paradigm timing parameters ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Stimulus schedule Enter the characteristics of the run TR = 2  and  Start Volume = 0 (ordinal number)
Stimulus schedule Enter the schedule for the first condition Short dataset:  Name = right  Onset = 10  Durations = 10 Long dataset: Name = right  Onset = 10 40 70  Durations = 10 10 10 Click on  OK  to add this condition to the list of defined conditions
Stimulus schedule Enter the schedule for the second condition Short dataset:  Name = left  Onset = 20  Durations = 10 Long dataset: Name = left Onset = 20 50 80  Durations = 10 10 10 Click on  OK  to add this condition to the list of defined conditions
Stimulus schedule Scroll down in the  Set-up  panel to see the list of defined conditions
Editing the Stimulus schedule The list of specified conditions appears in the left panel
Overview Part 1: Loading and Previewing Data  Part 2: Describing stimulus schedule Part 3: Linear modeling & estimation Part 4: Contrasts & computing SPMs Part 5: Inference & inspection
Model a Condition Select  Specify Modeling Click on  Model all conditions identically
Model a Condition Select  Condition:  all Waveform:  BoxCar Click on the question mark next to  Waveform  for detailed description  of the modeling option.
Model a Condition Slicer displays a detailed description of the Stimulus function.
Model a Condition Select  - Convolution:  HRF (Hemodynamic Response Function) - Derivatives:  none
Nuisance Signal Modeling On the subpanel  Nuisance signal modeling , select  Trend model:  Discrete Cosine   Cutoff period:  default Click on  use default cutoff
Nuisance Signal Modeling Scroll down in the Set Up panel and click on  add to model
Nuisance Signal Modeling The list of explanatory variables (EV) appears in the left panel, including the baseline that is automatically added.  The string are Slicer specific representation of the modeling.
View Design Matrix Click  View Design  to  display the design matrix
View Design Matrix Short dataset Long dataset A window displaying the model design appears.
Design Matrix v1 = left modeled condition v2 = right modeled condition v3 = baseline  v4,v5,v6 = low frequency noise Move the mouse from left to right over the columns of the matrix to display the characteristics of the modeled conditions.
Design Matrix White    positive signal intensity 1 Mid-Grey    null intensity 0 Black    negative  intensity - 1  Observe the different values of the signal intensity in the matrix.
Design Matrix Modeled Signal Y(tp) = b1 v1(tp) + b2 v2(tp)  +b3  v3 (tp) + b4  v4(tp) + b5  v5(tp) + b6  v6(tp)  Y(t) t Each column represents the contribution from each condition we might see in a voxel time course. tp t
Design Matrix Move the mouse up and down to browse the different volumes associated with the time points. Y(t) tp t
Estimation Select  Specify Estimation  to estimate B and e at every voxel: Y = BX + e
Estimating model parameters Select  run1  and  click on  Fit Model The  Estimation panel  appears
Estimating model parameters Slicer shows the progress of model estimation
Overview Part 1: Loading and Previewing Data  Part 2: Describing stimulus schedule Part 3: Linear modeling & estimation Part 4: Contrasts & computing SPMs Part 5: Inference & inspection
Specify Contrasts In the  SetUp  panel, select  Specify    Contrasts
Specify Contrasts The Panel for the contrasts appears
Specify Contrasts Choose the  contrast type   t-test Enter the   contrast name  myContrast,  and the Volume Name  R-L_activation
Contrast Vector ,[object Object],[object Object],[object Object],[object Object]
Specify Contrasts Specify the contrast vector  1 –1 0 0  (enter a space between the values) Click  OK  to add this contrast to a list of defined contrasts Select the statistical test  t-test
Specify Contrasts The resulting contrast named   myContrast-R-L_activation appears in the list of specified contrasts.
Check contrasts & model Click on  View Design  to display  the Design matrix
Design Matrix Short dataset Long dataset Check that the contrast and model are correct. A window displaying the design matrix and contrast vector appears.
Perform activation detection Click on the tab  Detect and select the contrast  myContrast-R-L_activation Click on  Compute  to compute the statistical map of activation (t-test)
Overview Part 1: Loading and Previewing Data  Part 2: Describing stimulus schedule Part 3: Linear modeling & estimation Part 4: Contrasts & computing SPMs Part 5: Inference & inspection
Select the activation volume Select the resulting  activation volume (t-map) myContrast-R-L_activation Click on  Select Click on the  View  Tab Select the subpanel  Choose
Threshold Click on the  Thrshold  Tab
