SlideShare a Scribd company logo
1 of 42
Production of Power
from Heat
Introduction
β€’ Work can readily be transformed into other forms of energy (such as
heat); however, converting heat to work cannot be done easily
β€’ Heat engines are special devices or machines that produce work from
heat in a cyclic process
Introduction
β€’ A power cycle is one where heat is absorbed by the fluid, and
transformed into work, with the remaining heat rejected
β€’ To facilitate power cycles, a working fluid is needed, which absorbs
heat from a heat reservoir, produces a net amount of work ,
discards heat to a cold reservoir, and returns to its initial state
Introduction
β€’ This chapter is devoted to the analysis of several common heat
engine cycles
SIMPLE STEAM
POWER PLANT
Power Cycles
β€’ Power cycles can be categorized depending upon the working fluid used:
Vapor power cycle- working fluid exists in vapor phase during one part of the
cycle, and in liquid phase during another part of the cycle
- fluid undergoes a thermodynamic cycle
Gas power cycle- working fluid remains in the gaseous phase throughout the
entire cycle
- mechanical cycle: fluid may start as a liquid, then exhausted
as a mixture of combustion gases
The Carnot Cycle
β€’ Carnot cycle- the most efficient heat engine cycle allowed by physical
laws
β€’ The Carnot efficiency sets the limiting value on the fraction of the
heat which can be used:
(note: the magnitude, not the sign, is important.)
The Carnot Cycle
β€’ The cycle consists of four processes:
 Reversible isothermal absorption of heat from a heat source at a high
temperature
 Reversible adiabatic (isentropic) expansion: the system is thermally
insulated; the fluid expands from boiler pressure at to the condenser
pressure at , and produces work
The Carnot Cycle
β€’ The cycle consists of four processes (continued):
 Reversible isothermal rejection of heat at
A reversible adiabatic (isentropic) compression: the system is thermally
insulated; the fluid compresses from condenser pressure at to the boiler
pressure at ; work is done on the fluid
The Carnot Cycle
Step Equipment Process
b-c Boiler Reversible Isothermal Absorption
of Heat
c-d Turbine Reversible Adiabatic (Isentropic)
Expansion
d-a condenser Reversible Isothermal Rejection
of Heat
a-d Pump Reversible Adiabatic (Isentropic)
Compression
The Carnot Cycle
Step Equipment Process
1-2 Boiler Reversible Isothermal Absorption
of Heat
2-3 Turbine Reversible Adiabatic (Isentropic)
Expansion
3-4 Condenser Reversible Isothermal Rejection
of Heat
4-1 Pump Reversible Adiabatic (Isentropic)
Compression
Illustrative Problem
Saturated liquid in a power plant is boiled isothermally to saturated
vapor, and is fed to a turbine at a pressure of 7231.5 kPa and a
temperature of 561.15K. Exhaust from the turbine enters a condenser
at a pressure 10.09 kPa and a temperature of 319.15K, which is then
pumped to the boiler.
Find: , , , , , and .
Solving Problems Involving Cycles
A step-by-step approach in solving problems involving thermodynamic
cycles is as follows:
1. Draw the schematic diagram of the power plant
2. Draw a T-S diagram and put appropriate labels
3. Make a table listing down relevant properties
4. Write energy and entropy balances around the equipment used in
the plant
5. Solve for the variables of interest (shaft work, efficiency of the
cycle, entropy generation)
Schematic Diagram
β€’ Before solving the problem,
sketching a schematic diagram is
done in order to visualize the
cycle
β€’ The flows are assigned numbers;
said flows are at a certain state
β€’ Draw the equipment and label
appropriately
T-S Diagram
β€’ The T-S diagram plots the specific entropy of the fluid against
temperature
β€’ This diagram is useful in visualizing how the cycle operates. For
example:
 the points where the fluid will undergo a phase change,
 the areas under the curves, which pertain to the heat absorbed (using a
boiler) and heat rejected (using a condenser), and
