SlideShare a Scribd company logo
T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ
ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
2013
ELEKTRİK-ELEKTRONİK
MÜHENDİSLİĞİ BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
İÇİNDEKİLER
İÇİNDEKİLER
DENEY-1 ............................................................................................ 1
DENEY-1.1: PNPN DİYOT.............................................................. 1
DENEY-1.2: DİYAK......................................................................... 5
DENEY-2 .......................................................................................... 11
DENEY-2.1: SCR .......................................................................... 11
DENEY-2.2: TRİYAK..................................................................... 19
DENEY-3 SCR’Lİ KONTROL DENEYİ ............................................ 25
DENEY-4 .......................................................................................... 30
DENEY-4.1: OTOMATİK KONTROLLÜ LAMBA DENEYİ-1 ......... 30
DENEY-4.2: OTOMATİK KONTROLLÜ LAMBA DENEYİ-2 ......... 34
DENEY-5 .......................................................................................... 38
DENEY-5.1: TURN ON ZAMANLAYICI DENEYİ.......................... 38
DENEY-5.2: TURN OFF ZAMANLAYICI DENEYİ ........................ 42
DENEY-6...........................................................................................46
DENEY-6.1: PWM DENEYİ-1........................................................46
DENEY-6.2: PWM DENEYİ-2........................................................54
DENEY-7...........................................................................................61
DENEY-7.1: DC GÜÇ KONTROL DENEYİ ...................................61
DENEY-7.2: MOTOR HIZ KONTROL DENEYİ .............................65
DENEY-8 AC GÜÇ KONTROL DENEYİ ..........................................68
DENEY-9 DOĞRULTUCULAR.........................................................73
DENEY-10 AC/DC KONVERTÖR DENEYİ......................................81
DENEY-11 DC/AC İNVERTÖR DENEYİ ..........................................84
DENEY-12.........................................................................................87
DENEY-12.1: SABİT ÇIKIŞLI DC/DC KONVERTÖR DENEYİ......87
DENEY-12.2: AYARLI ÇIKIŞLI DC/DC KONVERTÖR DENEYİ ...90
DENEY-13 SMPS (ANAHTARLAMALI GÜÇ KAYNAĞI) DENEYİ..93
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-1.1: PNPN DİYOT
11
Giriş:
Shockley diyot yada 4 tabaka diyot olarak da bilinen PNPN DİYOT, tek yönlü çalışan
yarıiletken anahtar elemanıdır. Sembolü ve görünüşü şekil 1.1’ de ve karakteristik eğrisi şekil 1.2’
de görülmektedir.
Şekil 1.1: PNPN DİYOT’ un sembolü ve görünüşü
Şekil 1.2: PNPN DİYOT’ un karakteristik eğrisi
PNPN DİYOT’ un iletken olabilmesi için anot-katot uçları doğru polarmalandırılmalıdır.
Doğru polarma gerilimi elemanı iletken yapan anahtarlama gerilimi (Switching voltage, VS)
seviyesini aştığında eleman iletime geçerek akım geçirmeye başlar. İletime geçen PNPN diyot
uçlarındaki gerilim birkaç volt seviyesine düşer. İletime geçen PNPN DİYOT’ un tekrar yalıtkan
olabilmesi için, içinden geçen akımın tutma akımı (Holding current, IH) seviyesinin altına düşmesi
gerekir.
Anot Katot
IF
VF
VR
IR
VS
VR
IS
IH
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-1.1: PNPN DİYOT
22
ELEKTRİKSEL KARAKTERİSTİKLER ( T A = 2 5°
C)
Karakteristik Sembo l Min Typ Max Birim
Forward Switching Voltage 1N5158, 1N5782, 1N5788
1N5159, 1N5783,
1N5789 1N5160,
1N5784, 1N5790
1N5779, 1N5785,
1N5791 1N5780,
VS
8.0
9.0
10
11
12
13
—
10
11
12
13
14
15
Volts
Forward Switching Current 1N5158 thru 1N 5160, 1N5779
thru 1N5781
1N 5782 thru 1N5793
Is
—
5.0
10
50
100
µA
Forward Off-State Current IFM
(VF = 0.75 x Vs)
1.0 5.0 µA
Reverse Current IRM
(VR = VRm)
2.0 10 µA
Holding Current 1N5158 thru 1N 5160, 1N5779 IH
thru 1N5781
1N5782 thru 1N5787
1N5788 thru 1N5793
1.0
10
0.1
4.0
20
50
2.0
mA
Forward On Voltage VF
(IF = 150 mAdc)
1.0 1.5 Volts
Şekil 1.3: 1N5158’ e ait karakteristik değerler
Deney şeması:
R2
100
R1
470
PNPN
1N5158
+12V
P1
47k
+88.8
Volts
+88.8
mA
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-1.1: PNPN DİYOT
33
DENEY MODÜLÜ
DENEY BAĞLANTI PLANI
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-1.1: PNPN DİYOT
44
İŞLEM BASAMAKLARI
1) ES05-09-03 modülünü ana üniteye bağlayın.
2) Deney bağlantı planını ES05-09-03 modülü üzerinde gerçekleştirin.
3) 5.2-5.3 pinlerini kısa devre edin.
4) mA sembolü görülen pinler arasına dc ampermetre ve V sembolü görülen pinler arasına dc
voltmetre bağlayın.
5) Devrenin +12V pinini modül üzerindeki +12V pinine bağlayın. GND devreye doğrudan geldiği
için herhangi bir bağlantıya gerek yoktur.
6) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını ON
konumuna alın.
7) P1 trimpotu yardımıyla PNPN diyot anot gerilimini (VA) birer volt aralıklarla artırıp, bu
gerilimlere karşılık gelen anot akımını (IA) ölçün. Ölçüm sonuçlarını kaydedin.
8) Anot gerilimi, PNPN diyotun tetikleme seviyesine ulaştığında hızla düşecektir. Bu andan
sonra da P1 trimpotu yardımıyla SUS’ un anot gerilimini artırmaya ve ölçümlerinize devam
edin.
9) Ölçüm sonuçlarını kullanarak SUS’ un karakteristik eğrisini çizin.
10) Devrenin enerjisini kesin.
ÖLÇÜM SONUÇLARI
VA (Volt) 0 1 2 ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. …..
IA (mA)
IA
VA
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-1.2: DİYAK
5
Karakteristik Sembol Koşullar Değer Birim
Breakover voltage* VBO C=22nF** MIN. 28 V
TYP. 32
MAX. 36
Breakover voltage symmetry |VBO1-VBO2| C=22nF** MAX. ± 3 V
Dynamic breakover voltage* ∆V VBO and VF at 10mA MIN. 5 V
Output voltage* VO see diagram 2(R=20O ) MIN. 5 V
Breakover current* IBO C=22nF** MAX. 50 µ A
Rise time* tr see diagram 3 MAX. 2 µ s
Leakage current* IR VR=0.5VBO max MAX. 10 µ A
Giriş:
DİYAK, iki yönlü çalışabilen yarıiletken tetikleme elemanıdır. Sembolü ve görünüşü şekil 1.4’
de ve karakteristik eğrisi şekil 1.5’ de görülmektedir.
Şekil 1.4: Diyak’ ın sembolü ve görünüşü
Şekil 1.5: Diyak’ ın karakteristik eğrisi
DİYAK’ iki yönlü çalışabilme özelliği nedeniyle uçlarına isim verilmemiştir. DİYAK uçlarına
uygulanan gerilim kırılma gerilimi (Breakover voltage, V(BO)) seviyesini aştığında eleman iletime
geçerek akım geçirmeye başlar. İletime geçen DİYAK çıkışında yaklaşık 5 volt değerinde bir
gerilim oluşur. İletime geçen DİYAK’ ın tekrar yalıtkan olabilmesi için, elemanın uçlarındaki
gerilimin kırılma geriliminin %75-%80 seviyesinin altına düşmesi gerekir.
Şekil 1.6: DB3’ e ait karakteristik değerler
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-1.2: DİYAK
6
Diyaklı osilatör devresi şekil 1.7’ de görülmektedir.
Şekil 1.7: Diyaklı osilatör
Devreye besleme gerilimi uygulandığında diyak yalıtkandır. C1 kondansatörü, R1 direnci ve
P1 trimpotu üzerinden kaynak gerilimine (VCC) şarj olmaya başlar. C1 kondansatörü üzerindeki şarj
gerilimi diyak’ ın kırılma gerilimi seviyesine (VBO) ulaşana dek bu durum devam eder (şekil 1.8).
Şekil 1.8: C1 kondansatörünün şarjı
C1 kondansatörü üzerindeki şarj gerilimi diyak’ ın kırılma gerilimi seviyesine ulaştığında,
diyak iletime geçer. C1 kondanstörü, diyak ve R2 direnci üzerinden deşarj olmaya başlar. C1
kondansatörü üzerindeki gerilim azalmaya başlar ve bir süre sonra diyak yalıtkan olur (şekil 1.9).
R2
R1
C1
+Vcc
P1
V2V1
DİYAK
C1 kondansatörü üzerindeki gerilim
 VC1 
Kaynak gerilimi
VCC
Diyak kırılma gerilimi
VBO
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-1.2: DİYAK
7
Şekil 1.9: C1 kondansatörünün deşarjı
Diyak’ ın yalıtkan olmasıyla deşarj yolu kapanan C1 kondansatörü başlangıçta olduğu gibi
yeniden şarj olmaya başlar ve aynı olaylar tekrarlanarak devam eder (şekil 1.9).
Şekil 1.10: C1 kondansatörü uçlarındaki sinyal
C1 kondansatörü uçlarında testere dişi bir sinyal meydana gelmektedir (şekil 1.10). Bu
testere dişi dalganın yükselen bölümlerinde diyak kesimdedir. İçinden akım geçmeyen R2
direncinde gerilim düşümü olmaz. Testere dişi dalganın düşen bölümlerinde ise diyak iletimdedir.
R2 direnci üzerinden deşarj olan C1 kondansatörü, bu direnç uçlarında pozitif pals oluşmasına
neden olur (şekil 1.11).
C1 kondansatörü üzerindeki gerilim 
 VC1 
Kaynak gerilimi
VCC
Diyak kırılma gerilimi
VBO
Kaynak gerilimi
VCC
Diyak kırılma gerilimi
VBO
C1 kondansatörü üzerindeki gerilim 
 VC1 
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-1.2: DİYAK
8
Şekil 1.11: Diyak uçlarındaki dalga şekilleri
Diyak’ lı osilatör devresi triyağın tetiklenmesi amacıyla kullanılmaktadır. P1 trimpotu, osilatör
frekansını kontrol etmektedir.
Deney şeması:
Şekil 1.12: Diyak Deneyi Devre Şeması
V1 
V2 
R2
390
R1
4.7k
C1
100nF
P1
100k
V2V1
DIYAK
DB3
24V AC
50Hz
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-1.2: DİYAK
9
DENEY MODÜLÜ
DENEY BAĞLANTI PLANI
V1
V2
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-1.2: DİYAK
10
İŞLEM BASAMAKLARI
11) ES05-09 modülünü ana üniteye bağlayın.
12) Deney bağlantı planını ES05-09 modülü üzerinde gerçekleştirin.
13) Devreler üzerindeki 11.4-12.1, 11.6-12.4, 12.5-13.1 ve12.6-13.2 pinlerini kısa devre yapın.
14) Devrenin besleme gerilimi ana ünite üzerinden doğrudan gelmektedir.
15) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını ON
konumuna alın.
16) Osilaskop probunu 12.3-12.4 veya 12.5-12.6 pinlerine bağlayın. PT12 trimpotunu osilaskop
ekranında düzgün bir sinyal görene dek çevirin.
17) Osilaskopla 12.3-12.4 ve 12.5-12.6 pinlerinden osilatörün çıkış sinyallerini ölçüp kaydedin.
18) Devrenin enerjisini kesin.
ÖLÇÜM SONUÇLARI
V1
V2
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-2.1: SCR
11
Anot
Katot
Geyt
SEMBOL PARAMETRE
VDRM Peak Repetitive Off Stat Forward Voltage
IDRM Peak Forward Blocking Current
VRRM Peak Repetitive Off State Reverse Voltage
IRRM Peak Reverse Blocking Current
VTM Peak On State Voltage
IH Holding Current
VTM
IH
+ I
Anot +
I
+ V
Anot -
on state
RRM at VRRM
Reverse Blocking Region
(off state)
Reverse Avalanche Region
IDRM at VDRM
Forward Blocking Region
(off state)
Giriş:
SCR ya da diğer adıyla tristör, tek yönlü çalışabilen yarıiletken anahtarlama elemanıdır.
Sembolü ve görünüşü şekil 2.1’ de ve karakteristik eğrisi şekil 2.2’ de görülmektedir.
Şekil 2.1: SCR’ nin sembolü ve görünüşü
Şekil 2.2: SCR’ nin karakteristik eğrisi
SCR anot, katot ve geyt olmak üzere üç terminale sahiptir. Anot ve katot yük akımının
geçtiği main terminaller, geyt ise elemanın tetiklendiği kontrol ucudur. SCR’ nin iletken olabilmesi
için, öncelikle main terminaller yani anot-katot doğru polarma edilmelidir. Bunun ardından geyt
ucuna katottan daha pozitif bir gerilim uygulanmalıdır. Bu iki şart sağlandığında, SCR hızla iletken
olur ve akım geçirmeye başlar. Bu andan itibaren anot-katot gerilimi değişmediği sürece geyt
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-2.1: SCR
12
dv/dt
V = 6 V RGK = 1 k
Initiating IT = 10 mA
VAA = 6 V RL = 100
tp(g) ≥ 20 µs R = 1 k
AA
Critical rate of rise of
off-state voltage
PARAMETRE KOŞULLAR MIN TYP MAX BİRİM
Repetitive peak
IDRM
off-state current
VD = rated VDRM RGK = 1 k TC = 110°C 400 µA
Repetitive peak
IRRM
reverse current
VR = rated VRRM IG = 0 TC = 110°C 1 mA
IGT Gate trigger current VAA = 6 V RL = 100 tp(g) ≥ 20 µs 60 200 µA
VGT Gate trigger voltage
VAA = 6 V RL = 100 TC = - 40°C
tp(g) ≥ 20 µs RGK = 1 k
1.2
V0.4 0.6 1
VAA = 6 V RL = 100 TC = 110°C
tp(g) ≥ 20 µs RGK = 1 k
0.2
IH Holding current
VAA = 6 V RGK = 1 k TC = - 40°C
Initiating IT = 10 mA
8
mA
5
Peak on-state
VTM
voltage
ITM = 5 A 1.7 V
VD = rated VD RGK = 1 k TC = 110°C 10 V/µs
R1
R2
+Vcc
B1
SCR
LAMBA
S1
gerilimi kesilse dahi SCR iletimde kalmaya devam eder. Bunun sebebi, SCR içinden geçen tutma
akımıdır. SCR akımı tutma akımı (Holding current, IH) altına düşmediği sürece eleman mühürlü
olarak çalışmaya devam edecektir.
Şekil 2.3: TIC106’ ya ait karakteristik değerler
SCR her zaman bir yük ile birlikte kullanılmalıdır. Aksi durumda anot-katot arasından geçen
akım sınırlanmadığı için eleman bozulacaktır. Diğer taraftan SCR hem dc hem de ac gerilim
altında çalışabilmektedir. Ancak bu iki çalışma şekli arasında belirgin farklılıklar vardır.
Şekil 2.4:SCR’ nin dc gerilimde çalışması
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-2.1: SCR
13
Şekil 2.4’ deki devre SCR’ nin dc gerilimde çalışmasına örnek olarak verilmiştir. Devrede
SCR’ nin yükü olarak lamba kullanılmıştır. S1 anahtarı kapatılarak devreye enerji verilir. Bu
durumda SCR’ nin main terminalleri doğru polarma olmasına rağmen geyt tetiklemesi
almadığından henüz yalıtkandır. SCR yalıtkan olduğu için lamba da sönüktür. B1butonu SCR’ ye
geyt tetikleme gerilimi uygulamak için kullanılmıştır. B1 butonuna kısa süreli basıldığında, gerilim
bölücü R1 ve R2 dirençleri üzerinden SCR’ nin geyt ucu katota göre daha pozitif bir gerilim alır.
Böylece SCR iletime geçerek lambanın yanmasını sağlar. B1 butonu bırakılsa dahi SCR iletimde
kalmaya ve lamba yanmaya devam eder. Ancak burada dikkat edilmesi gereken iki nokta vardır.
Birincisi, R1 ve R2 dirençlerinin SCR’ yi tetikleyecek geyt gerilimi ve akımını sağlayacak değerde
seçilmiş olmasıdır. İkinci önemli nokta ise, yük akımı yani lambadan geçen akımın SCR tutma
akımı seviyesinin üzerinde bir değere sahip olmasıdır.
SCR ac gerilim altında çalışırken sadece pozitif alternanslarda iletken olabilir. Yani anot ucu
katottan daha pozitif gerilim aldığında ve uygun geyt tetiklemesi yapıldığında iletime geçer.
Negatif alternanslarda ise yalıtkan durumdadır ve akım geçirmez. Şekil 2.5’ de SCR’ nin ac
gerilimde çalışmasına örnek bir devre görülmektedir.
Şekil 2.5:SCR’ nin ac gerilimde çalışması
Devreye ac gerilim uygulandığında SCR kesimde ve lamba sönüktür. S1 anahtarı SCR’ nin
geyt tetiklemesini kontrol etmektedir. S1 anahtarı kapatıldığında ac giriş geriliminin pozitif
alternansında, hem SCR’ nin anot-katot uçları doğru polarma alacak hem de geyt ucuna katottan
daha pozitif bir gerilim gelecektir. Pozitif alternans gerilimi SCR’ yi iletime götürecek kadar
yükseldiğinde, SCR iletime geçerek lambanın yanmasını sağlar. SCR’ nin iletkenliği bu pozitif
alternansın sonuna kadar devam eder. Çünkü takip eden negatif alternansta hem SCR’ nin main
terminalleri ters polarma olur hem de pozitif geyt tetiklemesi oluşmaz. Sonuç olarak SCR ac
besleme geriliminin pozitif alternanslarında iletken ve negatif alternanslarında yalıtkan olur. S1
anahtarı açıldığında ise geyt tetiklemesi kesilen SCR sürekli yalıtkandır. Pozitif alternanslarda
R1
SCR
LAMBA
AC
R2
S1
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-2.1: SCR
14
SCR’ nin giriş geriliminin hangi değerinde iletime geçeceğinin R1 ve R2 gerilim bölücü dirençlerinin
değerleri belirleyecektir. Görüldüğü gibi SCR ac gerilim altında geyt ucundan kontrol edilen bir
doğrultucu gibi çalışmaktadır.
Deney şeması:
SCR’ nin dc gerilimde çalışması
SCR’ nin ac gerilimde çalışması
R1
1k
SCR
TIC106
AC 12V
P1
4.7k
SCOP
R1
1k
+88.8
mA
+88.8
mA
+88.8
Volts
+88.8
Volts
P1
4.7k
+12V
SCR
TIC106
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-2.1: SCR
15
DENEY MODÜLÜ
DENEY BAĞLANTI PLANLARI
SCR’ nin dc gerilimde çalışması
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-2.1: SCR
16
SCR’ nin ac gerilimde çalışması
İŞLEM BASAMAKLARI
19) ES05-09-03 modülünü ana üniteye bağlayın.
SCR’ nin dc gerilimde çalışması
20) Deney bağlantı planını ES05-09-03 modülü üzerinde gerçekleştirin.
21) Deney bağlantı planında görülen pinleri kısa devre edin.
22) mA sembolü görülen pinler arasına dc ampermetre ve V sembolü görülen pinler arasına dc
voltmetre bağlayın.
23) Devrenin +12V pinini modül üzerindeki +12V pinine bağlayın. GND devreye doğrudan geldiği
için herhangi bir bağlantıya gerek yoktur.
24) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını ON
konumuna alın.
25) Lamba sönük durumda iken SCR kesimdedir. Kesim durumundaki SCR’ nin geyt gerilimini
(VG), geyt akımını (IG), anot-katot gerilimini (VA-K) ve anot akımını (IA) ölçün. Ölçüm
sonuçlarını kaydedin.
26) P1 trimpotu yardımıyla SCR geyt gerilimini lamba yanıncaya dek artırın. Lamba yandığı anda
P1 trimpotunu çevirme işlemini bırakın. Bu durumda SCR iletimdedir.
27) SCR’ yi iletime götüren geyt gerilimini (VG), geyt akımını (IG), anot-katot gerilimini (VA-K) ve
anot akımını (IA) ölçün. Ölçüm sonuçlarını kaydedin.
28) P1 trimpotunu ters yönde çevirerek lambanın durumunu ve SCR’ nin iletkenliğini gözlemleyin.
29) Devrenin enerjisini kesin.
SCR’ nin ac gerilimde çalışması
30) Deney bağlantı planını ES05-09-03 modülü üzerinde gerçekleştirin.
31) Eğe varsa, devrenin +12V pinini modül üzerindeki +12V pini arasındaki bağlantıyı kesin.
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-2.1: SCR
17
32) Deney bağlantı planında görülen pinleri kısa devre edin.
33) Devre üzerinde bulunan A1 ve A2 pinlerini modül üzerindeki A1 ve A2 pinlerine bağlayın.
34) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını ON
konumuna alın.
35) P1 trimpotunu lamba yanıncaya dek çevirin. Lamba yandığı anda P1 trimpotunu çevirme
işlemini bırakın. Bu durumda SCR iletimdedir. Osilaskopla lamba uçlarındaki sinyali ölçüp
kaydedin.
36) P1 trimpotunu ters yönde çevirerek SCR’ nin kesime giderek lambanın sönmesini sağlayın.
Osilaskopla lamba uçlarındaki sinyali ölçüp kaydedin.
37) Devrenin enerjisini kesin.
ÖLÇÜM SONUÇLARI
SCR’ nin dc gerilimde çalışması ölçümleri
SCR kesimde SCR iletimde
VG (Volt)
IG (mA)
VA-K (Volt)
IA (mA)
SCR’ nin ac gerilimde çalışması ölçümleri
SCR iletimde iken lamba uçlarındaki sinyal
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-2.1: SCR
18
SCR kesimde iken lamba uçlarındaki sinyal
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-2.2: TRİYAK
19
Sembol Parametre
VDRM Peak Repetitive Forward Off−State Voltage
IDRM Peak Forward Blocking Current
VRRM Peak Repetitive Reverse Off−State Voltage
IRRM Peak Reverse Blocking Current
VTM Maximum On−State Voltage
IH Holding Current
IH
VTM
A2 (-)
off state
IDRM at VDRM
A2 (+)
VTM
IH
+ I
+V
on state
IRRM at VRRM
Giriş:
Triyak, iki yönlü çalışabilen yarıiletken anahtarlama elemanıdır. Sembolü ve görünüşü Şekil
2.6’ de ve karakteristik eğrisi Şekil 2.7’ de görülmektedir.
Şekil 2.6: Triyak’ ın sembolü ve görünüşü
Şekil 2.7: Triyak’ ın karakteristik eğrisi
TRİYAK Anot1 (A1), Anot2 (A2) ve geyt olmak üzere üç terminale sahiptir. A1ve A2 yük
akımının geçtiği main terminaller, geyt ise elemanın tetiklendiği kontrol ucudur. Triyak’ ın çalışma
şekli SCR ile kıyaslandığında bazı farklılıklar göstermektedir. İlk olarak main terminaller ve geyt
ucuna uygulanan gerilimlerin polaritesi önemli değildir. Yani uçlarına uygulanan her gerilim altında
iletken olabilir. İkinci olarak da ac gerilim altında hem pozitif hem de negatif alternenslarda
A2
A1
Geyt
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-2.2: TRİYAK
20
ELEKTRİKSEL KARAKTERİSTİKLER (Tj=25°C, aksi belirtilmedikçe)
PARAMETRE SEMBOL KOŞULLAR MIN TYP MAX BİRİM
Gate trigger current
IGT
VD = 12 V; IT = 0.1 A
A2+G+
A2+G-
A2-G-
A2-G+
5
8
11
30
35
35
35
70
mA
Latching current
IL
VD = 12 V; IGT = 0.1 A
A2+G+
A2+G-
A2-G-
A2-G+
7
16
5
7
20
30
20
30
mA
Holding current IH VD = 12 V; IGT = 0.1 A 5 15 mA
On-state voltage VT IT = 5 A 1.4 1.7 V
Gate trigger voltage
VGT
VD = 12 V; IT = 0.1 A 0.7 1.5 V
VD = 400V ; IT = 0.1 A;
Tj=125°C
0.25 0.4 V
Off-state leakage current ID VD = VDRM(max) ; Tj = 125 °C 0.1 0.5 mA
tetiklenip iletime götürülebilir. Bununla birlikte tıpkı SCR’ de olduğu gibi dc gerilim altında
tetiklendiğinde mühürlenme özelliği bulunmaktadır. Ac gerilimde ise herhangi bir alternansta
tetiklendiğinde o alternansın sonuna kadar iletimde kalmaya devam eder. Takip eden
alternanslarda yeniden tetikleme gerekmektedir.
Şekil 2.8: BT136’ ya ait karakteristik değerler
Deney şeması:
+88.8
mA
+88.8
Volts
P1
4.7k
TRIYAK
TIC206
+12V
-12V
R1
390
AC 12V
SCOP
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-2.2: TRİYAK
21
DENEY MODÜLÜ
DENEY BAĞLANTI PLANI
mA
V
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-2.2: TRİYAK
22
İŞLEM BASAMAKLARI
38) ES05-09-03 modülünü ana üniteye bağlayın.
39) Deney bağlantı planını ES05-09-03 modülü üzerinde gerçekleştirin.
40) Deney bağlantı planında görülen pinleri kısa devre edin.
41) mA sembolü görülen pinler arasına dc ampermetre ve V sembolü görülen pinler arasına dc
voltmetre bağlayın.
42) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını ON
konumuna alın.
43) Circuit1 devresindeki PT1 trimpotunu, triyak geytine uygulanan gerilim sıfır olacak şekilde
çevirip, lambanın durumunu gözlemleyin.
44) Ampermetreden triyakın geyt akımını (IG), voltmetreden triyakın geyt gerilimini (VG) ve
osilaskopla lamba uçlarındaki sinyali (10.1-10.3 pinlerinden) ölçün.
45) PT1 trimpotunu, triyak geytine uygulanan gerilim pozitif yönde artacak şekilde çevirin. Lamba
yeterince parlak yandığı anda PT1’ i çevirme işlemini bitirin.
46) Ampermetreden triyakı tetikleyen geyt akımını (IG), voltmetreden triyakı tetikleyen geyt
gerilimini (VG) ve osilaskopla lamba uçlarındaki sinyali (10.1-10.3 pinlerinden) ölçün.
47) PT1 trimpotunu, triyak geytine uygulanan gerilim sıfır olacak şekilde çevirip, lambanın
durumunu gözlemleyin.
48) PT1 trimpotunu, triyak geytine uygulanan gerilim negatif yönde artacak şekilde çevirin.
49) Lamba yeterince parlak yandığı anda PT1’ i çevirme işlemini bitirin.
50) Ampermetreden triyakı tetikleyen geyt akımını (IG), voltmetreden triyakı tetikleyen geyt
gerilimini (VG) ve osilaskopla lamba uçlarındaki sinyali (10.1-10.3 pinlerinden) ölçüp
kaydedin.
51) PT1 trimpotunu, triyak geytine uygulanan gerilim sıfır olacak şekilde çevirip, lambanın
durumunu gözlemleyin.
52) Devrenin enerjisini kesip, bağlantı kablolarını sökün.
53) Ölçüm sonuçlarını kaydedin.
ÖLÇÜM SONUÇLARI
Triyakı tetikleyen
Pozitif yöndeki Negatif yöndeki
Geyt gerilimi Geyt akımı Geyt gerilimi Geyt akımı
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-2.2: TRİYAK
23
Triyak kesimde iken lamba uçlarındaki sinyal
Triyak iletimde iken lamba uçlarındaki sinyal (Geyt gerilimi pozitif)
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-2.2: TRİYAK
24
Triyak iletimde iken lamba uçlarındaki sinyal (Geyt gerilimi negatif)
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-3: SCR’Lİ KONTROL DENEYİ
25
Giriş:
Dc gerilim altında çalışan SCR’ nin iletime geçmesinden sonra tekrar kesime gidebilmesi
için durdurma yöntemlerinden birisinin uygulanması gerekir. Bu yöntemler:
1. Seri anahtarla durdurma yöntemi: Bu yöntemde SCR’ nin main terminalleri üzerinde
bulunan bir anahtar yardımıyla yük akımı kesilir. Bunun neticesinde tutma akımı da ortadan
kalkacağından SCR durmuş olur. Bu anahtar tekrar kapatılsa bile SCR iletken olmayacaktır.
Konrol artık geyte geçmiştir ve SCR’ nin tekrar tetiklenmesi gerekir.
Şekil 3.1:SCR’ nin seri anahtarla durdurulması
2. Paralel anahtarla durdurma yöntemi: Seri anahtarla durdurma, devre enerjisi de
kesildiğinden pek tercih edilmeyen bir yöntemdir. Paralel anahtarla durdurma yöntemi şekil
3.1’ de verilmiştir. Paralel anahtarla durdurma yönteminin ana prensibi de SCR’ nin tutma
akımını sona erdirmektir. Tutma akımı sona erdiğinde eğer tetikleme almıyorsa SCR kesime
gidecektir. Şekil 3.1’ deki devrede S1 anahtarı kapatılarak devreye enerji uygulanır. B1
butonuna kısa süreli basılarak SCR tetiklenir ve lamba sürekli yanmaya başlar. Bu andan
sonra B1 butonu kontrolü kaybettiğinden açılsa dahi SCR iletimde kalmaya devam edecektir.
SCR’ yi kesime götürmek için B2 butonuna kısa süreli basılmalıdır. B2 butonuna
basıldığında, yük akımı SCR yerine iç direnci daha küçük olan buton üzerinden devresini
tamamlayacaktır. Böylece SCR içinden geçen akım sıfıra yakın bir değere düşer. Bunun
sonucu olarak, SCR akımı tutma akımı seviyesinin altına düşer ve eleman kesime gider.
R1
R2
+Vcc
B1
SCR
LAMBA
S1
S1 anahtarı kısa süreli
açılarak SCR kesime
götürülür.
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-3: SCR’Lİ KONTROL DENEYİ
26
Şekil 3.2:SCR’ nin paralel anahtarla durdurulması
3. Kapasitif anahtarla durdurma yöntemi: Durdurma yöntemleri arasında en etkili olan
yöntemdir. Main terminaller olan anot-katot uçlarını ters polarma etmek, bu yöntemin
prensibini oluşturmaktadır. Kapasitif anahtarla durdurma yöntemi şekil 3.3’ de görülmektedir.
Şekil 3.3:SCR’ nin kapasitif anahtarla durdurulması
Şekil 3.3’ de verilen devrede S1 anahtarı kapatılıp B1 butonuna kısa süreli basılarak SCR
iletime götürülür. B1 açılsa bile SCR iletimde kalmaya ve lamba yanmaya devam eder. Bu arada
R1
R2
+Vcc
B1
B2
SCR
LAMBA
S1
B2 butonuna kısa süreli
basılarak SCR kesime
götürülür.
R1
R2
R3
C1
+Vcc
B1
B2
SCR
S1
+-
B2 butonuna kısa süreli
basılıp anot-katot uçlarına
ters gerilim uygulanarak
SCR kesime götürülür.
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-3: SCR’Lİ KONTROL DENEYİ
27
C1 kondansatörü, R1 direnci ve iletimdeki SCR üzerinden şekilde görülen polaritede şarj olur. B2
butonuna kısa süreli basıldığında, C1 üzerindeki şarj gerilimi SCR’ nin anot-katot uçlarına
uygulanır. Polariteye dikkat edilecek olursa, anot ucuna negatif ve katot ucuna pozitif gerilim
gelecektir. Main terminalleri ters polarma alan SCR hemen yalıtkan olur ve yükün çalışması sona
erer.
Deney şeması:
R1
2.2k
R2
10k
R4
1k
C1
1u
+12V
B1
B2
SCR
TIC106
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-3: SCR’Lİ KONTROL DENEYİ
28
DENEY MODÜLÜ
DENEY BAĞLANTI PLANI
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-3: SCR’Lİ KONTROL DENEYİ
29
İŞLEM BASAMAKLARI
54) ES05-09-03 modülünü ana üniteye bağlayın.
55) Deney bağlantı planını ES05-09-03 modülü üzerinde gerçekleştirin.
56) Deney bağlantı planında görülen pinleri kısa devre edin.
57) Devrenin +12V pinini modül üzerindeki +12V pinine bağlayın. GND devreye doğrudan geldiği
için herhangi bir bağlantıya gerek yoktur.
58) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını ON
konumuna alın.
59) B1 ve B3 butonlarına basmadan LED’ in durumunu gözlemleyin.
60) B1 butonuna kısa süreli basarak LED’ in durumunu gözlemleyin.
61) B3 butonuna kısa süreli basarak LED’ in durumunu gözlemleyin.
62) Devrenin enerjisini kesip, bağlantı kablolarını sökün.
63) Ölçüm sonuçlarını kaydedin.
ÖLÇÜM SONUÇLARI
B1 butonu B3 butonu LED’ in durumu
Açık Açık
Kısa süreli basılıyor Açık
Açık Kısa süreli basılıyor
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-4.1: OTOMATİK KONTROLLÜ LAMBA DENEYİ-1
30
Giriş:
Alternatif bir otomatik kontrollü lamba devresi de şekil 4.1’ de görülmektedir.
Şekil 4.1: Otomatik kontrollü lamba devresi
Devrede ışık algılama işlemi, bir önceki devrede olduğu gibi LDR ile yapılmaktadır. Lamba
ise OP-AMP yerine bir triyak tarafından kontrol edilmektedir. Triyak ise bir RC faz kaydırma
devresi ile kumanda edilmektedir.
Aydınlıkta, LDR’ nin içdirenci ve buna bağlı olarak üzerindeki gerilim azdır. C1 kondansatörü,
triyağı tetiklemek için gerekli olan geyt gerilimine şarj olamaz. Yeterli geyt tetiklemesi alamayan
triyak kesimde ve lamba sönüktür.
Karanlıkta LDR’ nin içdirenci artar. LDR üzerindeki gerilim artacağından, C1 kondansatörü
triyağı tetiklemek için gerekli olan geyt gerilimine şarj olur. Tetiklenen triyak iletime geçer ve
lambayı yakar.
Devredeki P1 trimpotu, RC faz kaydırma devresinin zaman sabitesini ayarlamaktadır. Yani
kondansatörün şarj süresi, dolayısıyla lambanın hangi ışık seviyesinde yanacağı bu trimpot
tarafından belirlenir.
R1
AC BESLEME
P1
TRIYAK
C1
LDR
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-4.1: OTOMATİK KONTROLLÜ LAMBA DENEYİ-1
31
Deney şeması:
DENEY MODÜLÜ
R1
470
AC 24V
P1
100k
Osilaskop
TRIYAK
TIC206
LDR
C4
220nF
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-4.1: OTOMATİK KONTROLLÜ LAMBA DENEYİ-1
32
DENEY BAĞLANTI PLANI
İŞLEM BASAMAKLARI
64) ES05-09-04 modülünü ana üniteye bağlayın.
65) Deney bağlantı planını ES05-09-04 modülü üzerinde gerçekleştirin.
66) Devrenin AC 24V ve 0 pinlerini modül üzerindeki A3 ve A1 pinlerine bağlayın.
67) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını ON
konumuna alın.
68) Karanlık ortamı oluşturmak üzere LDR’ nin üzerini kapatarak ışık almasını engelleyin. P1
trimpotunu ayarlayarak karanlıkta lambanın yanmasını sağlayın.
69) LDR’ nin üzerini açarak lambanın söndüğünü gözlemleyin. Eğer lamba sönmüyor ise P1
trimpotunu lamba sönene kadar hassas bir şekilde ayarlayın.
70) Devrede OSCILLOSCOPE yazan pinler arasına osilaskopu bağlayarak aydınlık ve karanlık
durumları için lamba uçlarındaki sinyalleri ölçüp sonuçları kaydedin.
71) Devrenin enerjisini kesip, bağlantı kablolarını sökün.
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-4.1: OTOMATİK KONTROLLÜ LAMBA DENEYİ-1
33
ÖLÇÜM SONUÇLARI
Aydınlıkta lamba uçlarındaki sinyal
Karanlıkta lamba uçlarındaki sinyal
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-4.2: OTOMATİK KONTROLLÜ LAMBA DENEYİ-2
34
Giriş:
Otomatik kontrollü lamba devresi şekil 4.2’ de görülmektedir.
Şekil 4.2: Otomatik kontrollü lamba devresi
Devrede ışık algılama işlemi LDR tarafından yapılmaktadır. OP-AMP ise karşılaştırıcı olarak
kullanılmıştır. OP-AMP, LDR üzerindeki gerilimle P2 trimpotu üzerindeki gerilimi karşılaştırmakta
ve buna göre çıkış gerilimi üretmektedir. P2 trimpotu, karşılaştırma için kullanılacak referans
gerilimi ayarlamaktadır. Diğer bir ifade ile lambanın yanacağı karanlık seviyesini ayarlar. P2’ nin
değeri büyüdükçe, lambanın yanması için gerekli olan karanlık seviyesi artar. P1 trimpotunun
görevi ise, LDR’ nin hassasiyetini ayarlamaktır.
Aydınlıkta, LDR’ nin içdirenci ve buna bağlı olarak üzerinde düşen gerilim azdır. P2 üzerinde
düşen gerilim LDR üzerine düşen gerilimden büyük olur. OP-AMP’ ın (-) girişindeki gerilim (+)
girişindeki gerilimden büyük olacağı için, OP-AMP çıkışında –VCC değerine yakın bir gerilim olur.
Ters polarma alan D1 diyotu kesimde olacağından, Q1 transistörü de kesimde olacak ve röle
çekmeyeceğinden lamba yanmayacaktır.
Ortam yeterince karanlık olduğunda, LDR’ nin içdirenci ve buna bağlı olarak üzerinde düşen
gerilim artarak, P2 tarafından belirlenen referans gerilimi aşar. OP-AMP’ ın (+) girişindeki gerilim
(-) girişindeki gerilimden büyük olacağı için, OP-AMP çıkışında +VCC değerine yakın bir gerilim
oluşur. Doğru polarma olan D1 iletime geçerek, Q1 transistörünü de iletken yapar. Q1
transistörünün iletime geçmesiyle röle enerjilenir ve paleti çekerek lambayı yakar.
Bir lambanın otomatik olarak kontrol edilmesinde LDR dışında farklı algılayıcılar
kullanılabilir. Bunun yanı sıra kontrol elemanı olarak OP-AMP yerine farklı bir elemandan da
faydalanabilir. Ya da kontrol edilecek lamba doğrudan ac gerilimde çalıştırılabilir.
3
2
6
74
R1
P1
+Vcc
Q1R2
R3
-Vcc
D2
D1
LDR
P2
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-4.2: OTOMATİK KONTROLLÜ LAMBA DENEYİ-2
35
Deney şeması:
DENEY MODÜLÜ
3
2
6
74
LM741
R1
10k
P1
1M
+12V
Q1
BC237
R3
47k
R4
22k
-12V
D1
1N4001
+88.8
Volts
+88.8
Volts
+88.8
Volts
D1
1N4001
LDR
P2
100k
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-4.2: OTOMATİK KONTROLLÜ LAMBA DENEYİ-2
36
DENEY BAĞLANTI PLANI
İŞLEM BASAMAKLARI
72) ES05-09-04 modülünü ana üniteye bağlayın.
73) Deney bağlantı planını ES05-09-04 modülü üzerinde gerçekleştirin.
74) 2.4-2.5 pinlerini kısa devre edin.
75) Devrenin +12V pinini modül üzerindeki +12V pinine ve devrenin -12V pinini modül üzerindeki
-12V pinine bağlayın. GND devreye doğrudan geldiği için herhangi bir bağlantıya gerek
yoktur.
76) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını ON
konumuna alın.
77) LAMP CONTROL trimpotu ışık kaynağı olarak kullanılan lambanın (devrenin sol tarafındaki
lamba) parlaklığını kontrol etmektedir.
78) P1 trimpotu LDR’ nin hassasiyetini kontrol etmektedir.
79) P2 trimpotu aydınlık-karanlık seviyesini kontrol etmektedir.
80) Öncelikle LAMP CONTROL trimpotu ile ışık kaynağı olarak kullanılan lambanın maksimum
parlaklıkta yanmasını sağlayın.
81) P2 trimpotu ile devrenin yükü olan lambanın sönmesini sağlayın.
82) LAMP CONTROL trimpotu ile ışık kaynağı olarak kullanılan parlaklığını sizin belirleyeceğiniz
karanlık seviyesine kadar kısın.
83) Eğer belirlediğiniz karanlık seviyesi için devrenin yükü olan lamba hala sönmedi ise, P1
trimpotunu lamba sönene kadar hassas bir şekilde ayarlayın.
84) LAMP CONTROL trimpotu ile ışık kaynağı olarak kullanılan lambanın parlaklığını bir miktar
artırıp yük olarak kullanılan lambanın sönmesini sağlayın.
85) Devrede V sembolü görülen pinler arasına dc voltmetre bağlayarak aydınlık ve karanlık
durumları için OP-AMP’ ın giriş ve çıkış gerilimlerini ölçüp sonuçları kaydedin.
86) Aynı işlemler ışık kaynağı olarak kullanılan lamba söndürülüp devre dışı bırakılarak, ortam
ışığı için de denenebilir.
87) Devrenin enerjisini kesip, bağlantı kablolarını sökün.
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-4.2: OTOMATİK KONTROLLÜ LAMBA DENEYİ-2
37
ÖLÇÜM SONUÇLARI
OP-AMP’ ın evirmeyen
girişindeki gerilim
OP-AMP’ ın eviren
girişindeki gerilim
OP-AMP’ın çıkış
gerilimi
Lambanın
durumu
Aydınlık
Karanlık
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-5.1: TURN ON ZAMANLAYICI DENEYİ
38
Giriş:
Turn-on tipi zamanlayıcı devresi şekil 5.1’ de görülmektedir.
Şekil 5.1: Turn-on tipi zamanlayıcı devresi
Turn-on tipi zamanlayıcı, zamanlama işlemi başladıktan bir süre sonra yükü çalıştıran
devredir. Devredeki zamanlama süresi kondansatör ve ona seri durumdaki direnç tarafından
belirlenir. Süreyi uzatmak için bu elemanlardan birinin veya her ikisinin değerini büyütmek gerekir.
Şekil 5.1’ de OP-AMP’ la düzenlenmiş turn-on tipi bir zamanlayıcı devresi görülmektedir.
OP-AMP yerine BJT veya FET gibi başka aktif elemanlar kullanmak da mümkündür. P1 trimpotu
C1 kondansatörünün şarj süresini, bu da devrenin zamanlama süresini belirler. P2 trimpotu ise
karşılaştırıcı olarak kullanılan OP-AMP’ ın referans gerilimini belirler. OP-AMP, C1 ve P2
elemanları üzerindeki gerilimleri karşılaştır ve karşılaştırma sonucuna göre çıkış gerilimi verir. P2’
nin değeri karşılaştırmada kullanılan referans gerilimi belirlediğine göre, aynı zamanda
zamanlama süresini de etkileyecektir. Dolayısıyla P1 ve P2 trimpotlarından birinin yada her ikisinin
değerinin büyümesi devrenin zamanlama süresini büyütecektir.
Devreye enerji uygulandığında, C1 kondansatörü P1 üzerinden şarj olmaya başlar. C1
üzerindeki gerilim P2 tarafından belirlenen referans gerilimi seviyesine ulaşana dek, OP-AMP’ ın
(-) girişindeki gerilim (+) girişindeki gerilimden büyük olacağı için, OP-AMP çıkışında –VCC
değerine yakın bir gerilim olur. Ters polarma alan D1 diyotu kesimde olacağından, Q1 transistörü
de kesimde olacak ve röle çekmeyeceğinden lamba yanmayacaktır. P1 üzerinden şarj olan C1
üzerindeki gerilim bir süre sonra referans gerilimi aşar. OP-AMP’ ın (+) girişindeki gerilim (-)
girişindeki gerilimden büyük olacağı için, OP-AMP çıkışında +VCC değerine yakın bir gerilim
oluşur. Doğru polarma olan D1 iletime geçerek, Q1 transistörünü de iletken yapar. Q1
transistörünün iletime geçmesiyle röle enerjilenir ve paleti çekerek lambayı yakar.
Herhangi bir işlem yapılmadığı sürece lamba yanmaya devam edecektir. Zamanlama
işlemini yeniden başlatmak üzere, kısa bir süre için B butonuna basılır. Butona basıldığında C1
kondansatörü deşarj olacağından, zamanlama işlemi yeniden başlamış olacaktır.
3
2
6
74
C1
R1
P2
B
P1
+Vcc
Q1R2
R3
-Vcc
D2
D2
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-5.1: TURN ON ZAMANLAYICI DENEYİ
39
Deney şeması:
DENEY MODÜLÜ
3
2
6
74
LM741
C1
1000u
R1
10k
P2
100k
B
P1
1M
+12V
Q1
BC237
R2
47k
R3
22k
-12V
D2
1N4001
+88.8
Volts
+88.8
Volts
+88.8
Volts
D2
1N4001
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-5.1: TURN ON ZAMANLAYICI DENEYİ
40
DENEY BAĞLANTI PLANI
İŞLEM BASAMAKLARI
88) ES05-09-04 modülünü ana üniteye bağlayın.
89) Deney bağlantı planını ES05-09-04 modülü üzerinde gerçekleştirin.
90) 1.2-1.7, 1.3-1.4 ve 1.4-1.8 pinlerini kısa devre edin.
91) Devrenin +12V pinini modül üzerindeki +12V pinine ve devrenin -12V pinini modül üzerindeki
-12V pinine bağlayın. GND devreye doğrudan geldiği için herhangi bir bağlantıya gerek
yoktur.
92) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını ON
konumuna alın.
93) P1 trimpotu zaman sabitesini dolayısıyla kondansatörün şarj süresini kontrol etmektedir.
94) P2 trimpotu referans gerilimi seviyesini kontrol etmektedir. Referans gerilimin büyüklüğü ise
zamanlama süresini belirler.
95) B butonuna kısa süreli basarak zamanlama işlemini başlatın. Butona basıldıktan bir süre
sonra rölenin çekerek lambayı yaktığını gözlemleyin.
96) P1 ve P2 trimpotlarının zamanlama süresine etkisini gözlemleyin.
97) Devrede V sembolü görülen pinler arasına dc voltmetre bağlayarak butona basıldığı ve
lambanın yandığı anlar için OP-AMP’ ın giriş ve çıkış gerilimlerini ölçüp sonuçları kaydedin.
98) Devrenin enerjisini kesip, bağlantı kablolarını sökün.
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-5.1: TURN ON ZAMANLAYICI DENEYİ
41
ÖLÇÜM SONUÇLARI
OP-AMP’ ın evirmeyen
girişindeki gerilim
OP-AMP’ ın eviren
girişindeki gerilim
OP-AMP’ın çıkış
gerilimi
Butona basıldığında
Lamba yandığında
P1 trimpotu P2 trimpotu Zamanlayıcı süresi
Orta konumda Orta konumda
Maksimumda Orta konumda
Orta konumda Maksimumda
Maksimumda Maksimumda
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-5.2: TURN OFF ZAMANLAYICI DENEYİ
42
Giriş:
Turn-off tipi zamanlayıcı devresi şekil 5.2’ de görülmektedir.
Şekil 5.2: Turn-off tipi zamanlayıcı devresi
Turn-off tipi zamanlayıcı, zamanlama işlemi başladıktan bir süre sonra yükün çalışmasını
durduran devredir. Devredeki zamanlama süresi kondansatör ve ona seri durumdaki direnç
tarafından belirlenir. Süreyi uzatmak için bu elemanlardan birinin veya her ikisinin değerini
büyütmek gerekir.
Şekil 5.2’ de OP-AMP’ la düzenlenmiş turn-off tipi bir zamanlayıcı devresi görülmektedir.
OP-AMP yerine BJT veya FET gibi başka aktif elemanlar kullanmak da mümkündür. P1 trimpotu
C1 kondansatörünün şarj süresini, bu da devrenin zamanlama süresini belirler. P2 trimpotu ise
karşılaştırıcı olarak kullanılan OP-AMP’ ın referans gerilimini belirler. OP-AMP, C1 ve P2
elemanları üzerindeki gerilimleri karşılaştır ve karşılaştırma sonucuna göre çıkış gerilimi verir. P2’
nin değeri karşılaştırmada kullanılan referans gerilimi belirlediğine göre, aynı zamanda
zamanlama süresini de etkileyecektir. Dolayısıyla P1 ve P2 trimpotlarından birinin yada her ikisinin
değerinin büyümesi devrenin zamanlama süresini büyütecektir.
Devreye enerji uygulandığında, C1 kondansatörü P1 üzerinden şarj olmaya başlar. C1
üzerindeki gerilim P2 tarafından belirlenen referans gerilimi seviyesine ulaşana dek, OP-AMP’ ın
(+) girişindeki gerilim (-) girişindeki gerilimden büyük olacağı için, OP-AMP çıkışında +VCC
değerine yakın bir gerilim oluşur. Doğru polarma olan D1 iletime geçerek, Q1 transistörünü de
iletken yapar. Q1 transistörünün iletime geçmesiyle röle enerjilenir ve paleti çekerek lambayı
yakar. P1 üzerinden şarj olan C1 üzerindeki gerilim bir süre sonra referans gerilimi aşar. OP-AMP’
ın (-) girişindeki gerilim (+) girişindeki gerilimden büyük olur ve OP-AMP çıkışında –VCC değerine
yakın bir gerilim olur. Ters polarma alan D1 diyotu kesime gider. Q1 transistörü de yalıtkan
olacağından röle enerjisi kesilir ve lamba söner.
Herhangi bir işlem yapılmadığı sürece lamba sönük kalmaya devam edecektir. Zamanlama
işlemini yeniden başlatmak üzere, kısa bir süre için B butonuna basılır. Butona basıldığında C1
kondansatörü deşarj olacağından, zamanlama işlemi yeniden başlamış olacaktır.
3
2
6
74
C1
R1
P2
B
P1
+Vcc
Q1R2
R3
-Vcc
D2
D1
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-5.2: TURN OFF ZAMANLAYICI DENEYİ
43
Deney şeması:
DENEY MODÜLÜ
3
2
6
74
LM741
C1
1000u
R1
10k
P2
100k
B
P1
1M
+12V
Q1
BC237
R2
47k
R3
22k
-12V
D2
1N4001
+88.8
Volts
+88.8
Volts
+88.8
Volts
D1
1N4001
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-5.2: TURN OFF ZAMANLAYICI DENEYİ
44
DENEY BAĞLANTI PLANI
İŞLEM BASAMAKLARI
99) ES05-09-04 modülünü ana üniteye bağlayın.
100) Deney bağlantı planını ES05-09-04 modülü üzerinde gerçekleştirin.
101) 1.2-1.8, 1.3-1.4 ve 1.3-1.7 pinlerini kısa devre edin.
102) Devrenin +12V pinini modül üzerindeki +12V pinine ve devrenin -12V pinini modül
üzerindeki -12V pinine bağlayın. GND devreye doğrudan geldiği için herhangi bir bağlantıya
gerek yoktur.
103) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını
ON konumuna alın.
104) P1 trimpotu zaman sabitesini dolayısıyla kondansatörün şarj süresini kontrol etmektedir.
105) P2 trimpotu referans gerilimi seviyesini kontrol etmektedir. Referans gerilimin büyüklüğü
ise zamanlama süresini belirler.
106) B butonuna kısa süreli basarak zamanlama işlemini başlatın. Butona basıldıktan bir süre
sonra rölenin bırakarak lambanın söndüğünü gözlemleyin.
107) P1 ve P2 trimpotlarının zamanlama süresine etkisini gözlemleyin.
108) Devrede V sembolü görülen pinler arasına dc voltmetre bağlayarak butona basıldığı ve
lambanın yandığı anlar için OP-AMP’ ın giriş ve çıkış gerilimlerini ölçüp sonuçları kaydedin.
109) Devrenin enerjisini kesip, bağlantı kablolarını sökün.
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-5.2: TURN OFF ZAMANLAYICI DENEYİ
45
ÖLÇÜM SONUÇLARI
OP-AMP’ ın evirmeyen
girişindeki gerilim
OP-AMP’ ın eviren
girişindeki gerilim
OP-AMP’ın çıkış
gerilimi
Butona basıldığında
Lamba söndüğünde
P1 trimpotu P2 trimpotu Zamanlayıcı süresi
Orta konumda Orta konumda
Maksimumda Orta konumda
Orta konumda Maksimumda
Maksimumda Maksimumda
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-6.1: PWM DENEYİ-1
46
Giriş:
PWM (Pulse Width Modulation-Pals Genişlik Modülasyonu), dc yük kontrolünde ve özellikle
de dc motor hız kontrolünde çok yaygın olarak kullanılan bir tekniktir. PWM kontrolündeki temel
prensip, kare dalga sinyalin duty cycle oranını değiştirmektir. Duty cycle oranı, kare dalga sinyalin
bir periyotluk süresinin ne kadarının iş yaptığını ifade eder. Duty cycle, devreye dışarıdan
uygulanan bir kontrol sinyali ile ya da devrede bulunan trimpot veya potansiyometre gibi bir
elemanla ayarlanabilir. Şekil 6.1’ de frekans ve periyot değerleri aynı ancak duty cycle oranları
farklı kare dalga sinyaller görülmektedir. Burada pozitif mantık göz önünde bulundurularak, kare
dalga sinyalin lojik H durumları duty cycle olarak düşünülmüştür.
Şekil 6.1: Farklı duty cycle oranlarının gösterimi
Şekil 6.2: PWM devresi
1 periyot
Duty cycle= %20
Duty cycle= %80
Kare dalga
sinyalin iş yapan
kısımları
1 2
4584
CLK
14
E
13
MR
15
CO
12
Q0
3
Q1
2
Q2
4
Q3
7
Q4
10
Q5
1
Q6
5
Q7
6
Q8
9
Q9
11
4017
1
2
3
4001
5
6
4
4001
R1
C1
R2
S
R3
OUT
S
R
CLOCK
6
1
5
4
3
2
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-6.1: PWM DENEYİ-1
47
Şekil 6.3: 4017 entegresi zaman diyagramı
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-6.1: PWM DENEYİ-1
48
Şekil 6.2’ de örnek bir PWM devresi görülmektedir. Devre, osilatör, Johnson sayıcı ve RS
flip-flop’ tan meydana gelmiştir. 4584 entegresi ile yapılan osilatör, 4017 entegresine clock sinyali
uygulamaktadır. Johnson sayıcı entegresi olan 4017’ ye ait zaman diyagramı ise şekil 6.3’ de
verilmiştir. Zaman diyagramından anlaşılacağı gibi, herhangi bir anda 4017 entegresine ait 10
adet çıkıştan sadece birisi aktiftir. Her yeni clock girişinde entegrenin bir sonraki çıkışı aktif olur.
4001 entegresi içinde bulunan iki girişli NOR kapıları ise RS flip-flop oluşturmak için kullanılmıştır.
Şekil 6.4’ de RS flip-flop’ un doğruluk tablosu görülmektedir
Şekil 6.4: RS flip-flop doğruluk tablosu
Devredeki çeşitli noktalara ait sinyaller şekil 6.5 ve şekil 6.6’ da verilmiştir. Bu şekillerde
verilen sinyaller arasındaki fark, devrede bulunan S anahtarının konumudur. Şekil 6.5, anahtarın 6
nolu konumu için geçerlidir. Çıkış sinyali (OUT) incelendiğinde duty cycle oranının oldukça küçük
olduğu görülmektedir. Anahtarın konumu sırayla değiştirilip 1 nolu konuma alındığında OUT
ucundaki çıkış sinyalinin duty cycle oranı artmaktadır.
Şekil 6.5: Devredeki S anahtarının 6 nolu konumu için zaman diyagramı
Şekil 6.6: Devredeki S anahtarının 1 nolu konumu için zaman diyagramı
S R Q (OUT)
0 0 Değişim yok
0 1 0
1 0 1
1 1 Yasak durum
Q
Q
R
S
CLOCK
S
R
OUT
CLOCK
S
R
OUT
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-6.1: PWM DENEYİ-1
49
Deney şeması:
DENEY MODÜLÜ
1 2
4584
CLK
14
E
13
MR
15
CO
12
Q0
3
Q1
2
Q2
4
Q3
7
Q4
10
Q5
1
Q6
5
Q7
6
Q8
9
Q9
11
4017
1
2
3
4001
5
6
4
4001
R1
47k
R2
4.7k
S
R3
4.7k
OUT
S
R
CLOCK
6
1
5
4
3
2
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-6.1: PWM DENEYİ-1
50
DENEY BAĞLANTI PLANI
İŞLEM BASAMAKLARI
110) ES05-09-02 modülünü ana üniteye bağlayın.
111) Deney bağlantı planını ES05-09-02 modülü üzerinde gerçekleştirin.
112) 1.2-1.4 ve 1.3-1.5 pinlerini kısa devre edin.
113) Devrenin +12V pinini modül üzerindeki +12V pinine bağlayın. GND devreye doğrudan
geldiği için herhangi bir bağlantıya gerek yoktur.
114) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını
ON konumuna alın.
115) A pinini 6 nolu pine bağlayın.
116) Osilaskopla 1.6 pinindeki çıkış sinyalini gözlemleyin.
117) A pini ile 6 nolu pin arasındaki bağlantıyı sökün.
118) A pinini sırasıyla 5, 4, 3, 2 ve 1 nolu pinlere de bağlayarak, 7 nolu işlem basamağını
tekrarlayın.
119) Devrenin enerjisini kesip, bağlantı kablolarını sökün.
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-6.1: PWM DENEYİ-1
51
ÖLÇÜM SONUÇLARI
Çıkış sinyali (A pini 6 nolu pine bağlı)
Çıkış sinyali (A pini 5 nolu pine bağlı)
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-6.1: PWM DENEYİ-1
52
Çıkış sinyali (A pini 4 nolu pine bağlı)
Çıkış sinyali (A pini 3 nolu pine bağlı)
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-6.1: PWM DENEYİ-1
53
Çıkış sinyali (A pini 2 nolu pine bağlı)
Çıkış sinyali (A pini 1 nolu pine bağlı)
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-6.2: PWM DENEYİ-2
54
GND
TRIG
OUT
RESET
VCC
DISCH
THRES
CONT
1 8
2 7
3 6
4 5
+VC
C
8
CONTRO
L
VOLTAGE
THRESH- 5
OLD
6
TRIGGER
2
DIS
-
CHARG
E
7 RESET
4
R
COMPARATOR
R
COMPARATOR
R
FLIP FLOP
OUTPUT
STAGE
3 1
COMPARATOR
COMPARATOR
FLIP FLOP
OUTPUT
STAGE
Giriş:
PWM sinyali elde etmek için kullanılan en sık yöntemlerden biri de NE555 zamanlayıcı
entegresi kullanmaktadır. NE555, astable ve monostable multivibratör devreleri düzenlemek
amacıyla üretimiş bir entegredir.
Şekil 6.7: NE555 entegresinin görünüşü, ayak yapısı ve blok yapısı
Şekil 6.8: NE555 entegresi ile astable multivibratör uygulaması
+VCC
(5 V to 15 V)
RA
RL
Output
6RB
GND
C
0.01 µF
85
4
CONT VCC
RESET
DISCH
OUT
THRES
TRIG
7
3
2
1
Çıkış gerilimi-VOUT
Kondansatör gerilimi-VC
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-6.2: PWM DENEYİ-2
55
Şekil 6.9: PWM devresi
NE555 entegresi ile yapılan PWM devresi şekil 6.9’ de verilmiştir. Devre temel olarak şekil
6.8’ de verilmiş olan astable multivibratördür. Farklı olarak, RB direnci yerine ayarlı direnç P1
kullanılmış ve iki adet diyot ilave edilmiştir. C1 kondansatörü, D1 diyotu ve P1 trimpotunun D1’ e
bağlı ucu ile orta ucu arasındaki direnç değeri üzerinden şarj olur. Deşarj anında ise, D2 diyotu ve
P1 trimpotunun D2’ ye bağlı ucu ile orta ucu arasındaki direnç değeri üzerinden deşarj olur (şekil
6.9). P1 trimpotunun ayarlandığı konuma bağlı olarak, C1 kondansatörünün şarj ve deşarj zaman
sabiteleri farklı değerler alacaktır. Buna bağlı olarak da entegre çıkışındaki kare dalga sinyalin H
ve L’ da kalma süreleri değişecektir. Böylece devre, çıkışında duty cycle oranı P1 ile ayarlanan
PWM sinyali oluşur.
Şekil 6.10, 6.11 ve 6.12’ da P1’ in farklı konumları için çıkıştan alınacak sinyallerin dalga
şekilleri görülmektedir.
Şekil 6.10: Duty cycle oranı küçük
4
7
3
1
8
2
6
5
NE555
R1
P1
D2
D1
C1 C2
+Vcc
R2
OUT
4
7
3
1
8
2
6
5
NE555
R1
P1
D2D1
C1 C2
+Vcc
R2
OUT
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-6.2: PWM DENEYİ-2
56
Şekil 6.11: Duty cycle oranı %50
Şekil 6.12: Duty cycle oranı büyük
4
7
3
1
8
2
6
5
NE555
R1
P1
D2D1
C1 C2
+Vcc
R2
OUT
4
7
3
1
8
2
6
5
NE555
R1
P1
D2D1
C1 C2
+Vcc
R2
OUT
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-6.2: PWM DENEYİ-2
57
Deney şeması:
DENEY MODÜLÜ
4
7
3
1
8
2
6
5
NE555
R1
1k
P1 100k
D2
1N4001
D1
1N4001
C1
100nF
C2
10nF
+12V
R2
1k
SCOP CH1
SCOP CH2
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-6.2: PWM DENEYİ-2
58
DENEY BAĞLANTI PLANI
İŞLEM BASAMAKLARI
120) ES05-09-02 modülünü ana üniteye bağlayın.
121) Deney bağlantı planını ES05-09-02 modülü üzerinde gerçekleştirin.
122) Devrenin +12V pinini modül üzerindeki +12V pinine bağlayın. GND devreye doğrudan
geldiği için herhangi bir bağlantıya gerek yoktur.
123) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını
ON konumuna alın.
124) Osilaskopla CH1 pinindeki çıkış sinyalini gözlemleyin.
125) P1 potansiyometresinin çıkış sinyaline etkisini gözlemleyin.
126) P1 potansiyometresinin minimum, orta ve maksimum konumları için ölçtüğünüz çıkış
sinyallerini çizin.
127) Devrenin enerjisini kesip, bağlantı kablolarını sökün.
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-6.2: PWM DENEYİ-2
59
ÖLÇÜM SONUÇLARI
Çıkış sinyali (P1 minimumda)
Çıkış sinyali (P1 ortada)
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-6.2: PWM DENEYİ-2
60
Çıkış sinyali (P1 maksimumda)
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-7.1: DC GÜÇ KONTROL DENEYİ
61
Giriş:
DC güç kontrol devrelerinde en çok kullanılan yöntem PWM tekniğidir. PWM sinyali bir güç
elemanı ile (BJT, MOSFET vs.) sürülerek dc yükün kontrolü sağlanır. Yük üzerinde harcanan güç,
PWM sinyalinin duty cycle oranı değiştirilerek ayarlanır. Duty cycle oranının değiştirilmesi, aslında
kare dalga sinyalin ortalama değerini değiştirmektedir. Yüke aktarılan güç, küçük duty cycle
oranlarında düşük, büyük duty cycle oranlarında ise fazla olacaktır. Şekil 7.1’ de PWM sinyali ile
kontrol edilen bir lambanın parlaklık seviyesinin alacağı durumlar görülmektedir.
Şekil 7.1: Farklı duty cycle oranları için lambanın parlaklığı
Deney şeması:
Lamba parlaklığı
çok az
Lamba parlaklığı
maksimum
Lamba parlaklığı
orta düzede
4
7
3
1
8
2
6
5
NE555
R1
1k
RV6 100k
D2
1N4001
D1
1N4001
C1
100nF
C2
10nF
+12V
R2
1k
Q1
TIP41
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-7.1: DC GÜÇ KONTROL DENEYİ
62
DENEY MODÜLÜ
DENEY BAĞLANTI PLANI
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-7.1: DC GÜÇ KONTROL DENEYİ
63
İŞLEM BASAMAKLARI
128) ES05-09-02 modülünü ana üniteye bağlayın.
129) Deney bağlantı planını ES05-09-02 modülü üzerinde gerçekleştirin.
130) Devrenin +12V pinini modül üzerindeki +12V pinine bağlayın. GND devreye doğrudan
geldiği için herhangi bir bağlantıya gerek yoktur.
131) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını
ON konumuna alın.
132) P1 potansiyometresini çevirerek lambanın parlaklığını gözlemleyin.
133) Lamba uçlarındaki sinyali osilaskopla ölçüp kaydedin.
134) Devrenin enerjisini kesip, bağlantı kablolarını sökün.
ÖLÇÜM SONUÇLARI
P1 trimpotu Lambanın parlaklığı
Minimumda
Orta konumda
Maksimumda
Lamba uçlarındaki sinyal (P1 minimumda)
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-7.1: DC GÜÇ KONTROL DENEYİ
64
Lamba uçlarındaki sinyal (P1 ortada)
Lamba uçlarındaki sinyal (P1 maksimumda)
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-7.2: MOTOR HIZ KONTROL DENEYİ
65
Giriş:
DC güç kontrol devresindeki lambanın yerine bir dc motor kullanıldığında, PWM sinyali ile
motorun devir hızı kontrol edilebilir. Motor üzerinde harcanan güç, PWM sinyalinin duty cycle
oranı değiştirilerek ayarlanır. Motorun devir hızı, küçük duty cycle oranlarında düşük, büyük duty
cycle oranlarında ise fazla olacaktır. Şekil 7.2’ de PWM sinyali ile kontrol edilen bir motorun devir
hızı seviyesinin alacağı durumlar görülmektedir.
Şekil 7.2: Farklı duty cycle oranları için motorun devir hızı
Deney şeması:
Motor yavaş
dönüyor
Motor hızlı
dönüyor
Motor devir hızı
orta düzede
4
7
3
1
8
2
6
5
NE555
R1
1k
RV1 100k
D2
1N4001
D1
1N4001
C1
100nF
C2
10nF
+12V
R2
1k
Q1
TIP41
D3
1N4001
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-7.2: MOTOR HIZ KONTROL DENEYİ
66
DENEY MODÜLÜ
DENEY BAĞLANTI PLANI
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-7.2: MOTOR HIZ KONTROL DENEYİ
67
İŞLEM BASAMAKLARI
135) ES05-09-02 modülünü ana üniteye bağlayın.
136) Deney bağlantı planını ES05-09-02 modülü üzerinde gerçekleştirin.
137) Devrenin +12V pinini modül üzerindeki +12V pinine bağlayın. GND devreye doğrudan
geldiği için herhangi bir bağlantıya gerek yoktur.
138) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını
ON konumuna alın.
139) P1 potansiyometresini çevirerek motorun dönüş hızını gözlemleyin.
140) Devrenin enerjisini kesip, bağlantı kablolarını sökün.
ÖLÇÜM SONUÇLARI
P1 trimpotu Motor dönüş hızı
Minimumda
Orta konumda
Maksimumda
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-8: AC GÜÇ KONTROL DENEYİ
68
Giriş:
AC güç kontrol devresi şekil 8.1’ de görülmektedir.
Şekil 8.1: AC güç kontrol devresi
Devre, ac gerilim altında çalışan bir lamba üzerinde harcanan gücü kontrol etmektedir. Bu
nedenle, ac gerilim altında iki yönlü çalışma özelliğine sahip olan triyak kullanılmıştır.
Triyağı tetiklemek üzere R1, P1 ve C1 elemanlarından oluşan bir RC faz kaydırma bölümü
bulunmaktadır. Triyak C1 üzerindeki gerilimle tetiklenmekte ve C1’ in şarj süresi P1 tarafından
ayarlanmaktadır.
P1’ in minimum değeri için C1 hızlı şarj olacağından, triyak alternansların başına yakın bir
bölgede tetiklenir. Alternansların büyük bir bölümünde iletimde olan triyak lambanın parlak
yanmasını sağlayacaktır.
P1’ in değeri büyüdükçe, C1’ in şarj süresi de büyüyecektir. Bu durumda triyak alternansların
sonuna yakın bir bölgede tetiklenir. Alternansların büyük bir bölümünde kesimde olan triyak
lambanın sönük yanmasına neden olur. P1’ in değeri yeteri kadar büyütüldüğünde ise triyak
tetikleme alamaz. Tetikleme almayan triyak yalıtkan olur ve lamba söner.
R1
AC BESLEMEP1
TRIYAK
C1
R2
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-8: AC GÜÇ KONTROL DENEYİ
69
Deney şeması:
DENEY MODÜLÜ
R1
470
AC 24VP1
100k
SCOP
TRIYAK
TIC206
C1
100nF
R2
100
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-8: AC GÜÇ KONTROL DENEYİ
70
DENEY BAĞLANTI PLANI
İŞLEM BASAMAKLARI
141) ES05-09-03 modülünü ana üniteye bağlayın.
142) Deney bağlantı planını ES05-09-03 modülü üzerinde gerçekleştirin.
143) 8.1-8.2, 8.3-8.4 ve 8.5-8.6 pinlerini kısa devre edin.
144) Devrenin A1 ve A3 pinlerini modül üzerindeki A1 ve A3 pinlerine bağlayın.
145) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını
ON konumuna alın.
146) P1 potansiyometresini çevirerek lambanın parlaklığını gözlemleyin.
147) Lamba uçlarındaki sinyali (8.7-8.8 pinlerinden) osilaskopla ölçüp kaydedin.
148) Devrenin enerjisini kesip, bağlantı kablolarını sökün.
ÖLÇÜM SONUÇLARI
P1 trimpotu Lambanın parlaklığı
Minimumda
Orta konumda
Maksimumda
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-8: AC GÜÇ KONTROL DENEYİ
71
Lamba uçlarındaki sinyal (P1 minimumda)
Lamba uçlarındaki sinyal (P1 ortada)
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-8: AC GÜÇ KONTROL DENEYİ
72
Lamba uçlarındaki sinyal (P1 maksimumda)
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-9: DOĞRULTUCULAR
73
Giriş:
Alternatif gerilimin doğru gerilime dönüştürülmesi işlemine doğrultma ve bu işlemi yapan
devrelere de doğrultucu adı verilmektedir. Doğrultma işlemi için diyotlardan faydalanılmaktadır.
Doğrultma işlemi yarım dalga veya tam dalga olarak gerçekleştirilebilmektedir.
Yarım Dalga Doğrultucu
Şekil 9.1: Yarım dalga doğrultucu
Yarım dalga doğrultucu devresi şekil 9.1’ de görülmektedir. Devre girişine uygulanan ac
gerilimin pozitif alternanslarında diyot iletken olacağından pozitif alternanslar çıkışta aynen
görünecektir (diyot üzerinde düşen gerilim ihmal edilmiştir). Giriş geriliminin negatif
alternaslarında diyot yalıtkan olur ve çıkış gerilimi sıfırdır. Bu durum şekil 9.2’ de görülmektedir.
Şekil 9.2: Yarım dalga doğrultucu giriş ve çıkış sinyalleri
D
R
+Vo
AC giriş Doğrultucu çıkışı
p
DC
V
V