Threshold Slicer indicates the degree of freedom (DoF): Nvol-1 Short dataset   DoF=29 Long dataset   DoF=89 Specify the  p-Value  threshold  0.001   and hit Enter
Null hypothesis ,[object Object],[object Object]
Threshold Slicer calculates the corresponding threshold t Stat Short dataset  t Stat = 3.7 Long dataset t Stat = 3.4
Activation map Slicer displays the activation map overlaid on the fMRI images Short dataset  Long dataset
fMRI color palette Select the panel  Display and set the Active Volume to be  the activation volume  myContrast-R-L_activationMap Click on the module  Volumes
fMRI color palette Adjust the  Window  and  Level  of the color palette for the volume  myContrast-R-L_activationMap Short dataset  Long dataset
fMRI color palette -MAX +MAX No statistical significance Positive activation Negative activation -MAX +MAX No statistical significance Positive activation Negative activation Short dataset  Long dataset
Activation map Slicer displays the activation map overlaid on the fMRI images Short dataset  Long dataset
Visualize Left click on  Bg  in the 2D anatomical viewers to display the volume  anatomical 3T  in background Short dataset  Long dataset
Visualize Short dataset  Long dataset Slicer displays the activation map superimposed on the anatomical images.
Inspect Pick the tab  Plot  and select the  condition = right  Select  Timecourse  plot option
Inspect Mouse over labelled area in Slice Window and left click on the pixel  R = -40 A = 0 S = 20,  which   is highly significant in the activation map.  The left-hemisphere of the subject is shown on the right side of the image, in radiological convention. Short dataset   Long dataset
Voxel Timecourse Slicer displays the voxel’s actual timecourse (response)  plotted   with the modeled condition (right  hand ) for the selected voxel. Short dataset Long dataset The graphs show a good correlation between the observed BOLD signal Y(t) and the model.
Inspect Mouse over labelled area in Slice Window and left click on the pixel  R = 40 A = 0 S = 20,  which is highly significant in the opposite direction. Short dataset  Long dataset
Voxel Timecourse Slicer displays the voxel’s timecourse plotted with the modeled condition for the selected voxel Short dataset Long dataset If we were plotting  the  left hand condition, what correlation would be observed?
Contralateral side vs Ipsilateral side (short dataset) During the  right hand condition , the observed signal  decreases in the ipsilateral side and  increases on the contralateral side.
Contralateral side vs Ipsilateral side (long dataset) During the  right hand condition , the observed signal  decreases in the ipsilateral side and  increases on the contralateral side.
Inspect Select  Peristimulus plot  option and click on the voxel  (-40,0,20) in the positive activation region
Voxel Peristimulus Plot ,[object Object],[object Object],[object Object],Short dataset Long dataset
Inspect Select  Peristimulus histogram  option and click on the voxel in the negative activation region (40,0,20)
Voxel Peristimulus Plot ,[object Object],[object Object],[object Object],Short dataset Long dataset
Activation-based region of interest Select the  ROI  panel and RegionMap tab Choose  New   Activation  from  Label map
Activation-based region of interest Click  Create label map from activation,  and wait while activation “blobs” are labelled
Activation-based region of interest The label map is shown in Foreground, and the activation map  is shown in Background. Short dataset Long dataset
Region Statistics Select the subtab  Stats Select one or multiple regions in the left hemisphere to include in analysis by clicking in Slice Window.  Select the condition  right.
Region Statistics Short dataset Long dataset The selected regions appear in green.
Region Statistics Click  Show stats  to display the statistics for the selected regions
Region Statistics Slicer displays the statistics for the selected region(s) Short dataset Long dataset
Region Timecourse Select  Timecourse plot  option and click on  Plot time series  for this region.
Region Timecourse Slicer displays the region timecourse plot Short dataset Long dataset
Region Peristimulus Plot Select  Peristimulus plot  and click  Plot time series  for this region.
Region Peristimulus Plot Slicer displays the Region Peristimulus Plot Short dataset Long dataset
3D Visualization Click on  Clear selections   and display the structural volume  anatomical3T  in the background ( Bg ) and the activation map  myContrast-R-L_activation  in the foreground ( Fg ). Display three anatomical slices in the 3D Viewer.
3D Visualization Short dataset Long dataset
3D Visualization Fade  in the activation volume for a good view of combined data
3D Visualization Short dataset Long dataset
Conclusion ,[object Object],[object Object],[object Object]

