SlideShare a Scribd company logo
1 of 1
Download to read offline
Examining	
  the	
  role	
  of	
  WDR-­‐23	
  by	
  using	
  C.	
  elegans	
  mutants
Hanna	
  Kiani1,	
  Jacqueline	
  Y.	
  Lo1,2,	
  Sean	
  P.	
  Curran1,2
University	
  of	
  Southern	
  California
1.	
  Leonard	
  Davis	
  School	
  of	
  Gerontology;	
  2.	
  Dornsife College	
  of	
  Letters,	
  Arts,	
  and	
  Sciences	
  Department	
  
of	
  Molecular	
  and	
  Computational	
  Biology
Overview
SKN-­‐1	
  is	
  a	
  transcription	
  factor	
  that	
  plays	
  a	
  vital	
  role	
  in	
  C.	
  
elegans	
  stress	
  response	
  and	
  longevity.	
  As	
  a	
  transcription	
  factor,	
  
SKN-­‐1	
  binds	
  to	
  specific	
  DNA	
  sequences	
  and	
  initiates	
  
transcription	
  of	
  stress	
  response	
  genes.	
  SKN-­‐1	
  is	
  regulated	
  by	
  
diverse	
  signals	
  that	
  control	
  metabolism,	
  development,	
  and	
  
stress	
  responses.1 WDR-­‐23	
  is	
  a	
  negative	
  regulator	
  of	
  SKN-­‐1;	
  it	
  
functions	
  with	
  Cul4/DDB1	
  ubiquitin	
  ligase	
  (a	
  complex	
  which	
  
regulates	
  DNA	
  damage	
  response,	
  DNA	
  replication,	
  and	
  
chromatin	
  remodeling)	
  to	
  regulate	
  nuclear	
  abundance	
  and	
  
activity	
  of	
  SKN-­‐1	
  in	
  C.	
  elegans.	
  When	
  SKN-­‐1	
  enters	
  the	
  nucleus,	
  
it	
  is	
  prevented	
  from	
  accumulating	
  by	
  WDR-­‐23;	
  WDR-­‐23	
  
interacts	
  with	
  the	
  Cul4/DDB1	
  complex	
  and	
  targets	
  the	
  
transcription	
  factor	
  for	
  proteasomal	
  degradation.	
  WDR-­‐23	
  
represses	
  SKN-­‐1	
  protein	
  levels,	
  nuclear	
  accumulation,	
  and	
  
activity.2 In	
  WDR-­‐23	
  mutants,	
  however,	
  WDR-­‐23	
  is	
  not	
  able	
  to	
  
suppress	
  SKN-­‐1	
  levels	
  and	
  SKN-­‐1	
  is	
  always	
  active.	
  Because	
  of	
  
uninterrupted	
  SKN-­‐1	
  activation,	
  WDR-­‐23	
  mutants	
  are	
  able	
  to	
  
withstand	
  more	
  oxidative	
  stress	
  than	
  N2	
  wild-­‐type.	
  We	
  have	
  
studied	
  such	
  WDR-­‐23	
  mutants	
  in	
  environments	
  of	
  oxidative	
  
stress	
  and	
  measured	
  their	
  survival	
  in	
  comparison	
  to	
  N2	
  wild-­‐
type	
  C.	
  elegans to	
  characterize	
  the	
  role	
  of	
  WDR-­‐23	
  and	
  its	
  
effects	
  on	
  SKN-­‐1.	
  
References:
1.	
   PLOS	
  Genetics:	
  The	
  Conserved	
  SKN-­‐1/Nrf2	
  Stress	
  
Response	
  Pathway	
  Regulates	
  Synaptic	
  Function	
  in	
  
Caenorhabditis Elegans.	
  N.p.,	
  n.d.Web.	
  10	
  Jan.	
  2016..
2.	
  Choe,	
  Keith	
  P.,	
  Aaron	
  J.	
  Przybysz,	
  and	
  Kevin	
  
Strange.	
   Molecular	
  and	
  Cellular	
  Biology.	
  American	
  
Society	
  for	
  Microbiology	
  (ASM),	
  n.d.Web.	
  10	
  Jan.	
  
2016.
Acknowledgements:
Curran	
  Lab
USC	
  Davis	
  School	
  of	
  Gerontology
Figure	
  1:	
  wdr-­‐23 mutants	
  on	
  As	
  treated	
  SKN-­‐1/	
  L4440	
  RNAi.
RNA	
  interference,	
  or	
  RNAi,	
  is	
  a	
  biological	
  process	
  where	
  RNA	
  
molecules	
  inhibit	
  gene	
  expression	
  by	
  causing	
  the	
  destruction	
  of	
  
specific	
  mRNA	
  molecules.	
  wdr-­‐23 mutants	
  have	
  greater	
  SKN-­‐1	
  
activation.	
  By	
  exposing	
  these	
  mutants	
  to	
  SKN-­‐1	
  RNAi,	
  we	
  are	
  
able	
  to	
  knock	
  down	
  SKN-­‐1	
  levels	
  and	
  compare	
  survival	
  with	
  
mutants	
  that	
  have	
  been	
  treated	
  with	
  a	
  control	
  RNAi.	
  