+ +
- -
Doğrultucu girişi
Doğrultucu çıkışı
Vp
+ +
- -
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-9: DOĞRULTUCULAR
74
İki Diyotlu Tam Dalga Doğrultucu
Şekil 9.3: İki diyotlu tam dalga doğrultucu
İki diyotlu tam dalga doğrultucu devresi şekil 9.3’ de görülmektedir. İki diyotlu tam dalga
doğrultucu devresinin simetrik ac giriş gerilimine ihtiyacı vardır. Bu amaçla devre, orta uçlu bir
transformatör üzerinden beslenir. Devre girişine uygulanan ac gerilimin pozitif alternanslarında D1
diyotu ve negatif alternansında D2 iletime geçerek çıkışta sürekli pozitif alternans oluşmasını
sağlarlar. Doğrultucuya ait giriş ve çıkış sinyalleri şekil 9.4’ de verilmiştir.
Şekil 9.4: İki diyotlu tam dalga doğrultucu giriş ve çıkış sinyalleri
D1
R
+Vo
D2
AC giriş
AC giriş
Doğrultucu çıkışı
+ ++ +
- -
Doğrultucu girişi
Doğrultucu çıkışı
Vp
+ +
- -
2 p
DC
V
V


ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-9: DOĞRULTUCULAR
75
Köprü Tipi Tam Dalga Doğrultucu
Şekil 9.5: Köprü tipi tam dalga doğrultucu
Köprü tipi tam dalga doğrultucu devresi şekil 9.5’ de görülmektedir. Devre girişine
uygulanan ac gerilimin pozitif alternanslarında D1 ve D2 diyotları ve negatif alternansında D3 ve D4
diyotları iletime geçerek çıkışta sürekli pozitif alternans oluşmasını sağlarlar. Doğrultucuya ait
giriş ve çıkış sinyalleri şekil 9.6’ da verilmiştir.
Şekil 9.6: Köprü tipi tam dalga doğrultucu giriş ve çıkış sinyalleri
R
+Vo
D1
D4D2
D3
AC giriş
Doğrultucu çıkışı
2 p
DC
V
V


