SlideShare a Scribd company logo
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 10 Issue: 01 | Jan 2023 www.irjet.net p-ISSN: 2395-0072
© 2023, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1127
CANCER TUMOR DETECTION USING MACHINE LEARNING
L.Pradeep Shaik Faisal Syed Obaid
Information Technology Information Technology Information Technology Sreenidhi
Institute Of Science Sreenidhi Institute Of Science Sreenidhi Institute Of Science
Technology and Technology and Technology
Hyderabad, Telangana, India. Hyderabad, Telangana, India. Hyderabad, Telangana, India.
Dr.B.Indira Dr.M.Sreenivas
Professor Associate Professor
Information Technology Information Technology
Sreenidhi Institute Of Science and Sreenidhi Institute Of Science and
Technology Technology
Hyderabad, Telanganga, India. Hyderabad, Telanganga, India.
-------------------------------------------------------------------------***-----------------------------------------------------------------------
ABSTRACT :
Breast tissue can develop tumours of the breast cancer variety. It is the most prevalent type of cancer infemales around the
world and one of the main causes of death in females. This piece gives a comparison of the data mining, machine learning, and
deep learning methods used to detect breast cancer.
Numerous researchers have worked to improve breast cancer diagnosis and prognosis; nevertheless, each technique has a
distinct accuracy rate that changes depending on the circumstances, resources, and datasets employed. Our primary goal is to
compare and contrast various Machine Learning and Data Mining approaches currently in use in order to identify the most
effective approach that will support the enormous dataset with the best possible prediction accuracy. The major goal of this
study is to highlightall the prior research on machine-learning algorithms that have been used to predict breast cancer, and
this article gives all the knowledge a novice needs to understand machine learning algorithms and build a solid foundation for
deep learning.
INTRODUCTION:
In the modern day, breast cancer is one of the most deadly and diverse diseases, killing a huge number of women all over the
world. It is the second most common illness that kills women. Different machine learning and data mining methods are being
applied for breast cancer prediction. One of the key tasks is to find the most acceptable and suitable algorithm for breast cancer
prediction. Malignant tumours, which form when a cell's development spirals out of control, are the cause of breast cancer.
Breast cancer is brought on by the abnormal proliferation of numerous fatty and fibrous breast tissues. Tumors that cause
various stages of cancer have cancer cells that have spread throughout them. Breast cancer can take many distinct forms, and
it develops when damaged cells and tissues are dispersed all across the body. DCIS, commonly referred to as non-invasive
cancer, is a kind of breast cancer that develops when abnormal cells move outside the breast. The second kind is Infiltrative
Ductal Carcinoma (IDC) , which is sometimes referred to as Invasive Ductal Carcinoma (IDC) . IDC cancer is typically observed
in men, and it develops when breast aberrant cells expand throughout all breast tissues. The third subtype of breast cancer is
known as Mixed Tumors Breast Cancer (MTBC), which is also referred to as invasive mammary breast cancer. Such cancers are
brought on by abnormal duct and lobular cells.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 10 Issue: 01 | Jan 2023 www.irjet.net p-ISSN: 2395-0072
© 2023, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1128
Lobular Breast Cancer (LBC) [11] is the fourth form of cancer and develops inside the lobule. It raises therisk of developing
more invasive malignancies. Colloid breast cancer, also known as mucinous breast cancer (MBC) [12], is the fifth kind of breast
cancer that arises from invasive ductal cells. When aberrant tissues surround the duct, it happens [13]. IBC (Inflammatory
Breast Cancer) is the most recent form that results in swelling and breast reddening When lymphatic channels become blocked
in break cells, a breast cancer of this type begins to develop quickly [14].
Data mining is the process of extracting useful information from large datasets. Data mining functions and techniques can be
used to identify any type of disease. For example, machine learning, statistics, databases, fuzzy sets, data warehouses, and
neural networks can be used to diagnose and predict the prognosis of various cancer diseases, including prostate cancer, lungs
cancer, and leukaemia [15]. The "gold standard" approach, which entails three procedures (clinical examination, radiological
imaging, and pathology test), forms the foundation of traditional cancer detection methodology [18]. While the latestmachine
learning approaches and algorithms are based on model creation, the conventional method uses regression to signal the
existence of cancer. The model is created to predict unknown data and delivers the predicted results well throughout training
and testing [19]. Preprocessing, features selection or extraction, and classification are the three primary methodologies on
which machine learning is founded [20]. The main component of machine learning, feature extraction, aids in the diagnosis
and prognosis of cancer and may distinguish between benign and malignant tumours [21]. We can diagnose and anticipate
certain types of breast cancer, like the one depicted in Figure 1, thanks to data mining and machine learning algorithms.
Classification, regression, and clustering are a few data mining techniques
[22] that assist us in obtaining useful data on breast cancer patients. These algorithms [23] include training datasets, and by
using these datasets, we can determine the likelihood of predicting various types of breast cancer [24].
II.MACHINE LEARNING ALGORITHMS FOR BREAST CANCER PREDICTION:
We input a vast amount of data, the machine learning model analyses that data, and on the basis of that trained model, we can
make a prediction about the future [24], [26], [27]. Machine learning is an automatic learning method [25]. The following are
the main machine learning algorithms for predicting breast cancer:
A. ARTIFICIAL NEURAL NETWORK (ANN):
An efficient approach for data mining is the artificial neural network [28]. Input, hidden, and output layers make up a neural
network. This method is employed to extract the too-complex patterns [29]. The algorithm is based on network architecture
[32]–[34], distributed memory [31], collaborative solutions, and parallel processing [30].
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 10 Issue: 01 | Jan 2023 www.irjet.net p-ISSN: 2395-0072
© 2023, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1129
B.LOGISTICS REGRESSION (LR):
The algorithm is supervised learning and has more dependent variables. This algorithm's output takes the form of a binary
number. Regression in logistics [35] can offer a continuous result for a certain data. A statistical model with binary variables
makes up this method [32].
C. K-NEAREST NEIGHBOR (KNN)
In order to recognise patterns, this method is utilised. It is an effective strategy for predicting breast cancer. Every class
received the same amount of attention in order to spot the trend. From a sizable dataset, K Nearest Neighbor [36] extracts the
related highlighted data. We classify a sizable dataset on the basis of feature similarity [32].
D.DECISION TREE (DT)
Classification and regression models are the foundation of decision tree [37]. The data set is broken up into fewer subsets. The
best degree of precision in prediction may be achieved using these smaller sets of data. CART [38], C4.5 [39], C5.0 [40] and
conditional tree [32, [41] are among the decision tree methods.
E. NAIVE BAYES ALGORITHM (NB)
With this approach, a sizable training dataset is assumed. The Bayesian approach is employed in the algorithm to calculate
probability [42]. When determining the input probabilities of noisy data, it offers the maximum accuracy [43]. This classifier
uses analogies to compare training datasets and training tuples [32].
F.SUPPORT VECTOR MACHINE (SVM)
Both classification and regression issues are addressed by this supervised learning system [44]. It uses mathematical and
theoretical functions to address the regression issue. When making predictions using a huge dataset, it offers the highest