Seven	
  different	
  wdr-­‐23 mutants	
  were	
  tested	
  on	
  5	
  mM	
  arsenite	
  
treated	
  RNAi	
  plates.	
  The	
  mutants	
  we	
  used	
  were	
  lax	
  
124,123,211,134,129,101,	
  and	
  126. L4440	
  was	
  used	
  as	
  a	
  control	
  
RNAi	
  strain	
  and	
  skn-­‐1 RNAi	
  was	
  used	
  to	
  knock	
  down	
  activated	
  
SKN-­‐1	
  in	
  the	
  mutants.	
  The	
  number	
  of	
  dead	
  and	
  alive	
  worms	
  per	
  
plate	
  were	
  counted	
  after	
  4	
  hours.	
  As	
  shown	
  here,	
  mutants	
  on	
  
skn-­‐1 RNAi	
  had	
  higher	
  levels	
  of	
  death	
  than	
  mutants	
  on	
  
L4440/control	
  RNAi.	
  The	
  higher	
  death	
  rates	
  in	
  skn-­‐1 knock	
  down	
  
worms	
  supports	
  the	
  claim	
  that	
  SKN-­‐1	
  plays	
  an	
  integral	
  role	
  in	
  
survival	
  and	
  longevity	
  of the	
  wdr-­‐23 mutants.	
  
Figure	
  3:	
  qPCR	
  of	
  lax134 and	
  N2	
  shows	
  higher	
  levels	
  of	
  SKN-­‐1	
  activation	
  in	
  
wdr-­‐23 mutants.	
  qPCR	
  is	
  a	
  method	
  used	
  for	
  transcriptional	
  quantification.	
  
qPCR	
  quantifies	
  mRNA	
  transcripts	
  to	
  indicate	
  how	
  many	
  mRNA	
  copies	
  of	
  a	
  
gene	
  is	
  being	
  made.	
  RNA	
  is	
  used	
  as	
  a	
  template	
  to	
  be	
  reverse	
  transcribed	
  into	
  
DNA	
  (cDNA),	
  which	
  is	
  then	
  used	
  for	
  qPCR.	
  We	
  used	
  genes	
  that	
  are	
  known	
  to	
  
be	
  turned	
  on	
  by	
  SKN-­‐1	
  as	
  targets	
  we	
  are	
  interested	
  in	
  quantifying	
  the	
  
expression	
  of.	
  
We	
  extracted	
  RNA	
  from	
  synchronized	
  L4	
  N2	
  wild-­‐type	
  and	
  lax134 (a	
  WDR-­‐23	
  
mutant)	
  grown	
  on	
  OP50	
  to	
  reverse-­‐transcribed	
  into	
  cDNA.	
  We	
  used	
  snb-­‐1,	
  a	
  
gene	
  which	
  normalizes	
  for	
  the	
  amount	
  of	
  cDNA,	
  as	
  our	
  control	
  gene.	
  We	
  
then	
  used	
  gst-­‐4,	
  gcs-­‐1,	
  and	
  ugt-­‐11 to	
  help	
  determine	
  levels	
  of	
  SKN-­‐1	
  
activation.	
  These	
  three	
  detoxification	
  enzymes	
  get	
  activated	
  by	
  SKN-­‐1;	
  
therefore,	
  there	
  are	
  more	
  copies	
  of	
  these	
  three	
  genes	
  when	
  SKN-­‐1	
  is	
  active.	
  
(a)	
  The	
  Ct	
  number	
  is	
  the	
  number	
  of	
  cycles	
  it	
  takes	
  for	
  the	
  qPCR	
  to	
  reach	
  the	
  
threshold;	
  the	
  higher	
  the	
  Ct	
  number,	
  the	
  less	
  cDNA	
  is	
  in	
  the	
  sample.	
  The	
  dCt
number	
  is	
  the	
  normalized	
  Ct	
  value	
  calculated	
  by	
  subtracting	
  the	
  snb-­‐1 Ct	
  
number	
  from	
  the	
  sample	
  Ct	
  number.	
  The	
  ddCt	
  number	
  is	
  the	
  compared	
  Ct	
  
value	
  between	
  lax134and	
  N2.	
  We	
  are	
  then	
  able	
  to	
  calculate	
  the	
  relative	
  
amounts	
  of	
  each	
  gene	
  in	
  each	
  cDNA	
  sample.	
  