+ ++ +
- -
Doğrultucu girişi
Doğrultucu çıkışı
Vp
+ +
- -
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-9: DOĞRULTUCULAR
76
DENEY MODÜLÜ
DENEY BAĞLANTI PLANLARI
Filtresiz yarım dalga doğrultucu
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-9: DOĞRULTUCULAR
77
Filtreli yarım dalga doğrultucu
Filtresiz tam dalga doğrultucu
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-9: DOĞRULTUCULAR
78
Filtreli tam dalga doğrultucu
İŞLEM BASAMAKLARI
149) ES05-05 modülünü ana üniteye bağlayın.
Yarım dalga doğrultucu
150) Filtresiz yarım dalga doğrultucu deney bağlantı planını ES05-05 modülü üzerinde
gerçekleştirin. Kalın çizgi ile gösterilen yerleri bağlantı kablolarını kullanarak kısa devre edin.
151) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını
ON konumuna alın.
152) Osilaskopla giriş gerilimini (1.1-1.3 pinlerinden) ölçüp kaydedin.
153) Osilaskopla çıkış gerilimini (LD6-LD8 pinlerinden) ölçüp kaydedin.
154) LOAD devresindeki potansiyometre yük akımını kontrol etmektedir. Yük akımının çıkış
gerilimine etkisini gözlemleyin.
155) Multimetre ile çıkış geriliminin dc değerini ölçüp kaydedin.
156) Devrenin enerjisini kesin.
157) Filtreli yarım dalga doğrultucu deney bağlantı planını ES05-05 modülü üzerinde
gerçekleştirip aynı ölçümleri tekrarlayın.
158) Ölçüm sonuçlarını kaydedin.
Tam dalga doğrultucu
159) Filtresiz tam dalga doğrultucu deney bağlantı planını ES05-05 modülü üzerinde
gerçekleştirin. Kalın çizgi ile gösterilen yerleri bağlantı kablolarını kullanarak kısa devre edin.
160) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını
ON konumuna alın.
161) Osilaskopla giriş gerilimini (1.1-1.3 pinlerinden) ölçüp kaydedin.
162) Osilaskopla çıkış gerilimini (LD6-LD8 pinlerinden) ölçüp kaydedin.
163) LOAD devresindeki potansiyometre yük akımını kontrol etmektedir. Yük akımının çıkış
gerilimine etkisini gözlemleyin.
164) Multimetre ile çıkış geriliminin dc değerini ölçüp kaydedin.
165) Devrenin enerjisini kesin.
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-9: DOĞRULTUCULAR
79
166) Filtreli yarım dalga doğrultucu deney bağlantı planını ES05-05 modülü üzerinde
gerçekleştirip aynı ölçümleri tekrarlayın.
167) Ölçüm sonuçlarını kaydedin.
ÖLÇÜM SONUÇLARI
Yarım Dalga Doğrultucu Ölçümleri
Giriş gerilimi
Filtresiz çıkış gerilimi Filtreli çıkış gerilimi
Multimetre ile ölçülen çıkış
geriliminin DC değeri (Volt)
Filtresiz
Filtreli
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-9: DOĞRULTUCULAR
80
Tam Dalga Doğrultucu Ölçümleri
Giriş gerilimi
Filtresiz çıkış gerilimi Filtreli çıkış gerilimi
Multimetre ile ölçülen çıkış
geriliminin DC değeri (Volt)
Filtresiz
Filtreli
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-10: AC/DC KONVERTÖR DENEYİ
81
Giriş:
AC/DC konvertör devresi şekil 10.1’ de görülmektedir.
Şekil 10.1: AC/DC konvertör devresi
Devre, ac gerilimi dc gerilime dönüştürmektedir. Temelde bir tam dalga doğrultucu
devresidir.
Transformatörün sekonder sargısındaki ac gerilim, köprü diyot tarafından tam dalga
doğrultulur. Köprü diyot çıkışındaki kondansatör ise çıkış gerilimin filtre ederek ideal dc gerilime
yaklaştırmaktadır.
Deney şeması:
+Vo
D1
D4D2
D3
AC giriş
DC çıkışC1
4X1N4001
+Vo
D1
D4D2
D3
AC giriş
DC çıkışC1
1000uF
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-10: AC/DC KONVERTÖR DENEYİ
82
DENEY MODÜLÜ
DENEY BAĞLANTI PLANI
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-10: AC/DC KONVERTÖR DENEYİ
83
İŞLEM BASAMAKLARI
168) ES05-05 modülünü ana üniteye bağlayın.
169) Deney bağlantı planını ES05-05 modülü üzerinde gerçekleştirin.
170) 1.2-3.1, 1.4-3.2, 3.4-4.1 ve 3.6-4.3 pinlerini kısa devre edin.
171) Transformatör primer sargı gerilimini ana üniteden aldığı için herhangi bir bağlantıya
gerek yoktur.
172) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını
ON konumuna alın.
173) Osilaskopla giriş gerilimini (1.1-1.3 pinlerinden) ölçüp kaydedin.
174) Osilaskopla çıkış gerilimini (4.2-4.4 pinlerinden) ölçüp kaydedin.
175) Devrenin enerjisini kesip, bağlantı kablolarını sökün.
ÖLÇÜM SONUÇLARI
Giriş gerilimi
Çıkış gerilimi
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-11: DC/AC İNVERTÖR DENEYİ
84
Giriş:
DC/AC invertör devresi şekil 11.1’ de görülmektedir.
Şekil 11.1: DC/AC konvertör devresi
Devre, dc gerilimi ac gerilime dönüştürmektedir. Temelde NE555 entegresi ile düzenlenmiş
bir karasız multivibratörden oluşmaktadır. Kararsız multivibratör devresi kare dalga sinyal üreten
bir osilatör olup, frekansı P1 trimpotu ile ayarlanabilmektedir.
Kararsız multivibratör çıkışındaki kare dalga sinyal Q1 ve Q2 transistörleri ile sürülerek
transformatörün düşük gerilim sargısına uygulanır. Bilindiği gibi transformatörler ac gerilimi
düşürdüğü gibi, yükseltme özelliğine de sahiptir. Dolayısıyla alçak gerilim sargısına kare dalga
formunda ac gerilim uygulanan TR1 transformatörünün yüksek gerilim sargısından daha büyük bir
gerilim alınır. Çıkıştan alınacak ac gerilimin büyüklüğü transformatörün dönüştürme oranı
tarafından belirlenir.
C4 kondansatörü transformatörün çıkış sargısı ile birlikte bir paralel rezonans devresi
oluşturur. Bu iki elemanın değerlerinin belirlediği rezonans frekansı için devrenin çıkışından
düzgün bir sinüs dalga sinyal elde edilir. Çıkış sinyalinin düzgün formda elde edilebilmesi için,
kararsız multivibratörün frekansını belirleyen P1 trimpotu ile ayar yapılmalıdır.
4
7
3
1
8
2
6
5
NE555
R1
P1
C1 C2
+Vcc
R2
Q1
Q2
C3 L1 TR1
ÇıkışC4
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-11: DC/AC İNVERTÖR DENEYİ
85
Deney şeması:
DENEY MODÜLÜ
4
7
3
1
8
2
6
5
NE555
R1
1k
P1
100k
C1
100nF
C2
10nF
+12V
R2
100
Q1
TIP41
Q2
TIP42
C3
2200u
L1
1uH
TR1
12V/220V
SCOP
C4
10nF
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-11: DC/AC İNVERTÖR DENEYİ
86
DENEY BAĞLANTI PLANI
İŞLEM BASAMAKLARI
176) ES05-09-03 modülünü ana üniteye bağlayın.
177) Deney bağlantı planını ES05-09-03 modülü üzerinde gerçekleştirin.
178) Devrenin +12V pinini modül üzerindeki +12V pinine bağlayın. GND devreye doğrudan
geldiği için herhangi bir bağlantıya gerek yoktur.
179) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını
ON konumuna alın.
180) Osilaskopla devrenin çıkış uçlarındaki sinyali ölçün. P1 trimpotunu osilaskop ekranında
düzgün bir sinyal görene dek çevirin. Ölçüm sonucunu kaydedin.
181) Devrenin enerjisini kesip, bağlantı kablolarını sökün.
ÖLÇÜM SONUÇLARI
Çıkış gerilimi
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-12.1: SABİT ÇIKIŞLI DC/DC KONVERTÖR DENEYİ
87
Giriş:
DC/DC sabit çıkışlı konvertör devresi şekil 12.1’ de görülmektedir.
Şekil 12.1: DC/DC sabit çıkışlı konvertör devresi
Devre, dc gerilimi dc gerilime dönüştürmektedir. Temelde bir gerilim regülatörü devresidir.
7805 entegresi pozitif giriş pozitif çıkışlı gerilim regülatörüdür. Girişine çıkış gerilimi olan +5V’ tan
en az 2V daha büyük bir gerilim uygulanmalıdır. Bu şart altında, çıkıştan sabit +5V gerilim alınır.
7805 kısa devre akım sınırlamasına ve yüksek sıcaklıklara karşı ısı korumasına sahiptir. Bunun
dışında ilave olarak birleştirilmiş bir koruma devresi daha vardır. Bu devre “second perforation”
denilen bir güç transistörünü korur. Bu yolla en zor şartlar altında bile regülatörün kendi kendini
tahrip etmesi önlenmiş olur.
Şekil 12.2: 7805 entegresinin görünüşü ve blok yapısı
VI
1
VO
3
GND
2
7805
C1 C2
+Vo
DC çıkış
+Vi
DC giriş
Input Output
3
GND
2
Series
Pass
Element
1
Current
Generator
SOA
Protection
Starting
Circuit
Reference
Voltage
Error
Amplifier
Thermal
Protection
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-12.1: SABİT ÇIKIŞLI DC/DC KONVERTÖR DENEYİ
88
Deney şeması:
DENEY MODÜLÜ
VI
1
VO
3
GND
2
7805
C1
470uF
C2
10uF
+5V
DC çıkış
+12V
DC giriş
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-12.1: SABİT ÇIKIŞLI DC/DC KONVERTÖR DENEYİ
89
DENEY BAĞLANTI PLANI
İŞLEM BASAMAKLARI
182) ES05-05 modülünü ana üniteye bağlayın.
183) Deney bağlantı planını ES05-05 modülü üzerinde gerçekleştirin.
184) Devrenin 9.1 nolu pinini modülün sağ üst bölümünde bulunan +12V pinine ve devrenin
9.2 nolu pinini yine modülün sağ üst bölümünde bulunan GND pinine bağlayın.
185) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını
ON konumuna alın.
186) DC voltmetre ile giriş gerilimini (9.1-9.2 pinlerinden) ölçüp kaydedin.
187) DC voltmetre ile çıkış gerilimini (9.6-9.7 pinlerinden) ölçüp kaydedin.
188) Devrenin enerjisini kesip, bağlantı kablolarını sökün.
ÖLÇÜM SONUÇLARI
Giriş gerilimi Çıkış gerilimi
GND +12V
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-12.2: AYARLI ÇIKIŞLI DC/DC KONVERTÖR DENEYİ
90
Giriş:
DC/DC ayarlanabilir çıkışlı konvertör devresi şekil 12.3’ de görülmektedir.
Şekil 12.3: DC/DC ayarlanabilir çıkışlı konvertör devresi
Devre, dc gerilimi ayarlanabilir dc gerilime dönüştürmektedir. Temelde bir gerilim regülatörü
devresidir. LM317 1,25 − 37 V ayarlanabilir voltaj aralığında 1,5 ampere kadar akım verebilen
pozitif gerilim regülatörüdür. Çıkış geriliminin değeri,
formülü ile hesaplanır ve P1 trimpotu ile ayarlanabilmektedir.
Şekil 12.4: LM 317 entegresinin görünüşü ve iç yapısı
C1
+Vo
DC çıkış
+Vi
DC giriş
VI
3
VO
2
ADJ
1
LM317
R1
P1
1
1
1,25. 1O
P
V
R
 
  
 
INPUT
OUTPUT
ADJUST
I O
A
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-12.2: AYARLI ÇIKIŞLI DC/DC KONVERTÖR DENEYİ
91
Deney şeması:
DENEY MODÜLÜ
C1
10uF
+Vo
DC çıkış
+Vi
DC giriş
VI
3
VO
2
ADJ
1
LM317
R1
560
P1
5k
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-12.2: AYARLI ÇIKIŞLI DC/DC KONVERTÖR DENEYİ
92
DENEY BAĞLANTI PLANI
İŞLEM BASAMAKLARI
189) ES05-05 modülünü ana üniteye bağlayın.
190) Deney bağlantı planını ES05-05 modülü üzerinde gerçekleştirin.
191) Devrenin 10.1 nolu pinini modülün sağ üst bölümünde bulunan +12V pinine ve devrenin
10.2 nolu pinini yine modülün sağ üst bölümünde bulunan GND pinine bağlayın.
192) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını
ON konumuna alın.
193) DC voltmetre ile giriş gerilimini (10.1-10.2 pinlerinden) ölçüp kaydedin.
194) DC voltmetre ile çıkış gerilimini (10.3-10.4 pinlerinden) ölçüp kaydedin. PT10.1 trimpotunun
çıkış gerilimine etkisini inceleyin.
195) Devrenin enerjisini kesip, bağlantı kablolarını sökün.
ÖLÇÜM SONUÇLARI
PT10.1 trimpotu Giriş gerilimi Çıkış gerilimi
Minimumda
Orta konumda
Maksimumda
GND
+12V
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-13: SMPS (ANAHTARLAMALI GÜÇ KAYNAĞI) DENEYİ
93
Giriş:
Bir çok ihtiyaca cevap verebilen seri bağlanmış regülatörler çok popülerdir. Ancak ana
sorunları, geçirme transistörü (pass transistor) katındaki güç harcamasıdır. Akım arttıkça
transistörün daha çok güç harcaması gerekir. Bu durum daha fazla güç yitimi anlamına gelir.
Bundan dolayı seri regülatörler daha büyük hacimlidir. Bazı durumlarda geçirme transistörünün
soğutulması için fan gerekir. Bu sorunu çözmenin bir yolu anahtarlamalı regülatör kullanmaktır.
Bunlar büyük yüklere akım ürettiğinden geçirme transistöründe daha az güç harcanır. Diğer
yandan anahtarlamalı güç kaynakları özerk veya bağımsız (off-line) cihazlardır. Bundan kasıt, A.A
güç kaynağının voltajını 50/60 Hz transformatörden geçirmeden doğrultup filtre etmeleridir.
Bundan sonra filtre edilmiş voltaj bir güç anahtarı ve yüksek frekans transformatöründen geçerek
denkleştirilir; sonra bir daha doğrultulup filtre edilir.
Doğrusal güç kaynakları basitlik, çıkışta az gürültü (veya salınım), girişin ve yükün
mükemmel regüle edilmesi ve çok hızlı toparlanma gibi özelliklere sahip olsalar da verimleri çok iyi
değildir. Anahtarlamalı güç kaynakları yüksek verimleri ve güç yoğunlukları nedeniyle popüler
olmaktadırlar. Genel olarak doğrusal güç kaynakları giriş voltajı ve yükün regüle edilmesi (bazen
yüksek değerlerde bile) yönünden daha iyidirler.
Anahtarlamalı kaynakta çıkış voltajındaki salınım uçlar arası 25 ila 100 mV arasında olup,
doğrusal olanlardakinden daha büyüktür. Her ne kadar salınımın rms (etkin) değeri daha az olsa
da anahtarlamalı kaynaklarda geçerli olan uçlar arası değerdir. Anahtarlamalı kaynaklar doğrusal
olanlara göre geçici durumlarından daha yavaş normale dönerler. Ancak bu, alıkonma süresinin
daha uzun olması demektir ki, bu özellik bilgisayarların beslenmesinde çok yararlıdır.
Son olarak, anahtarlamalı kaynaklar doğrusal olanlara göre giriş voltajında daha büyük
değişimleri kabul ederler. Buradaki ± %10 marj kaynağın verimini direkt olarak etkileyen bir
faktördür. Diğer taraftan anahtarlamalı bir kaynakta giriş voltajındaki değişimlerin cihazın
performansı üzerindeki etkisi sıfırdır veya en azından çok azdır. Kullanıcı tarafından
programlanabilen modellerde bu marj % 20 ye kadar çıkabilir ki, bu uç şartlarda çok faydalı bir
özelliktir. Anahtarlamalı güç kaynakları regülasyon işlemini, çıkış geriliminden yapılan geri
beslemeye bağlı olarak, dahili osilatörün çıkışındaki anahtarlama sinyalinin duty cycle’ ını
ayarlayarak yaparlar.
Şekil 13.1: LM2575 SMPS entegresinin görünüşü ve blok yapısı
Unregulated
DC Input +Vin ON/OFF3.1 V Internal
Regulator
ON/OFF
1 5
Output
4
Feedback Current
R2 Fixed Gain Limit
mplifier Comparator
Freq
ift
kHz
Amp
ch
2
GND
3
R1
1.0 k
Sh
18
1.235 V
Band−Gap
Reference
Error A
Driver
Latch
.0
Sw
52 kHz
Oscillator
Reset
Thermal
Shutdown
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-13: SMPS (ANAHTARLAMALI GÜÇ KAYNAĞI) DENEYİ
94
Şekil 13.1’ de anahtarlamalı güç kaynağı uygulamaları için üretilmiş olan LM2575
entegresinin blok yapısı verilmiştir. LM2575 ile düzenlenmiş örnek anahtarlamalı güç kaynağı
devresi ise şekil 13.2’ de görülmektedir.
Şekil 13.2: Örnek anahtarlamalı güç kaynağı devresi
Devredeki R1 direncinin yerine trimpot konularak çıkış gerilimi ayarlanabilir hale
getirilebilmektedir (şekil 13.3)
Şekil 13.3: Ayarlanabilir çıkışlı anahtarlamalı güç kaynağı devresi
L1
100uH
D1
1
C
1000uF
C
100uF
LM2575
Adjustable
VOUT
Load
R2
R1
VIN
3 5
2
4
2
1
1,23. 1OUT
R
V
R
 
  
 
1
1
1,23. 1OUT
R
V
P
 
  
 L1
100uH
D1
1
C
1000uF
C
100uF
LM2575
Adjustable
VOUT
Load
R1
P1
VIN
3 5
2
4
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-13: SMPS (ANAHTARLAMALI GÜÇ KAYNAĞI) DENEYİ
95
Deney şeması:
DENEY MODÜLÜ
D1
1N5819
L1
100µH
4x1N4001
1
3 5
2
4
LM2575-ADJIN
GND
OUT
ON/OFF
FEEDBACK
R1
100k
P1
500k
C1
1000u
C2
LOAD
AC12V
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-13: SMPS (ANAHTARLAMALI GÜÇ KAYNAĞI) DENEYİ
96
DENEY BAĞLANTI PLANI
İŞLEM BASAMAKLARI
196) ES05-05 modülünü ana üniteye bağlayın.
197) Deney bağlantı planını ES05-05 modülü üzerinde gerçekleştirin.
198) 1.2-3.1, 1.4-3.2, 3.4-4.1, 3.6-4.3, 4.2-13.1, 4.4-13.2, 13.4-LD1, 13.5-LD3, LD2-LD5 ve
LD4-LD7 pinlerini kısa devre yapın.
199) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını
ON konumuna alın.
200) LOAD devresindeki trimpotu orta konuma alın.
201) DC voltmetre ile giriş gerilimini (13.1-13.2 pinlerinden) ölçüp kaydedin.
202) Osilaskolpla 13.3 nolu pinden SMPS entegresinin çıkış sinyalini ölçün.
203) DC voltmetre ile devrenin çıkış gerilimini (LD6-LD8 pinlerinden) ölçün.
204) PT13.1 trimpotunun SMPS entegresinin ve devrenin çıkış gerilimlerine etkisini inceleyin.
205) Devrenin enerjisini kesip, bağlantı kablolarını sökün.
ÖLÇÜM SONUÇLARI
PT13.1 trimpotu Giriş gerilimi Çıkış gerilimi
Minimumda
Orta konumda
Maksimumda
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-13: SMPS (ANAHTARLAMALI GÜÇ KAYNAĞI) DENEYİ
97
SMPS entegresinin çıkış sinyali (PT13.1 minimumda)
SMPS entegresinin çıkış sinyali (PT13.1 ortada)
ELEKTRİK-
ELEKTRONİK
MÜHENDİSLİĞİ
BÖLÜMÜ
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ
DENEY-13: SMPS (ANAHTARLAMALI GÜÇ KAYNAĞI) DENEYİ
98
SMPS entegresinin çıkış sinyali (PT13.1 maksimumda)

More Related Content

What's hot

Ohm Kanunu Deneyinin Yapilmasi proteus
Ohm Kanunu Deneyinin Yapilmasi proteusOhm Kanunu Deneyinin Yapilmasi proteus
Ohm Kanunu Deneyinin Yapilmasi proteus
yeniceliyim
 
Kuvvetlendirici devre tasarımı
Kuvvetlendirici devre tasarımıKuvvetlendirici devre tasarımı
Kuvvetlendirici devre tasarımıHakan Akgun
 
Operasyonel amplifikatorler - Elektronik Müh. Ders Notu
Operasyonel amplifikatorler - Elektronik Müh. Ders NotuOperasyonel amplifikatorler - Elektronik Müh. Ders Notu
Operasyonel amplifikatorler - Elektronik Müh. Ders Notu
Mehmet Akif AKTAŞ
 
Temel Devre
Temel DevreTemel Devre
Temel Devreakbey
 
Devre analiz-teknikleri (1)
Devre analiz-teknikleri (1)Devre analiz-teknikleri (1)
Devre analiz-teknikleri (1)
Ebubekir Bakır
 
ENERJİ İLETİM SİSTEMLERİ 9
ENERJİ İLETİM SİSTEMLERİ 9ENERJİ İLETİM SİSTEMLERİ 9
ENERJİ İLETİM SİSTEMLERİ 9
Dinçer Yüksek
 
ENERJİ İLETİM SİSTEMLERİ 3
ENERJİ İLETİM SİSTEMLERİ 3ENERJİ İLETİM SİSTEMLERİ 3
ENERJİ İLETİM SİSTEMLERİ 3Dinçer Yüksek
 
Elektrik motorlarına yol verme ve frenleme ders notum – Mehmet Tosuner – www....
Elektrik motorlarına yol verme ve frenleme ders notum – Mehmet Tosuner – www....Elektrik motorlarına yol verme ve frenleme ders notum – Mehmet Tosuner – www....
Elektrik motorlarına yol verme ve frenleme ders notum – Mehmet Tosuner – www....
Mehmet Tosuner Hoca
 
fet Transistörler
fet Transistörlerfet Transistörler
fet TransistörlerCihat Şahin
 

What's hot (10)

Ohm Kanunu Deneyinin Yapilmasi proteus
Ohm Kanunu Deneyinin Yapilmasi proteusOhm Kanunu Deneyinin Yapilmasi proteus
Ohm Kanunu Deneyinin Yapilmasi proteus
 
Harmonik
HarmonikHarmonik
Harmonik
 
Kuvvetlendirici devre tasarımı
Kuvvetlendirici devre tasarımıKuvvetlendirici devre tasarımı
Kuvvetlendirici devre tasarımı
 
Operasyonel amplifikatorler - Elektronik Müh. Ders Notu
Operasyonel amplifikatorler - Elektronik Müh. Ders NotuOperasyonel amplifikatorler - Elektronik Müh. Ders Notu
Operasyonel amplifikatorler - Elektronik Müh. Ders Notu
 
Temel Devre
Temel DevreTemel Devre
Temel Devre
 
Devre analiz-teknikleri (1)
Devre analiz-teknikleri (1)Devre analiz-teknikleri (1)
Devre analiz-teknikleri (1)
 
ENERJİ İLETİM SİSTEMLERİ 9
ENERJİ İLETİM SİSTEMLERİ 9ENERJİ İLETİM SİSTEMLERİ 9
ENERJİ İLETİM SİSTEMLERİ 9
 
ENERJİ İLETİM SİSTEMLERİ 3
ENERJİ İLETİM SİSTEMLERİ 3ENERJİ İLETİM SİSTEMLERİ 3
ENERJİ İLETİM SİSTEMLERİ 3
 
Elektrik motorlarına yol verme ve frenleme ders notum – Mehmet Tosuner – www....
Elektrik motorlarına yol verme ve frenleme ders notum – Mehmet Tosuner – www....Elektrik motorlarına yol verme ve frenleme ders notum – Mehmet Tosuner – www....
Elektrik motorlarına yol verme ve frenleme ders notum – Mehmet Tosuner – www....
 
fet Transistörler
fet Transistörlerfet Transistörler
fet Transistörler
 

Similar to diyarbakirescortt.tk

Manual blue solar-charge-controller-mppt-150-70-tr
Manual blue solar-charge-controller-mppt-150-70-trManual blue solar-charge-controller-mppt-150-70-tr
Manual blue solar-charge-controller-mppt-150-70-tr
AltanTimur
 
Analog Sayısal ve Sayısal Analog Çeviriciler
Analog Sayısal ve Sayısal Analog ÇeviricilerAnalog Sayısal ve Sayısal Analog Çeviriciler
Analog Sayısal ve Sayısal Analog Çeviriciler
Şahabettin Akca
 
Kopyası staj defteri
Kopyası staj defteriKopyası staj defteri
Kopyası staj defteriBaki Aydın
 
(07) instruction sheet (dvp ss2)
(07) instruction sheet (dvp ss2)(07) instruction sheet (dvp ss2)
(07) instruction sheet (dvp ss2)
André Luis Gomes de Sousa
 
Zener Diyor Uygulamalari Proteus
Zener Diyor Uygulamalari ProteusZener Diyor Uygulamalari Proteus
Zener Diyor Uygulamalari Proteusyeniceliyim
 
Sorular3 iyi bir kaynakggfdgvdsgsdfsdvdfb 3r
Sorular3 iyi bir kaynakggfdgvdsgsdfsdvdfb 3r Sorular3 iyi bir kaynakggfdgvdsgsdfsdvdfb 3r
Sorular3 iyi bir kaynakggfdgvdsgsdfsdvdfb 3r
Fatih Ocaklı
 
Dağitim transformatörleri (2)
Dağitim transformatörleri (2)Dağitim transformatörleri (2)
Dağitim transformatörleri (2)Celal Altinok
 
Deney 6
Deney 6Deney 6
Deney 6
karmuhtam
 
Hobi Elektronik Devre Projeleri
Hobi Elektronik Devre ProjeleriHobi Elektronik Devre Projeleri
Hobi Elektronik Devre Projeleri
Emre ARSLAN
 
Ktü eek elektronik malzemeler
Ktü eek elektronik malzemelerKtü eek elektronik malzemeler
Ktü eek elektronik malzemeler
Erol BALABAN
 
Endüstriyel Dönüşüm Çözümleri - Bobin - Frenleme Direnci - EMC filtre.pdf
Endüstriyel Dönüşüm Çözümleri - Bobin - Frenleme Direnci - EMC filtre.pdfEndüstriyel Dönüşüm Çözümleri - Bobin - Frenleme Direnci - EMC filtre.pdf
Endüstriyel Dönüşüm Çözümleri - Bobin - Frenleme Direnci - EMC filtre.pdf
Muhammet GÜVEN
 
Elektroporasyon cihazi
Elektroporasyon cihaziElektroporasyon cihazi
Elektroporasyon cihazi
Samet Çıklaçandır
 
Elektrik Makinaları Ders Notumun Sunusu 3. Bölüm Asenkron Motorlar – Mehmet T...
Elektrik Makinaları Ders Notumun Sunusu 3. Bölüm Asenkron Motorlar – Mehmet T...Elektrik Makinaları Ders Notumun Sunusu 3. Bölüm Asenkron Motorlar – Mehmet T...
Elektrik Makinaları Ders Notumun Sunusu 3. Bölüm Asenkron Motorlar – Mehmet T...
Mehmet Tosuner Hoca
 
Sensörler
Sensörler Sensörler
Sensörler
Furkan B.
 