More Related Content

Similar to Functional Magnetic Resonance Imaging Analysis-3765

Diffusion Tensor Imaging Analysis-3749
Diffusion Tensor Imaging Analysis-3749Diffusion Tensor Imaging Analysis-3749
Diffusion Tensor Imaging Analysis-3749Kitware Kitware
 
Automatic Brain Segmentation-3770
Automatic Brain Segmentation-3770Automatic Brain Segmentation-3770
Automatic Brain Segmentation-3770Kitware Kitware
 
Fann tool users_guide
Fann tool users_guideFann tool users_guide
Fann tool users_guideBirol Kuyumcu
 
How to use a Radionic Computer System
How to use a Radionic Computer SystemHow to use a Radionic Computer System
How to use a Radionic Computer SystemJane Radford
 
References1. HCS 2010 online manuals.2. Data Data provi.docx
References1. HCS 2010 online manuals.2. Data  Data provi.docxReferences1. HCS 2010 online manuals.2. Data  Data provi.docx
References1. HCS 2010 online manuals.2. Data Data provi.docxdebishakespeare
 
Coaxial feed microstrip patch antenna using HFSS
 Coaxial feed microstrip patch antenna using  HFSS Coaxial feed microstrip patch antenna using  HFSS
Coaxial feed microstrip patch antenna using HFSSMithilesh Naphade
 
Software Verification, Validation and Testing
Software Verification, Validation and TestingSoftware Verification, Validation and Testing
Software Verification, Validation and TestingDr Sukhpal Singh Gill
 
Soft And Handling
Soft And HandlingSoft And Handling
Soft And Handlinghiratufail
 
Module CSimulationQNT 5160 Data Driven Decision MakingMo.docx
Module CSimulationQNT 5160 Data Driven Decision MakingMo.docxModule CSimulationQNT 5160 Data Driven Decision MakingMo.docx
Module CSimulationQNT 5160 Data Driven Decision MakingMo.docxgilpinleeanna
 
M.G.Goman et al (1994) - PII package: Brief description
M.G.Goman et al (1994) - PII package: Brief descriptionM.G.Goman et al (1994) - PII package: Brief description
M.G.Goman et al (1994) - PII package: Brief descriptionProject KRIT
 
Cn mx3000 p_20120808e
Cn mx3000 p_20120808eCn mx3000 p_20120808e
Cn mx3000 p_20120808eElsa von Licy
 
The 7 basic quality tools through minitab 18
The 7 basic quality tools through minitab 18The 7 basic quality tools through minitab 18
The 7 basic quality tools through minitab 18RAMAR BOSE
 
Data Loading and Visualization-3735
Data Loading and Visualization-3735Data Loading and Visualization-3735
Data Loading and Visualization-3735Kitware Kitware
 
Collect 50 or more paired quantitative data items. You may use a met.pdf
Collect 50 or more paired quantitative data items. You may use a met.pdfCollect 50 or more paired quantitative data items. You may use a met.pdf
Collect 50 or more paired quantitative data items. You may use a met.pdfivylinvaydak64229
 
reliability workshop
reliability workshopreliability workshop
reliability workshopGaurav Dixit
 
Synchrotron applications
Synchrotron applicationsSynchrotron applications
Synchrotron applicationsAcung Acia
 
Medical Image Segmentation Using Hidden Markov Random Field A Distributed Ap...
Medical Image Segmentation Using Hidden Markov Random Field  A Distributed Ap...Medical Image Segmentation Using Hidden Markov Random Field  A Distributed Ap...
Medical Image Segmentation Using Hidden Markov Random Field A Distributed Ap...EL-Hachemi Guerrout
 

Similar to Functional Magnetic Resonance Imaging Analysis-3765 (20)

Diffusion Tensor Imaging Analysis-3749
Diffusion Tensor Imaging Analysis-3749Diffusion Tensor Imaging Analysis-3749
Diffusion Tensor Imaging Analysis-3749
 
Automatic Brain Segmentation-3770
Automatic Brain Segmentation-3770Automatic Brain Segmentation-3770
Automatic Brain Segmentation-3770
 
Fann tool users_guide
Fann tool users_guideFann tool users_guide
Fann tool users_guide
 
How to use a Radionic Computer System
How to use a Radionic Computer SystemHow to use a Radionic Computer System
How to use a Radionic Computer System
 
projectreport
projectreportprojectreport
projectreport
 
References1. HCS 2010 online manuals.2. Data Data provi.docx
References1. HCS 2010 online manuals.2. Data  Data provi.docxReferences1. HCS 2010 online manuals.2. Data  Data provi.docx
References1. HCS 2010 online manuals.2. Data Data provi.docx
 
Coaxial feed microstrip patch antenna using HFSS
 Coaxial feed microstrip patch antenna using  HFSS Coaxial feed microstrip patch antenna using  HFSS
Coaxial feed microstrip patch antenna using HFSS
 
Software Verification, Validation and Testing
Software Verification, Validation and TestingSoftware Verification, Validation and Testing
Software Verification, Validation and Testing
 
