JAI NAYAIN VYAS UNIVRSITY JODHPUR
ELECTRODYNAMICS AND PLASMA
PHYSICS
SEMINAR: 2022-23
SUBMITTED TO : - BHARAT PATEL
REPRESENT BY : - NARESH KUMAR
MAXWELL EQUATION IN
INTEGRAL FORM
MAXWELL EQUATION : -
a. ∇.D = ρ
b. ∇ .B = 0
c. ∇ X E = - მB/მt
d. ∇ X H = მD/მt + J
MAXWELL EQUATION IN
INTEGRAL FORM : -
a. ʃs D.ds = ʃv ρ dv
b. ʃs B.ds = 0
c. ʃ E.dl = - მ/ მt ʃs B.ds
d. ʃ H.dl = ʃs (J + მD/მt).ds
1. ʃs D.ds = ʃv ρ dv
• We know that
∇.D = ρ (1)
• Apply volume integral both side
ʃv (∇.D)dv = ʃv ρ dv (2)
• Apply gauss divergence theorem
ʃv (∇.D)dv = ʃs D.ds { S.I. = V.I.} (3)
eqn (2) and (3)
ʃs D.ds = ʃv ρ dv H.P.
• We know that
∇ .B = 0 (1)
• Apply volume integral both side
ʃv (∇.B)dv = 0 (2)
• Apply gauss divergence theorem
ʃv (∇.B)dv = ʃs B.ds { S.I. = V.I.} (3)
eqn (2) and (3)
ʃs B.ds = 0 H.P.
2. ʃs B.ds = 0
• We know that
∇ X E = - მB/მt (1)
• Taking surface integral both side
ʃs (∇ X E ).ds = - მ/მt ʃs B.ds (2)
• Apply stokes theorem
ʃs (∇ X E ).ds = ʃl E.dl { L.I. = S.I. } (3)
eqn (2) and (3)
ʃ E.dl = - მ/ მt ʃs B.ds H.P.
3. ʃ E.dl = - მ/ მt ʃs B.ds
• We know that
∇ X H = მD/მt + J (1)
• Taking surface integral both side
ʃs(∇ X H ).ds = ʃs ( მD/მt + J).ds (2)
• Apply stokes theorem
ʃs(∇ X H ).ds = ʃl H.dl { L.I. = S.I. } (3)
eqn (2) and (3)
ʃ H.dl = ʃs (J + მD/მt).ds H.P.
4. ʃ H.dl = ʃs (J + მD/მt).ds
THANKYOU

ED PPTX 1.pptx

  • 1.
    JAI NAYAIN VYASUNIVRSITY JODHPUR ELECTRODYNAMICS AND PLASMA PHYSICS SEMINAR: 2022-23 SUBMITTED TO : - BHARAT PATEL REPRESENT BY : - NARESH KUMAR
  • 2.
  • 3.
    MAXWELL EQUATION :- a. ∇.D = ρ b. ∇ .B = 0 c. ∇ X E = - მB/მt d. ∇ X H = მD/მt + J
  • 4.
    MAXWELL EQUATION IN INTEGRALFORM : - a. ʃs D.ds = ʃv ρ dv b. ʃs B.ds = 0 c. ʃ E.dl = - მ/ მt ʃs B.ds d. ʃ H.dl = ʃs (J + მD/მt).ds
  • 5.
    1. ʃs D.ds= ʃv ρ dv • We know that ∇.D = ρ (1) • Apply volume integral both side ʃv (∇.D)dv = ʃv ρ dv (2) • Apply gauss divergence theorem ʃv (∇.D)dv = ʃs D.ds { S.I. = V.I.} (3) eqn (2) and (3) ʃs D.ds = ʃv ρ dv H.P.
  • 6.
    • We knowthat ∇ .B = 0 (1) • Apply volume integral both side ʃv (∇.B)dv = 0 (2) • Apply gauss divergence theorem ʃv (∇.B)dv = ʃs B.ds { S.I. = V.I.} (3) eqn (2) and (3) ʃs B.ds = 0 H.P. 2. ʃs B.ds = 0
  • 7.
    • We knowthat ∇ X E = - მB/მt (1) • Taking surface integral both side ʃs (∇ X E ).ds = - მ/მt ʃs B.ds (2) • Apply stokes theorem ʃs (∇ X E ).ds = ʃl E.dl { L.I. = S.I. } (3) eqn (2) and (3) ʃ E.dl = - მ/ მt ʃs B.ds H.P. 3. ʃ E.dl = - მ/ მt ʃs B.ds
  • 8.
    • We knowthat ∇ X H = მD/მt + J (1) • Taking surface integral both side ʃs(∇ X H ).ds = ʃs ( მD/მt + J).ds (2) • Apply stokes theorem ʃs(∇ X H ).ds = ʃl H.dl { L.I. = S.I. } (3) eqn (2) and (3) ʃ H.dl = ʃs (J + მD/მt).ds H.P. 4. ʃ H.dl = ʃs (J + მD/მt).ds
  • 9.