(b)	
  Looking	
  at	
  the	
  below	
  qPCR	
  data	
  and	
  calculations,	
  we	
  are	
  able	
  to	
  see	
  that	
  
lax134 has	
  much	
  greater	
  levels	
  of	
  gst-­‐4,	
  gcs-­‐1,	
  and	
  ugt-­‐11.	
  Higher	
  levels	
  of	
  
detoxification	
  enzymes	
  that	
  are	
  activated	
  by	
  SKN-­‐1	
  indicate	
  greater	
  SKN-­‐1	
  
activation.	
  We	
  can	
  conclude	
  that	
  the	
  wdr-­‐23	
  mutant	
  lax	
  134 has	
  greater	
  
SKN-­‐1	
  activity	
  than	
  N2.
Figure	
  2:	
  Cross	
  between	
  lax	
  213	
  hermaphrodite	
  and	
  gen-­‐1::gfp male.
gen-­‐1 is	
  a	
  resolvase enzyme	
  that	
  snips	
  Holliday	
  junction	
  in	
  cases	
  of	
  
recombination.	
  In	
  addition	
  to	
  SKN-­‐1,	
  WDR-­‐23	
  interacts	
  with	
  GEN-­‐1.	
  
Since	
  gen-­‐1 is	
  not	
  a	
  transcription	
  factor,	
  we	
  cannot	
  measure	
  its	
  activity	
  
through	
  analysis	
  of	
  gene	
  transcription	
  rates	
  like	
  we	
  did	
  for	
  SKN-­‐1.	
  	
  We	
  
have	
  crossed	
  lax213,	
  a	
  WDR-­‐23	
  mutant,	
  with	
  gen-­‐1::gfp, to	
  identify	
  
changes	
  in	
  gen-­‐1 function	
  in	
  the	
  presence	
  of	
  a	
  lax213 mutation.	
  GFP	
  
acts	
  as	
  a	
  tag	
  to	
  reveal	
  gen-­‐1 activity	
  in	
  the	
  animal.	
  Unlike	
  other	
  WDR-­‐23	
  
mutants,	
  gen-­‐1 no	
  longer	
  interacts	
  with	
  WDR-­‐23	
  in	
  lax213.	
  Because	
  a	
  
lax213 allele	
  mutation	
  disrupts	
  interaction,	
  that	
  region	
  in	
  the	
  protein	
  is	
  
likely	
  to	
  be	
  important	
  or	
  necessary	
  for	
  interaction.	
  
We	
  first	
  crossed	
  a	
  WDR-­‐23	
  mutant	
  hermaphrodite	
  (lax213 )	
  with	
  a	
  gen-­‐
1::gfp male.	
  The	
  F1	
  generation	
  results	
  in	
  a	
  213,+	
  gfp,+	
  genotype.	
  We	
  
then	
  allowed	
  the	
  F1	
  generation	
  to	
  self,	
  resulting	
  in	
  the	
  F2	
  generation	
  
which	
  consists	
  of	
  16	
  possible	
  genotypes.	
  To	
  isolate	
  the	
  desired	
  213,	
  213	
  
gen-­‐1::gfp,	
  gen-­‐1::gfp we	
  single-­‐lysed	
  64	
  different	
  worms.	
  To	
  check	
  for	
  
GFP,	
  we	
  ran	
  a	
  PCR	
  with	
  a	
  set	
  of	
  primers	
  that	
  will	
  amplify	
  a	
  single	
  band	
  
when	
  GFP	
  is	
  present.	
  To	
  identify	
  the	
  lax213 mutation,	
  we	
  ran	
  a	
  PCR	
  and	
  
restriction	
  enzyme	
  digestion	
  comparing	
  our	
  samples	
  with	
  N2.	
  After	
  RE	
  
digestion,	
  the	
  N2	
  sample	
  would	
  cut	
  and	
  the	
  lax213 mutation	
  would	
  
remain	
  uncut.	
  
(a)	
  The	
  cross	
  between	
  the	
  F1	
  progeny	
  and	
  itself	
  (self)	
  reveals	
  sixteen	
  
possible	
  genotypes	
  for	
  the	
  F2	
  population.	
  Out	
  of	
  the	
  sixteen,	
  we	
  need	
  to	
  
select	
  for	
  the	
  213,	
  213	
  gen-­‐1::gfp,	
  gen-­‐1::gfp genotype.	
  (b)	
  When	
  the	
  
two	
  parent	
  worms	
  mate,	
  the	
  F1	
  progeny	
  are	
  hermaphrodites	
  which	
  we	
  
let	
  mate	
  with	
  themselves.	
  We	
  need	
  a	
  worm	
  who	
  is	
  not	
  wild-­‐type	
  for	
  
either	
  mutation.	
  