Soft And Handling
Soft And HandlingSoft And Handling
Soft And Handling
 
Module CSimulationQNT 5160 Data Driven Decision MakingMo.docx
Module CSimulationQNT 5160 Data Driven Decision MakingMo.docxModule CSimulationQNT 5160 Data Driven Decision MakingMo.docx
Module CSimulationQNT 5160 Data Driven Decision MakingMo.docx
 
M.G.Goman et al (1994) - PII package: Brief description
M.G.Goman et al (1994) - PII package: Brief descriptionM.G.Goman et al (1994) - PII package: Brief description
M.G.Goman et al (1994) - PII package: Brief description
 
Aocr Hmm Presentation
Aocr Hmm PresentationAocr Hmm Presentation
Aocr Hmm Presentation
 
Cn mx3000 p_20120808e
Cn mx3000 p_20120808eCn mx3000 p_20120808e
Cn mx3000 p_20120808e
 
The 7 basic quality tools through minitab 18
The 7 basic quality tools through minitab 18The 7 basic quality tools through minitab 18
The 7 basic quality tools through minitab 18
 
Data Loading and Visualization-3735
Data Loading and Visualization-3735Data Loading and Visualization-3735
Data Loading and Visualization-3735
 
Collect 50 or more paired quantitative data items. You may use a met.pdf
Collect 50 or more paired quantitative data items. You may use a met.pdfCollect 50 or more paired quantitative data items. You may use a met.pdf
Collect 50 or more paired quantitative data items. You may use a met.pdf
 
reliability workshop
reliability workshopreliability workshop
reliability workshop
 
Synchrotron applications
Synchrotron applicationsSynchrotron applications
Synchrotron applications
 
UV - VIS SW
UV - VIS SWUV - VIS SW
UV - VIS SW
 
Medical Image Segmentation Using Hidden Markov Random Field A Distributed Ap...
Medical Image Segmentation Using Hidden Markov Random Field  A Distributed Ap...Medical Image Segmentation Using Hidden Markov Random Field  A Distributed Ap...
Medical Image Segmentation Using Hidden Markov Random Field A Distributed Ap...
 

More from Kitware Kitware

Radial Thickness Calculation and Visualization for Volumetric Layers-8397
Radial Thickness Calculation and Visualization for Volumetric Layers-8397Radial Thickness Calculation and Visualization for Volumetric Layers-8397
Radial Thickness Calculation and Visualization for Volumetric Layers-8397Kitware Kitware
 
A Framework for Comparison and Evaluation of Nonlinear Intra-Subject Image Re...
A Framework for Comparison and Evaluation of Nonlinear Intra-Subject Image Re...A Framework for Comparison and Evaluation of Nonlinear Intra-Subject Image Re...
A Framework for Comparison and Evaluation of Nonlinear Intra-Subject Image Re...Kitware Kitware
 
Nrrd to Dicom Conversion-3769
Nrrd to Dicom Conversion-3769Nrrd to Dicom Conversion-3769
Nrrd to Dicom Conversion-3769Kitware Kitware
 
Manual Segmentation-3747
Manual Segmentation-3747Manual Segmentation-3747
Manual Segmentation-3747Kitware Kitware
 
Principles and Practices of Scientific Originology-8392
Principles and Practices of Scientific Originology-8392Principles and Practices of Scientific Originology-8392
Principles and Practices of Scientific Originology-8392Kitware Kitware
 
Principles and Practices of Scientific Originology-8391
Principles and Practices of Scientific Originology-8391Principles and Practices of Scientific Originology-8391
Principles and Practices of Scientific Originology-8391Kitware Kitware
 
ITK Tutorial Presentation Slides-953
ITK Tutorial Presentation Slides-953ITK Tutorial Presentation Slides-953
ITK Tutorial Presentation Slides-953Kitware Kitware
 
ITK Tutorial Presentation Slides-952
ITK Tutorial Presentation Slides-952ITK Tutorial Presentation Slides-952
ITK Tutorial Presentation Slides-952Kitware Kitware
 
ITK Tutorial Presentation Slides-951
ITK Tutorial Presentation Slides-951ITK Tutorial Presentation Slides-951
ITK Tutorial Presentation Slides-951Kitware Kitware
 
ITK Tutorial Presentation Slides-950
ITK Tutorial Presentation Slides-950ITK Tutorial Presentation Slides-950
ITK Tutorial Presentation Slides-950Kitware Kitware
 
ITK Tutorial Presentation Slides-949
ITK Tutorial Presentation Slides-949ITK Tutorial Presentation Slides-949
ITK Tutorial Presentation Slides-949Kitware Kitware
 
ITK Tutorial Presentation Slides-948
ITK Tutorial Presentation Slides-948ITK Tutorial Presentation Slides-948
ITK Tutorial Presentation Slides-948Kitware Kitware
 