 the points where the fluid is a two-phase mixture
Drawing a T-S Diagram
Start with a β€œblank” diagram:
Drawing a T-S Diagram
Draw the relevant isobars:
Drawing a T-S Diagram
Label intersection of the isobar PTH and the saturated liquid curve as state (1):
Drawing a T-S Diagram
Label intersection of the isobar PTH and the saturated vapor curve as state (2); draw an arrow from (1) to (2):
Drawing a T-S Diagram
Draw an arrow perpendicular to arrow (1)-(2), from (2) until it intersects the isobar PTC ; label the intersection as state (3):
Drawing a T-S Diagram
Draw an arrow from (3) until it intersects the "line” perpendicular to arrow (1)-(2) ; label the point as state (4):
Drawing a T-S Diagram
Draw an arrow from (4) to (1) to complete the cycle; label accordingly:
Drawing a T-S Diagram
Animation:
Table of Property Data
A good way to organize the property data from the steam tables is by
making a table of property data. The format of this table is as follows:
Point State P(kPa) T(K) H(kJ kg-1) S(kJ kg-1 K-1) Quality (x)
1 Saturated Liquid 7231.5 561.15 1279.2 3.1424 -
2 Saturated Vapor 7231.5 561.15 2770.5 5.7997 1
3 Saturated Vapor 10.09 319.15 1835.6 5.7997 0.6867
4 Saturated Liquid 10.09 319.15 987.5 3.1424 0.3323
Quality
β€’ Recall that, in the T-S diagram, points (3) and (4) do not lie along the
saturated vapor-liquid curve; instead, they lie inside the dome
β€’ In order to solve for the properties of these points, one must first
consider the quality of the steam
Quality
β€’ The quality of the steam is defined to be the mass fraction of a
vapor/liquid mixture that is vapor:
π‘₯ =
π‘šπ‘£π‘Žπ‘
π‘šπ‘šπ‘–π‘₯π‘‘π‘’π‘Ÿπ‘’
β€’ Relevant equations:
1) π‘†π‘šπ‘–π‘₯π‘‘π‘’π‘Ÿπ‘’ = π‘†π‘ π‘Žπ‘‘π‘™π‘–π‘ž + π‘₯(π‘†π‘ π‘Žπ‘‘π‘£π‘Žπ‘ βˆ’ π‘†π‘ π‘Žπ‘‘π‘™π‘–π‘ž)
2) π»π‘šπ‘–π‘₯π‘‘π‘’π‘Ÿπ‘’ = π»π‘ π‘Žπ‘‘π‘™π‘–π‘ž + π‘₯(π»π‘ π‘Žπ‘‘π‘£π‘Žπ‘ βˆ’ π»π‘ π‘Žπ‘‘π‘™π‘–π‘ž)
3) π‘‰π‘šπ‘–π‘₯π‘‘π‘’π‘Ÿπ‘’ = π‘‰π‘ π‘Žπ‘‘π‘™π‘–π‘ž + π‘₯(π‘‰π‘ π‘Žπ‘‘π‘£π‘Žπ‘ βˆ’ π‘‰π‘ π‘Žπ‘‘π‘™π‘–π‘ž)
Quality
β€’ The quality of steam can be computed using one of these equations;
choosing what equation to use will depend on what particular
properties are given
β€’ In the case of the Carnot cycle, equation (1) is commonly used (for
example, in an isentropic expansion process, 𝑆2 = 𝑆3; hence, 𝑆2 is the
π‘†π‘šπ‘–π‘₯π‘‘π‘’π‘Ÿπ‘’ at (3))
Quality
x = Quality of Steam
x =
π‘€π‘Žπ‘ π‘  π‘œπ‘“ π‘†π‘Žπ‘‘π‘’π‘Ÿπ‘Žπ‘‘π‘’π‘‘ π‘‰π‘Žπ‘π‘œπ‘Ÿ 𝑖𝑛 π‘Šπ‘’π‘‘ π‘‰π‘Žπ‘π‘œπ‘Ÿ
π‘€π‘Žπ‘ π‘  π‘œπ‘“ 𝑀𝑒𝑑 π‘£π‘Žπ‘π‘œπ‘Ÿ
y =
π‘€π‘Žπ‘ π‘  π‘œπ‘“ π‘†π‘Žπ‘‘π‘’π‘Ÿπ‘Žπ‘‘π‘’π‘‘ π‘™π‘–π‘žπ‘’π‘–π‘‘ 𝑖𝑛 π‘Šπ‘’π‘‘ π‘‰π‘Žπ‘π‘œπ‘Ÿ
π‘€π‘Žπ‘ π‘  π‘œπ‘“ 𝑀𝑒𝑑 π‘£π‘Žπ‘π‘œπ‘Ÿ
Sat’d liquid
Sat’d vapor
S
π‘†π‘™π‘–π‘žπ‘’π‘–π‘‘
π‘†π‘£π‘Žπ‘π‘œπ‘Ÿ
π‘†π‘£π‘Žπ‘π‘œπ‘Ÿ - π‘†π‘™π‘–π‘žπ‘’π‘–π‘‘
x y
π‘₯ =
𝑆 βˆ’ π‘†π‘™π‘–π‘žπ‘’π‘–π‘‘
π‘†π‘£π‘Žπ‘π‘œπ‘Ÿ βˆ’ π‘†π‘™π‘–π‘žπ‘’π‘–π‘‘
S = π‘†π‘™π‘–π‘žπ‘’π‘–π‘‘ + π‘₯(π‘†π‘£π‘Žπ‘π‘œπ‘Ÿ βˆ’ π‘†π‘™π‘–π‘žπ‘’π‘–π‘‘)
Property Data
Point State P(kPa) T(K) H(kJ kg-1) S(kJ kg-1 K-1) Quality (x)
1 Saturated Liquid 7231.5 561.15 1279.2 3.1424 -
2 Saturated Vapor 7231.5 561.15 2770.5 5.7997 1
3 Wet Vapor 10.09 319.15 1835.6 5.7997 0.6867
4 Wet Vapor 10.09 319.15 987.5 3.1424 0.3323
π‘₯3 =
𝑆2 βˆ’ π‘†π‘ π‘Žπ‘‘π‘™π‘–π‘ž,319.15𝐾
π‘†π‘ π‘Žπ‘‘π‘£π‘Žπ‘,319.15𝐾 βˆ’ π‘†π‘ π‘Žπ‘‘π‘™π‘–π‘ž,319.15𝐾
=
5.7997 βˆ’ 0.6514
8.1481 βˆ’ 0.6514
= 0.6867
Calculations (values taken from steam tables):
π‘₯4 =
𝑆1 βˆ’ π‘†π‘ π‘Žπ‘‘π‘™π‘–π‘ž,319.15𝐾
π‘†π‘ π‘Žπ‘‘π‘£π‘Žπ‘,319.15𝐾 βˆ’ π‘†π‘ π‘Žπ‘‘π‘™π‘–π‘ž,319.15𝐾
=
3.1424 βˆ’ 0.6514
8.1481 βˆ’ 0.6514
= 0.3323
H3 = π»π‘ π‘Žπ‘‘π‘™π‘–π‘ž,319.15 + π‘₯3(π»π‘ π‘Žπ‘‘π‘£π‘Žπ‘,319.15𝐾 - π»π‘ π‘Žπ‘‘π‘™π‘–π‘ž,319.15𝐾 )
H3 = 192.5 + (0.6867)(2585.1- 192.5)
H3 = 1835.6 π‘˜π½ π‘˜π‘”βˆ’1
H4 = π»π‘ π‘Žπ‘‘π‘™π‘–π‘ž,319.15 + π‘₯4(π»π‘ π‘Žπ‘‘π‘£π‘Žπ‘,319.15𝐾 - π»π‘ π‘Žπ‘‘π‘™π‘–π‘ž,319.15𝐾 )
H3 = 192.5 + (0.3323)(2585.1- 192.5)
H3 = 987. 5 π‘˜π½ π‘˜π‘”βˆ’1
Energy Balance
β€’ We will now use the properties in the table in order to solve for the
quantities of interest (shaft work, efficiency, etc.)