(a)
(b)
Ct snb-1 Ct dCt ddCt 2^-ddCt
gst-4
N2
lax 134
20.92
16.37
20.71
21.41
.21
-5.04
0
-5.258
1
38.0546277
gcs-1
N2
lax 134
21.63
19.91
20.71
21.41
0.92
-1.5
0
-2.42
1
5.35171022
ugt-11
N2
lax 134
27.34
25.06
20.71
21.41
6.63
3.65
0
-2.98
1
7.88986164
(a)
(b)
Future
In	
  the	
  future,	
  we	
  will	
  use	
  qPCR	
  to	
  test	
  for	
  SKN-­‐1	
  dependency	
  of	
  N2	
  and	
  
lax134	
  C.	
  elegans on	
  L4440	
  and	
  SKN-­‐1	
  RNAi.	
  This	
  will	
  allow	
  us	
  to	
  identify	
  
levels	
  of	
  expression	
  of	
  gst-­‐4,	
  gcs-­‐1,	
  and	
  ugt-­‐11	
  in	
  worms	
  that	
  have	
  SKN-­‐1	
  
knock	
  down	
  to	
  worms	
  that	
  were	
  on	
  L4440	
  control.	
  We	
  will	
  also	
  be	
  able	
  to	
  
compare	
  levels	
  of	
  expression	
  between	
  N2	
  wild-­‐type	
  and	
  lax134	
  after	
  
exposure	
  to	
  both	
  L4440	
  and	
  SKN-­‐1	
  RNAi.	
  
We	
  will	
  also	
  proceed	
  to	
  identify	
  the	
  relationship	
  between	
  gen-­‐1 and	
  
lax213.
We	
  are	
  aware	
  that	
  WDR-­‐23	
  also	
  interacts	
  with	
  gen-­‐1,	
  but	
  do	
  not	
  know	
  
why	
  or	
  what	
  changes	
  when	
  the	
  interaction	
  is	
  not	
  there.	
  We	
  will	
  use	
  gfp as	
  
a	
  tag to	
  distinguish	
  changes	
  in	
  the	
  absence	
  of	
  the	
  interaction.

More Related Content

What's hot

Irvin PLoS Genet 2014
Irvin PLoS Genet 2014Irvin PLoS Genet 2014
Irvin PLoS Genet 2014
Jordan Irvin
 
PNAS-2013-Arambula-8212-7
PNAS-2013-Arambula-8212-7PNAS-2013-Arambula-8212-7
PNAS-2013-Arambula-8212-7
Wenge Wong
 
Lab Meeting 2nd Semester- Investigating genes involved in root growth respons...
Lab Meeting 2nd Semester- Investigating genes involved in root growth respons...Lab Meeting 2nd Semester- Investigating genes involved in root growth respons...
Lab Meeting 2nd Semester- Investigating genes involved in root growth respons...
Megan Stefkovich
 
Roth and Hennig 2012
Roth and Hennig 2012Roth and Hennig 2012
Roth and Hennig 2012
Braden Roth
 
Thesis Defense day before
Thesis Defense day beforeThesis Defense day before
Thesis Defense day before
William Jackson
 
1-s2.0-037811199390549I-main
1-s2.0-037811199390549I-main1-s2.0-037811199390549I-main
1-s2.0-037811199390549I-main
Teresa Zimny
 

What's hot (20)

Irvin PLoS Genet 2014
Irvin PLoS Genet 2014Irvin PLoS Genet 2014
Irvin PLoS Genet 2014
 
Analysis of 2 unique Greek MHC haplotypes
Analysis of 2 unique Greek MHC haplotypesAnalysis of 2 unique Greek MHC haplotypes
Analysis of 2 unique Greek MHC haplotypes
 
GONSALVEZ_RNA_2008
GONSALVEZ_RNA_2008GONSALVEZ_RNA_2008
GONSALVEZ_RNA_2008
 
Gene expression
Gene expressionGene expression
Gene expression
 
Final recent advances in adrenergic transmission & cholinergic receptors
Final recent advances in adrenergic transmission & cholinergic receptorsFinal recent advances in adrenergic transmission & cholinergic receptors
Final recent advances in adrenergic transmission & cholinergic receptors
 
Poster
PosterPoster
Poster
 
PNAS-2013-Arambula-8212-7
PNAS-2013-Arambula-8212-7PNAS-2013-Arambula-8212-7
PNAS-2013-Arambula-8212-7
 
Lab Meeting 2nd Semester- Investigating genes involved in root growth respons...
Lab Meeting 2nd Semester- Investigating genes involved in root growth respons...Lab Meeting 2nd Semester- Investigating genes involved in root growth respons...
Lab Meeting 2nd Semester- Investigating genes involved in root growth respons...
 