ITK Tutorial Presentation Slides-947
ITK Tutorial Presentation Slides-947ITK Tutorial Presentation Slides-947
ITK Tutorial Presentation Slides-947Kitware Kitware
 
ITK Tutorial Presentation Slides-946
ITK Tutorial Presentation Slides-946ITK Tutorial Presentation Slides-946
ITK Tutorial Presentation Slides-946Kitware Kitware
 
ITK Tutorial Presentation Slides-945
ITK Tutorial Presentation Slides-945ITK Tutorial Presentation Slides-945
ITK Tutorial Presentation Slides-945Kitware Kitware
 
ITK Tutorial Presentation Slides-944
ITK Tutorial Presentation Slides-944ITK Tutorial Presentation Slides-944
ITK Tutorial Presentation Slides-944Kitware Kitware
 
ITK Tutorial Presentation Slides-943
ITK Tutorial Presentation Slides-943ITK Tutorial Presentation Slides-943
ITK Tutorial Presentation Slides-943Kitware Kitware
 

More from Kitware Kitware (20)

Radial Thickness Calculation and Visualization for Volumetric Layers-8397
Radial Thickness Calculation and Visualization for Volumetric Layers-8397Radial Thickness Calculation and Visualization for Volumetric Layers-8397
Radial Thickness Calculation and Visualization for Volumetric Layers-8397
 
A Framework for Comparison and Evaluation of Nonlinear Intra-Subject Image Re...
A Framework for Comparison and Evaluation of Nonlinear Intra-Subject Image Re...A Framework for Comparison and Evaluation of Nonlinear Intra-Subject Image Re...
A Framework for Comparison and Evaluation of Nonlinear Intra-Subject Image Re...
 
Registration-3771
Registration-3771Registration-3771
Registration-3771
 
Nrrd to Dicom Conversion-3769
Nrrd to Dicom Conversion-3769Nrrd to Dicom Conversion-3769
Nrrd to Dicom Conversion-3769
 
Data Saving-3767
Data Saving-3767Data Saving-3767
Data Saving-3767
 
FreeSurfer Reader-3766
FreeSurfer Reader-3766FreeSurfer Reader-3766
FreeSurfer Reader-3766
 
Manual Segmentation-3747
Manual Segmentation-3747Manual Segmentation-3747
Manual Segmentation-3747
 
Principles and Practices of Scientific Originology-8392
Principles and Practices of Scientific Originology-8392Principles and Practices of Scientific Originology-8392
Principles and Practices of Scientific Originology-8392
 
Principles and Practices of Scientific Originology-8391
Principles and Practices of Scientific Originology-8391Principles and Practices of Scientific Originology-8391
Principles and Practices of Scientific Originology-8391
 
ITK Tutorial Presentation Slides-953
ITK Tutorial Presentation Slides-953ITK Tutorial Presentation Slides-953
ITK Tutorial Presentation Slides-953
 
ITK Tutorial Presentation Slides-952
ITK Tutorial Presentation Slides-952ITK Tutorial Presentation Slides-952
ITK Tutorial Presentation Slides-952
 
ITK Tutorial Presentation Slides-951
ITK Tutorial Presentation Slides-951ITK Tutorial Presentation Slides-951
ITK Tutorial Presentation Slides-951
 
ITK Tutorial Presentation Slides-950
ITK Tutorial Presentation Slides-950ITK Tutorial Presentation Slides-950
ITK Tutorial Presentation Slides-950
 
ITK Tutorial Presentation Slides-949
ITK Tutorial Presentation Slides-949ITK Tutorial Presentation Slides-949
ITK Tutorial Presentation Slides-949
 
ITK Tutorial Presentation Slides-948
ITK Tutorial Presentation Slides-948ITK Tutorial Presentation Slides-948
ITK Tutorial Presentation Slides-948
 
ITK Tutorial Presentation Slides-947
ITK Tutorial Presentation Slides-947ITK Tutorial Presentation Slides-947
ITK Tutorial Presentation Slides-947
 
ITK Tutorial Presentation Slides-946
ITK Tutorial Presentation Slides-946ITK Tutorial Presentation Slides-946
ITK Tutorial Presentation Slides-946
 
ITK Tutorial Presentation Slides-945
ITK Tutorial Presentation Slides-945ITK Tutorial Presentation Slides-945
ITK Tutorial Presentation Slides-945
 
ITK Tutorial Presentation Slides-944
ITK Tutorial Presentation Slides-944ITK Tutorial Presentation Slides-944
ITK Tutorial Presentation Slides-944
 
ITK Tutorial Presentation Slides-943
ITK Tutorial Presentation Slides-943ITK Tutorial Presentation Slides-943
ITK Tutorial Presentation Slides-943
 