β€’ One way to solve for these quantities is by writing energy balances
around the equipment used
Energy Balance: Boiler
Assumptions: no work done; potential and kinetic energy effects are
ignored
Energy Balance:
Δ𝑃𝐸 + Δ𝐾𝐸 + Δ𝐻 = π‘Š
𝑠 + 𝑄𝐻
β†’ Δ𝐻 = 𝑄𝐻
0 0 0
Energy Balance: Turbine
Assumptions: adiabatic; potential and kinetic energy effects are ignored
Energy Balance:
Δ𝑃𝐸 + Δ𝐾𝐸 + Δ𝐻 = π‘Š
𝑠 + 𝑄
β†’ Δ𝐻 = π‘Š
𝑠(π‘‘π‘’π‘Ÿπ‘π‘–π‘›π‘’)
0 0 0
Energy Balance: Condenser
Assumptions: no work done; potential and kinetic energy effects are
ignored
Energy Balance:
Δ𝑃𝐸 + Δ𝐾𝐸 + Δ𝐻 = π‘Š
𝑠 + 𝑄𝐢
β†’ Δ𝐻 = 𝑄𝐢
0 0 0
Energy Balance: Pump
Assumptions: adiabatic; potential and kinetic energy effects are ignored
Energy Balance:
Δ𝑃𝐸 + Δ𝐾𝐸 + Δ𝐻 = π‘Š
𝑠 + 𝑄
β†’ Δ𝐻 = π‘Š
𝑠(π‘π‘’π‘šπ‘)
0 0 0
Solving for Shaft Work (For a Turbine and Pump)
Writing the energy balance of the turbine,
π‘Š
𝑠 π‘‘π‘’π‘Ÿπ‘π‘–π‘›π‘’ = Δ𝐻 = 𝐻3 βˆ’ 𝐻2
= 1835.6 βˆ’ 2770.5 π‘˜π½ π‘˜π‘”βˆ’1
= βˆ’934.9 π‘˜π½ π‘˜π‘”βˆ’1.
Writing the energy balance of the pump,
π‘Š
𝑠 π‘π‘’π‘šπ‘ = Δ𝐻 = 𝐻1 βˆ’ 𝐻4
= 1279.2 βˆ’ 987.5 π‘˜π½ π‘˜π‘”βˆ’1
= 291.7 π‘˜π½ π‘˜π‘”βˆ’1.
β†’ π‘Šπ‘›π‘’π‘‘ = βˆ’934.9 + 291.7 π‘˜π½ π‘˜π‘”βˆ’1
= βˆ’643.2 π‘˜π½ π‘˜π‘”βˆ’1
Note: the energy balances used
for the turbine and pump are for
open systems.
Solving for QH and QC
Writing the energy balance of the boiler,
𝑄𝐻 = Δ𝐻 = 𝐻2 βˆ’ 𝐻1
= 2770.5 βˆ’ 1279.2 π‘˜π½ π‘˜π‘”βˆ’1
= 1491.3 π‘˜π½ π‘˜π‘”βˆ’1
Writing the energy balance of the condenser,
𝑄𝐢 = Δ𝐻 = 𝐻3 βˆ’ 𝐻2
= 987.5 βˆ’ 1835.6 π‘˜π½ π‘˜π‘”βˆ’1
= βˆ’848.1 π‘˜π½ π‘˜π‘”βˆ’1
By the 1st law of thermodynamics for closed systems (cycle),
β†’ |𝑄𝐻| βˆ’ |𝑄𝐢| = π‘Š
𝑠(𝑛𝑒𝑑) = 1491.3 βˆ’ 848.1 π‘˜π½ π‘˜π‘”βˆ’1
= 643.2 π‘˜π½ π‘˜π‘”βˆ’1
Note: the energy balances used
for the boiler and condenser are
for open systems.