Presentation1
Presentation1Presentation1
Presentation1
 
ShRNA-specific regulation of FMNL2 expression in P19 cells
ShRNA-specific regulation of FMNL2 expression in P19 cellsShRNA-specific regulation of FMNL2 expression in P19 cells
ShRNA-specific regulation of FMNL2 expression in P19 cells
 
Masters Defense
Masters DefenseMasters Defense
Masters Defense
 
Roth and Hennig 2012
Roth and Hennig 2012Roth and Hennig 2012
Roth and Hennig 2012
 
Thesis Defense day before
Thesis Defense day beforeThesis Defense day before
Thesis Defense day before
 
Gene expression on rat1 fibroblast cells after transformation by evi1
Gene expression on rat1 fibroblast cells after transformation by evi1Gene expression on rat1 fibroblast cells after transformation by evi1
Gene expression on rat1 fibroblast cells after transformation by evi1
 
Rifken et al. 2018 - GIRK currents in VTA dopamine neurons control the sensit...
Rifken et al. 2018 - GIRK currents in VTA dopamine neurons control the sensit...Rifken et al. 2018 - GIRK currents in VTA dopamine neurons control the sensit...
Rifken et al. 2018 - GIRK currents in VTA dopamine neurons control the sensit...
 
ATM
ATM ATM
ATM
 
RNase A and RNase L localization
RNase A and RNase L localizationRNase A and RNase L localization
RNase A and RNase L localization
 
Computational molecular biophysics of ribonucleic acids and ribozymes
Computational molecular biophysics of ribonucleic acids and ribozymesComputational molecular biophysics of ribonucleic acids and ribozymes
Computational molecular biophysics of ribonucleic acids and ribozymes
 
10 letschka
10 letschka10 letschka
10 letschka
 
1-s2.0-037811199390549I-main
1-s2.0-037811199390549I-main1-s2.0-037811199390549I-main
1-s2.0-037811199390549I-main
 

Similar to Curran Lab 2015 poster

Lydia Yeshitla, Research Scholar at the Neurobiology Section of UCSD
Lydia Yeshitla, Research Scholar at the Neurobiology Section of UCSDLydia Yeshitla, Research Scholar at the Neurobiology Section of UCSD
Lydia Yeshitla, Research Scholar at the Neurobiology Section of UCSD
Lydia Yeshitla
 
Research Poster
Research PosterResearch Poster
Research Poster
Cody Wong
 
Poster of Experimental Biology 2014, San Diego, CA
Poster of Experimental Biology 2014, San Diego, CAPoster of Experimental Biology 2014, San Diego, CA
Poster of Experimental Biology 2014, San Diego, CA
Stefano Martellucci
 
Hogarth_Cabrales_Strome Research Poster KAS 2014 Rev3 NCH
Hogarth_Cabrales_Strome Research Poster KAS 2014 Rev3 NCHHogarth_Cabrales_Strome Research Poster KAS 2014 Rev3 NCH
Hogarth_Cabrales_Strome Research Poster KAS 2014 Rev3 NCH
Nathan Hogarth
 
Brandon_Boone_Yale Poster_Final Version
Brandon_Boone_Yale Poster_Final VersionBrandon_Boone_Yale Poster_Final Version
Brandon_Boone_Yale Poster_Final Version
Brandon Boone
 
Expression systems
Expression systemsExpression systems
Expression systems
Bruno Mmassy
 
SHSARP paper final
SHSARP paper finalSHSARP paper final
SHSARP paper final
Kaylee Racs
 
Grant proposal
Grant proposal Grant proposal
Grant proposal
mtchin08
 
Presentation Rho Kinase-2 Activation in HUVEC111
Presentation Rho Kinase-2 Activation in HUVEC111Presentation Rho Kinase-2 Activation in HUVEC111
Presentation Rho Kinase-2 Activation in HUVEC111
Keren Ferris
 
Strathern JBC 2013 2689 slippage
Strathern JBC 2013 2689 slippageStrathern JBC 2013 2689 slippage
Strathern JBC 2013 2689 slippage
Jordan Irvin
 
ResearchDayPosterSpring2016
ResearchDayPosterSpring2016ResearchDayPosterSpring2016
ResearchDayPosterSpring2016
Victor Suarez
 
2 a. RNA polymerase II that is actively transcribing a gene (activel.pdf
2 a. RNA polymerase II that is actively transcribing a gene (activel.pdf2 a. RNA polymerase II that is actively transcribing a gene (activel.pdf
2 a. RNA polymerase II that is actively transcribing a gene (activel.pdf
abhinavbhatnagar201
 

Similar to Curran Lab 2015 poster (20)

Project Presentation
Project PresentationProject Presentation
Project Presentation
 