accuracy rate. Based on 3D and 2D modelling, it is a powerful machine learning technique [32], [45].
G. RANDOM FOREST (RF)
The supervised learning-based Random Forest algorithm [46] is used to address classification and regression issues. It is a
machine learning building component that is used to predict new data based on historical datasets [32].
H. K MEAN ALGORITHM
With the help of the clustering method K mean, data can be divided into small groups. To determine the degree of similarity
between various data points, algorithms are used. The most appropriate cluster for evaluating a large dataset is present in
every data point [48].
K. GAUSSIAN MIXTURE ALGORITHM
It is the unsupervised learning method that is most widely used. The method of computing the likelihood of various forms of
clustered data is referred to as the soft clustering methodology. This algorithm's implementation is based on expectation
maximisation [51].
III. ENSEMBLE TECHNIQUES FOR BREAST CANCER PREDICTION
Both homogeneous and heterogeneous ensemble techniques can be used; homogeneous ensemble techniques [52] combine
one base method with two or more configuration methods, such as bagging and boosting technique, while heterogeneous
ensemble techniques [53]-[55] combine two or more base methods. Ensemble techniques are based on supervised learning,
which offers accurate predictions based on specific hypotheses.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 10 Issue: 01 | Jan 2023 www.irjet.net p-ISSN: 2395-0072
© 2023, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1130
A. BAGGING
The other name of the bagging technique is bootstrap aggregation which is used for the prediction of any disease. It is based on
multiple models, [54] each model is trained separately and then combined together for prediction [52].
B. BOOSTING
Boosting is homogenous week learner that creates one strong classifier from some weak classifiers [52]. It is based on step by
step strategies for building up the model from some training data [54], [55].
C. STACKING
For prediction on the same dataset, stacking is a heterogeneous [52] weak learner that integrates many machine learning
techniques. It is made up of two or more basic models and combines their predictions [54, 55].
V. SURVEY ON BREAST CANCER
The world's most populous nation is China. Males have breast cancer at a rate of 8.6%, whilst females experience it at a rate of
19.2%, according to a recent organisation report (GLOBOCAN-2018) [65]. Everyyear, 1.2 million people pass away from this
illness. The American Cancer Society identified 48,100 incidences of DCID cancer in female patients. According to a US 2019
study, 41,760 women and 500 men are anticipated to pass away from breast cancer [66]. According to a US survey, there are
3.8 million women who are still living but are battling breast cancer. 2019 saw 59,838 incidences of Ductal Carcinoma in Situ
(DCIS) breast cancer in US women [67]. 458,000 people have died from breast cancer worldwide. Chinese women died from
breast cancer at a rate of 48% in 2012, compared to a global death rate of 52% [68]. Data from 1,517 women were examined
in 2015 to determine the breast cancer survival and recurrence rates; the breast cancer recurrence rate was 100 and the
mortality rate was 132[69].
VI. REVIEW OF MACHINE LEARNING ALGORITHMS FOR BREAST CANCER PREDICTION
The major goal of this study is to evaluate several machine learning and data mining methods that have aided in breast cancer
prediction. Finding the most precise and appropriate algorithm for breast cancer prediction is our main goal. In order to do
this, we've gone over and examined previous research on breast cancer prediction algorithms. additionally examined research
publications based on linear, nonlinear, naive bayes, K-nearest neighbour, support vector machine, and certain ensemble
algorithms (Linear Regression, Logistic Regression, Linear Discriminant Analysis) (Decision Tree, Random Forest, Boosting
and AdaBoost). The vast majority of researchers combined linear and nonlinear or nonlinear and ensemble techniques. As a
result, we have divided our review article into sections that will compare and contrast each algorithm based on its accuracy
level. Following that comparison, we will highlight the best machine learning method for predicting breast cancer.
CONCLUSION
In this paper, we have examined various data mining, machine learning, and deep learning methods for the prediction of
breast cancer. Finding the best algorithm to more accurately forecast the onset of breast cancer is our key goal. This article's
main goal is to showcase all of the prior research on machine learning algorithms that have been used to predict breast cancer.
It also gives newcomers all the information they need to understand machine learning algorithms and provide the groundwork
for deep learning. The review of this article begins with a discussion of the many forms of breast cancer. To learnmore about
the main forms, symptoms, and causes of breast cancer, fourteen research publications were examined. Following that, a
review of the most important machine learning, ensemble, and deep learning approaches was given. These techniques greatly
elaborate the algorithms that are used to forecast breast cancer. There are still certain problems that will need to be resolved
in future development. Researchers can use several data augmentation strategies to address the problem of the small amount
of available dataset. Researchers should take into account the issue of the disparity between positive and negative data since it
can result in bias towards either a positive or negative prediction. For accurate breast cancer diagnosis and prognosis, an
essential problem with an uneven number of breast cancer photos against afflicted patches needs to be resolved.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 10 Issue: 01 | Jan 2023 www.irjet.net p-ISSN: 2395-0072
© 2023, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1131
REFERENCES:
Wang, D. Zhang and Y. H. Huang “Breast Cancer Prediction Using Machine Learning” (2018), Vol. 66, NO. 7.
B. Akbugday, "Classification of Breast Cancer Data Using Machine Learning Algorithms," 2019 Medical Technologies Congress
(TIPTEKNO), Izmir, Turkey, 2019, pp. 1-4.
Keles, M. Kaya, "Breast Cancer Prediction and Detection Using Data Mining Classification Algorithms: A Comparative Study."
Tehnicki Vjesnik - Technical Gazette, vol. 26, no. 1, 2019, p. 149+. [4] V. Chaurasia and S. Pal, “Data Mining Techniques: To
Predict and Resolve Breast Cancer Survivability”, IJCSMC, Vol. 3, Issue. 1, January 2014, pg.10 – 22.
Delen, D.; Walker, G.; Kadam, A. Predicting breast cancer survivability: A comparison of three data mining methods. Artif. Intell.
Med. 2005, 34, 113–127.
R. K. Kavitha1, D. D. Rangasamy, “Breast Cancer Survivability Using Adaptive Voting Ensemble Machine Learning Algorithm
Adaboost and CART Algorithm” Volume 3, Special Issue 1, February 2014 [7] P. Sinthia, R. Devi, S. Gayathri and R. Sivasankari,
“Breast Cancer detection using PCPCET and ADEWNN”,CIEEE’ 17, p.63-65
Vikas Chaurasia and S.Pal, “Using Machine Learning Algorithms for Breast Cancer Risk Prediction and Diagnosis” (FAMS 2016)
83 ( 2016 ) 1064 – 1069
N. Khuriwal, N. Mishra. “A Review on Breast Cancer Diagnosis in Mammography Images Using Deep Learning Techniques”,
(2018), Vol. 1, No. 1.
Y. Khourdifi and M. Bahaj, "Feature Selection with Fast Correlation-Based Filter for Breast Cancer Prediction and Classification
Using Machine Learning Algorithms," 2018 International Symposium on Advanced Electrical and Communication Technologies
(ISAECT), Rabat, Morocco, 2018, pp. 1-6.
R. M. Mohana, R. Delshi Howsalya Devi, Anita Bai, “Lung Cancer Detection using Nearest Neighbour Classifier”, International
Journal of Recent Technology and Engineering (IJRTE), Volume-8, Issue-2S11, September 2019
Ch. Shravya, K. Pravalika, Shaik Subhani, “Prediction of Breast Cancer Using Supervised Machine Learning Techniques”,
International Journal of Innovative Technology and Exploring Engineering (IJITEE), Volume-8 Issue-6, April 2019.
Haifeng Wang and Sang Won Yoon, “Breast Cancer Prediction Using Data Mining Method”, Proceedings of the 2015 Industrial
and Systems Engineering Research Conference, [14] Abdelghani Bellaachia, Erhan Guven, “Predicting Breast Cancer
Survivability Using Data Mining Techniques”