Solving for QH and QC
β€’ |𝑄𝐻|, |𝑄𝐢| and |π‘Š
𝑠 𝑛𝑒𝑑 | can be solved by evaluating the areas under
the curves in the T-S diagram
β€’ For the boiler, |𝑄𝐻| = 𝑇𝐻 𝑆2 βˆ’ 𝑆1 = 𝑇𝐻 𝑆3 βˆ’ 𝑆4
β€’ For the condenser, |𝑄𝐢| = 𝑇𝐢 𝑆2 βˆ’ 𝑆1 = 𝑇𝐢 𝑆3 βˆ’ 𝑆4
β€’ Solving for π‘Š
𝑠 𝑛𝑒𝑑 : |π‘Š
𝑠 𝑛𝑒𝑑 | = 𝑇𝐻 βˆ’ 𝑇𝐢 𝑆2 βˆ’ 𝑆1
= (𝑇𝐻 βˆ’ 𝑇𝐢) 𝑆3 βˆ’ 𝑆4
Solving for QH and QC
Illustration:
Solving for QH and QC
Solving for QH and QC
Solving for QH and QC
|𝑄𝐻| = 561.15 𝐾 5.7997 βˆ’ 3.1424 π‘˜π½ π‘˜π‘”βˆ’1 πΎβˆ’1
= 1491.14 π‘˜π½ π‘˜π‘”βˆ’1
|𝑄𝐢| = 319.15 𝐾 5.7997 βˆ’ 3.1424 π‘˜π½ π‘˜π‘”βˆ’1 πΎβˆ’1
= 848.08 π‘˜π½ π‘˜π‘”βˆ’1
|π‘Š
𝑠 𝑛𝑒𝑑 | = 561.15 𝐾 βˆ’ 319.15𝐾 5.7997 βˆ’ 3.1424 π‘˜π½ π‘˜π‘”βˆ’1 πΎβˆ’1
= 643.06 π‘˜π½ π‘˜π‘”βˆ’1
Solving for Carnot Efficiency
πœ‚ = 1 βˆ’
319.15 𝐾
561.15 𝐾
= 0.4313
Or…
πœ‚ =
|π‘Š
𝑠 𝑛𝑒𝑑 |
|𝑄𝐻|
=
643.06 π‘˜π½ π‘˜π‘”βˆ’1
1491.14 π‘˜π½ π‘˜π‘”βˆ’1
= 0.4313
Thank you!

More Related Content

Similar to Chapter-8-Production-of-Power.pptx

Air-Cycle refrigeration.pdf
Air-Cycle refrigeration.pdfAir-Cycle refrigeration.pdf
Air-Cycle refrigeration.pdfEssaYimer
Β 
Energy thermodynamic cycles
Energy thermodynamic cyclesEnergy thermodynamic cycles
Energy thermodynamic cyclestinuvalsapaul
Β 
REVIEW OF POWER PLANT
REVIEW OF POWER PLANTREVIEW OF POWER PLANT
REVIEW OF POWER PLANTCharltonInao1
Β 
5.good practice & hr imp activities
5.good practice & hr imp activities5.good practice & hr imp activities
5.good practice & hr imp activitiesRavi Shankar
Β 
B.tech i eme u 3 heat engine
B.tech i eme u 3 heat engineB.tech i eme u 3 heat engine
B.tech i eme u 3 heat engineRai University
Β 
Lecture 5.pptx
Lecture 5.pptxLecture 5.pptx
Lecture 5.pptxNelyJay
Β 
Vapour power cycles
Vapour power cyclesVapour power cycles
Vapour power cycleskrishna khot
Β 
THERMODYNAMIC CYCLES.pdf
THERMODYNAMIC CYCLES.pdfTHERMODYNAMIC CYCLES.pdf
THERMODYNAMIC CYCLES.pdfJohnLumenickPenas1
Β 
Chapter_9_lecture_new Gas Power Cycle.pdf
Chapter_9_lecture_new Gas Power Cycle.pdfChapter_9_lecture_new Gas Power Cycle.pdf
Chapter_9_lecture_new Gas Power Cycle.pdfCemerlangStudi1
Β 
Lecture 7.pptx
Lecture 7.pptxLecture 7.pptx
Lecture 7.pptxNelyJay
Β 
Heat exchanger networking
Heat exchanger networkingHeat exchanger networking
Heat exchanger networkingVIVEK GUPTA
Β 
Pinch analysis technique to optimize heat exchanger
Pinch analysis technique to optimize heat exchangerPinch analysis technique to optimize heat exchanger
Pinch analysis technique to optimize heat exchangerK Vivek Varkey
Β 

Similar to Chapter-8-Production-of-Power.pptx (20)

Air-Cycle refrigeration.pdf
Air-Cycle refrigeration.pdfAir-Cycle refrigeration.pdf
Air-Cycle refrigeration.pdf
Β 
Air standard cycles carnot, stirling, ericsson
Air standard cycles  carnot, stirling, ericssonAir standard cycles  carnot, stirling, ericsson
Air standard cycles carnot, stirling, ericsson
Β 
Energy thermodynamic cycles
Energy thermodynamic cyclesEnergy thermodynamic cycles
Energy thermodynamic cycles
Β 
carnotcycle.pptx
carnotcycle.pptxcarnotcycle.pptx
carnotcycle.pptx
Β 
REVIEW OF POWER PLANT
REVIEW OF POWER PLANTREVIEW OF POWER PLANT
REVIEW OF POWER PLANT
Β 
Gas turbine 1
Gas turbine  1Gas turbine  1
Gas turbine 1
Β 
Air standard cycles carnot, stirling, ericsson
Air standard cycles  carnot, stirling, ericssonAir standard cycles  carnot, stirling, ericsson
Air standard cycles carnot, stirling, ericsson
Β 
5.good practice & hr imp activities
5.good practice & hr imp activities5.good practice & hr imp activities
5.good practice & hr imp activities
Β 
B.tech i eme u 3 heat engine
B.tech i eme u 3 heat engineB.tech i eme u 3 heat engine
B.tech i eme u 3 heat engine
Β 
Lecture 5.pptx
Lecture 5.pptxLecture 5.pptx
Lecture 5.pptx
Β 
Vapour power cycles
Vapour power cyclesVapour power cycles
Vapour power cycles
Β 
THERMODYNAMIC CYCLES.pdf
THERMODYNAMIC CYCLES.pdfTHERMODYNAMIC CYCLES.pdf
THERMODYNAMIC CYCLES.pdf
Β 
Ch19 ssm
Ch19 ssmCh19 ssm
Ch19 ssm
Β 
Carnot cycle
Carnot cycleCarnot cycle
Carnot cycle
Β 
Chapter_9_lecture_new Gas Power Cycle.pdf
Chapter_9_lecture_new Gas Power Cycle.pdfChapter_9_lecture_new Gas Power Cycle.pdf
Chapter_9_lecture_new Gas Power Cycle.pdf
Β 
Lecture 7.pptx
Lecture 7.pptxLecture 7.pptx
Lecture 7.pptx
Β 
Heat exchanger networking
Heat exchanger networkingHeat exchanger networking
Heat exchanger networking
Β 
Rnakine reheat regen
Rnakine reheat regenRnakine reheat regen
Rnakine reheat regen
Β 
Gas Turbine Powerplants
Gas Turbine Powerplants Gas Turbine Powerplants
Gas Turbine Powerplants
Β 
Pinch analysis technique to optimize heat exchanger
Pinch analysis technique to optimize heat exchangerPinch analysis technique to optimize heat exchanger
Pinch analysis technique to optimize heat exchanger
Β 

Recently uploaded

Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
Β 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
Β 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
Β 
Study on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube ExchangerAnamika Sarkar
Β 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
Β 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
