Course Content
Data Science
With R
tactbdg@collabera.com
www.collaberatact.com
Data Science Overview
Ÿ What is Data Science?
Ÿ Skill-set required
Ÿ Job Opportuni es
Descrip ve & Inferen al Sta s cs
Ÿ ·Con nuous vs. Categorical variables
Ÿ ·Mean, Median, Mode, Standard Devia on, Quar le, IQR
Ÿ ·Hypothesis tes ng, z-test, t-test
Data Analy cs using R programming – Fundamentals
Ÿ Installa on of R Studio
Ÿ Overview of R Studio components
Ÿ Data Structures
oVector
oList
oMatrices
oData Frame
oFactor
Ÿ Slicing and Sub-se ng
oVector
oList
oMatrix
oData Frame
Ÿ Func ons in R
oIn-built func ons
oUser-defined func ons
Ÿ Loops in R
owhile
ofor
obreak
onext
Ÿ Data Import in R
Data Analy cs using R programming – Advanced
Ÿ Apply family of func ons
olapply
osapply
otapply
Ÿ Data Manipula on using dplyr
Ÿ Data Visualiza on using ggplot2
Machine Learning using R – Part 1
Ÿ What is Machine Learning?
Ÿ Supervised vs. Unsupervised Learning
Ÿ Exploratory Data Analysis
tactbdg@collabera.com
www.collaberatact.com
oUnivariate analysis
oBoxplot
oBivariate analysis
oSca erplot o Correla on o Outliers
oRemove duplica on
oMissing value imputa on
Ÿ Underfi ng vs. Overfi ng
Ÿ Linear Regression
oSimple
oMul ple
oAssump ons of Linear Regression
oEvalua ng Accuracy of model: k-Fold Cross valida on
Ÿ Logis c Regression
oConfusion Matrix
oROC Curve
Ÿ Time Series Forecas ng
oMoving Average
oExponen al smoothing
oHolt Winter's
oARIMA
Machine Learning using R – Part 2
Ÿ Naïve Bayes
Ÿ Support Vector Machine
Ÿ K-Nearest Neighbour
Ÿ Decision tree
Ÿ Random Forest
Ÿ K-Means clustering
Big Data using Hadoop & Spark
Ÿ Introduc on to Big Data
Ÿ Overview of Hadoop & its Ecosystem
Ÿ Introduc on to NoSQL
Ÿ Overview of Apache Spark
tactbdg@collabera.com
www.collaberatact.com

DATA SCIENCE WITH R.pdf

  • 1.
    Course Content Data Science WithR tactbdg@collabera.com www.collaberatact.com
  • 2.
    Data Science Overview ŸWhat is Data Science? Ÿ Skill-set required Ÿ Job Opportuni es Descrip ve & Inferen al Sta s cs Ÿ ·Con nuous vs. Categorical variables Ÿ ·Mean, Median, Mode, Standard Devia on, Quar le, IQR Ÿ ·Hypothesis tes ng, z-test, t-test Data Analy cs using R programming – Fundamentals Ÿ Installa on of R Studio Ÿ Overview of R Studio components Ÿ Data Structures oVector oList oMatrices oData Frame oFactor Ÿ Slicing and Sub-se ng oVector oList oMatrix oData Frame Ÿ Func ons in R oIn-built func ons oUser-defined func ons Ÿ Loops in R owhile ofor obreak onext Ÿ Data Import in R Data Analy cs using R programming – Advanced Ÿ Apply family of func ons olapply osapply otapply Ÿ Data Manipula on using dplyr Ÿ Data Visualiza on using ggplot2 Machine Learning using R – Part 1 Ÿ What is Machine Learning? Ÿ Supervised vs. Unsupervised Learning Ÿ Exploratory Data Analysis tactbdg@collabera.com www.collaberatact.com
  • 3.
    oUnivariate analysis oBoxplot oBivariate analysis oScaerplot o Correla on o Outliers oRemove duplica on oMissing value imputa on Ÿ Underfi ng vs. Overfi ng Ÿ Linear Regression oSimple oMul ple oAssump ons of Linear Regression oEvalua ng Accuracy of model: k-Fold Cross valida on Ÿ Logis c Regression oConfusion Matrix oROC Curve Ÿ Time Series Forecas ng oMoving Average oExponen al smoothing oHolt Winter's oARIMA Machine Learning using R – Part 2 Ÿ Naïve Bayes Ÿ Support Vector Machine Ÿ K-Nearest Neighbour Ÿ Decision tree Ÿ Random Forest Ÿ K-Means clustering Big Data using Hadoop & Spark Ÿ Introduc on to Big Data Ÿ Overview of Hadoop & its Ecosystem Ÿ Introduc on to NoSQL Ÿ Overview of Apache Spark tactbdg@collabera.com www.collaberatact.com