More Related Content

Similar to CANCER TUMOR DETECTION USING MACHINE LEARNING

IRJET - Breast Cancer Prediction using Supervised Machine Learning Algorithms...
IRJET - Breast Cancer Prediction using Supervised Machine Learning Algorithms...IRJET - Breast Cancer Prediction using Supervised Machine Learning Algorithms...
IRJET - Breast Cancer Prediction using Supervised Machine Learning Algorithms...
IRJET Journal
 
IRJET- Breast Cancer Relapse Prognosis by Classic and Modern Structures o...
IRJET-  	  Breast Cancer Relapse Prognosis by Classic and Modern Structures o...IRJET-  	  Breast Cancer Relapse Prognosis by Classic and Modern Structures o...
IRJET- Breast Cancer Relapse Prognosis by Classic and Modern Structures o...
IRJET Journal
 
A Progressive Review: Early Stage Breast Cancer Detection using Ultrasound Im...
A Progressive Review: Early Stage Breast Cancer Detection using Ultrasound Im...A Progressive Review: Early Stage Breast Cancer Detection using Ultrasound Im...
A Progressive Review: Early Stage Breast Cancer Detection using Ultrasound Im...
IRJET Journal
 
SVM &GA-CLUSTERING BASED FEATURE SELECTION APPROACH FOR BREAST CANCER DETECTION
SVM &GA-CLUSTERING BASED FEATURE SELECTION APPROACH FOR BREAST CANCER DETECTIONSVM &GA-CLUSTERING BASED FEATURE SELECTION APPROACH FOR BREAST CANCER DETECTION
SVM &GA-CLUSTERING BASED FEATURE SELECTION APPROACH FOR BREAST CANCER DETECTION
ijscai
 