Β 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
Β 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
Β 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
Β 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
Β 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
Β 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxvipinkmenon1
Β 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
Β 
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
Β 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZTE
Β 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoΓ£o Esperancinha
Β 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
Β 

Recently uploaded (20)

Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
Β 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
Β 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
Β 
Study on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube Exchanger
Β 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
Β 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
Β 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Β 
young call girls in Rajiv ChowkπŸ” 9953056974 πŸ” Delhi escort Service
young call girls in Rajiv ChowkπŸ” 9953056974 πŸ” Delhi escort Serviceyoung call girls in Rajiv ChowkπŸ” 9953056974 πŸ” Delhi escort Service
young call girls in Rajiv ChowkπŸ” 9953056974 πŸ” Delhi escort Service
Β 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Β 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Β 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
Β 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
Β 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
Β 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
Β 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptx
Β 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
Β 
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Β 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
Β 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Β 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
Β 

Chapter-8-Production-of-Power.pptx

  • 2. Introduction β€’ Work can readily be transformed into other forms of energy (such as heat); however, converting heat to work cannot be done easily β€’ Heat engines are special devices or machines that produce work from heat in a cyclic process
  • 3. Introduction β€’ A power cycle is one where heat is absorbed by the fluid, and transformed into work, with the remaining heat rejected β€’ To facilitate power cycles, a working fluid is needed, which absorbs heat from a heat reservoir, produces a net amount of work , discards heat to a cold reservoir, and returns to its initial state
  • 4. Introduction β€’ This chapter is devoted to the analysis of several common heat engine cycles SIMPLE STEAM POWER PLANT
  • 5. Power Cycles β€’ Power cycles can be categorized depending upon the working fluid used: Vapor power cycle- working fluid exists in vapor phase during one part of the cycle, and in liquid phase during another part of the cycle - fluid undergoes a thermodynamic cycle Gas power cycle- working fluid remains in the gaseous phase throughout the entire cycle - mechanical cycle: fluid may start as a liquid, then exhausted as a mixture of combustion gases
  • 6. The Carnot Cycle β€’ Carnot cycle- the most efficient heat engine cycle allowed by physical laws β€’ The Carnot efficiency sets the limiting value on the fraction of the heat which can be used: (note: the magnitude, not the sign, is important.)
  • 7. The Carnot Cycle β€’ The cycle consists of four processes:  Reversible isothermal absorption of heat from a heat source at a high temperature  Reversible adiabatic (isentropic) expansion: the system is thermally insulated; the fluid expands from boiler pressure at to the condenser pressure at , and produces work
  • 8. The Carnot Cycle β€’ The cycle consists of four processes (continued):  Reversible isothermal rejection of heat at A reversible adiabatic (isentropic) compression: the system is thermally insulated; the fluid compresses from condenser pressure at to the boiler pressure at ; work is done on the fluid
  • 9. The Carnot Cycle Step Equipment Process b-c Boiler Reversible Isothermal Absorption of Heat c-d Turbine Reversible Adiabatic (Isentropic) Expansion d-a condenser Reversible Isothermal Rejection of Heat a-d Pump Reversible Adiabatic (Isentropic) Compression
  • 10. The Carnot Cycle Step Equipment Process 1-2 Boiler Reversible Isothermal Absorption of Heat 2-3 Turbine Reversible Adiabatic (Isentropic) Expansion 3-4 Condenser Reversible Isothermal Rejection of Heat 4-1 Pump Reversible Adiabatic (Isentropic) Compression
  • 11. Illustrative Problem Saturated liquid in a power plant is boiled isothermally to saturated vapor, and is fed to a turbine at a pressure of 7231.5 kPa and a temperature of 561.15K. Exhaust from the turbine enters a condenser at a pressure 10.09 kPa and a temperature of 319.15K, which is then pumped to the boiler. Find: , , , , , and .