LncRNA and chromatin regulation
LncRNA and chromatin regulationLncRNA and chromatin regulation
LncRNA and chromatin regulation
 
Lydia Yeshitla, Research Scholar at the Neurobiology Section of UCSD
Lydia Yeshitla, Research Scholar at the Neurobiology Section of UCSDLydia Yeshitla, Research Scholar at the Neurobiology Section of UCSD
Lydia Yeshitla, Research Scholar at the Neurobiology Section of UCSD
 
emm201548a
emm201548aemm201548a
emm201548a
 
Research Poster
Research PosterResearch Poster
Research Poster
 
Poster of Experimental Biology 2014, San Diego, CA
Poster of Experimental Biology 2014, San Diego, CAPoster of Experimental Biology 2014, San Diego, CA
Poster of Experimental Biology 2014, San Diego, CA
 
RNA interference Activity in Glassy-winged Sharpshooter Cells and Whole Insec...
RNA interference Activity in Glassy-winged Sharpshooter Cells and Whole Insec...RNA interference Activity in Glassy-winged Sharpshooter Cells and Whole Insec...
RNA interference Activity in Glassy-winged Sharpshooter Cells and Whole Insec...
 
Hogarth_Cabrales_Strome Research Poster KAS 2014 Rev3 NCH
Hogarth_Cabrales_Strome Research Poster KAS 2014 Rev3 NCHHogarth_Cabrales_Strome Research Poster KAS 2014 Rev3 NCH
Hogarth_Cabrales_Strome Research Poster KAS 2014 Rev3 NCH
 
Brandon_Boone_Yale Poster_Final Version
Brandon_Boone_Yale Poster_Final VersionBrandon_Boone_Yale Poster_Final Version
Brandon_Boone_Yale Poster_Final Version
 
Expression systems
Expression systemsExpression systems
Expression systems
 
SHSARP paper final
SHSARP paper finalSHSARP paper final
SHSARP paper final
 
Grant proposal
Grant proposal Grant proposal
Grant proposal
 
Presentation Rho Kinase-2 Activation in HUVEC111
Presentation Rho Kinase-2 Activation in HUVEC111Presentation Rho Kinase-2 Activation in HUVEC111
Presentation Rho Kinase-2 Activation in HUVEC111
 
Coronavirus and NMD (nonsense mediated mRNA decay)
Coronavirus and NMD (nonsense mediated mRNA decay)Coronavirus and NMD (nonsense mediated mRNA decay)
Coronavirus and NMD (nonsense mediated mRNA decay)
 
Strathern JBC 2013 2689 slippage
Strathern JBC 2013 2689 slippageStrathern JBC 2013 2689 slippage
Strathern JBC 2013 2689 slippage
 
NCSU Poster
NCSU PosterNCSU Poster
NCSU Poster
 
ResearchDayPosterSpring2016
ResearchDayPosterSpring2016ResearchDayPosterSpring2016
ResearchDayPosterSpring2016
 
2 a. RNA polymerase II that is actively transcribing a gene (activel.pdf
2 a. RNA polymerase II that is actively transcribing a gene (activel.pdf2 a. RNA polymerase II that is actively transcribing a gene (activel.pdf
2 a. RNA polymerase II that is actively transcribing a gene (activel.pdf
 
3 nod
3 nod3 nod
3 nod
 
Dr. Laura Miller - Comparative analysis of signature genes in PRRSV-infected ...
Dr. Laura Miller - Comparative analysis of signature genes in PRRSV-infected ...Dr. Laura Miller - Comparative analysis of signature genes in PRRSV-infected ...
Dr. Laura Miller - Comparative analysis of signature genes in PRRSV-infected ...
 