SVM &GA-CLUSTERING BASED FEATURE SELECTION APPROACH FOR BREAST CANCER DETECTION
SVM &GA-CLUSTERING BASED FEATURE SELECTION APPROACH FOR BREAST CANCER DETECTIONSVM &GA-CLUSTERING BASED FEATURE SELECTION APPROACH FOR BREAST CANCER DETECTION
SVM &GA-CLUSTERING BASED FEATURE SELECTION APPROACH FOR BREAST CANCER DETECTION
ijscai
 
Breast Tumor Detection Using Efficient Machine Learning and Deep Learning Tec...
Breast Tumor Detection Using Efficient Machine Learning and Deep Learning Tec...Breast Tumor Detection Using Efficient Machine Learning and Deep Learning Tec...
Breast Tumor Detection Using Efficient Machine Learning and Deep Learning Tec...
mlaij
 
BREAST TUMOR DETECTION USING EFFICIENT MACHINE LEARNING AND DEEP LEARNING TEC...
BREAST TUMOR DETECTION USING EFFICIENT MACHINE LEARNING AND DEEP LEARNING TEC...BREAST TUMOR DETECTION USING EFFICIENT MACHINE LEARNING AND DEEP LEARNING TEC...
BREAST TUMOR DETECTION USING EFFICIENT MACHINE LEARNING AND DEEP LEARNING TEC...
mlaij
 
Breast Tumor Detection Using Efficient Machine Learning and Deep Learning Tec...
Breast Tumor Detection Using Efficient Machine Learning and Deep Learning Tec...Breast Tumor Detection Using Efficient Machine Learning and Deep Learning Tec...
Breast Tumor Detection Using Efficient Machine Learning and Deep Learning Tec...
mlaij
 
SVM &GA-CLUSTERING BASED FEATURE SELECTION APPROACH FOR BREAST CANCER DETECTION
SVM &GA-CLUSTERING BASED FEATURE SELECTION APPROACH FOR BREAST CANCER DETECTIONSVM &GA-CLUSTERING BASED FEATURE SELECTION APPROACH FOR BREAST CANCER DETECTION
SVM &GA-CLUSTERING BASED FEATURE SELECTION APPROACH FOR BREAST CANCER DETECTION
ijscai
 
Breast cancer detection using machine learning approaches: a comparative study
Breast cancer detection using machine learning approaches: a  comparative studyBreast cancer detection using machine learning approaches: a  comparative study
Breast cancer detection using machine learning approaches: a comparative study
IJECEIAES
 
IRJET - Classification of Cancer Images using Deep Learning
IRJET -  	  Classification of Cancer Images using Deep LearningIRJET -  	  Classification of Cancer Images using Deep Learning
IRJET - Classification of Cancer Images using Deep Learning
IRJET Journal
 
IRJET- Breast Cancer Disease Prediction : Using Machine Learning Approach
IRJET- Breast Cancer Disease Prediction : Using Machine Learning ApproachIRJET- Breast Cancer Disease Prediction : Using Machine Learning Approach
IRJET- Breast Cancer Disease Prediction : Using Machine Learning Approach
IRJET Journal
 
Classification of Breast Cancer Tissues using Decision Tree Algorithms
Classification of Breast Cancer Tissues using Decision Tree AlgorithmsClassification of Breast Cancer Tissues using Decision Tree Algorithms
Classification of Breast Cancer Tissues using Decision Tree Algorithms
Lovely Professional University
 
Logistic Regression Model for Predicting the Malignancy of Breast Cancer
Logistic Regression Model for Predicting the Malignancy of Breast CancerLogistic Regression Model for Predicting the Malignancy of Breast Cancer
Logistic Regression Model for Predicting the Malignancy of Breast Cancer
IRJET Journal
 
Early detection of breast cancer using mammography images and software engine...
Early detection of breast cancer using mammography images and software engine...Early detection of breast cancer using mammography images and software engine...
Early detection of breast cancer using mammography images and software engine...
TELKOMNIKA JOURNAL
 
Classification AlgorithmBased Analysis of Breast Cancer Data
Classification AlgorithmBased Analysis of Breast Cancer DataClassification AlgorithmBased Analysis of Breast Cancer Data
Classification AlgorithmBased Analysis of Breast Cancer Data
IIRindia
 
A Pioneering Cervical Cancer Prediction Prototype in Medical Data Mining usin...
A Pioneering Cervical Cancer Prediction Prototype in Medical Data Mining usin...A Pioneering Cervical Cancer Prediction Prototype in Medical Data Mining usin...
A Pioneering Cervical Cancer Prediction Prototype in Medical Data Mining usin...
IIRindia
 
Detection of Skin Cancer Based on Skin Lesion Images UsingDeep Learning
Detection of Skin Cancer Based on Skin Lesion Images UsingDeep LearningDetection of Skin Cancer Based on Skin Lesion Images UsingDeep Learning
Detection of Skin Cancer Based on Skin Lesion Images UsingDeep Learning
IRJET Journal
 
Computer Aided System for Detection and Classification of Breast Cancer
Computer Aided System for Detection and Classification of Breast CancerComputer Aided System for Detection and Classification of Breast Cancer
Computer Aided System for Detection and Classification of Breast Cancer
IJITCA Journal
 
Rapid COVID-19 Diagnosis Using Deep Learning of the Computerized Tomography ...
Rapid COVID-19 Diagnosis Using Deep Learning  of the Computerized Tomography ...Rapid COVID-19 Diagnosis Using Deep Learning  of the Computerized Tomography ...
Rapid COVID-19 Diagnosis Using Deep Learning of the Computerized Tomography ...
Dr. Amir Mosavi, PhD., P.Eng.
 