  • 12. Solving Problems Involving Cycles A step-by-step approach in solving problems involving thermodynamic cycles is as follows: 1. Draw the schematic diagram of the power plant 2. Draw a T-S diagram and put appropriate labels 3. Make a table listing down relevant properties 4. Write energy and entropy balances around the equipment used in the plant 5. Solve for the variables of interest (shaft work, efficiency of the cycle, entropy generation)
  • 13. Schematic Diagram β€’ Before solving the problem, sketching a schematic diagram is done in order to visualize the cycle β€’ The flows are assigned numbers; said flows are at a certain state β€’ Draw the equipment and label appropriately
  • 14. T-S Diagram β€’ The T-S diagram plots the specific entropy of the fluid against temperature β€’ This diagram is useful in visualizing how the cycle operates. For example:  the points where the fluid will undergo a phase change,  the areas under the curves, which pertain to the heat absorbed (using a boiler) and heat rejected (using a condenser), and  the points where the fluid is a two-phase mixture
  • 15. Drawing a T-S Diagram Start with a β€œblank” diagram:
  • 16. Drawing a T-S Diagram Draw the relevant isobars:
  • 17. Drawing a T-S Diagram Label intersection of the isobar PTH and the saturated liquid curve as state (1):
  • 18. Drawing a T-S Diagram Label intersection of the isobar PTH and the saturated vapor curve as state (2); draw an arrow from (1) to (2):
  • 19. Drawing a T-S Diagram Draw an arrow perpendicular to arrow (1)-(2), from (2) until it intersects the isobar PTC ; label the intersection as state (3):
  • 20. Drawing a T-S Diagram Draw an arrow from (3) until it intersects the "line” perpendicular to arrow (1)-(2) ; label the point as state (4):
  • 21. Drawing a T-S Diagram Draw an arrow from (4) to (1) to complete the cycle; label accordingly:
  • 22. Drawing a T-S Diagram Animation:
  • 23. Table of Property Data A good way to organize the property data from the steam tables is by making a table of property data. The format of this table is as follows: Point State P(kPa) T(K) H(kJ kg-1) S(kJ kg-1 K-1) Quality (x) 1 Saturated Liquid 7231.5 561.15 1279.2 3.1424 - 2 Saturated Vapor 7231.5 561.15 2770.5 5.7997 1 3 Saturated Vapor 10.09 319.15 1835.6 5.7997 0.6867 4 Saturated Liquid 10.09 319.15 987.5 3.1424 0.3323
  • 24. Quality β€’ Recall that, in the T-S diagram, points (3) and (4) do not lie along the saturated vapor-liquid curve; instead, they lie inside the dome β€’ In order to solve for the properties of these points, one must first consider the quality of the steam