Deney 3 ve 4
Deney 3 ve 4Deney 3 ve 4
Deney 3 ve 4
karmuhtam
 
2. Hafta.pdf
2. Hafta.pdf2. Hafta.pdf
2. Hafta.pdf
ridatr
 

Similar to diyarbakirescortt.tk (20)

Dvp sx i-mul_20110810
Dvp sx i-mul_20110810Dvp sx i-mul_20110810
Dvp sx i-mul_20110810
 
Manual blue solar-charge-controller-mppt-150-70-tr
Manual blue solar-charge-controller-mppt-150-70-trManual blue solar-charge-controller-mppt-150-70-tr
Manual blue solar-charge-controller-mppt-150-70-tr
 
Analog Sayısal ve Sayısal Analog Çeviriciler
Analog Sayısal ve Sayısal Analog ÇeviricilerAnalog Sayısal ve Sayısal Analog Çeviriciler
Analog Sayısal ve Sayısal Analog Çeviriciler
 
Baki staj
Baki stajBaki staj
Baki staj
 
Kopyası staj defteri
Kopyası staj defteriKopyası staj defteri
Kopyası staj defteri
 
(07) instruction sheet (dvp ss2)
(07) instruction sheet (dvp ss2)(07) instruction sheet (dvp ss2)
(07) instruction sheet (dvp ss2)
 
Zener Diyor Uygulamalari Proteus
Zener Diyor Uygulamalari ProteusZener Diyor Uygulamalari Proteus
Zener Diyor Uygulamalari Proteus
 
+şAblon
+şAblon+şAblon
+şAblon
 
Sorular3 iyi bir kaynakggfdgvdsgsdfsdvdfb 3r
Sorular3 iyi bir kaynakggfdgvdsgsdfsdvdfb 3r Sorular3 iyi bir kaynakggfdgvdsgsdfsdvdfb 3r
Sorular3 iyi bir kaynakggfdgvdsgsdfsdvdfb 3r
 
Dağitim transformatörleri (2)
Dağitim transformatörleri (2)Dağitim transformatörleri (2)
Dağitim transformatörleri (2)
 
Deney 6
Deney 6Deney 6
Deney 6
 
Hobi Elektronik Devre Projeleri
Hobi Elektronik Devre ProjeleriHobi Elektronik Devre Projeleri
Hobi Elektronik Devre Projeleri
 
Ktü eek elektronik malzemeler
Ktü eek elektronik malzemelerKtü eek elektronik malzemeler
Ktü eek elektronik malzemeler
 
Endüstriyel Dönüşüm Çözümleri - Bobin - Frenleme Direnci - EMC filtre.pdf
Endüstriyel Dönüşüm Çözümleri - Bobin - Frenleme Direnci - EMC filtre.pdfEndüstriyel Dönüşüm Çözümleri - Bobin - Frenleme Direnci - EMC filtre.pdf
Endüstriyel Dönüşüm Çözümleri - Bobin - Frenleme Direnci - EMC filtre.pdf
 
Elektroporasyon cihazi
Elektroporasyon cihaziElektroporasyon cihazi
Elektroporasyon cihazi
 
Elektrik Makinaları Ders Notumun Sunusu 3. Bölüm Asenkron Motorlar – Mehmet T...
Elektrik Makinaları Ders Notumun Sunusu 3. Bölüm Asenkron Motorlar – Mehmet T...Elektrik Makinaları Ders Notumun Sunusu 3. Bölüm Asenkron Motorlar – Mehmet T...
Elektrik Makinaları Ders Notumun Sunusu 3. Bölüm Asenkron Motorlar – Mehmet T...
 