Functional Magnetic Resonance Imaging Analysis-3765

  • 1. fMRI Data Analysis Sonia Pujol, Ph.D. Wendy Plesniak, Ph.D. Randy Gollub, M.D., Ph.D.
  • 2. Acknowledgments National Alliance for Medical Image Computing NIH U54EB005149 Neuroimage Analysis Center NIH P41RR013218 FIRST Biomedical Informatics Research Network NCRR/NIH 5 MOI RR 000827 Harvard Center for Neurodegeneration and Repair Brain Imaging Laboratory, Dartmouth Medical School Surgical Planning Lab, Harvard Medical School Sandy Wells, Steve Pieper, Cindy Wible, Haiying Liu, Carsten Richter
  • 3. Disclaimer It is the responsibility of the user of 3DSlicer to comply with both the terms of the license and with the applicable laws, regulations and rules.
  • 4. Goal of the tutorial Guiding you step by step through the process of using the fMRIEngine to analyze fMRI data and visualize results within Slicer. A sensory motor paradigm was used for the tutorial dataset.
  • 5.
  • 6.
  • 7.
  • 8. Tutorial datasets The fMRI tutorial dataset is composed of Structural scans .………….(anatomical3T.img) Functional scans………….(functionalxx.img) www.na-mic.org/Wiki/index.php/Slicer:Workshops:User_Training_101
  • 9. fMRI Data pre-processing (SPM) c Realignment Motion Correction Normalization to MNI Smoothing
  • 10. Data description Structural (MPRAGE): ANALYZE format 135 slices 1.0 mm x 1.0 mm x 1.0 mm voxels Normalized to MNI Pre-processed Functional (EPI): NIfTI format 68 slices 2.0 mm x 2.0 mm x 2.0 mm voxels Repetition Time TR = 2s
  • 11.
  • 12. Paradigm design 0 TRs 10 30 20 40 50 60 70 80 90 Cycle 1 Cycle 2 Cycle 3 Three cycles rest | right hand | left hand right left rest right left rest right left rest
  • 13. fMRI Engine compatibilities SPM fMRI pre-processing FSL fMRI pre-processing 3DSlicer fMRI full analysis and visualization
  • 14. fMRI Engine compatibilities SPM fMRI full analysis FSL fMRI full analysis 3DSlicer visualization and modeling
  • 15. fMRIEngine workflow Load preprocessed functional data Describe paradigm and stimulus schedule Specify linear modeling & estimate model parameters Define contrasts and compute parametric map Statistical inference Inspect data & combine with other analyses
  • 16. Overview Part 1: Loading and Previewing Data Part 2: Describing stimulus schedule Part 3: Linear modeling & estimation Part 4: Contrasts & computing SPMs Part 5: Inference & inspection
  • 17. Loading the structural dataset Click on Add Volume in the main menu
  • 18. Loading the structural dataset Click on Browse, select the file Anatomical3T.hdr in the directory/structural. The anatomical volume in the short and long datasets are identical. Select the reader Generic Reader in the Props Panel of the module Volumes .
  • 20. fMRI Engine Select Modules in the main menu Select Application  fMRIEngine
  • 21. Load Image Sequence Pick Sequence  Load tab Click on Browse and select the file functional01.hdr from either dataset. Select Load Multiple Files Enter the sequence name testFunctional and click on Apply.
  • 22. Load Image Sequence Slicer displays the load status of the 30 (short dataset) or 90 (long dataset) functional volumes .
  • 23. Load Image Sequence Slicer loads the functional volumes in the Viewer.
  • 24. Set Image Display Click on the module Volumes , and select the panel Display Adjust Win and Lev to get best display of image data
  • 25. Set Image Display Slicer updates the Window and Level settings. Click on the V button to display the axial slice in the Viewer.
  • 26. Set Image Display Click on the letter I in the control window to display the Inferior view.
  • 27. Set Image Display Adjust the low threshold Lo to mask out background
  • 28. Set Image Display The display settings apply to currently viewed image in the sequence only
  • 29. Set Sequence Display Click on Set Window/Level/Thresholds to apply to all volumes in the sequence Visually inspect sequence using the Volume index to check for intensities aberrations Click on fMRIEngine , select the panel Sequence, and pick the tab Select
  • 30. Inspect Image Display Slicer displays the volumes of the sequence.
  • 31. Select Image Sequence Specify the number of runs = 1 , select the sequence testFunctional Click on Add to assign the sequence to run 1
  • 32. Select Image Sequence Slicer assigns the sequence to run 1
  • 33. Overview Part 1: Loading and Previewing Data Part 2: Describing stimulus schedule Part 3: Linear modeling & estimation Part 4: Contrasts & computing SPMs Part 5: Inference & inspection
  • 34. Stimulus schedule Pick Set Up Tab in the fMRIEngine and choose the Linear Modeling detector
  • 35. Linear Modeling The General Linear Modeling is a class of statistical tests assuming that the experimental data are composed of the linear combination of different model factors, along with uncorrelated noise Y = BX + e B = set of experimental parameters Y = Observed data X = Design Matrix e = noise