Curran Lab 2015 poster

  • 1. Examining  the  role  of  WDR-­‐23  by  using  C.  elegans  mutants Hanna  Kiani1,  Jacqueline  Y.  Lo1,2,  Sean  P.  Curran1,2 University  of  Southern  California 1.  Leonard  Davis  School  of  Gerontology;  2.  Dornsife College  of  Letters,  Arts,  and  Sciences  Department   of  Molecular  and  Computational  Biology Overview SKN-­‐1  is  a  transcription  factor  that  plays  a  vital  role  in  C.   elegans  stress  response  and  longevity.  As  a  transcription  factor,   SKN-­‐1  binds  to  specific  DNA  sequences  and  initiates   transcription  of  stress  response  genes.  SKN-­‐1  is  regulated  by   diverse  signals  that  control  metabolism,  development,  and   stress  responses.1 WDR-­‐23  is  a  negative  regulator  of  SKN-­‐1;  it   functions  with  Cul4/DDB1  ubiquitin  ligase  (a  complex  which   regulates  DNA  damage  response,  DNA  replication,  and   chromatin  remodeling)  to  regulate  nuclear  abundance  and   activity  of  SKN-­‐1  in  C.  elegans.  When  SKN-­‐1  enters  the  nucleus,   it  is  prevented  from  accumulating  by  WDR-­‐23;  WDR-­‐23   interacts  with  the  Cul4/DDB1  complex  and  targets  the   transcription  factor  for  proteasomal  degradation.  WDR-­‐23   represses  SKN-­‐1  protein  levels,  nuclear  accumulation,  and   activity.2 In  WDR-­‐23  mutants,  however,  WDR-­‐23  is  not  able  to   suppress  SKN-­‐1  levels  and  SKN-­‐1  is  always  active.  Because  of   uninterrupted  SKN-­‐1  activation,  WDR-­‐23  mutants  are  able  to   withstand  more  oxidative  stress  than  N2  wild-­‐type.  We  have   studied  such  WDR-­‐23  mutants  in  environments  of  oxidative   stress  and  measured  their  survival  in  comparison  to  N2  wild-­‐ type  C.  elegans to  characterize  the  role  of  WDR-­‐23  and  its   effects  on  SKN-­‐1.   References: 1.   PLOS  Genetics:  The  Conserved  SKN-­‐1/Nrf2  Stress   Response  Pathway  Regulates  Synaptic  Function  in   Caenorhabditis Elegans.  N.p.,  n.d.Web.  10  Jan.  2016.. 2.  Choe,  Keith  P.,  Aaron  J.  Przybysz,  and  Kevin   Strange.   Molecular  and  Cellular  Biology.  American   Society  for  Microbiology  (ASM),  n.d.Web.  10  Jan.   2016. Acknowledgements: Curran  Lab USC  Davis  School  of  Gerontology Figure  1:  wdr-­‐23 mutants  on  As  treated  SKN-­‐1/  L4440  RNAi. RNA  interference,  or  RNAi,  is  a  biological  process  where  RNA   molecules  inhibit  gene  expression  by  causing  the  destruction  of   specific  mRNA  molecules.  wdr-­‐23 mutants  have  greater  SKN-­‐1   activation.  By  exposing  these  mutants  to  SKN-­‐1  RNAi,  we  are   able  to  knock  down  SKN-­‐1  levels  and  compare  survival  with   mutants  that  have  been  treated  with  a  control  RNAi.   Seven  different  wdr-­‐23 mutants  were  tested  on  5  mM  arsenite   treated  RNAi  plates.  The  mutants  we  used  were  lax   124,123,211,134,129,101,  and  126. L4440  was  used  as  a  control   RNAi  strain  and  skn-­‐1 RNAi  was  used  to  knock  down  activated   SKN-­‐1  in  the  mutants.  The  number  of  dead  and  alive  worms  per   plate  were  counted  after  4  hours.  As  shown  here,  mutants  on   skn-­‐1 RNAi  had  higher  levels  of  death  than  mutants  on   L4440/control  RNAi.  The  higher  death  rates  in  skn-­‐1 knock  down   worms  supports  the  claim  that  SKN-­‐1  plays  an  integral  role  in   survival  and  longevity  of the  wdr-­‐23 mutants.   Figure  3:  qPCR  of  lax134 and  N2  shows  higher  levels  of  SKN-­‐1  activation  in   wdr-­‐23 mutants.  qPCR  is  a  method  used  for  transcriptional  quantification.   qPCR  quantifies  mRNA  transcripts  to  indicate  how  many  mRNA  copies  of  a   gene  is  being  made.  RNA  is  used  as  a  template  to  be  reverse  transcribed  into   DNA  (cDNA),  which  is  then  used  for  qPCR.  We  used  genes  that  are  known  to   be  turned  on  by  SKN-­‐1  as  targets  we  are  interested  in  quantifying  the   expression  of.   We  extracted  RNA  from  synchronized  L4  N2  wild-­‐type  and  lax134 (a  WDR-­‐23   mutant)  grown  on  OP50  to  reverse-­‐transcribed  into  cDNA.  We  used  snb-­‐1,  a   gene  which  normalizes  for  the  amount  of  cDNA,  as  our  control  gene.  