Sensörler
Sensörler Sensörler
Sensörler
 
Inverter
InverterInverter
Inverter
 
Deney 3 ve 4
Deney 3 ve 4Deney 3 ve 4
Deney 3 ve 4
 
2. Hafta.pdf
2. Hafta.pdf2. Hafta.pdf
2. Hafta.pdf
 

diyarbakirescortt.tk

  • 1. T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ 2013
  • 2. ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ İÇİNDEKİLER İÇİNDEKİLER DENEY-1 ............................................................................................ 1 DENEY-1.1: PNPN DİYOT.............................................................. 1 DENEY-1.2: DİYAK......................................................................... 5 DENEY-2 .......................................................................................... 11 DENEY-2.1: SCR .......................................................................... 11 DENEY-2.2: TRİYAK..................................................................... 19 DENEY-3 SCR’Lİ KONTROL DENEYİ ............................................ 25 DENEY-4 .......................................................................................... 30 DENEY-4.1: OTOMATİK KONTROLLÜ LAMBA DENEYİ-1 ......... 30 DENEY-4.2: OTOMATİK KONTROLLÜ LAMBA DENEYİ-2 ......... 34 DENEY-5 .......................................................................................... 38 DENEY-5.1: TURN ON ZAMANLAYICI DENEYİ.......................... 38 DENEY-5.2: TURN OFF ZAMANLAYICI DENEYİ ........................ 42 DENEY-6...........................................................................................46 DENEY-6.1: PWM DENEYİ-1........................................................46 DENEY-6.2: PWM DENEYİ-2........................................................54 DENEY-7...........................................................................................61 DENEY-7.1: DC GÜÇ KONTROL DENEYİ ...................................61 DENEY-7.2: MOTOR HIZ KONTROL DENEYİ .............................65 DENEY-8 AC GÜÇ KONTROL DENEYİ ..........................................68 DENEY-9 DOĞRULTUCULAR.........................................................73 DENEY-10 AC/DC KONVERTÖR DENEYİ......................................81 DENEY-11 DC/AC İNVERTÖR DENEYİ ..........................................84 DENEY-12.........................................................................................87 DENEY-12.1: SABİT ÇIKIŞLI DC/DC KONVERTÖR DENEYİ......87 DENEY-12.2: AYARLI ÇIKIŞLI DC/DC KONVERTÖR DENEYİ ...90 DENEY-13 SMPS (ANAHTARLAMALI GÜÇ KAYNAĞI) DENEYİ..93
  • 3. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-1.1: PNPN DİYOT 11 Giriş: Shockley diyot yada 4 tabaka diyot olarak da bilinen PNPN DİYOT, tek yönlü çalışan yarıiletken anahtar elemanıdır. Sembolü ve görünüşü şekil 1.1’ de ve karakteristik eğrisi şekil 1.2’ de görülmektedir. Şekil 1.1: PNPN DİYOT’ un sembolü ve görünüşü Şekil 1.2: PNPN DİYOT’ un karakteristik eğrisi PNPN DİYOT’ un iletken olabilmesi için anot-katot uçları doğru polarmalandırılmalıdır. Doğru polarma gerilimi elemanı iletken yapan anahtarlama gerilimi (Switching voltage, VS) seviyesini aştığında eleman iletime geçerek akım geçirmeye başlar. İletime geçen PNPN diyot uçlarındaki gerilim birkaç volt seviyesine düşer. İletime geçen PNPN DİYOT’ un tekrar yalıtkan olabilmesi için, içinden geçen akımın tutma akımı (Holding current, IH) seviyesinin altına düşmesi gerekir. Anot Katot IF VF VR IR VS VR IS IH ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-1.1: PNPN DİYOT 22 ELEKTRİKSEL KARAKTERİSTİKLER ( T A = 2 5° C) Karakteristik Sembo l Min Typ Max Birim Forward Switching Voltage 1N5158, 1N5782, 1N5788 1N5159, 1N5783, 1N5789 1N5160, 1N5784, 1N5790 1N5779, 1N5785, 1N5791 1N5780, VS 8.0 9.0 10 11 12 13 — 10 11 12 13 14 15 Volts Forward Switching Current 1N5158 thru 1N 5160, 1N5779 thru 1N5781 1N 5782 thru 1N5793 Is — 5.0 10 50 100 µA Forward Off-State Current IFM (VF = 0.75 x Vs) 1.0 5.0 µA Reverse Current IRM (VR = VRm) 2.0 10 µA Holding Current 1N5158 thru 1N 5160, 1N5779 IH thru 1N5781 1N5782 thru 1N5787 1N5788 thru 1N5793 1.0 10 0.1 4.0 20 50 2.0 mA Forward On Voltage VF (IF = 150 mAdc) 1.0 1.5 Volts Şekil 1.3: 1N5158’ e ait karakteristik değerler Deney şeması: R2 100 R1 470 PNPN 1N5158 +12V P1 47k +88.8 Volts +88.8 mA
  • 4. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-1.1: PNPN DİYOT 33 DENEY MODÜLÜ DENEY BAĞLANTI PLANI ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-1.1: PNPN DİYOT 44 İŞLEM BASAMAKLARI 1) ES05-09-03 modülünü ana üniteye bağlayın. 2) Deney bağlantı planını ES05-09-03 modülü üzerinde gerçekleştirin. 3) 5.2-5.3 pinlerini kısa devre edin. 4) mA sembolü görülen pinler arasına dc ampermetre ve V sembolü görülen pinler arasına dc voltmetre bağlayın. 5) Devrenin +12V pinini modül üzerindeki +12V pinine bağlayın. GND devreye doğrudan geldiği için herhangi bir bağlantıya gerek yoktur. 6) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını ON konumuna alın. 7) P1 trimpotu yardımıyla PNPN diyot anot gerilimini (VA) birer volt aralıklarla artırıp, bu gerilimlere karşılık gelen anot akımını (IA) ölçün. Ölçüm sonuçlarını kaydedin. 8) Anot gerilimi, PNPN diyotun tetikleme seviyesine ulaştığında hızla düşecektir. Bu andan sonra da P1 trimpotu yardımıyla SUS’ un anot gerilimini artırmaya ve ölçümlerinize devam edin. 9) Ölçüm sonuçlarını kullanarak SUS’ un karakteristik eğrisini çizin. 10) Devrenin enerjisini kesin. ÖLÇÜM SONUÇLARI VA (Volt) 0 1 2 ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. IA (mA) IA VA
  • 5. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-1.2: DİYAK 5 Karakteristik Sembol Koşullar Değer Birim Breakover voltage* VBO C=22nF** MIN. 28 V TYP. 32 MAX. 36 Breakover voltage symmetry |VBO1-VBO2| C=22nF** MAX. ± 3 V Dynamic breakover voltage* ∆V VBO and VF at 10mA MIN. 5 V Output voltage* VO see diagram 2(R=20O ) MIN. 5 V Breakover current* IBO C=22nF** MAX. 50 µ A Rise time* tr see diagram 3 MAX. 2 µ s Leakage current* IR VR=0.5VBO max MAX. 10 µ A Giriş: DİYAK, iki yönlü çalışabilen yarıiletken tetikleme elemanıdır. Sembolü ve görünüşü şekil 1.4’ de ve karakteristik eğrisi şekil 1.5’ de görülmektedir. Şekil 1.4: Diyak’ ın sembolü ve görünüşü Şekil 1.5: Diyak’ ın karakteristik eğrisi DİYAK’ iki yönlü çalışabilme özelliği nedeniyle uçlarına isim verilmemiştir. DİYAK uçlarına uygulanan gerilim kırılma gerilimi (Breakover voltage, V(BO)) seviyesini aştığında eleman iletime geçerek akım geçirmeye başlar. İletime geçen DİYAK çıkışında yaklaşık 5 volt değerinde bir gerilim oluşur. İletime geçen DİYAK’ ın tekrar yalıtkan olabilmesi için, elemanın uçlarındaki gerilimin kırılma geriliminin %75-%80 seviyesinin altına düşmesi gerekir. Şekil 1.6: DB3’ e ait karakteristik değerler ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-1.2: DİYAK 6 Diyaklı osilatör devresi şekil 1.7’ de görülmektedir. Şekil 1.7: Diyaklı osilatör Devreye besleme gerilimi uygulandığında diyak yalıtkandır. C1 kondansatörü, R1 direnci ve P1 trimpotu üzerinden kaynak gerilimine (VCC) şarj olmaya başlar. C1 kondansatörü üzerindeki şarj gerilimi diyak’ ın kırılma gerilimi seviyesine (VBO) ulaşana dek bu durum devam eder (şekil 1.8). Şekil 1.8: C1 kondansatörünün şarjı C1 kondansatörü üzerindeki şarj gerilimi diyak’ ın kırılma gerilimi seviyesine ulaştığında, diyak iletime geçer. C1 kondanstörü, diyak ve R2 direnci üzerinden deşarj olmaya başlar. C1 kondansatörü üzerindeki gerilim azalmaya başlar ve bir süre sonra diyak yalıtkan olur (şekil 1.9). R2 R1 C1 +Vcc P1 V2V1 DİYAK C1 kondansatörü üzerindeki gerilim  VC1  Kaynak gerilimi VCC Diyak kırılma gerilimi VBO
  • 6. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-1.2: DİYAK 7 Şekil 1.9: C1 kondansatörünün deşarjı Diyak’ ın yalıtkan olmasıyla deşarj yolu kapanan C1 kondansatörü başlangıçta olduğu gibi yeniden şarj olmaya başlar ve aynı olaylar tekrarlanarak devam eder (şekil 1.9). Şekil 1.10: C1 kondansatörü uçlarındaki sinyal C1 kondansatörü uçlarında testere dişi bir sinyal meydana gelmektedir (şekil 1.10). Bu testere dişi dalganın yükselen bölümlerinde diyak kesimdedir. İçinden akım geçmeyen R2 direncinde gerilim düşümü olmaz. Testere dişi dalganın düşen bölümlerinde ise diyak iletimdedir. R2 direnci üzerinden deşarj olan C1 kondansatörü, bu direnç uçlarında pozitif pals oluşmasına neden olur (şekil 1.11). C1 kondansatörü üzerindeki gerilim   VC1  Kaynak gerilimi VCC Diyak kırılma gerilimi VBO Kaynak gerilimi VCC Diyak kırılma gerilimi VBO C1 kondansatörü üzerindeki gerilim   VC1  ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-1.2: DİYAK 8 Şekil 1.11: Diyak uçlarındaki dalga şekilleri Diyak’ lı osilatör devresi triyağın tetiklenmesi amacıyla kullanılmaktadır. P1 trimpotu, osilatör frekansını kontrol etmektedir. Deney şeması: Şekil 1.12: Diyak Deneyi Devre Şeması V1  V2  R2 390 R1 4.7k C1 100nF P1 100k V2V1 DIYAK DB3 24V AC 50Hz
  • 7. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-1.2: DİYAK 9 DENEY MODÜLÜ DENEY BAĞLANTI PLANI V1 V2 ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-1.2: DİYAK 10 İŞLEM BASAMAKLARI 11) ES05-09 modülünü ana üniteye bağlayın. 12) Deney bağlantı planını ES05-09 modülü üzerinde gerçekleştirin. 13) Devreler üzerindeki 11.4-12.1, 11.6-12.4, 12.5-13.1 ve12.6-13.2 pinlerini kısa devre yapın. 14) Devrenin besleme gerilimi ana ünite üzerinden doğrudan gelmektedir. 15) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını ON konumuna alın. 16) Osilaskop probunu 12.3-12.4 veya 12.5-12.6 pinlerine bağlayın. PT12 trimpotunu osilaskop ekranında düzgün bir sinyal görene dek çevirin. 17) Osilaskopla 12.3-12.4 ve 12.5-12.6 pinlerinden osilatörün çıkış sinyallerini ölçüp kaydedin. 18) Devrenin enerjisini kesin. ÖLÇÜM SONUÇLARI V1 V2
  • 8. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-2.1: SCR 11 Anot Katot Geyt SEMBOL PARAMETRE VDRM Peak Repetitive Off Stat Forward Voltage IDRM Peak Forward Blocking Current VRRM Peak Repetitive Off State Reverse Voltage IRRM Peak Reverse Blocking Current VTM Peak On State Voltage IH Holding Current VTM IH + I Anot + I + V Anot - on state RRM at VRRM Reverse Blocking Region (off state) Reverse Avalanche Region IDRM at VDRM Forward Blocking Region (off state) Giriş: SCR ya da diğer adıyla tristör, tek yönlü çalışabilen yarıiletken anahtarlama elemanıdır. Sembolü ve görünüşü şekil 2.1’ de ve karakteristik eğrisi şekil 2.2’ de görülmektedir. Şekil 2.1: SCR’ nin sembolü ve görünüşü Şekil 2.2: SCR’ nin karakteristik eğrisi SCR anot, katot ve geyt olmak üzere üç terminale sahiptir. Anot ve katot yük akımının geçtiği main terminaller, geyt ise elemanın tetiklendiği kontrol ucudur. SCR’ nin iletken olabilmesi için, öncelikle main terminaller yani anot-katot doğru polarma edilmelidir. Bunun ardından geyt ucuna katottan daha pozitif bir gerilim uygulanmalıdır. Bu iki şart sağlandığında, SCR hızla iletken olur ve akım geçirmeye başlar. Bu andan itibaren anot-katot gerilimi değişmediği sürece geyt ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-2.1: SCR 12 dv/dt V = 6 V RGK = 1 k Initiating IT = 10 mA VAA = 6 V RL = 100 tp(g) ≥ 20 µs R = 1 k AA Critical rate of rise of off-state voltage PARAMETRE KOŞULLAR MIN TYP MAX BİRİM Repetitive peak IDRM off-state current VD = rated VDRM RGK = 1 k TC = 110°C 400 µA Repetitive peak IRRM reverse current VR = rated VRRM IG = 0 TC = 110°C 1 mA IGT Gate trigger current VAA = 6 V RL = 100 tp(g) ≥ 20 µs 60 200 µA VGT Gate trigger voltage VAA = 6 V RL = 100 TC = - 40°C tp(g) ≥ 20 µs RGK = 1 k 1.2 V0.4 0.6 1 VAA = 6 V RL = 100 TC = 110°C tp(g) ≥ 20 µs RGK = 1 k 0.2 IH Holding current VAA = 6 V RGK = 1 k TC = - 40°C Initiating IT = 10 mA 8 mA 5 Peak on-state VTM voltage ITM = 5 A 1.7 V VD = rated VD RGK = 1 k TC = 110°C 10 V/µs R1 R2 +Vcc B1 SCR LAMBA S1 gerilimi kesilse dahi SCR iletimde kalmaya devam eder. Bunun sebebi, SCR içinden geçen tutma akımıdır. SCR akımı tutma akımı (Holding current, IH) altına düşmediği sürece eleman mühürlü olarak çalışmaya devam edecektir. Şekil 2.3: TIC106’ ya ait karakteristik değerler SCR her zaman bir yük ile birlikte kullanılmalıdır. Aksi durumda anot-katot arasından geçen akım sınırlanmadığı için eleman bozulacaktır. Diğer taraftan SCR hem dc hem de ac gerilim altında çalışabilmektedir. Ancak bu iki çalışma şekli arasında belirgin farklılıklar vardır. Şekil 2.4:SCR’ nin dc gerilimde çalışması
  • 9. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-2.1: SCR 13 Şekil 2.4’ deki devre SCR’ nin dc gerilimde çalışmasına örnek olarak verilmiştir. Devrede SCR’ nin yükü olarak lamba kullanılmıştır. S1 anahtarı kapatılarak devreye enerji verilir. Bu durumda SCR’ nin main terminalleri doğru polarma olmasına rağmen geyt tetiklemesi almadığından henüz yalıtkandır. SCR yalıtkan olduğu için lamba da sönüktür. B1butonu SCR’ ye geyt tetikleme gerilimi uygulamak için kullanılmıştır. B1 butonuna kısa süreli basıldığında, gerilim bölücü R1 ve R2 dirençleri üzerinden SCR’ nin geyt ucu katota göre daha pozitif bir gerilim alır. Böylece SCR iletime geçerek lambanın yanmasını sağlar. B1 butonu bırakılsa dahi SCR iletimde kalmaya ve lamba yanmaya devam eder. Ancak burada dikkat edilmesi gereken iki nokta vardır. Birincisi, R1 ve R2 dirençlerinin SCR’ yi tetikleyecek geyt gerilimi ve akımını sağlayacak değerde seçilmiş olmasıdır. İkinci önemli nokta ise, yük akımı yani lambadan geçen akımın SCR tutma akımı seviyesinin üzerinde bir değere sahip olmasıdır. SCR ac gerilim altında çalışırken sadece pozitif alternanslarda iletken olabilir. Yani anot ucu katottan daha pozitif gerilim aldığında ve uygun geyt tetiklemesi yapıldığında iletime geçer. Negatif alternanslarda ise yalıtkan durumdadır ve akım geçirmez. Şekil 2.5’ de SCR’ nin ac gerilimde çalışmasına örnek bir devre görülmektedir. Şekil 2.5:SCR’ nin ac gerilimde çalışması Devreye ac gerilim uygulandığında SCR kesimde ve lamba sönüktür. S1 anahtarı SCR’ nin geyt tetiklemesini kontrol etmektedir. S1 anahtarı kapatıldığında ac giriş geriliminin pozitif alternansında, hem SCR’ nin anot-katot uçları doğru polarma alacak hem de geyt ucuna katottan daha pozitif bir gerilim gelecektir. Pozitif alternans gerilimi SCR’ yi iletime götürecek kadar yükseldiğinde, SCR iletime geçerek lambanın yanmasını sağlar. SCR’ nin iletkenliği bu pozitif alternansın sonuna kadar devam eder. Çünkü takip eden negatif alternansta hem SCR’ nin main terminalleri ters polarma olur hem de pozitif geyt tetiklemesi oluşmaz. Sonuç olarak SCR ac besleme geriliminin pozitif alternanslarında iletken ve negatif alternanslarında yalıtkan olur. S1 anahtarı açıldığında ise geyt tetiklemesi kesilen SCR sürekli yalıtkandır. Pozitif alternanslarda R1 SCR LAMBA AC R2 S1 ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-2.1: SCR 14 SCR’ nin giriş geriliminin hangi değerinde iletime geçeceğinin R1 ve R2 gerilim bölücü dirençlerinin değerleri belirleyecektir. Görüldüğü gibi SCR ac gerilim altında geyt ucundan kontrol edilen bir doğrultucu gibi çalışmaktadır. Deney şeması: SCR’ nin dc gerilimde çalışması SCR’ nin ac gerilimde çalışması R1 1k SCR TIC106 AC 12V P1 4.7k SCOP R1 1k +88.8 mA +88.8 mA +88.8 Volts +88.8 Volts P1 4.7k +12V SCR TIC106
  • 10. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-2.1: SCR 15 DENEY MODÜLÜ DENEY BAĞLANTI PLANLARI SCR’ nin dc gerilimde çalışması ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-2.1: SCR 16 SCR’ nin ac gerilimde çalışması İŞLEM BASAMAKLARI 19) ES05-09-03 modülünü ana üniteye bağlayın. SCR’ nin dc gerilimde çalışması 20) Deney bağlantı planını ES05-09-03 modülü üzerinde gerçekleştirin. 21) Deney bağlantı planında görülen pinleri kısa devre edin. 22) mA sembolü görülen pinler arasına dc ampermetre ve V sembolü görülen pinler arasına dc voltmetre bağlayın. 23) Devrenin +12V pinini modül üzerindeki +12V pinine bağlayın. GND devreye doğrudan geldiği için herhangi bir bağlantıya gerek yoktur. 24) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını ON konumuna alın. 25) Lamba sönük durumda iken SCR kesimdedir. Kesim durumundaki SCR’ nin geyt gerilimini (VG), geyt akımını (IG), anot-katot gerilimini (VA-K) ve anot akımını (IA) ölçün. Ölçüm sonuçlarını kaydedin. 26) P1 trimpotu yardımıyla SCR geyt gerilimini lamba yanıncaya dek artırın. Lamba yandığı anda P1 trimpotunu çevirme işlemini bırakın. Bu durumda SCR iletimdedir. 27) SCR’ yi iletime götüren geyt gerilimini (VG), geyt akımını (IG), anot-katot gerilimini (VA-K) ve anot akımını (IA) ölçün. Ölçüm sonuçlarını kaydedin. 28) P1 trimpotunu ters yönde çevirerek lambanın durumunu ve SCR’ nin iletkenliğini gözlemleyin. 29) Devrenin enerjisini kesin. SCR’ nin ac gerilimde çalışması 30) Deney bağlantı planını ES05-09-03 modülü üzerinde gerçekleştirin. 31) Eğe varsa, devrenin +12V pinini modül üzerindeki +12V pini arasındaki bağlantıyı kesin.
  • 11. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-2.1: SCR 17 32) Deney bağlantı planında görülen pinleri kısa devre edin. 33) Devre üzerinde bulunan A1 ve A2 pinlerini modül üzerindeki A1 ve A2 pinlerine bağlayın. 34) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını ON konumuna alın. 35) P1 trimpotunu lamba yanıncaya dek çevirin. Lamba yandığı anda P1 trimpotunu çevirme işlemini bırakın. Bu durumda SCR iletimdedir. Osilaskopla lamba uçlarındaki sinyali ölçüp kaydedin. 36) P1 trimpotunu ters yönde çevirerek SCR’ nin kesime giderek lambanın sönmesini sağlayın. Osilaskopla lamba uçlarındaki sinyali ölçüp kaydedin. 37) Devrenin enerjisini kesin. ÖLÇÜM SONUÇLARI SCR’ nin dc gerilimde çalışması ölçümleri SCR kesimde SCR iletimde VG (Volt) IG (mA) VA-K (Volt) IA (mA) SCR’ nin ac gerilimde çalışması ölçümleri SCR iletimde iken lamba uçlarındaki sinyal ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-2.1: SCR 18 SCR kesimde iken lamba uçlarındaki sinyal
  • 12. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-2.2: TRİYAK 19 Sembol Parametre VDRM Peak Repetitive Forward Off−State Voltage IDRM Peak Forward Blocking Current VRRM Peak Repetitive Reverse Off−State Voltage IRRM Peak Reverse Blocking Current VTM Maximum On−State Voltage IH Holding Current IH VTM A2 (-) off state IDRM at VDRM A2 (+) VTM IH + I +V on state IRRM at VRRM Giriş: Triyak, iki yönlü çalışabilen yarıiletken anahtarlama elemanıdır. Sembolü ve görünüşü Şekil 2.6’ de ve karakteristik eğrisi Şekil 2.7’ de görülmektedir. Şekil 2.6: Triyak’ ın sembolü ve görünüşü Şekil 2.7: Triyak’ ın karakteristik eğrisi TRİYAK Anot1 (A1), Anot2 (A2) ve geyt olmak üzere üç terminale sahiptir. A1ve A2 yük akımının geçtiği main terminaller, geyt ise elemanın tetiklendiği kontrol ucudur. Triyak’ ın çalışma şekli SCR ile kıyaslandığında bazı farklılıklar göstermektedir. İlk olarak main terminaller ve geyt ucuna uygulanan gerilimlerin polaritesi önemli değildir. Yani uçlarına uygulanan her gerilim altında iletken olabilir. İkinci olarak da ac gerilim altında hem pozitif hem de negatif alternenslarda A2 A1 Geyt ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-2.2: TRİYAK 20 ELEKTRİKSEL KARAKTERİSTİKLER (Tj=25°C, aksi belirtilmedikçe) PARAMETRE SEMBOL KOŞULLAR MIN TYP MAX BİRİM Gate trigger current IGT VD = 12 V; IT = 0.1 A A2+G+ A2+G- A2-G- A2-G+ 5 8 11 30 35 35 35 70 mA Latching current IL VD = 12 V; IGT = 0.1 A A2+G+ A2+G- A2-G- A2-G+ 7 16 5 7 20 30 20 30 mA Holding current IH VD = 12 V; IGT = 0.1 A 5 15 mA On-state voltage VT IT = 5 A 1.4 1.7 V Gate trigger voltage VGT VD = 12 V; IT = 0.1 A 0.7 1.5 V VD = 400V ; IT = 0.1 A; Tj=125°C 0.25 0.4 V Off-state leakage current ID VD = VDRM(max) ; Tj = 125 °C 0.1 0.5 mA tetiklenip iletime götürülebilir. Bununla birlikte tıpkı SCR’ de olduğu gibi dc gerilim altında tetiklendiğinde mühürlenme özelliği bulunmaktadır. Ac gerilimde ise herhangi bir alternansta tetiklendiğinde o alternansın sonuna kadar iletimde kalmaya devam eder. Takip eden alternanslarda yeniden tetikleme gerekmektedir. Şekil 2.8: BT136’ ya ait karakteristik değerler Deney şeması: +88.8 mA +88.8 Volts P1 4.7k TRIYAK TIC206 +12V -12V R1 390 AC 12V SCOP
  • 13. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-2.2: TRİYAK 21 DENEY MODÜLÜ DENEY BAĞLANTI PLANI mA V ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-2.2: TRİYAK 22 İŞLEM BASAMAKLARI 38) ES05-09-03 modülünü ana üniteye bağlayın. 39) Deney bağlantı planını ES05-09-03 modülü üzerinde gerçekleştirin. 40) Deney bağlantı planında görülen pinleri kısa devre edin. 41) mA sembolü görülen pinler arasına dc ampermetre ve V sembolü görülen pinler arasına dc voltmetre bağlayın. 42) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını ON konumuna alın. 43) Circuit1 devresindeki PT1 trimpotunu, triyak geytine uygulanan gerilim sıfır olacak şekilde çevirip, lambanın durumunu gözlemleyin. 44) Ampermetreden triyakın geyt akımını (IG), voltmetreden triyakın geyt gerilimini (VG) ve osilaskopla lamba uçlarındaki sinyali (10.1-10.3 pinlerinden) ölçün. 45) PT1 trimpotunu, triyak geytine uygulanan gerilim pozitif yönde artacak şekilde çevirin. Lamba yeterince parlak yandığı anda PT1’ i çevirme işlemini bitirin. 46) Ampermetreden triyakı tetikleyen geyt akımını (IG), voltmetreden triyakı tetikleyen geyt gerilimini (VG) ve osilaskopla lamba uçlarındaki sinyali (10.1-10.3 pinlerinden) ölçün. 47) PT1 trimpotunu, triyak geytine uygulanan gerilim sıfır olacak şekilde çevirip, lambanın durumunu gözlemleyin. 48) PT1 trimpotunu, triyak geytine uygulanan gerilim negatif yönde artacak şekilde çevirin. 49) Lamba yeterince parlak yandığı anda PT1’ i çevirme işlemini bitirin. 50) Ampermetreden triyakı tetikleyen geyt akımını (IG), voltmetreden triyakı tetikleyen geyt gerilimini (VG) ve osilaskopla lamba uçlarındaki sinyali (10.1-10.3 pinlerinden) ölçüp kaydedin. 51) PT1 trimpotunu, triyak geytine uygulanan gerilim sıfır olacak şekilde çevirip, lambanın durumunu gözlemleyin. 52) Devrenin enerjisini kesip, bağlantı kablolarını sökün. 53) Ölçüm sonuçlarını kaydedin. ÖLÇÜM SONUÇLARI Triyakı tetikleyen Pozitif yöndeki Negatif yöndeki Geyt gerilimi Geyt akımı Geyt gerilimi Geyt akımı
  • 14. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-2.2: TRİYAK 23 Triyak kesimde iken lamba uçlarındaki sinyal Triyak iletimde iken lamba uçlarındaki sinyal (Geyt gerilimi pozitif) ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-2.2: TRİYAK 24 Triyak iletimde iken lamba uçlarındaki sinyal (Geyt gerilimi negatif)
  • 15. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-3: SCR’Lİ KONTROL DENEYİ 25 Giriş: Dc gerilim altında çalışan SCR’ nin iletime geçmesinden sonra tekrar kesime gidebilmesi için durdurma yöntemlerinden birisinin uygulanması gerekir. Bu yöntemler: 1. Seri anahtarla durdurma yöntemi: Bu yöntemde SCR’ nin main terminalleri üzerinde bulunan bir anahtar yardımıyla yük akımı kesilir. Bunun neticesinde tutma akımı da ortadan kalkacağından SCR durmuş olur. Bu anahtar tekrar kapatılsa bile SCR iletken olmayacaktır. Konrol artık geyte geçmiştir ve SCR’ nin tekrar tetiklenmesi gerekir. Şekil 3.1:SCR’ nin seri anahtarla durdurulması 2. Paralel anahtarla durdurma yöntemi: Seri anahtarla durdurma, devre enerjisi de kesildiğinden pek tercih edilmeyen bir yöntemdir. Paralel anahtarla durdurma yöntemi şekil 3.1’ de verilmiştir. Paralel anahtarla durdurma yönteminin ana prensibi de SCR’ nin tutma akımını sona erdirmektir. Tutma akımı sona erdiğinde eğer tetikleme almıyorsa SCR kesime gidecektir. Şekil 3.1’ deki devrede S1 anahtarı kapatılarak devreye enerji uygulanır. B1 butonuna kısa süreli basılarak SCR tetiklenir ve lamba sürekli yanmaya başlar. Bu andan sonra B1 butonu kontrolü kaybettiğinden açılsa dahi SCR iletimde kalmaya devam edecektir. SCR’ yi kesime götürmek için B2 butonuna kısa süreli basılmalıdır. B2 butonuna basıldığında, yük akımı SCR yerine iç direnci daha küçük olan buton üzerinden devresini tamamlayacaktır. Böylece SCR içinden geçen akım sıfıra yakın bir değere düşer. Bunun sonucu olarak, SCR akımı tutma akımı seviyesinin altına düşer ve eleman kesime gider. R1 R2 +Vcc B1 SCR LAMBA S1 S1 anahtarı kısa süreli açılarak SCR kesime götürülür. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-3: SCR’Lİ KONTROL DENEYİ 26 Şekil 3.2:SCR’ nin paralel anahtarla durdurulması 3. Kapasitif anahtarla durdurma yöntemi: Durdurma yöntemleri arasında en etkili olan yöntemdir. Main terminaller olan anot-katot uçlarını ters polarma etmek, bu yöntemin prensibini oluşturmaktadır. Kapasitif anahtarla durdurma yöntemi şekil 3.3’ de görülmektedir. Şekil 3.3:SCR’ nin kapasitif anahtarla durdurulması Şekil 3.3’ de verilen devrede S1 anahtarı kapatılıp B1 butonuna kısa süreli basılarak SCR iletime götürülür. B1 açılsa bile SCR iletimde kalmaya ve lamba yanmaya devam eder. Bu arada R1 R2 +Vcc B1 B2 SCR LAMBA S1 B2 butonuna kısa süreli basılarak SCR kesime götürülür. R1 R2 R3 C1 +Vcc B1 B2 SCR S1 +- B2 butonuna kısa süreli basılıp anot-katot uçlarına ters gerilim uygulanarak SCR kesime götürülür.