  • 36. Stimulus schedule Select the design type Blocked
  • 37.
  • 38. Stimulus schedule Enter the characteristics of the run TR = 2 and Start Volume = 0 (ordinal number)
  • 39. Stimulus schedule Enter the schedule for the first condition Short dataset: Name = right Onset = 10 Durations = 10 Long dataset: Name = right Onset = 10 40 70 Durations = 10 10 10 Click on OK to add this condition to the list of defined conditions
  • 40. Stimulus schedule Enter the schedule for the second condition Short dataset: Name = left Onset = 20 Durations = 10 Long dataset: Name = left Onset = 20 50 80 Durations = 10 10 10 Click on OK to add this condition to the list of defined conditions
  • 41. Stimulus schedule Scroll down in the Set-up panel to see the list of defined conditions
  • 42. Editing the Stimulus schedule The list of specified conditions appears in the left panel
  • 43. Overview Part 1: Loading and Previewing Data Part 2: Describing stimulus schedule Part 3: Linear modeling & estimation Part 4: Contrasts & computing SPMs Part 5: Inference & inspection
  • 44. Model a Condition Select Specify Modeling Click on Model all conditions identically
  • 45. Model a Condition Select Condition: all Waveform: BoxCar Click on the question mark next to Waveform for detailed description of the modeling option.
  • 46. Model a Condition Slicer displays a detailed description of the Stimulus function.
  • 47. Model a Condition Select - Convolution: HRF (Hemodynamic Response Function) - Derivatives: none
  • 48. Nuisance Signal Modeling On the subpanel Nuisance signal modeling , select Trend model: Discrete Cosine Cutoff period: default Click on use default cutoff
  • 49. Nuisance Signal Modeling Scroll down in the Set Up panel and click on add to model
  • 50. Nuisance Signal Modeling The list of explanatory variables (EV) appears in the left panel, including the baseline that is automatically added. The string are Slicer specific representation of the modeling.
  • 51. View Design Matrix Click View Design to display the design matrix
  • 52. View Design Matrix Short dataset Long dataset A window displaying the model design appears.
  • 53. Design Matrix v1 = left modeled condition v2 = right modeled condition v3 = baseline v4,v5,v6 = low frequency noise Move the mouse from left to right over the columns of the matrix to display the characteristics of the modeled conditions.
  • 54. Design Matrix White  positive signal intensity 1 Mid-Grey  null intensity 0 Black  negative intensity - 1 Observe the different values of the signal intensity in the matrix.
  • 55. Design Matrix Modeled Signal Y(tp) = b1 v1(tp) + b2 v2(tp) +b3 v3 (tp) + b4 v4(tp) + b5 v5(tp) + b6 v6(tp) Y(t) t Each column represents the contribution from each condition we might see in a voxel time course. tp t
  • 56. Design Matrix Move the mouse up and down to browse the different volumes associated with the time points. Y(t) tp t
  • 57. Estimation Select Specify Estimation to estimate B and e at every voxel: Y = BX + e
  • 58. Estimating model parameters Select run1 and click on Fit Model The Estimation panel appears
  • 59. Estimating model parameters Slicer shows the progress of model estimation
  • 60. Overview Part 1: Loading and Previewing Data Part 2: Describing stimulus schedule Part 3: Linear modeling & estimation Part 4: Contrasts & computing SPMs Part 5: Inference & inspection
  • 61. Specify Contrasts In the SetUp panel, select Specify  Contrasts
  • 62. Specify Contrasts The Panel for the contrasts appears
  • 63. Specify Contrasts Choose the contrast type t-test Enter the contrast name myContrast, and the Volume Name R-L_activation
  • 64.
  • 65. Specify Contrasts Specify the contrast vector 1 –1 0 0 (enter a space between the values) Click OK to add this contrast to a list of defined contrasts Select the statistical test t-test
  • 66. Specify Contrasts The resulting contrast named myContrast-R-L_activation appears in the list of specified contrasts.
  • 67. Check contrasts & model Click on View Design to display the Design matrix
  • 68. Design Matrix Short dataset Long dataset Check that the contrast and model are correct. A window displaying the design matrix and contrast vector appears.
  • 69. Perform activation detection Click on the tab Detect and select the contrast myContrast-R-L_activation Click on Compute to compute the statistical map of activation (t-test)
  • 70. Overview Part 1: Loading and Previewing Data Part 2: Describing stimulus schedule Part 3: Linear modeling & estimation Part 4: Contrasts & computing SPMs Part 5: Inference & inspection
  • 71. Select the activation volume Select the resulting activation volume (t-map) myContrast-R-L_activation Click on Select Click on the View Tab Select the subpanel Choose