Similar to CANCER TUMOR DETECTION USING MACHINE LEARNING (20)

IRJET - Breast Cancer Prediction using Supervised Machine Learning Algorithms...
IRJET - Breast Cancer Prediction using Supervised Machine Learning Algorithms...IRJET - Breast Cancer Prediction using Supervised Machine Learning Algorithms...
IRJET - Breast Cancer Prediction using Supervised Machine Learning Algorithms...
 
IRJET- Breast Cancer Relapse Prognosis by Classic and Modern Structures o...
IRJET-  	  Breast Cancer Relapse Prognosis by Classic and Modern Structures o...IRJET-  	  Breast Cancer Relapse Prognosis by Classic and Modern Structures o...
IRJET- Breast Cancer Relapse Prognosis by Classic and Modern Structures o...
 
A Progressive Review: Early Stage Breast Cancer Detection using Ultrasound Im...
A Progressive Review: Early Stage Breast Cancer Detection using Ultrasound Im...A Progressive Review: Early Stage Breast Cancer Detection using Ultrasound Im...
A Progressive Review: Early Stage Breast Cancer Detection using Ultrasound Im...
 
SVM &GA-CLUSTERING BASED FEATURE SELECTION APPROACH FOR BREAST CANCER DETECTION
SVM &GA-CLUSTERING BASED FEATURE SELECTION APPROACH FOR BREAST CANCER DETECTIONSVM &GA-CLUSTERING BASED FEATURE SELECTION APPROACH FOR BREAST CANCER DETECTION
SVM &GA-CLUSTERING BASED FEATURE SELECTION APPROACH FOR BREAST CANCER DETECTION
 
SVM &GA-CLUSTERING BASED FEATURE SELECTION APPROACH FOR BREAST CANCER DETECTION
SVM &GA-CLUSTERING BASED FEATURE SELECTION APPROACH FOR BREAST CANCER DETECTIONSVM &GA-CLUSTERING BASED FEATURE SELECTION APPROACH FOR BREAST CANCER DETECTION
SVM &GA-CLUSTERING BASED FEATURE SELECTION APPROACH FOR BREAST CANCER DETECTION
 
Breast Tumor Detection Using Efficient Machine Learning and Deep Learning Tec...
Breast Tumor Detection Using Efficient Machine Learning and Deep Learning Tec...Breast Tumor Detection Using Efficient Machine Learning and Deep Learning Tec...
Breast Tumor Detection Using Efficient Machine Learning and Deep Learning Tec...
 
BREAST TUMOR DETECTION USING EFFICIENT MACHINE LEARNING AND DEEP LEARNING TEC...
BREAST TUMOR DETECTION USING EFFICIENT MACHINE LEARNING AND DEEP LEARNING TEC...BREAST TUMOR DETECTION USING EFFICIENT MACHINE LEARNING AND DEEP LEARNING TEC...
BREAST TUMOR DETECTION USING EFFICIENT MACHINE LEARNING AND DEEP LEARNING TEC...
 
Breast Tumor Detection Using Efficient Machine Learning and Deep Learning Tec...
Breast Tumor Detection Using Efficient Machine Learning and Deep Learning Tec...Breast Tumor Detection Using Efficient Machine Learning and Deep Learning Tec...
Breast Tumor Detection Using Efficient Machine Learning and Deep Learning Tec...
 
SVM &GA-CLUSTERING BASED FEATURE SELECTION APPROACH FOR BREAST CANCER DETECTION
SVM &GA-CLUSTERING BASED FEATURE SELECTION APPROACH FOR BREAST CANCER DETECTIONSVM &GA-CLUSTERING BASED FEATURE SELECTION APPROACH FOR BREAST CANCER DETECTION
SVM &GA-CLUSTERING BASED FEATURE SELECTION APPROACH FOR BREAST CANCER DETECTION
 
Breast cancer detection using machine learning approaches: a comparative study
Breast cancer detection using machine learning approaches: a  comparative studyBreast cancer detection using machine learning approaches: a  comparative study
Breast cancer detection using machine learning approaches: a comparative study
 
IRJET - Classification of Cancer Images using Deep Learning
IRJET -  	  Classification of Cancer Images using Deep LearningIRJET -  	  Classification of Cancer Images using Deep Learning
IRJET - Classification of Cancer Images using Deep Learning
 
IRJET- Breast Cancer Disease Prediction : Using Machine Learning Approach
IRJET- Breast Cancer Disease Prediction : Using Machine Learning ApproachIRJET- Breast Cancer Disease Prediction : Using Machine Learning Approach
IRJET- Breast Cancer Disease Prediction : Using Machine Learning Approach
 
Classification of Breast Cancer Tissues using Decision Tree Algorithms
Classification of Breast Cancer Tissues using Decision Tree AlgorithmsClassification of Breast Cancer Tissues using Decision Tree Algorithms
Classification of Breast Cancer Tissues using Decision Tree Algorithms
 
Logistic Regression Model for Predicting the Malignancy of Breast Cancer
Logistic Regression Model for Predicting the Malignancy of Breast CancerLogistic Regression Model for Predicting the Malignancy of Breast Cancer
Logistic Regression Model for Predicting the Malignancy of Breast Cancer
 
Early detection of breast cancer using mammography images and software engine...
Early detection of breast cancer using mammography images and software engine...Early detection of breast cancer using mammography images and software engine...
Early detection of breast cancer using mammography images and software engine...
 