  • 16. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-3: SCR’Lİ KONTROL DENEYİ 27 C1 kondansatörü, R1 direnci ve iletimdeki SCR üzerinden şekilde görülen polaritede şarj olur. B2 butonuna kısa süreli basıldığında, C1 üzerindeki şarj gerilimi SCR’ nin anot-katot uçlarına uygulanır. Polariteye dikkat edilecek olursa, anot ucuna negatif ve katot ucuna pozitif gerilim gelecektir. Main terminalleri ters polarma alan SCR hemen yalıtkan olur ve yükün çalışması sona erer. Deney şeması: R1 2.2k R2 10k R4 1k C1 1u +12V B1 B2 SCR TIC106 ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-3: SCR’Lİ KONTROL DENEYİ 28 DENEY MODÜLÜ DENEY BAĞLANTI PLANI
  • 17. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-3: SCR’Lİ KONTROL DENEYİ 29 İŞLEM BASAMAKLARI 54) ES05-09-03 modülünü ana üniteye bağlayın. 55) Deney bağlantı planını ES05-09-03 modülü üzerinde gerçekleştirin. 56) Deney bağlantı planında görülen pinleri kısa devre edin. 57) Devrenin +12V pinini modül üzerindeki +12V pinine bağlayın. GND devreye doğrudan geldiği için herhangi bir bağlantıya gerek yoktur. 58) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını ON konumuna alın. 59) B1 ve B3 butonlarına basmadan LED’ in durumunu gözlemleyin. 60) B1 butonuna kısa süreli basarak LED’ in durumunu gözlemleyin. 61) B3 butonuna kısa süreli basarak LED’ in durumunu gözlemleyin. 62) Devrenin enerjisini kesip, bağlantı kablolarını sökün. 63) Ölçüm sonuçlarını kaydedin. ÖLÇÜM SONUÇLARI B1 butonu B3 butonu LED’ in durumu Açık Açık Kısa süreli basılıyor Açık Açık Kısa süreli basılıyor ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-4.1: OTOMATİK KONTROLLÜ LAMBA DENEYİ-1 30 Giriş: Alternatif bir otomatik kontrollü lamba devresi de şekil 4.1’ de görülmektedir. Şekil 4.1: Otomatik kontrollü lamba devresi Devrede ışık algılama işlemi, bir önceki devrede olduğu gibi LDR ile yapılmaktadır. Lamba ise OP-AMP yerine bir triyak tarafından kontrol edilmektedir. Triyak ise bir RC faz kaydırma devresi ile kumanda edilmektedir. Aydınlıkta, LDR’ nin içdirenci ve buna bağlı olarak üzerindeki gerilim azdır. C1 kondansatörü, triyağı tetiklemek için gerekli olan geyt gerilimine şarj olamaz. Yeterli geyt tetiklemesi alamayan triyak kesimde ve lamba sönüktür. Karanlıkta LDR’ nin içdirenci artar. LDR üzerindeki gerilim artacağından, C1 kondansatörü triyağı tetiklemek için gerekli olan geyt gerilimine şarj olur. Tetiklenen triyak iletime geçer ve lambayı yakar. Devredeki P1 trimpotu, RC faz kaydırma devresinin zaman sabitesini ayarlamaktadır. Yani kondansatörün şarj süresi, dolayısıyla lambanın hangi ışık seviyesinde yanacağı bu trimpot tarafından belirlenir. R1 AC BESLEME P1 TRIYAK C1 LDR
  • 18. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-4.1: OTOMATİK KONTROLLÜ LAMBA DENEYİ-1 31 Deney şeması: DENEY MODÜLÜ R1 470 AC 24V P1 100k Osilaskop TRIYAK TIC206 LDR C4 220nF ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-4.1: OTOMATİK KONTROLLÜ LAMBA DENEYİ-1 32 DENEY BAĞLANTI PLANI İŞLEM BASAMAKLARI 64) ES05-09-04 modülünü ana üniteye bağlayın. 65) Deney bağlantı planını ES05-09-04 modülü üzerinde gerçekleştirin. 66) Devrenin AC 24V ve 0 pinlerini modül üzerindeki A3 ve A1 pinlerine bağlayın. 67) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını ON konumuna alın. 68) Karanlık ortamı oluşturmak üzere LDR’ nin üzerini kapatarak ışık almasını engelleyin. P1 trimpotunu ayarlayarak karanlıkta lambanın yanmasını sağlayın. 69) LDR’ nin üzerini açarak lambanın söndüğünü gözlemleyin. Eğer lamba sönmüyor ise P1 trimpotunu lamba sönene kadar hassas bir şekilde ayarlayın. 70) Devrede OSCILLOSCOPE yazan pinler arasına osilaskopu bağlayarak aydınlık ve karanlık durumları için lamba uçlarındaki sinyalleri ölçüp sonuçları kaydedin. 71) Devrenin enerjisini kesip, bağlantı kablolarını sökün.
  • 19. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-4.1: OTOMATİK KONTROLLÜ LAMBA DENEYİ-1 33 ÖLÇÜM SONUÇLARI Aydınlıkta lamba uçlarındaki sinyal Karanlıkta lamba uçlarındaki sinyal ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-4.2: OTOMATİK KONTROLLÜ LAMBA DENEYİ-2 34 Giriş: Otomatik kontrollü lamba devresi şekil 4.2’ de görülmektedir. Şekil 4.2: Otomatik kontrollü lamba devresi Devrede ışık algılama işlemi LDR tarafından yapılmaktadır. OP-AMP ise karşılaştırıcı olarak kullanılmıştır. OP-AMP, LDR üzerindeki gerilimle P2 trimpotu üzerindeki gerilimi karşılaştırmakta ve buna göre çıkış gerilimi üretmektedir. P2 trimpotu, karşılaştırma için kullanılacak referans gerilimi ayarlamaktadır. Diğer bir ifade ile lambanın yanacağı karanlık seviyesini ayarlar. P2’ nin değeri büyüdükçe, lambanın yanması için gerekli olan karanlık seviyesi artar. P1 trimpotunun görevi ise, LDR’ nin hassasiyetini ayarlamaktır. Aydınlıkta, LDR’ nin içdirenci ve buna bağlı olarak üzerinde düşen gerilim azdır. P2 üzerinde düşen gerilim LDR üzerine düşen gerilimden büyük olur. OP-AMP’ ın (-) girişindeki gerilim (+) girişindeki gerilimden büyük olacağı için, OP-AMP çıkışında –VCC değerine yakın bir gerilim olur. Ters polarma alan D1 diyotu kesimde olacağından, Q1 transistörü de kesimde olacak ve röle çekmeyeceğinden lamba yanmayacaktır. Ortam yeterince karanlık olduğunda, LDR’ nin içdirenci ve buna bağlı olarak üzerinde düşen gerilim artarak, P2 tarafından belirlenen referans gerilimi aşar. OP-AMP’ ın (+) girişindeki gerilim (-) girişindeki gerilimden büyük olacağı için, OP-AMP çıkışında +VCC değerine yakın bir gerilim oluşur. Doğru polarma olan D1 iletime geçerek, Q1 transistörünü de iletken yapar. Q1 transistörünün iletime geçmesiyle röle enerjilenir ve paleti çekerek lambayı yakar. Bir lambanın otomatik olarak kontrol edilmesinde LDR dışında farklı algılayıcılar kullanılabilir. Bunun yanı sıra kontrol elemanı olarak OP-AMP yerine farklı bir elemandan da faydalanabilir. Ya da kontrol edilecek lamba doğrudan ac gerilimde çalıştırılabilir. 3 2 6 74 R1 P1 +Vcc Q1R2 R3 -Vcc D2 D1 LDR P2
  • 20. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-4.2: OTOMATİK KONTROLLÜ LAMBA DENEYİ-2 35 Deney şeması: DENEY MODÜLÜ 3 2 6 74 LM741 R1 10k P1 1M +12V Q1 BC237 R3 47k R4 22k -12V D1 1N4001 +88.8 Volts +88.8 Volts +88.8 Volts D1 1N4001 LDR P2 100k ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-4.2: OTOMATİK KONTROLLÜ LAMBA DENEYİ-2 36 DENEY BAĞLANTI PLANI İŞLEM BASAMAKLARI 72) ES05-09-04 modülünü ana üniteye bağlayın. 73) Deney bağlantı planını ES05-09-04 modülü üzerinde gerçekleştirin. 74) 2.4-2.5 pinlerini kısa devre edin. 75) Devrenin +12V pinini modül üzerindeki +12V pinine ve devrenin -12V pinini modül üzerindeki -12V pinine bağlayın. GND devreye doğrudan geldiği için herhangi bir bağlantıya gerek yoktur. 76) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını ON konumuna alın. 77) LAMP CONTROL trimpotu ışık kaynağı olarak kullanılan lambanın (devrenin sol tarafındaki lamba) parlaklığını kontrol etmektedir. 78) P1 trimpotu LDR’ nin hassasiyetini kontrol etmektedir. 79) P2 trimpotu aydınlık-karanlık seviyesini kontrol etmektedir. 80) Öncelikle LAMP CONTROL trimpotu ile ışık kaynağı olarak kullanılan lambanın maksimum parlaklıkta yanmasını sağlayın. 81) P2 trimpotu ile devrenin yükü olan lambanın sönmesini sağlayın. 82) LAMP CONTROL trimpotu ile ışık kaynağı olarak kullanılan parlaklığını sizin belirleyeceğiniz karanlık seviyesine kadar kısın. 83) Eğer belirlediğiniz karanlık seviyesi için devrenin yükü olan lamba hala sönmedi ise, P1 trimpotunu lamba sönene kadar hassas bir şekilde ayarlayın. 84) LAMP CONTROL trimpotu ile ışık kaynağı olarak kullanılan lambanın parlaklığını bir miktar artırıp yük olarak kullanılan lambanın sönmesini sağlayın. 85) Devrede V sembolü görülen pinler arasına dc voltmetre bağlayarak aydınlık ve karanlık durumları için OP-AMP’ ın giriş ve çıkış gerilimlerini ölçüp sonuçları kaydedin. 86) Aynı işlemler ışık kaynağı olarak kullanılan lamba söndürülüp devre dışı bırakılarak, ortam ışığı için de denenebilir. 87) Devrenin enerjisini kesip, bağlantı kablolarını sökün.
  • 21. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-4.2: OTOMATİK KONTROLLÜ LAMBA DENEYİ-2 37 ÖLÇÜM SONUÇLARI OP-AMP’ ın evirmeyen girişindeki gerilim OP-AMP’ ın eviren girişindeki gerilim OP-AMP’ın çıkış gerilimi Lambanın durumu Aydınlık Karanlık ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-5.1: TURN ON ZAMANLAYICI DENEYİ 38 Giriş: Turn-on tipi zamanlayıcı devresi şekil 5.1’ de görülmektedir. Şekil 5.1: Turn-on tipi zamanlayıcı devresi Turn-on tipi zamanlayıcı, zamanlama işlemi başladıktan bir süre sonra yükü çalıştıran devredir. Devredeki zamanlama süresi kondansatör ve ona seri durumdaki direnç tarafından belirlenir. Süreyi uzatmak için bu elemanlardan birinin veya her ikisinin değerini büyütmek gerekir. Şekil 5.1’ de OP-AMP’ la düzenlenmiş turn-on tipi bir zamanlayıcı devresi görülmektedir. OP-AMP yerine BJT veya FET gibi başka aktif elemanlar kullanmak da mümkündür. P1 trimpotu C1 kondansatörünün şarj süresini, bu da devrenin zamanlama süresini belirler. P2 trimpotu ise karşılaştırıcı olarak kullanılan OP-AMP’ ın referans gerilimini belirler. OP-AMP, C1 ve P2 elemanları üzerindeki gerilimleri karşılaştır ve karşılaştırma sonucuna göre çıkış gerilimi verir. P2’ nin değeri karşılaştırmada kullanılan referans gerilimi belirlediğine göre, aynı zamanda zamanlama süresini de etkileyecektir. Dolayısıyla P1 ve P2 trimpotlarından birinin yada her ikisinin değerinin büyümesi devrenin zamanlama süresini büyütecektir. Devreye enerji uygulandığında, C1 kondansatörü P1 üzerinden şarj olmaya başlar. C1 üzerindeki gerilim P2 tarafından belirlenen referans gerilimi seviyesine ulaşana dek, OP-AMP’ ın (-) girişindeki gerilim (+) girişindeki gerilimden büyük olacağı için, OP-AMP çıkışında –VCC değerine yakın bir gerilim olur. Ters polarma alan D1 diyotu kesimde olacağından, Q1 transistörü de kesimde olacak ve röle çekmeyeceğinden lamba yanmayacaktır. P1 üzerinden şarj olan C1 üzerindeki gerilim bir süre sonra referans gerilimi aşar. OP-AMP’ ın (+) girişindeki gerilim (-) girişindeki gerilimden büyük olacağı için, OP-AMP çıkışında +VCC değerine yakın bir gerilim oluşur. Doğru polarma olan D1 iletime geçerek, Q1 transistörünü de iletken yapar. Q1 transistörünün iletime geçmesiyle röle enerjilenir ve paleti çekerek lambayı yakar. Herhangi bir işlem yapılmadığı sürece lamba yanmaya devam edecektir. Zamanlama işlemini yeniden başlatmak üzere, kısa bir süre için B butonuna basılır. Butona basıldığında C1 kondansatörü deşarj olacağından, zamanlama işlemi yeniden başlamış olacaktır. 3 2 6 74 C1 R1 P2 B P1 +Vcc Q1R2 R3 -Vcc D2 D2
  • 22. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-5.1: TURN ON ZAMANLAYICI DENEYİ 39 Deney şeması: DENEY MODÜLÜ 3 2 6 74 LM741 C1 1000u R1 10k P2 100k B P1 1M +12V Q1 BC237 R2 47k R3 22k -12V D2 1N4001 +88.8 Volts +88.8 Volts +88.8 Volts D2 1N4001 ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-5.1: TURN ON ZAMANLAYICI DENEYİ 40 DENEY BAĞLANTI PLANI İŞLEM BASAMAKLARI 88) ES05-09-04 modülünü ana üniteye bağlayın. 89) Deney bağlantı planını ES05-09-04 modülü üzerinde gerçekleştirin. 90) 1.2-1.7, 1.3-1.4 ve 1.4-1.8 pinlerini kısa devre edin. 91) Devrenin +12V pinini modül üzerindeki +12V pinine ve devrenin -12V pinini modül üzerindeki -12V pinine bağlayın. GND devreye doğrudan geldiği için herhangi bir bağlantıya gerek yoktur. 92) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını ON konumuna alın. 93) P1 trimpotu zaman sabitesini dolayısıyla kondansatörün şarj süresini kontrol etmektedir. 94) P2 trimpotu referans gerilimi seviyesini kontrol etmektedir. Referans gerilimin büyüklüğü ise zamanlama süresini belirler. 95) B butonuna kısa süreli basarak zamanlama işlemini başlatın. Butona basıldıktan bir süre sonra rölenin çekerek lambayı yaktığını gözlemleyin. 96) P1 ve P2 trimpotlarının zamanlama süresine etkisini gözlemleyin. 97) Devrede V sembolü görülen pinler arasına dc voltmetre bağlayarak butona basıldığı ve lambanın yandığı anlar için OP-AMP’ ın giriş ve çıkış gerilimlerini ölçüp sonuçları kaydedin. 98) Devrenin enerjisini kesip, bağlantı kablolarını sökün.
  • 23. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-5.1: TURN ON ZAMANLAYICI DENEYİ 41 ÖLÇÜM SONUÇLARI OP-AMP’ ın evirmeyen girişindeki gerilim OP-AMP’ ın eviren girişindeki gerilim OP-AMP’ın çıkış gerilimi Butona basıldığında Lamba yandığında P1 trimpotu P2 trimpotu Zamanlayıcı süresi Orta konumda Orta konumda Maksimumda Orta konumda Orta konumda Maksimumda Maksimumda Maksimumda ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-5.2: TURN OFF ZAMANLAYICI DENEYİ 42 Giriş: Turn-off tipi zamanlayıcı devresi şekil 5.2’ de görülmektedir. Şekil 5.2: Turn-off tipi zamanlayıcı devresi Turn-off tipi zamanlayıcı, zamanlama işlemi başladıktan bir süre sonra yükün çalışmasını durduran devredir. Devredeki zamanlama süresi kondansatör ve ona seri durumdaki direnç tarafından belirlenir. Süreyi uzatmak için bu elemanlardan birinin veya her ikisinin değerini büyütmek gerekir. Şekil 5.2’ de OP-AMP’ la düzenlenmiş turn-off tipi bir zamanlayıcı devresi görülmektedir. OP-AMP yerine BJT veya FET gibi başka aktif elemanlar kullanmak da mümkündür. P1 trimpotu C1 kondansatörünün şarj süresini, bu da devrenin zamanlama süresini belirler. P2 trimpotu ise karşılaştırıcı olarak kullanılan OP-AMP’ ın referans gerilimini belirler. OP-AMP, C1 ve P2 elemanları üzerindeki gerilimleri karşılaştır ve karşılaştırma sonucuna göre çıkış gerilimi verir. P2’ nin değeri karşılaştırmada kullanılan referans gerilimi belirlediğine göre, aynı zamanda zamanlama süresini de etkileyecektir. Dolayısıyla P1 ve P2 trimpotlarından birinin yada her ikisinin değerinin büyümesi devrenin zamanlama süresini büyütecektir. Devreye enerji uygulandığında, C1 kondansatörü P1 üzerinden şarj olmaya başlar. C1 üzerindeki gerilim P2 tarafından belirlenen referans gerilimi seviyesine ulaşana dek, OP-AMP’ ın (+) girişindeki gerilim (-) girişindeki gerilimden büyük olacağı için, OP-AMP çıkışında +VCC değerine yakın bir gerilim oluşur. Doğru polarma olan D1 iletime geçerek, Q1 transistörünü de iletken yapar. Q1 transistörünün iletime geçmesiyle röle enerjilenir ve paleti çekerek lambayı yakar. P1 üzerinden şarj olan C1 üzerindeki gerilim bir süre sonra referans gerilimi aşar. OP-AMP’ ın (-) girişindeki gerilim (+) girişindeki gerilimden büyük olur ve OP-AMP çıkışında –VCC değerine yakın bir gerilim olur. Ters polarma alan D1 diyotu kesime gider. Q1 transistörü de yalıtkan olacağından röle enerjisi kesilir ve lamba söner. Herhangi bir işlem yapılmadığı sürece lamba sönük kalmaya devam edecektir. Zamanlama işlemini yeniden başlatmak üzere, kısa bir süre için B butonuna basılır. Butona basıldığında C1 kondansatörü deşarj olacağından, zamanlama işlemi yeniden başlamış olacaktır. 3 2 6 74 C1 R1 P2 B P1 +Vcc Q1R2 R3 -Vcc D2 D1
  • 24. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-5.2: TURN OFF ZAMANLAYICI DENEYİ 43 Deney şeması: DENEY MODÜLÜ 3 2 6 74 LM741 C1 1000u R1 10k P2 100k B P1 1M +12V Q1 BC237 R2 47k R3 22k -12V D2 1N4001 +88.8 Volts +88.8 Volts +88.8 Volts D1 1N4001 ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-5.2: TURN OFF ZAMANLAYICI DENEYİ 44 DENEY BAĞLANTI PLANI İŞLEM BASAMAKLARI 99) ES05-09-04 modülünü ana üniteye bağlayın. 100) Deney bağlantı planını ES05-09-04 modülü üzerinde gerçekleştirin. 101) 1.2-1.8, 1.3-1.4 ve 1.3-1.7 pinlerini kısa devre edin. 102) Devrenin +12V pinini modül üzerindeki +12V pinine ve devrenin -12V pinini modül üzerindeki -12V pinine bağlayın. GND devreye doğrudan geldiği için herhangi bir bağlantıya gerek yoktur. 103) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını ON konumuna alın. 104) P1 trimpotu zaman sabitesini dolayısıyla kondansatörün şarj süresini kontrol etmektedir. 105) P2 trimpotu referans gerilimi seviyesini kontrol etmektedir. Referans gerilimin büyüklüğü ise zamanlama süresini belirler. 106) B butonuna kısa süreli basarak zamanlama işlemini başlatın. Butona basıldıktan bir süre sonra rölenin bırakarak lambanın söndüğünü gözlemleyin. 107) P1 ve P2 trimpotlarının zamanlama süresine etkisini gözlemleyin. 108) Devrede V sembolü görülen pinler arasına dc voltmetre bağlayarak butona basıldığı ve lambanın yandığı anlar için OP-AMP’ ın giriş ve çıkış gerilimlerini ölçüp sonuçları kaydedin. 109) Devrenin enerjisini kesip, bağlantı kablolarını sökün.
  • 25. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-5.2: TURN OFF ZAMANLAYICI DENEYİ 45 ÖLÇÜM SONUÇLARI OP-AMP’ ın evirmeyen girişindeki gerilim OP-AMP’ ın eviren girişindeki gerilim OP-AMP’ın çıkış gerilimi Butona basıldığında Lamba söndüğünde P1 trimpotu P2 trimpotu Zamanlayıcı süresi Orta konumda Orta konumda Maksimumda Orta konumda Orta konumda Maksimumda Maksimumda Maksimumda ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-6.1: PWM DENEYİ-1 46 Giriş: PWM (Pulse Width Modulation-Pals Genişlik Modülasyonu), dc yük kontrolünde ve özellikle de dc motor hız kontrolünde çok yaygın olarak kullanılan bir tekniktir. PWM kontrolündeki temel prensip, kare dalga sinyalin duty cycle oranını değiştirmektir. Duty cycle oranı, kare dalga sinyalin bir periyotluk süresinin ne kadarının iş yaptığını ifade eder. Duty cycle, devreye dışarıdan uygulanan bir kontrol sinyali ile ya da devrede bulunan trimpot veya potansiyometre gibi bir elemanla ayarlanabilir. Şekil 6.1’ de frekans ve periyot değerleri aynı ancak duty cycle oranları farklı kare dalga sinyaller görülmektedir. Burada pozitif mantık göz önünde bulundurularak, kare dalga sinyalin lojik H durumları duty cycle olarak düşünülmüştür. Şekil 6.1: Farklı duty cycle oranlarının gösterimi Şekil 6.2: PWM devresi 1 periyot Duty cycle= %20 Duty cycle= %80 Kare dalga sinyalin iş yapan kısımları 1 2 4584 CLK 14 E 13 MR 15 CO 12 Q0 3 Q1 2 Q2 4 Q3 7 Q4 10 Q5 1 Q6 5 Q7 6 Q8 9 Q9 11 4017 1 2 3 4001 5 6 4 4001 R1 C1 R2 S R3 OUT S R CLOCK 6 1 5 4 3 2
  • 26. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-6.1: PWM DENEYİ-1 47 Şekil 6.3: 4017 entegresi zaman diyagramı ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-6.1: PWM DENEYİ-1 48 Şekil 6.2’ de örnek bir PWM devresi görülmektedir. Devre, osilatör, Johnson sayıcı ve RS flip-flop’ tan meydana gelmiştir. 4584 entegresi ile yapılan osilatör, 4017 entegresine clock sinyali uygulamaktadır. Johnson sayıcı entegresi olan 4017’ ye ait zaman diyagramı ise şekil 6.3’ de verilmiştir. Zaman diyagramından anlaşılacağı gibi, herhangi bir anda 4017 entegresine ait 10 adet çıkıştan sadece birisi aktiftir. Her yeni clock girişinde entegrenin bir sonraki çıkışı aktif olur. 4001 entegresi içinde bulunan iki girişli NOR kapıları ise RS flip-flop oluşturmak için kullanılmıştır. Şekil 6.4’ de RS flip-flop’ un doğruluk tablosu görülmektedir Şekil 6.4: RS flip-flop doğruluk tablosu Devredeki çeşitli noktalara ait sinyaller şekil 6.5 ve şekil 6.6’ da verilmiştir. Bu şekillerde verilen sinyaller arasındaki fark, devrede bulunan S anahtarının konumudur. Şekil 6.5, anahtarın 6 nolu konumu için geçerlidir. Çıkış sinyali (OUT) incelendiğinde duty cycle oranının oldukça küçük olduğu görülmektedir. Anahtarın konumu sırayla değiştirilip 1 nolu konuma alındığında OUT ucundaki çıkış sinyalinin duty cycle oranı artmaktadır. Şekil 6.5: Devredeki S anahtarının 6 nolu konumu için zaman diyagramı Şekil 6.6: Devredeki S anahtarının 1 nolu konumu için zaman diyagramı S R Q (OUT) 0 0 Değişim yok 0 1 0 1 0 1 1 1 Yasak durum Q Q R S CLOCK S R OUT CLOCK S R OUT
  • 27. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-6.1: PWM DENEYİ-1 49 Deney şeması: DENEY MODÜLÜ 1 2 4584 CLK 14 E 13 MR 15 CO 12 Q0 3 Q1 2 Q2 4 Q3 7 Q4 10 Q5 1 Q6 5 Q7 6 Q8 9 Q9 11 4017 1 2 3 4001 5 6 4 4001 R1 47k R2 4.7k S R3 4.7k OUT S R CLOCK 6 1 5 4 3 2 ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-6.1: PWM DENEYİ-1 50 DENEY BAĞLANTI PLANI İŞLEM BASAMAKLARI 110) ES05-09-02 modülünü ana üniteye bağlayın. 111) Deney bağlantı planını ES05-09-02 modülü üzerinde gerçekleştirin. 112) 1.2-1.4 ve 1.3-1.5 pinlerini kısa devre edin. 113) Devrenin +12V pinini modül üzerindeki +12V pinine bağlayın. GND devreye doğrudan geldiği için herhangi bir bağlantıya gerek yoktur. 114) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını ON konumuna alın. 115) A pinini 6 nolu pine bağlayın. 116) Osilaskopla 1.6 pinindeki çıkış sinyalini gözlemleyin. 117) A pini ile 6 nolu pin arasındaki bağlantıyı sökün. 118) A pinini sırasıyla 5, 4, 3, 2 ve 1 nolu pinlere de bağlayarak, 7 nolu işlem basamağını tekrarlayın. 119) Devrenin enerjisini kesip, bağlantı kablolarını sökün.
  • 28. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-6.1: PWM DENEYİ-1 51 ÖLÇÜM SONUÇLARI Çıkış sinyali (A pini 6 nolu pine bağlı) Çıkış sinyali (A pini 5 nolu pine bağlı) ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-6.1: PWM DENEYİ-1 52 Çıkış sinyali (A pini 4 nolu pine bağlı) Çıkış sinyali (A pini 3 nolu pine bağlı)
  • 29. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-6.1: PWM DENEYİ-1 53 Çıkış sinyali (A pini 2 nolu pine bağlı) Çıkış sinyali (A pini 1 nolu pine bağlı) ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-6.2: PWM DENEYİ-2 54 GND TRIG OUT RESET VCC DISCH THRES CONT 1 8 2 7 3 6 4 5 +VC C 8 CONTRO L VOLTAGE THRESH- 5 OLD 6 TRIGGER 2 DIS - CHARG E 7 RESET 4 R COMPARATOR R COMPARATOR R FLIP FLOP OUTPUT STAGE 3 1 COMPARATOR COMPARATOR FLIP FLOP OUTPUT STAGE Giriş: PWM sinyali elde etmek için kullanılan en sık yöntemlerden biri de NE555 zamanlayıcı entegresi kullanmaktadır. NE555, astable ve monostable multivibratör devreleri düzenlemek amacıyla üretimiş bir entegredir. Şekil 6.7: NE555 entegresinin görünüşü, ayak yapısı ve blok yapısı Şekil 6.8: NE555 entegresi ile astable multivibratör uygulaması +VCC (5 V to 15 V) RA RL Output 6RB GND C 0.01 µF 85 4 CONT VCC RESET DISCH OUT THRES TRIG 7 3 2 1 Çıkış gerilimi-VOUT Kondansatör gerilimi-VC
  • 30. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-6.2: PWM DENEYİ-2 55 Şekil 6.9: PWM devresi NE555 entegresi ile yapılan PWM devresi şekil 6.9’ de verilmiştir. Devre temel olarak şekil 6.8’ de verilmiş olan astable multivibratördür. Farklı olarak, RB direnci yerine ayarlı direnç P1 kullanılmış ve iki adet diyot ilave edilmiştir. C1 kondansatörü, D1 diyotu ve P1 trimpotunun D1’ e bağlı ucu ile orta ucu arasındaki direnç değeri üzerinden şarj olur. Deşarj anında ise, D2 diyotu ve P1 trimpotunun D2’ ye bağlı ucu ile orta ucu arasındaki direnç değeri üzerinden deşarj olur (şekil 6.9). P1 trimpotunun ayarlandığı konuma bağlı olarak, C1 kondansatörünün şarj ve deşarj zaman sabiteleri farklı değerler alacaktır. Buna bağlı olarak da entegre çıkışındaki kare dalga sinyalin H ve L’ da kalma süreleri değişecektir. Böylece devre, çıkışında duty cycle oranı P1 ile ayarlanan PWM sinyali oluşur. Şekil 6.10, 6.11 ve 6.12’ da P1’ in farklı konumları için çıkıştan alınacak sinyallerin dalga şekilleri görülmektedir. Şekil 6.10: Duty cycle oranı küçük 4 7 3 1 8 2 6 5 NE555 R1 P1 D2 D1 C1 C2 +Vcc R2 OUT 4 7 3 1 8 2 6 5 NE555 R1 P1 D2D1 C1 C2 +Vcc R2 OUT ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-6.2: PWM DENEYİ-2 56 Şekil 6.11: Duty cycle oranı %50 Şekil 6.12: Duty cycle oranı büyük 4 7 3 1 8 2 6 5 NE555 R1 P1 D2D1 C1 C2 +Vcc R2 OUT 4 7 3 1 8 2 6 5 NE555 R1 P1 D2D1 C1 C2 +Vcc R2 OUT
  • 31. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-6.2: PWM DENEYİ-2 57 Deney şeması: DENEY MODÜLÜ 4 7 3 1 8 2 6 5 NE555 R1 1k P1 100k D2 1N4001 D1 1N4001 C1 100nF C2 10nF +12V R2 1k SCOP CH1 SCOP CH2 ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-6.2: PWM DENEYİ-2 58 DENEY BAĞLANTI PLANI İŞLEM BASAMAKLARI 120) ES05-09-02 modülünü ana üniteye bağlayın. 121) Deney bağlantı planını ES05-09-02 modülü üzerinde gerçekleştirin. 122) Devrenin +12V pinini modül üzerindeki +12V pinine bağlayın. GND devreye doğrudan geldiği için herhangi bir bağlantıya gerek yoktur. 123) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını ON konumuna alın. 124) Osilaskopla CH1 pinindeki çıkış sinyalini gözlemleyin. 125) P1 potansiyometresinin çıkış sinyaline etkisini gözlemleyin. 126) P1 potansiyometresinin minimum, orta ve maksimum konumları için ölçtüğünüz çıkış sinyallerini çizin. 127) Devrenin enerjisini kesip, bağlantı kablolarını sökün.