  • 25. Quality β€’ The quality of the steam is defined to be the mass fraction of a vapor/liquid mixture that is vapor: π‘₯ = π‘šπ‘£π‘Žπ‘ π‘šπ‘šπ‘–π‘₯π‘‘π‘’π‘Ÿπ‘’ β€’ Relevant equations: 1) π‘†π‘šπ‘–π‘₯π‘‘π‘’π‘Ÿπ‘’ = π‘†π‘ π‘Žπ‘‘π‘™π‘–π‘ž + π‘₯(π‘†π‘ π‘Žπ‘‘π‘£π‘Žπ‘ βˆ’ π‘†π‘ π‘Žπ‘‘π‘™π‘–π‘ž) 2) π»π‘šπ‘–π‘₯π‘‘π‘’π‘Ÿπ‘’ = π»π‘ π‘Žπ‘‘π‘™π‘–π‘ž + π‘₯(π»π‘ π‘Žπ‘‘π‘£π‘Žπ‘ βˆ’ π»π‘ π‘Žπ‘‘π‘™π‘–π‘ž) 3) π‘‰π‘šπ‘–π‘₯π‘‘π‘’π‘Ÿπ‘’ = π‘‰π‘ π‘Žπ‘‘π‘™π‘–π‘ž + π‘₯(π‘‰π‘ π‘Žπ‘‘π‘£π‘Žπ‘ βˆ’ π‘‰π‘ π‘Žπ‘‘π‘™π‘–π‘ž)
  • 26. Quality β€’ The quality of steam can be computed using one of these equations; choosing what equation to use will depend on what particular properties are given β€’ In the case of the Carnot cycle, equation (1) is commonly used (for example, in an isentropic expansion process, 𝑆2 = 𝑆3; hence, 𝑆2 is the π‘†π‘šπ‘–π‘₯π‘‘π‘’π‘Ÿπ‘’ at (3))
  • 27. Quality x = Quality of Steam x = π‘€π‘Žπ‘ π‘  π‘œπ‘“ π‘†π‘Žπ‘‘π‘’π‘Ÿπ‘Žπ‘‘π‘’π‘‘ π‘‰π‘Žπ‘π‘œπ‘Ÿ 𝑖𝑛 π‘Šπ‘’π‘‘ π‘‰π‘Žπ‘π‘œπ‘Ÿ π‘€π‘Žπ‘ π‘  π‘œπ‘“ 𝑀𝑒𝑑 π‘£π‘Žπ‘π‘œπ‘Ÿ y = π‘€π‘Žπ‘ π‘  π‘œπ‘“ π‘†π‘Žπ‘‘π‘’π‘Ÿπ‘Žπ‘‘π‘’π‘‘ π‘™π‘–π‘žπ‘’π‘–π‘‘ 𝑖𝑛 π‘Šπ‘’π‘‘ π‘‰π‘Žπ‘π‘œπ‘Ÿ π‘€π‘Žπ‘ π‘  π‘œπ‘“ 𝑀𝑒𝑑 π‘£π‘Žπ‘π‘œπ‘Ÿ Sat’d liquid Sat’d vapor S π‘†π‘™π‘–π‘žπ‘’π‘–π‘‘ π‘†π‘£π‘Žπ‘π‘œπ‘Ÿ π‘†π‘£π‘Žπ‘π‘œπ‘Ÿ - π‘†π‘™π‘–π‘žπ‘’π‘–π‘‘ x y π‘₯ = 𝑆 βˆ’ π‘†π‘™π‘–π‘žπ‘’π‘–π‘‘ π‘†π‘£π‘Žπ‘π‘œπ‘Ÿ βˆ’ π‘†π‘™π‘–π‘žπ‘’π‘–π‘‘ S = π‘†π‘™π‘–π‘žπ‘’π‘–π‘‘ + π‘₯(π‘†π‘£π‘Žπ‘π‘œπ‘Ÿ βˆ’ π‘†π‘™π‘–π‘žπ‘’π‘–π‘‘)
  • 28. Property Data Point State P(kPa) T(K) H(kJ kg-1) S(kJ kg-1 K-1) Quality (x) 1 Saturated Liquid 7231.5 561.15 1279.2 3.1424 - 2 Saturated Vapor 7231.5 561.15 2770.5 5.7997 1 3 Wet Vapor 10.09 319.15 1835.6 5.7997 0.6867 4 Wet Vapor 10.09 319.15 987.5 3.1424 0.3323 π‘₯3 = 𝑆2 βˆ’ π‘†π‘ π‘Žπ‘‘π‘™π‘–π‘ž,319.15𝐾 π‘†π‘ π‘Žπ‘‘π‘£π‘Žπ‘,319.15𝐾 βˆ’ π‘†π‘ π‘Žπ‘‘π‘™π‘–π‘ž,319.15𝐾 = 5.7997 βˆ’ 0.6514 8.1481 βˆ’ 0.6514 = 0.6867 Calculations (values taken from steam tables): π‘₯4 = 𝑆1 βˆ’ π‘†π‘ π‘Žπ‘‘π‘™π‘–π‘ž,319.15𝐾 π‘†π‘ π‘Žπ‘‘π‘£π‘Žπ‘,319.15𝐾 βˆ’ π‘†π‘ π‘Žπ‘‘π‘™π‘–π‘ž,319.15𝐾 = 3.1424 βˆ’ 0.6514 8.1481 βˆ’ 0.6514 = 0.3323 H3 = π»π‘ π‘Žπ‘‘π‘™π‘–π‘ž,319.15 + π‘₯3(π»π‘ π‘Žπ‘‘π‘£π‘Žπ‘,319.15𝐾 - π»π‘ π‘Žπ‘‘π‘™π‘–π‘ž,319.15𝐾 ) H3 = 192.5 + (0.6867)(2585.1- 192.5) H3 = 1835.6 π‘˜π½ π‘˜π‘”βˆ’1 H4 = π»π‘ π‘Žπ‘‘π‘™π‘–π‘ž,319.15 + π‘₯4(π»π‘ π‘Žπ‘‘π‘£π‘Žπ‘,319.15𝐾 - π»π‘ π‘Žπ‘‘π‘™π‘–π‘ž,319.15𝐾 ) H3 = 192.5 + (0.3323)(2585.1- 192.5) H3 = 987. 5 π‘˜π½ π‘˜π‘”βˆ’1
  • 29. Energy Balance β€’ We will now use the properties in the table in order to solve for the quantities of interest (shaft work, efficiency, etc.) β€’ One way to solve for these quantities is by writing energy balances around the equipment used