Classification AlgorithmBased Analysis of Breast Cancer Data
Classification AlgorithmBased Analysis of Breast Cancer DataClassification AlgorithmBased Analysis of Breast Cancer Data
Classification AlgorithmBased Analysis of Breast Cancer Data
 
A Pioneering Cervical Cancer Prediction Prototype in Medical Data Mining usin...
A Pioneering Cervical Cancer Prediction Prototype in Medical Data Mining usin...A Pioneering Cervical Cancer Prediction Prototype in Medical Data Mining usin...
A Pioneering Cervical Cancer Prediction Prototype in Medical Data Mining usin...
 
Detection of Skin Cancer Based on Skin Lesion Images UsingDeep Learning
Detection of Skin Cancer Based on Skin Lesion Images UsingDeep LearningDetection of Skin Cancer Based on Skin Lesion Images UsingDeep Learning
Detection of Skin Cancer Based on Skin Lesion Images UsingDeep Learning
 
Computer Aided System for Detection and Classification of Breast Cancer
Computer Aided System for Detection and Classification of Breast CancerComputer Aided System for Detection and Classification of Breast Cancer
Computer Aided System for Detection and Classification of Breast Cancer
 
Rapid COVID-19 Diagnosis Using Deep Learning of the Computerized Tomography ...
Rapid COVID-19 Diagnosis Using Deep Learning  of the Computerized Tomography ...Rapid COVID-19 Diagnosis Using Deep Learning  of the Computerized Tomography ...
Rapid COVID-19 Diagnosis Using Deep Learning of the Computerized Tomography ...
 

More from IRJET Journal

TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
IRJET Journal
 
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURESTUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
IRJET Journal
 
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
IRJET Journal
 
Effect of Camber and Angles of Attack on Airfoil Characteristics
Effect of Camber and Angles of Attack on Airfoil CharacteristicsEffect of Camber and Angles of Attack on Airfoil Characteristics
Effect of Camber and Angles of Attack on Airfoil Characteristics
IRJET Journal
 
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
IRJET Journal
 
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
IRJET Journal
 
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
IRJET Journal
 
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
IRJET Journal
 
A REVIEW ON MACHINE LEARNING IN ADAS
A REVIEW ON MACHINE LEARNING IN ADASA REVIEW ON MACHINE LEARNING IN ADAS
A REVIEW ON MACHINE LEARNING IN ADAS
IRJET Journal
 
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
IRJET Journal
 
P.E.B. Framed Structure Design and Analysis Using STAAD Pro
P.E.B. Framed Structure Design and Analysis Using STAAD ProP.E.B. Framed Structure Design and Analysis Using STAAD Pro
P.E.B. Framed Structure Design and Analysis Using STAAD Pro
IRJET Journal
 
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
IRJET Journal
 
Survey Paper on Cloud-Based Secured Healthcare System
Survey Paper on Cloud-Based Secured Healthcare SystemSurvey Paper on Cloud-Based Secured Healthcare System
Survey Paper on Cloud-Based Secured Healthcare System
IRJET Journal
 
Review on studies and research on widening of existing concrete bridges
Review on studies and research on widening of existing concrete bridgesReview on studies and research on widening of existing concrete bridges
Review on studies and research on widening of existing concrete bridges
IRJET Journal
 
React based fullstack edtech web application
React based fullstack edtech web applicationReact based fullstack edtech web application
React based fullstack edtech web application
IRJET Journal
 
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
IRJET Journal
 
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
IRJET Journal
 
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
IRJET Journal
 
Multistoried and Multi Bay Steel Building Frame by using Seismic Design
Multistoried and Multi Bay Steel Building Frame by using Seismic DesignMultistoried and Multi Bay Steel Building Frame by using Seismic Design
Multistoried and Multi Bay Steel Building Frame by using Seismic Design
IRJET Journal
 
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
IRJET Journal
 

More from IRJET Journal (20)

TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
 
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURESTUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
 
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
 
Effect of Camber and Angles of Attack on Airfoil Characteristics
Effect of Camber and Angles of Attack on Airfoil CharacteristicsEffect of Camber and Angles of Attack on Airfoil Characteristics
Effect of Camber and Angles of Attack on Airfoil Characteristics
 
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
 
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
 
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
 
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
 
A REVIEW ON MACHINE LEARNING IN ADAS
A REVIEW ON MACHINE LEARNING IN ADASA REVIEW ON MACHINE LEARNING IN ADAS
A REVIEW ON MACHINE LEARNING IN ADAS
 
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
 
P.E.B. Framed Structure Design and Analysis Using STAAD Pro
P.E.B. Framed Structure Design and Analysis Using STAAD ProP.E.B. Framed Structure Design and Analysis Using STAAD Pro
P.E.B. Framed Structure Design and Analysis Using STAAD Pro
 
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
 
Survey Paper on Cloud-Based Secured Healthcare System
Survey Paper on Cloud-Based Secured Healthcare SystemSurvey Paper on Cloud-Based Secured Healthcare System
Survey Paper on Cloud-Based Secured Healthcare System
 
Review on studies and research on widening of existing concrete bridges
Review on studies and research on widening of existing concrete bridgesReview on studies and research on widening of existing concrete bridges
Review on studies and research on widening of existing concrete bridges
 
React based fullstack edtech web application
React based fullstack edtech web applicationReact based fullstack edtech web application
React based fullstack edtech web application
 
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
 
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
 
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
 
Multistoried and Multi Bay Steel Building Frame by using Seismic Design
Multistoried and Multi Bay Steel Building Frame by using Seismic DesignMultistoried and Multi Bay Steel Building Frame by using Seismic Design
Multistoried and Multi Bay Steel Building Frame by using Seismic Design
 
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
 

Recently uploaded

Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
IJECEIAES
 
A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...
nooriasukmaningtyas
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
insn4465
 
ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024
Rahul
 
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMSA SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
IJNSA Journal
 
Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
Madan Karki
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
jpsjournal1
 
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptxML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
JamalHussainArman
 
basic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdfbasic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdf
NidhalKahouli2
 
Series of visio cisco devices Cisco_Icons.ppt
Series of visio cisco devices Cisco_Icons.pptSeries of visio cisco devices Cisco_Icons.ppt
Series of visio cisco devices Cisco_Icons.ppt
PauloRodrigues104553
 
bank management system in java and mysql report1.pdf
bank management system in java and mysql report1.pdfbank management system in java and mysql report1.pdf
bank management system in java and mysql report1.pdf
Divyam548318
 
CSM Cloud Service Management Presentarion
CSM Cloud Service Management PresentarionCSM Cloud Service Management Presentarion
CSM Cloud Service Management Presentarion
rpskprasana
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
KrishnaveniKrishnara1
 
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
Mukeshwaran Balu
 
Low power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniquesLow power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniques
nooriasukmaningtyas
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
gestioneergodomus
 
Swimming pool mechanical components design.pptx
Swimming pool  mechanical components design.pptxSwimming pool  mechanical components design.pptx
Swimming pool mechanical components design.pptx
yokeleetan1
 
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODELDEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
gerogepatton
 
Wearable antenna for antenna applications
Wearable antenna for antenna applicationsWearable antenna for antenna applications
Wearable antenna for antenna applications
Madhumitha Jayaram
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Christina Lin
 

Recently uploaded (20)

Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
 
A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
 
ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024
 
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMSA SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
 
Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
 
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptxML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
 
basic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdfbasic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdf
 
Series of visio cisco devices Cisco_Icons.ppt
Series of visio cisco devices Cisco_Icons.pptSeries of visio cisco devices Cisco_Icons.ppt
Series of visio cisco devices Cisco_Icons.ppt
 
bank management system in java and mysql report1.pdf
bank management system in java and mysql report1.pdfbank management system in java and mysql report1.pdf
bank management system in java and mysql report1.pdf
 
CSM Cloud Service Management Presentarion
CSM Cloud Service Management PresentarionCSM Cloud Service Management Presentarion
CSM Cloud Service Management Presentarion
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
 
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
 
Low power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniquesLow power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniques
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
 
Swimming pool mechanical components design.pptx
Swimming pool  mechanical components design.pptxSwimming pool  mechanical components design.pptx
Swimming pool mechanical components design.pptx
 
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODELDEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
 
Wearable antenna for antenna applications
Wearable antenna for antenna applicationsWearable antenna for antenna applications
Wearable antenna for antenna applications
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
 