  • 72. Threshold Click on the Thrshold Tab
  • 73. Threshold Slicer indicates the degree of freedom (DoF): Nvol-1 Short dataset DoF=29 Long dataset DoF=89 Specify the p-Value threshold 0.001 and hit Enter
  • 74.
  • 75. Threshold Slicer calculates the corresponding threshold t Stat Short dataset t Stat = 3.7 Long dataset t Stat = 3.4
  • 76. Activation map Slicer displays the activation map overlaid on the fMRI images Short dataset Long dataset
  • 77. fMRI color palette Select the panel Display and set the Active Volume to be the activation volume myContrast-R-L_activationMap Click on the module Volumes
  • 78. fMRI color palette Adjust the Window and Level of the color palette for the volume myContrast-R-L_activationMap Short dataset Long dataset
  • 79. fMRI color palette -MAX +MAX No statistical significance Positive activation Negative activation -MAX +MAX No statistical significance Positive activation Negative activation Short dataset Long dataset
  • 80. Activation map Slicer displays the activation map overlaid on the fMRI images Short dataset Long dataset
  • 81. Visualize Left click on Bg in the 2D anatomical viewers to display the volume anatomical 3T in background Short dataset Long dataset
  • 82. Visualize Short dataset Long dataset Slicer displays the activation map superimposed on the anatomical images.
  • 83. Inspect Pick the tab Plot and select the condition = right Select Timecourse plot option
  • 84. Inspect Mouse over labelled area in Slice Window and left click on the pixel R = -40 A = 0 S = 20, which is highly significant in the activation map. The left-hemisphere of the subject is shown on the right side of the image, in radiological convention. Short dataset Long dataset
  • 85. Voxel Timecourse Slicer displays the voxel’s actual timecourse (response) plotted with the modeled condition (right hand ) for the selected voxel. Short dataset Long dataset The graphs show a good correlation between the observed BOLD signal Y(t) and the model.
  • 86. Inspect Mouse over labelled area in Slice Window and left click on the pixel R = 40 A = 0 S = 20, which is highly significant in the opposite direction. Short dataset Long dataset
  • 87. Voxel Timecourse Slicer displays the voxel’s timecourse plotted with the modeled condition for the selected voxel Short dataset Long dataset If we were plotting the left hand condition, what correlation would be observed?
  • 88. Contralateral side vs Ipsilateral side (short dataset) During the right hand condition , the observed signal decreases in the ipsilateral side and increases on the contralateral side.
  • 89. Contralateral side vs Ipsilateral side (long dataset) During the right hand condition , the observed signal decreases in the ipsilateral side and increases on the contralateral side.
  • 90. Inspect Select Peristimulus plot option and click on the voxel (-40,0,20) in the positive activation region
  • 91.
  • 92. Inspect Select Peristimulus histogram option and click on the voxel in the negative activation region (40,0,20)
  • 93.
  • 94. Activation-based region of interest Select the ROI panel and RegionMap tab Choose New Activation from Label map
  • 95. Activation-based region of interest Click Create label map from activation, and wait while activation “blobs” are labelled
  • 96. Activation-based region of interest The label map is shown in Foreground, and the activation map is shown in Background. Short dataset Long dataset
  • 97. Region Statistics Select the subtab Stats Select one or multiple regions in the left hemisphere to include in analysis by clicking in Slice Window. Select the condition right.
  • 98. Region Statistics Short dataset Long dataset The selected regions appear in green.
  • 99. Region Statistics Click Show stats to display the statistics for the selected regions
  • 100. Region Statistics Slicer displays the statistics for the selected region(s) Short dataset Long dataset
  • 101. Region Timecourse Select Timecourse plot option and click on Plot time series for this region.
  • 102. Region Timecourse Slicer displays the region timecourse plot Short dataset Long dataset
  • 103. Region Peristimulus Plot Select Peristimulus plot and click Plot time series for this region.
  • 104. Region Peristimulus Plot Slicer displays the Region Peristimulus Plot Short dataset Long dataset
  • 105. 3D Visualization Click on Clear selections and display the structural volume anatomical3T in the background ( Bg ) and the activation map myContrast-R-L_activation in the foreground ( Fg ). Display three anatomical slices in the 3D Viewer.
  • 106. 3D Visualization Short dataset Long dataset
  • 107. 3D Visualization Fade in the activation volume for a good view of combined data
  • 108. 3D Visualization Short dataset Long dataset
  • 109.