  • 30. Energy Balance: Boiler Assumptions: no work done; potential and kinetic energy effects are ignored Energy Balance: Δ𝑃𝐸 + Δ𝐾𝐸 + Δ𝐻 = π‘Š 𝑠 + 𝑄𝐻 β†’ Δ𝐻 = 𝑄𝐻 0 0 0
  • 31. Energy Balance: Turbine Assumptions: adiabatic; potential and kinetic energy effects are ignored Energy Balance: Δ𝑃𝐸 + Δ𝐾𝐸 + Δ𝐻 = π‘Š 𝑠 + 𝑄 β†’ Δ𝐻 = π‘Š 𝑠(π‘‘π‘’π‘Ÿπ‘π‘–π‘›π‘’) 0 0 0
  • 32. Energy Balance: Condenser Assumptions: no work done; potential and kinetic energy effects are ignored Energy Balance: Δ𝑃𝐸 + Δ𝐾𝐸 + Δ𝐻 = π‘Š 𝑠 + 𝑄𝐢 β†’ Δ𝐻 = 𝑄𝐢 0 0 0
  • 33. Energy Balance: Pump Assumptions: adiabatic; potential and kinetic energy effects are ignored Energy Balance: Δ𝑃𝐸 + Δ𝐾𝐸 + Δ𝐻 = π‘Š 𝑠 + 𝑄 β†’ Δ𝐻 = π‘Š 𝑠(π‘π‘’π‘šπ‘) 0 0 0
  • 34. Solving for Shaft Work (For a Turbine and Pump) Writing the energy balance of the turbine, π‘Š 𝑠 π‘‘π‘’π‘Ÿπ‘π‘–π‘›π‘’ = Δ𝐻 = 𝐻3 βˆ’ 𝐻2 = 1835.6 βˆ’ 2770.5 π‘˜π½ π‘˜π‘”βˆ’1 = βˆ’934.9 π‘˜π½ π‘˜π‘”βˆ’1. Writing the energy balance of the pump, π‘Š 𝑠 π‘π‘’π‘šπ‘ = Δ𝐻 = 𝐻1 βˆ’ 𝐻4 = 1279.2 βˆ’ 987.5 π‘˜π½ π‘˜π‘”βˆ’1 = 291.7 π‘˜π½ π‘˜π‘”βˆ’1. β†’ π‘Šπ‘›π‘’π‘‘ = βˆ’934.9 + 291.7 π‘˜π½ π‘˜π‘”βˆ’1 = βˆ’643.2 π‘˜π½ π‘˜π‘”βˆ’1 Note: the energy balances used for the turbine and pump are for open systems.
  • 35. Solving for QH and QC Writing the energy balance of the boiler, 𝑄𝐻 = Δ𝐻 = 𝐻2 βˆ’ 𝐻1 = 2770.5 βˆ’ 1279.2 π‘˜π½ π‘˜π‘”βˆ’1 = 1491.3 π‘˜π½ π‘˜π‘”βˆ’1 Writing the energy balance of the condenser, 𝑄𝐢 = Δ𝐻 = 𝐻3 βˆ’ 𝐻2 = 987.5 βˆ’ 1835.6 π‘˜π½ π‘˜π‘”βˆ’1 = βˆ’848.1 π‘˜π½ π‘˜π‘”βˆ’1 By the 1st law of thermodynamics for closed systems (cycle), β†’ |𝑄𝐻| βˆ’ |𝑄𝐢| = π‘Š 𝑠(𝑛𝑒𝑑) = 1491.3 βˆ’ 848.1 π‘˜π½ π‘˜π‘”βˆ’1 = 643.2 π‘˜π½ π‘˜π‘”βˆ’1 Note: the energy balances used for the boiler and condenser are for open systems.
  • 36. Solving for QH and QC β€’ |𝑄𝐻|, |𝑄𝐢| and |π‘Š 𝑠 𝑛𝑒𝑑 | can be solved by evaluating the areas under the curves in the T-S diagram β€’ For the boiler, |𝑄𝐻| = 𝑇𝐻 𝑆2 βˆ’ 𝑆1 = 𝑇𝐻 𝑆3 βˆ’ 𝑆4 β€’ For the condenser, |𝑄𝐢| = 𝑇𝐢 𝑆2 βˆ’ 𝑆1 = 𝑇𝐢 𝑆3 βˆ’ 𝑆4 β€’ Solving for π‘Š 𝑠 𝑛𝑒𝑑 : |π‘Š 𝑠 𝑛𝑒𝑑 | = 𝑇𝐻 βˆ’ 𝑇𝐢 𝑆2 βˆ’ 𝑆1 = (𝑇𝐻 βˆ’ 𝑇𝐢) 𝑆3 βˆ’ 𝑆4
  • 37. Solving for QH and QC Illustration:
  • 38. Solving for QH and QC
  • 39. Solving for QH and QC
  • 40. Solving for QH and QC |𝑄𝐻| = 561.15 𝐾 5.7997 βˆ’ 3.1424 π‘˜π½ π‘˜π‘”βˆ’1 πΎβˆ’1 = 1491.14 π‘˜π½ π‘˜π‘”βˆ’1 |𝑄𝐢| = 319.15 𝐾 5.7997 βˆ’ 3.1424 π‘˜π½ π‘˜π‘”βˆ’1 πΎβˆ’1 = 848.08 π‘˜π½ π‘˜π‘”βˆ’1 |π‘Š 𝑠 𝑛𝑒𝑑 | = 561.15 𝐾 βˆ’ 319.15𝐾 5.7997 βˆ’ 3.1424 π‘˜π½ π‘˜π‘”βˆ’1 πΎβˆ’1 = 643.06 π‘˜π½ π‘˜π‘”βˆ’1
  • 41. Solving for Carnot Efficiency πœ‚ = 1 βˆ’ 319.15 𝐾 561.15 𝐾 = 0.4313 Or… πœ‚ = |π‘Š 𝑠 𝑛𝑒𝑑 | |𝑄𝐻| = 643.06 π‘˜π½ π‘˜π‘”βˆ’1 1491.14 π‘˜π½ π‘˜π‘”βˆ’1 = 0.4313