  • 32. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-6.2: PWM DENEYİ-2 59 ÖLÇÜM SONUÇLARI Çıkış sinyali (P1 minimumda) Çıkış sinyali (P1 ortada) ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-6.2: PWM DENEYİ-2 60 Çıkış sinyali (P1 maksimumda)
  • 33. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-7.1: DC GÜÇ KONTROL DENEYİ 61 Giriş: DC güç kontrol devrelerinde en çok kullanılan yöntem PWM tekniğidir. PWM sinyali bir güç elemanı ile (BJT, MOSFET vs.) sürülerek dc yükün kontrolü sağlanır. Yük üzerinde harcanan güç, PWM sinyalinin duty cycle oranı değiştirilerek ayarlanır. Duty cycle oranının değiştirilmesi, aslında kare dalga sinyalin ortalama değerini değiştirmektedir. Yüke aktarılan güç, küçük duty cycle oranlarında düşük, büyük duty cycle oranlarında ise fazla olacaktır. Şekil 7.1’ de PWM sinyali ile kontrol edilen bir lambanın parlaklık seviyesinin alacağı durumlar görülmektedir. Şekil 7.1: Farklı duty cycle oranları için lambanın parlaklığı Deney şeması: Lamba parlaklığı çok az Lamba parlaklığı maksimum Lamba parlaklığı orta düzede 4 7 3 1 8 2 6 5 NE555 R1 1k RV6 100k D2 1N4001 D1 1N4001 C1 100nF C2 10nF +12V R2 1k Q1 TIP41 ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-7.1: DC GÜÇ KONTROL DENEYİ 62 DENEY MODÜLÜ DENEY BAĞLANTI PLANI
  • 34. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-7.1: DC GÜÇ KONTROL DENEYİ 63 İŞLEM BASAMAKLARI 128) ES05-09-02 modülünü ana üniteye bağlayın. 129) Deney bağlantı planını ES05-09-02 modülü üzerinde gerçekleştirin. 130) Devrenin +12V pinini modül üzerindeki +12V pinine bağlayın. GND devreye doğrudan geldiği için herhangi bir bağlantıya gerek yoktur. 131) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını ON konumuna alın. 132) P1 potansiyometresini çevirerek lambanın parlaklığını gözlemleyin. 133) Lamba uçlarındaki sinyali osilaskopla ölçüp kaydedin. 134) Devrenin enerjisini kesip, bağlantı kablolarını sökün. ÖLÇÜM SONUÇLARI P1 trimpotu Lambanın parlaklığı Minimumda Orta konumda Maksimumda Lamba uçlarındaki sinyal (P1 minimumda) ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-7.1: DC GÜÇ KONTROL DENEYİ 64 Lamba uçlarındaki sinyal (P1 ortada) Lamba uçlarındaki sinyal (P1 maksimumda)
  • 35. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-7.2: MOTOR HIZ KONTROL DENEYİ 65 Giriş: DC güç kontrol devresindeki lambanın yerine bir dc motor kullanıldığında, PWM sinyali ile motorun devir hızı kontrol edilebilir. Motor üzerinde harcanan güç, PWM sinyalinin duty cycle oranı değiştirilerek ayarlanır. Motorun devir hızı, küçük duty cycle oranlarında düşük, büyük duty cycle oranlarında ise fazla olacaktır. Şekil 7.2’ de PWM sinyali ile kontrol edilen bir motorun devir hızı seviyesinin alacağı durumlar görülmektedir. Şekil 7.2: Farklı duty cycle oranları için motorun devir hızı Deney şeması: Motor yavaş dönüyor Motor hızlı dönüyor Motor devir hızı orta düzede 4 7 3 1 8 2 6 5 NE555 R1 1k RV1 100k D2 1N4001 D1 1N4001 C1 100nF C2 10nF +12V R2 1k Q1 TIP41 D3 1N4001 ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-7.2: MOTOR HIZ KONTROL DENEYİ 66 DENEY MODÜLÜ DENEY BAĞLANTI PLANI
  • 36. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-7.2: MOTOR HIZ KONTROL DENEYİ 67 İŞLEM BASAMAKLARI 135) ES05-09-02 modülünü ana üniteye bağlayın. 136) Deney bağlantı planını ES05-09-02 modülü üzerinde gerçekleştirin. 137) Devrenin +12V pinini modül üzerindeki +12V pinine bağlayın. GND devreye doğrudan geldiği için herhangi bir bağlantıya gerek yoktur. 138) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını ON konumuna alın. 139) P1 potansiyometresini çevirerek motorun dönüş hızını gözlemleyin. 140) Devrenin enerjisini kesip, bağlantı kablolarını sökün. ÖLÇÜM SONUÇLARI P1 trimpotu Motor dönüş hızı Minimumda Orta konumda Maksimumda ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-8: AC GÜÇ KONTROL DENEYİ 68 Giriş: AC güç kontrol devresi şekil 8.1’ de görülmektedir. Şekil 8.1: AC güç kontrol devresi Devre, ac gerilim altında çalışan bir lamba üzerinde harcanan gücü kontrol etmektedir. Bu nedenle, ac gerilim altında iki yönlü çalışma özelliğine sahip olan triyak kullanılmıştır. Triyağı tetiklemek üzere R1, P1 ve C1 elemanlarından oluşan bir RC faz kaydırma bölümü bulunmaktadır. Triyak C1 üzerindeki gerilimle tetiklenmekte ve C1’ in şarj süresi P1 tarafından ayarlanmaktadır. P1’ in minimum değeri için C1 hızlı şarj olacağından, triyak alternansların başına yakın bir bölgede tetiklenir. Alternansların büyük bir bölümünde iletimde olan triyak lambanın parlak yanmasını sağlayacaktır. P1’ in değeri büyüdükçe, C1’ in şarj süresi de büyüyecektir. Bu durumda triyak alternansların sonuna yakın bir bölgede tetiklenir. Alternansların büyük bir bölümünde kesimde olan triyak lambanın sönük yanmasına neden olur. P1’ in değeri yeteri kadar büyütüldüğünde ise triyak tetikleme alamaz. Tetikleme almayan triyak yalıtkan olur ve lamba söner. R1 AC BESLEMEP1 TRIYAK C1 R2
  • 37. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-8: AC GÜÇ KONTROL DENEYİ 69 Deney şeması: DENEY MODÜLÜ R1 470 AC 24VP1 100k SCOP TRIYAK TIC206 C1 100nF R2 100 ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-8: AC GÜÇ KONTROL DENEYİ 70 DENEY BAĞLANTI PLANI İŞLEM BASAMAKLARI 141) ES05-09-03 modülünü ana üniteye bağlayın. 142) Deney bağlantı planını ES05-09-03 modülü üzerinde gerçekleştirin. 143) 8.1-8.2, 8.3-8.4 ve 8.5-8.6 pinlerini kısa devre edin. 144) Devrenin A1 ve A3 pinlerini modül üzerindeki A1 ve A3 pinlerine bağlayın. 145) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını ON konumuna alın. 146) P1 potansiyometresini çevirerek lambanın parlaklığını gözlemleyin. 147) Lamba uçlarındaki sinyali (8.7-8.8 pinlerinden) osilaskopla ölçüp kaydedin. 148) Devrenin enerjisini kesip, bağlantı kablolarını sökün. ÖLÇÜM SONUÇLARI P1 trimpotu Lambanın parlaklığı Minimumda Orta konumda Maksimumda
  • 38. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-8: AC GÜÇ KONTROL DENEYİ 71 Lamba uçlarındaki sinyal (P1 minimumda) Lamba uçlarındaki sinyal (P1 ortada) ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-8: AC GÜÇ KONTROL DENEYİ 72 Lamba uçlarındaki sinyal (P1 maksimumda)
  • 39. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-9: DOĞRULTUCULAR 73 Giriş: Alternatif gerilimin doğru gerilime dönüştürülmesi işlemine doğrultma ve bu işlemi yapan devrelere de doğrultucu adı verilmektedir. Doğrultma işlemi için diyotlardan faydalanılmaktadır. Doğrultma işlemi yarım dalga veya tam dalga olarak gerçekleştirilebilmektedir. Yarım Dalga Doğrultucu Şekil 9.1: Yarım dalga doğrultucu Yarım dalga doğrultucu devresi şekil 9.1’ de görülmektedir. Devre girişine uygulanan ac gerilimin pozitif alternanslarında diyot iletken olacağından pozitif alternanslar çıkışta aynen görünecektir (diyot üzerinde düşen gerilim ihmal edilmiştir). Giriş geriliminin negatif alternaslarında diyot yalıtkan olur ve çıkış gerilimi sıfırdır. Bu durum şekil 9.2’ de görülmektedir. Şekil 9.2: Yarım dalga doğrultucu giriş ve çıkış sinyalleri D R +Vo AC giriş Doğrultucu çıkışı p DC V V   + + - - Doğrultucu girişi Doğrultucu çıkışı Vp + + - - ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-9: DOĞRULTUCULAR 74 İki Diyotlu Tam Dalga Doğrultucu Şekil 9.3: İki diyotlu tam dalga doğrultucu İki diyotlu tam dalga doğrultucu devresi şekil 9.3’ de görülmektedir. İki diyotlu tam dalga doğrultucu devresinin simetrik ac giriş gerilimine ihtiyacı vardır. Bu amaçla devre, orta uçlu bir transformatör üzerinden beslenir. Devre girişine uygulanan ac gerilimin pozitif alternanslarında D1 diyotu ve negatif alternansında D2 iletime geçerek çıkışta sürekli pozitif alternans oluşmasını sağlarlar. Doğrultucuya ait giriş ve çıkış sinyalleri şekil 9.4’ de verilmiştir. Şekil 9.4: İki diyotlu tam dalga doğrultucu giriş ve çıkış sinyalleri D1 R +Vo D2 AC giriş AC giriş Doğrultucu çıkışı + ++ + - - Doğrultucu girişi Doğrultucu çıkışı Vp + + - - 2 p DC V V  
  • 40. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-9: DOĞRULTUCULAR 75 Köprü Tipi Tam Dalga Doğrultucu Şekil 9.5: Köprü tipi tam dalga doğrultucu Köprü tipi tam dalga doğrultucu devresi şekil 9.5’ de görülmektedir. Devre girişine uygulanan ac gerilimin pozitif alternanslarında D1 ve D2 diyotları ve negatif alternansında D3 ve D4 diyotları iletime geçerek çıkışta sürekli pozitif alternans oluşmasını sağlarlar. Doğrultucuya ait giriş ve çıkış sinyalleri şekil 9.6’ da verilmiştir. Şekil 9.6: Köprü tipi tam dalga doğrultucu giriş ve çıkış sinyalleri R +Vo D1 D4D2 D3 AC giriş Doğrultucu çıkışı 2 p DC V V   + ++ + - - Doğrultucu girişi Doğrultucu çıkışı Vp + + - - ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-9: DOĞRULTUCULAR 76 DENEY MODÜLÜ DENEY BAĞLANTI PLANLARI Filtresiz yarım dalga doğrultucu
  • 41. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-9: DOĞRULTUCULAR 77 Filtreli yarım dalga doğrultucu Filtresiz tam dalga doğrultucu ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-9: DOĞRULTUCULAR 78 Filtreli tam dalga doğrultucu İŞLEM BASAMAKLARI 149) ES05-05 modülünü ana üniteye bağlayın. Yarım dalga doğrultucu 150) Filtresiz yarım dalga doğrultucu deney bağlantı planını ES05-05 modülü üzerinde gerçekleştirin. Kalın çizgi ile gösterilen yerleri bağlantı kablolarını kullanarak kısa devre edin. 151) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını ON konumuna alın. 152) Osilaskopla giriş gerilimini (1.1-1.3 pinlerinden) ölçüp kaydedin. 153) Osilaskopla çıkış gerilimini (LD6-LD8 pinlerinden) ölçüp kaydedin. 154) LOAD devresindeki potansiyometre yük akımını kontrol etmektedir. Yük akımının çıkış gerilimine etkisini gözlemleyin. 155) Multimetre ile çıkış geriliminin dc değerini ölçüp kaydedin. 156) Devrenin enerjisini kesin. 157) Filtreli yarım dalga doğrultucu deney bağlantı planını ES05-05 modülü üzerinde gerçekleştirip aynı ölçümleri tekrarlayın. 158) Ölçüm sonuçlarını kaydedin. Tam dalga doğrultucu 159) Filtresiz tam dalga doğrultucu deney bağlantı planını ES05-05 modülü üzerinde gerçekleştirin. Kalın çizgi ile gösterilen yerleri bağlantı kablolarını kullanarak kısa devre edin. 160) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını ON konumuna alın. 161) Osilaskopla giriş gerilimini (1.1-1.3 pinlerinden) ölçüp kaydedin. 162) Osilaskopla çıkış gerilimini (LD6-LD8 pinlerinden) ölçüp kaydedin. 163) LOAD devresindeki potansiyometre yük akımını kontrol etmektedir. Yük akımının çıkış gerilimine etkisini gözlemleyin. 164) Multimetre ile çıkış geriliminin dc değerini ölçüp kaydedin. 165) Devrenin enerjisini kesin.
  • 42. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-9: DOĞRULTUCULAR 79 166) Filtreli yarım dalga doğrultucu deney bağlantı planını ES05-05 modülü üzerinde gerçekleştirip aynı ölçümleri tekrarlayın. 167) Ölçüm sonuçlarını kaydedin. ÖLÇÜM SONUÇLARI Yarım Dalga Doğrultucu Ölçümleri Giriş gerilimi Filtresiz çıkış gerilimi Filtreli çıkış gerilimi Multimetre ile ölçülen çıkış geriliminin DC değeri (Volt) Filtresiz Filtreli ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-9: DOĞRULTUCULAR 80 Tam Dalga Doğrultucu Ölçümleri Giriş gerilimi Filtresiz çıkış gerilimi Filtreli çıkış gerilimi Multimetre ile ölçülen çıkış geriliminin DC değeri (Volt) Filtresiz Filtreli
  • 43. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-10: AC/DC KONVERTÖR DENEYİ 81 Giriş: AC/DC konvertör devresi şekil 10.1’ de görülmektedir. Şekil 10.1: AC/DC konvertör devresi Devre, ac gerilimi dc gerilime dönüştürmektedir. Temelde bir tam dalga doğrultucu devresidir. Transformatörün sekonder sargısındaki ac gerilim, köprü diyot tarafından tam dalga doğrultulur. Köprü diyot çıkışındaki kondansatör ise çıkış gerilimin filtre ederek ideal dc gerilime yaklaştırmaktadır. Deney şeması: +Vo D1 D4D2 D3 AC giriş DC çıkışC1 4X1N4001 +Vo D1 D4D2 D3 AC giriş DC çıkışC1 1000uF ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-10: AC/DC KONVERTÖR DENEYİ 82 DENEY MODÜLÜ DENEY BAĞLANTI PLANI
  • 44. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-10: AC/DC KONVERTÖR DENEYİ 83 İŞLEM BASAMAKLARI 168) ES05-05 modülünü ana üniteye bağlayın. 169) Deney bağlantı planını ES05-05 modülü üzerinde gerçekleştirin. 170) 1.2-3.1, 1.4-3.2, 3.4-4.1 ve 3.6-4.3 pinlerini kısa devre edin. 171) Transformatör primer sargı gerilimini ana üniteden aldığı için herhangi bir bağlantıya gerek yoktur. 172) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını ON konumuna alın. 173) Osilaskopla giriş gerilimini (1.1-1.3 pinlerinden) ölçüp kaydedin. 174) Osilaskopla çıkış gerilimini (4.2-4.4 pinlerinden) ölçüp kaydedin. 175) Devrenin enerjisini kesip, bağlantı kablolarını sökün. ÖLÇÜM SONUÇLARI Giriş gerilimi Çıkış gerilimi ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-11: DC/AC İNVERTÖR DENEYİ 84 Giriş: DC/AC invertör devresi şekil 11.1’ de görülmektedir. Şekil 11.1: DC/AC konvertör devresi Devre, dc gerilimi ac gerilime dönüştürmektedir. Temelde NE555 entegresi ile düzenlenmiş bir karasız multivibratörden oluşmaktadır. Kararsız multivibratör devresi kare dalga sinyal üreten bir osilatör olup, frekansı P1 trimpotu ile ayarlanabilmektedir. Kararsız multivibratör çıkışındaki kare dalga sinyal Q1 ve Q2 transistörleri ile sürülerek transformatörün düşük gerilim sargısına uygulanır. Bilindiği gibi transformatörler ac gerilimi düşürdüğü gibi, yükseltme özelliğine de sahiptir. Dolayısıyla alçak gerilim sargısına kare dalga formunda ac gerilim uygulanan TR1 transformatörünün yüksek gerilim sargısından daha büyük bir gerilim alınır. Çıkıştan alınacak ac gerilimin büyüklüğü transformatörün dönüştürme oranı tarafından belirlenir. C4 kondansatörü transformatörün çıkış sargısı ile birlikte bir paralel rezonans devresi oluşturur. Bu iki elemanın değerlerinin belirlediği rezonans frekansı için devrenin çıkışından düzgün bir sinüs dalga sinyal elde edilir. Çıkış sinyalinin düzgün formda elde edilebilmesi için, kararsız multivibratörün frekansını belirleyen P1 trimpotu ile ayar yapılmalıdır. 4 7 3 1 8 2 6 5 NE555 R1 P1 C1 C2 +Vcc R2 Q1 Q2 C3 L1 TR1 ÇıkışC4
  • 45. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-11: DC/AC İNVERTÖR DENEYİ 85 Deney şeması: DENEY MODÜLÜ 4 7 3 1 8 2 6 5 NE555 R1 1k P1 100k C1 100nF C2 10nF +12V R2 100 Q1 TIP41 Q2 TIP42 C3 2200u L1 1uH TR1 12V/220V SCOP C4 10nF ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-11: DC/AC İNVERTÖR DENEYİ 86 DENEY BAĞLANTI PLANI İŞLEM BASAMAKLARI 176) ES05-09-03 modülünü ana üniteye bağlayın. 177) Deney bağlantı planını ES05-09-03 modülü üzerinde gerçekleştirin. 178) Devrenin +12V pinini modül üzerindeki +12V pinine bağlayın. GND devreye doğrudan geldiği için herhangi bir bağlantıya gerek yoktur. 179) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını ON konumuna alın. 180) Osilaskopla devrenin çıkış uçlarındaki sinyali ölçün. P1 trimpotunu osilaskop ekranında düzgün bir sinyal görene dek çevirin. Ölçüm sonucunu kaydedin. 181) Devrenin enerjisini kesip, bağlantı kablolarını sökün. ÖLÇÜM SONUÇLARI Çıkış gerilimi
  • 46. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-12.1: SABİT ÇIKIŞLI DC/DC KONVERTÖR DENEYİ 87 Giriş: DC/DC sabit çıkışlı konvertör devresi şekil 12.1’ de görülmektedir. Şekil 12.1: DC/DC sabit çıkışlı konvertör devresi Devre, dc gerilimi dc gerilime dönüştürmektedir. Temelde bir gerilim regülatörü devresidir. 7805 entegresi pozitif giriş pozitif çıkışlı gerilim regülatörüdür. Girişine çıkış gerilimi olan +5V’ tan en az 2V daha büyük bir gerilim uygulanmalıdır. Bu şart altında, çıkıştan sabit +5V gerilim alınır. 7805 kısa devre akım sınırlamasına ve yüksek sıcaklıklara karşı ısı korumasına sahiptir. Bunun dışında ilave olarak birleştirilmiş bir koruma devresi daha vardır. Bu devre “second perforation” denilen bir güç transistörünü korur. Bu yolla en zor şartlar altında bile regülatörün kendi kendini tahrip etmesi önlenmiş olur. Şekil 12.2: 7805 entegresinin görünüşü ve blok yapısı VI 1 VO 3 GND 2 7805 C1 C2 +Vo DC çıkış +Vi DC giriş Input Output 3 GND 2 Series Pass Element 1 Current Generator SOA Protection Starting Circuit Reference Voltage Error Amplifier Thermal Protection ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-12.1: SABİT ÇIKIŞLI DC/DC KONVERTÖR DENEYİ 88 Deney şeması: DENEY MODÜLÜ VI 1 VO 3 GND 2 7805 C1 470uF C2 10uF +5V DC çıkış +12V DC giriş
  • 47. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-12.1: SABİT ÇIKIŞLI DC/DC KONVERTÖR DENEYİ 89 DENEY BAĞLANTI PLANI İŞLEM BASAMAKLARI 182) ES05-05 modülünü ana üniteye bağlayın. 183) Deney bağlantı planını ES05-05 modülü üzerinde gerçekleştirin. 184) Devrenin 9.1 nolu pinini modülün sağ üst bölümünde bulunan +12V pinine ve devrenin 9.2 nolu pinini yine modülün sağ üst bölümünde bulunan GND pinine bağlayın. 185) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını ON konumuna alın. 186) DC voltmetre ile giriş gerilimini (9.1-9.2 pinlerinden) ölçüp kaydedin. 187) DC voltmetre ile çıkış gerilimini (9.6-9.7 pinlerinden) ölçüp kaydedin. 188) Devrenin enerjisini kesip, bağlantı kablolarını sökün. ÖLÇÜM SONUÇLARI Giriş gerilimi Çıkış gerilimi GND +12V ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-12.2: AYARLI ÇIKIŞLI DC/DC KONVERTÖR DENEYİ 90 Giriş: DC/DC ayarlanabilir çıkışlı konvertör devresi şekil 12.3’ de görülmektedir. Şekil 12.3: DC/DC ayarlanabilir çıkışlı konvertör devresi Devre, dc gerilimi ayarlanabilir dc gerilime dönüştürmektedir. Temelde bir gerilim regülatörü devresidir. LM317 1,25 − 37 V ayarlanabilir voltaj aralığında 1,5 ampere kadar akım verebilen pozitif gerilim regülatörüdür. Çıkış geriliminin değeri, formülü ile hesaplanır ve P1 trimpotu ile ayarlanabilmektedir. Şekil 12.4: LM 317 entegresinin görünüşü ve iç yapısı C1 +Vo DC çıkış +Vi DC giriş VI 3 VO 2 ADJ 1 LM317 R1 P1 1 1 1,25. 1O P V R        INPUT OUTPUT ADJUST I O A
  • 48. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-12.2: AYARLI ÇIKIŞLI DC/DC KONVERTÖR DENEYİ 91 Deney şeması: DENEY MODÜLÜ C1 10uF +Vo DC çıkış +Vi DC giriş VI 3 VO 2 ADJ 1 LM317 R1 560 P1 5k ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-12.2: AYARLI ÇIKIŞLI DC/DC KONVERTÖR DENEYİ 92 DENEY BAĞLANTI PLANI İŞLEM BASAMAKLARI 189) ES05-05 modülünü ana üniteye bağlayın. 190) Deney bağlantı planını ES05-05 modülü üzerinde gerçekleştirin. 191) Devrenin 10.1 nolu pinini modülün sağ üst bölümünde bulunan +12V pinine ve devrenin 10.2 nolu pinini yine modülün sağ üst bölümünde bulunan GND pinine bağlayın. 192) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını ON konumuna alın. 193) DC voltmetre ile giriş gerilimini (10.1-10.2 pinlerinden) ölçüp kaydedin. 194) DC voltmetre ile çıkış gerilimini (10.3-10.4 pinlerinden) ölçüp kaydedin. PT10.1 trimpotunun çıkış gerilimine etkisini inceleyin. 195) Devrenin enerjisini kesip, bağlantı kablolarını sökün. ÖLÇÜM SONUÇLARI PT10.1 trimpotu Giriş gerilimi Çıkış gerilimi Minimumda Orta konumda Maksimumda GND +12V
  • 49. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-13: SMPS (ANAHTARLAMALI GÜÇ KAYNAĞI) DENEYİ 93 Giriş: Bir çok ihtiyaca cevap verebilen seri bağlanmış regülatörler çok popülerdir. Ancak ana sorunları, geçirme transistörü (pass transistor) katındaki güç harcamasıdır. Akım arttıkça transistörün daha çok güç harcaması gerekir. Bu durum daha fazla güç yitimi anlamına gelir. Bundan dolayı seri regülatörler daha büyük hacimlidir. Bazı durumlarda geçirme transistörünün soğutulması için fan gerekir. Bu sorunu çözmenin bir yolu anahtarlamalı regülatör kullanmaktır. Bunlar büyük yüklere akım ürettiğinden geçirme transistöründe daha az güç harcanır. Diğer yandan anahtarlamalı güç kaynakları özerk veya bağımsız (off-line) cihazlardır. Bundan kasıt, A.A güç kaynağının voltajını 50/60 Hz transformatörden geçirmeden doğrultup filtre etmeleridir. Bundan sonra filtre edilmiş voltaj bir güç anahtarı ve yüksek frekans transformatöründen geçerek denkleştirilir; sonra bir daha doğrultulup filtre edilir. Doğrusal güç kaynakları basitlik, çıkışta az gürültü (veya salınım), girişin ve yükün mükemmel regüle edilmesi ve çok hızlı toparlanma gibi özelliklere sahip olsalar da verimleri çok iyi değildir. Anahtarlamalı güç kaynakları yüksek verimleri ve güç yoğunlukları nedeniyle popüler olmaktadırlar. Genel olarak doğrusal güç kaynakları giriş voltajı ve yükün regüle edilmesi (bazen yüksek değerlerde bile) yönünden daha iyidirler. Anahtarlamalı kaynakta çıkış voltajındaki salınım uçlar arası 25 ila 100 mV arasında olup, doğrusal olanlardakinden daha büyüktür. Her ne kadar salınımın rms (etkin) değeri daha az olsa da anahtarlamalı kaynaklarda geçerli olan uçlar arası değerdir. Anahtarlamalı kaynaklar doğrusal olanlara göre geçici durumlarından daha yavaş normale dönerler. Ancak bu, alıkonma süresinin daha uzun olması demektir ki, bu özellik bilgisayarların beslenmesinde çok yararlıdır. Son olarak, anahtarlamalı kaynaklar doğrusal olanlara göre giriş voltajında daha büyük değişimleri kabul ederler. Buradaki ± %10 marj kaynağın verimini direkt olarak etkileyen bir faktördür. Diğer taraftan anahtarlamalı bir kaynakta giriş voltajındaki değişimlerin cihazın performansı üzerindeki etkisi sıfırdır veya en azından çok azdır. Kullanıcı tarafından programlanabilen modellerde bu marj % 20 ye kadar çıkabilir ki, bu uç şartlarda çok faydalı bir özelliktir. Anahtarlamalı güç kaynakları regülasyon işlemini, çıkış geriliminden yapılan geri beslemeye bağlı olarak, dahili osilatörün çıkışındaki anahtarlama sinyalinin duty cycle’ ını ayarlayarak yaparlar. Şekil 13.1: LM2575 SMPS entegresinin görünüşü ve blok yapısı Unregulated DC Input +Vin ON/OFF3.1 V Internal Regulator ON/OFF 1 5 Output 4 Feedback Current R2 Fixed Gain Limit mplifier Comparator Freq ift kHz Amp ch 2 GND 3 R1 1.0 k Sh 18 1.235 V Band−Gap Reference Error A Driver Latch .0 Sw 52 kHz Oscillator Reset Thermal Shutdown ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-13: SMPS (ANAHTARLAMALI GÜÇ KAYNAĞI) DENEYİ 94 Şekil 13.1’ de anahtarlamalı güç kaynağı uygulamaları için üretilmiş olan LM2575 entegresinin blok yapısı verilmiştir. LM2575 ile düzenlenmiş örnek anahtarlamalı güç kaynağı devresi ise şekil 13.2’ de görülmektedir. Şekil 13.2: Örnek anahtarlamalı güç kaynağı devresi Devredeki R1 direncinin yerine trimpot konularak çıkış gerilimi ayarlanabilir hale getirilebilmektedir (şekil 13.3) Şekil 13.3: Ayarlanabilir çıkışlı anahtarlamalı güç kaynağı devresi L1 100uH D1 1 C 1000uF C 100uF LM2575 Adjustable VOUT Load R2 R1 VIN 3 5 2 4 2 1 1,23. 1OUT R V R        1 1 1,23. 1OUT R V P       L1 100uH D1 1 C 1000uF C 100uF LM2575 Adjustable VOUT Load R1 P1 VIN 3 5 2 4
  • 50. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-13: SMPS (ANAHTARLAMALI GÜÇ KAYNAĞI) DENEYİ 95 Deney şeması: DENEY MODÜLÜ D1 1N5819 L1 100µH 4x1N4001 1 3 5 2 4 LM2575-ADJIN GND OUT ON/OFF FEEDBACK R1 100k P1 500k C1 1000u C2 LOAD AC12V ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-13: SMPS (ANAHTARLAMALI GÜÇ KAYNAĞI) DENEYİ 96 DENEY BAĞLANTI PLANI İŞLEM BASAMAKLARI 196) ES05-05 modülünü ana üniteye bağlayın. 197) Deney bağlantı planını ES05-05 modülü üzerinde gerçekleştirin. 198) 1.2-3.1, 1.4-3.2, 3.4-4.1, 3.6-4.3, 4.2-13.1, 4.4-13.2, 13.4-LD1, 13.5-LD3, LD2-LD5 ve LD4-LD7 pinlerini kısa devre yapın. 199) Tüm bağlantıları yaptıktan ve kontrol ettikten sonra ana ünite üzerindeki güç anahtarını ON konumuna alın. 200) LOAD devresindeki trimpotu orta konuma alın. 201) DC voltmetre ile giriş gerilimini (13.1-13.2 pinlerinden) ölçüp kaydedin. 202) Osilaskolpla 13.3 nolu pinden SMPS entegresinin çıkış sinyalini ölçün. 203) DC voltmetre ile devrenin çıkış gerilimini (LD6-LD8 pinlerinden) ölçün. 204) PT13.1 trimpotunun SMPS entegresinin ve devrenin çıkış gerilimlerine etkisini inceleyin. 205) Devrenin enerjisini kesip, bağlantı kablolarını sökün. ÖLÇÜM SONUÇLARI PT13.1 trimpotu Giriş gerilimi Çıkış gerilimi Minimumda Orta konumda Maksimumda
  • 51. ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-13: SMPS (ANAHTARLAMALI GÜÇ KAYNAĞI) DENEYİ 97 SMPS entegresinin çıkış sinyali (PT13.1 minimumda) SMPS entegresinin çıkış sinyali (PT13.1 ortada) ELEKTRİK- ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY FÖYÜ DENEY-13: SMPS (ANAHTARLAMALI GÜÇ KAYNAĞI) DENEYİ 98 SMPS entegresinin çıkış sinyali (PT13.1 maksimumda)