We   then  used  gst-­‐4,  gcs-­‐1,  and  ugt-­‐11 to  help  determine  levels  of  SKN-­‐1   activation.  These  three  detoxification  enzymes  get  activated  by  SKN-­‐1;   therefore,  there  are  more  copies  of  these  three  genes  when  SKN-­‐1  is  active.   (a)  The  Ct  number  is  the  number  of  cycles  it  takes  for  the  qPCR  to  reach  the   threshold;  the  higher  the  Ct  number,  the  less  cDNA  is  in  the  sample.  The  dCt number  is  the  normalized  Ct  value  calculated  by  subtracting  the  snb-­‐1 Ct   number  from  the  sample  Ct  number.  The  ddCt  number  is  the  compared  Ct   value  between  lax134and  N2.  We  are  then  able  to  calculate  the  relative   amounts  of  each  gene  in  each  cDNA  sample.   (b)  Looking  at  the  below  qPCR  data  and  calculations,  we  are  able  to  see  that   lax134 has  much  greater  levels  of  gst-­‐4,  gcs-­‐1,  and  ugt-­‐11.  Higher  levels  of   detoxification  enzymes  that  are  activated  by  SKN-­‐1  indicate  greater  SKN-­‐1   activation.  We  can  conclude  that  the  wdr-­‐23  mutant  lax  134 has  greater   SKN-­‐1  activity  than  N2. Figure  2:  Cross  between  lax  213  hermaphrodite  and  gen-­‐1::gfp male. gen-­‐1 is  a  resolvase enzyme  that  snips  Holliday  junction  in  cases  of   recombination.  In  addition  to  SKN-­‐1,  WDR-­‐23  interacts  with  GEN-­‐1.   Since  gen-­‐1 is  not  a  transcription  factor,  we  cannot  measure  its  activity   through  analysis  of  gene  transcription  rates  like  we  did  for  SKN-­‐1.    We   have  crossed  lax213,  a  WDR-­‐23  mutant,  with  gen-­‐1::gfp, to  identify   changes  in  gen-­‐1 function  in  the  presence  of  a  lax213 mutation.  GFP   acts  as  a  tag  to  reveal  gen-­‐1 activity  in  the  animal.  Unlike  other  WDR-­‐23   mutants,  gen-­‐1 no  longer  interacts  with  WDR-­‐23  in  lax213.  Because  a   lax213 allele  mutation  disrupts  interaction,  that  region  in  the  protein  is   likely  to  be  important  or  necessary  for  interaction.   We  first  crossed  a  WDR-­‐23  mutant  hermaphrodite  (lax213 )  with  a  gen-­‐ 1::gfp male.  The  F1  generation  results  in  a  213,+  gfp,+  genotype.  We   then  allowed  the  F1  generation  to  self,  resulting  in  the  F2  generation   which  consists  of  16  possible  genotypes.  To  isolate  the  desired  213,  213   gen-­‐1::gfp,  gen-­‐1::gfp we  single-­‐lysed  64  different  worms.  To  check  for   GFP,  we  ran  a  PCR  with  a  set  of  primers  that  will  amplify  a  single  band   when  GFP  is  present.  To  identify  the  lax213 mutation,  we  ran  a  PCR  and   restriction  enzyme  digestion  comparing  our  samples  with  N2.  After  RE   digestion,  the  N2  sample  would  cut  and  the  lax213 mutation  would   remain  uncut.   (a)  The  cross  between  the  F1  progeny  and  itself  (self)  reveals  sixteen   possible  genotypes  for  the  F2  population.  Out  of  the  sixteen,  we  need  to   select  for  the  213,  213  gen-­‐1::gfp,  gen-­‐1::gfp genotype.  (b)  When  the   two  parent  worms  mate,  the  F1  progeny  are  hermaphrodites  which  we   let  mate  with  themselves.  We  need  a  worm  who  is  not  wild-­‐type  for   either  mutation.   (a) (b) Ct snb-1 Ct dCt ddCt 2^-ddCt gst-4 N2 lax 134 20.92 16.37 20.71 21.41 .21 -5.04 0 -5.258 1 38.0546277 gcs-1 N2 lax 134 21.63 19.91 20.71 21.41 0.92 -1.5 0 -2.42 1 5.35171022 ugt-11 N2 lax 134 27.34 25.06 20.71 21.41 6.63 3.65 0 -2.98 1 7.88986164 (a) (b) Future In  the  future,  we  will  use  qPCR  to  test  for  SKN-­‐1  dependency  of  N2  and   lax134  C.  elegans on  L4440  and  SKN-­‐1  RNAi.  This  will  allow  us  to  identify   levels  of  expression  of  gst-­‐4,  gcs-­‐1,  and  ugt-­‐11  in  worms  that  have  SKN-­‐1   knock  down  to  worms  that  were  on  L4440  control.  We  will  also  be  able  to   compare  levels  of  expression  between  N2  wild-­‐type  and  lax134  after   exposure  to  both  L4440  and  SKN-­‐1  RNAi.   We  will  also  proceed  to  identify  the  relationship  between  gen-­‐1 and   lax213. We  are  aware  that  WDR-­‐23  also  interacts  with  gen-­‐1,  but  do  not  know   why  or  what  changes  when  the  interaction  is  not  there.  We  will  use  gfp as   a  tag to  distinguish  changes  in  the  absence  of  the  interaction.