CANCER TUMOR DETECTION USING MACHINE LEARNING

  • 1. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 01 | Jan 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1127 CANCER TUMOR DETECTION USING MACHINE LEARNING L.Pradeep Shaik Faisal Syed Obaid Information Technology Information Technology Information Technology Sreenidhi Institute Of Science Sreenidhi Institute Of Science Sreenidhi Institute Of Science Technology and Technology and Technology Hyderabad, Telangana, India. Hyderabad, Telangana, India. Hyderabad, Telangana, India. Dr.B.Indira Dr.M.Sreenivas Professor Associate Professor Information Technology Information Technology Sreenidhi Institute Of Science and Sreenidhi Institute Of Science and Technology Technology Hyderabad, Telanganga, India. Hyderabad, Telanganga, India. -------------------------------------------------------------------------***----------------------------------------------------------------------- ABSTRACT : Breast tissue can develop tumours of the breast cancer variety. It is the most prevalent type of cancer infemales around the world and one of the main causes of death in females. This piece gives a comparison of the data mining, machine learning, and deep learning methods used to detect breast cancer. Numerous researchers have worked to improve breast cancer diagnosis and prognosis; nevertheless, each technique has a distinct accuracy rate that changes depending on the circumstances, resources, and datasets employed. Our primary goal is to compare and contrast various Machine Learning and Data Mining approaches currently in use in order to identify the most effective approach that will support the enormous dataset with the best possible prediction accuracy. The major goal of this study is to highlightall the prior research on machine-learning algorithms that have been used to predict breast cancer, and this article gives all the knowledge a novice needs to understand machine learning algorithms and build a solid foundation for deep learning. INTRODUCTION: In the modern day, breast cancer is one of the most deadly and diverse diseases, killing a huge number of women all over the world. It is the second most common illness that kills women. Different machine learning and data mining methods are being applied for breast cancer prediction. One of the key tasks is to find the most acceptable and suitable algorithm for breast cancer prediction. Malignant tumours, which form when a cell's development spirals out of control, are the cause of breast cancer. Breast cancer is brought on by the abnormal proliferation of numerous fatty and fibrous breast tissues. Tumors that cause various stages of cancer have cancer cells that have spread throughout them. Breast cancer can take many distinct forms, and it develops when damaged cells and tissues are dispersed all across the body. DCIS, commonly referred to as non-invasive cancer, is a kind of breast cancer that develops when abnormal cells move outside the breast. The second kind is Infiltrative Ductal Carcinoma (IDC) , which is sometimes referred to as Invasive Ductal Carcinoma (IDC) . IDC cancer is typically observed in men, and it develops when breast aberrant cells expand throughout all breast tissues. The third subtype of breast cancer is known as Mixed Tumors Breast Cancer (MTBC), which is also referred to as invasive mammary breast cancer. Such cancers are brought on by abnormal duct and lobular cells.
  • 2. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 01 | Jan 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1128 Lobular Breast Cancer (LBC) [11] is the fourth form of cancer and develops inside the lobule. It raises therisk of developing more invasive malignancies. Colloid breast cancer, also known as mucinous breast cancer (MBC) [12], is the fifth kind of breast cancer that arises from invasive ductal cells. When aberrant tissues surround the duct, it happens [13]. IBC (Inflammatory Breast Cancer) is the most recent form that results in swelling and breast reddening When lymphatic channels become blocked in break cells, a breast cancer of this type begins to develop quickly [14]. Data mining is the process of extracting useful information from large datasets. Data mining functions and techniques can be used to identify any type of disease. For example, machine learning, statistics, databases, fuzzy sets, data warehouses, and neural networks can be used to diagnose and predict the prognosis of various cancer diseases, including prostate cancer, lungs cancer, and leukaemia [15]. The "gold standard" approach, which entails three procedures (clinical examination, radiological imaging, and pathology test), forms the foundation of traditional cancer detection methodology [18]. While the latestmachine learning approaches and algorithms are based on model creation, the conventional method uses regression to signal the existence of cancer. The model is created to predict unknown data and delivers the predicted results well throughout training and testing [19]. Preprocessing, features selection or extraction, and classification are the three primary methodologies on which machine learning is founded [20]. The main component of machine learning, feature extraction, aids in the diagnosis and prognosis of cancer and may distinguish between benign and malignant tumours [21]. We can diagnose and anticipate certain types of breast cancer, like the one depicted in Figure 1, thanks to data mining and machine learning algorithms. Classification, regression, and clustering are a few data mining techniques [22] that assist us in obtaining useful data on breast cancer patients. These algorithms [23] include training datasets, and by using these datasets, we can determine the likelihood of predicting various types of breast cancer [24]. II.MACHINE LEARNING ALGORITHMS FOR BREAST CANCER PREDICTION: We input a vast amount of data, the machine learning model analyses that data, and on the basis of that trained model, we can make a prediction about the future [24], [26], [27]. Machine learning is an automatic learning method [25]. The following are the main machine learning algorithms for predicting breast cancer: A. ARTIFICIAL NEURAL NETWORK (ANN): An efficient approach for data mining is the artificial neural network [28]. Input, hidden, and output layers make up a neural network. This method is employed to extract the too-complex patterns [29]. The algorithm is based on network architecture [32]–[34], distributed memory [31], collaborative solutions, and parallel processing [30].
  • 3. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 01 | Jan 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1129 B.LOGISTICS REGRESSION (LR): The algorithm is supervised learning and has more dependent variables. This algorithm's output takes the form of a binary number. Regression in logistics [35] can offer a continuous result for a certain data. A statistical model with binary variables makes up this method [32]. C. K-NEAREST NEIGHBOR (KNN) In order to recognise patterns, this method is utilised. It is an effective strategy for predicting breast cancer. Every class received the same amount of attention in order to spot the trend. From a sizable dataset, K Nearest Neighbor [36] extracts the related highlighted data. We classify a sizable dataset on the basis of feature similarity [32]. D.DECISION TREE (DT) Classification and regression models are the foundation of decision tree [37]. The data set is broken up into fewer subsets. The best degree of precision in prediction may be achieved using these smaller sets of data. CART [38], C4.5 [39], C5.0 [40] and conditional tree [32, [41] are among the decision tree methods. E. NAIVE BAYES ALGORITHM (NB) With this approach, a sizable training dataset is assumed. The Bayesian approach is employed in the algorithm to calculate probability [42]. When determining the input probabilities of noisy data, it offers the maximum accuracy [43]. This classifier uses analogies to compare training datasets and training tuples [32]. F.SUPPORT VECTOR MACHINE (SVM) Both classification and regression issues are addressed by this supervised learning system [44]. It uses mathematical and theoretical functions to address the regression issue. When making predictions using a huge dataset, it offers the highest accuracy rate. Based on 3D and 2D modelling, it is a powerful machine learning technique [32], [45]. G. RANDOM FOREST (RF) The supervised learning-based Random Forest algorithm [46] is used to address classification and regression issues. It is a machine learning building component that is used to predict new data based on historical datasets [32]. H. K MEAN ALGORITHM With the help of the clustering method K mean, data can be divided into small groups. To determine the degree of similarity between various data points, algorithms are used. The most appropriate cluster for evaluating a large dataset is present in every data point [48]. K. GAUSSIAN MIXTURE ALGORITHM It is the unsupervised learning method that is most widely used. The method of computing the likelihood of various forms of clustered data is referred to as the soft clustering methodology. This algorithm's implementation is based on expectation maximisation [51]. III. ENSEMBLE TECHNIQUES FOR BREAST CANCER PREDICTION Both homogeneous and heterogeneous ensemble techniques can be used; homogeneous ensemble techniques [52] combine one base method with two or more configuration methods, such as bagging and boosting technique, while heterogeneous ensemble techniques [53]-[55] combine two or more base methods. Ensemble techniques are based on supervised learning, which offers accurate predictions based on specific hypotheses.
  • 4. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 01 | Jan 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1130 A. BAGGING The other name of the bagging technique is bootstrap aggregation which is used for the prediction of any disease. It is based on multiple models, [54] each model is trained separately and then combined together for prediction [52]. B. BOOSTING Boosting is homogenous week learner that creates one strong classifier from some weak classifiers [52]. It is based on step by step strategies for building up the model from some training data [54], [55]. C. STACKING For prediction on the same dataset, stacking is a heterogeneous [52] weak learner that integrates many machine learning techniques. It is made up of two or more basic models and combines their predictions [54, 55]. V. SURVEY ON BREAST CANCER The world's most populous nation is China. Males have breast cancer at a rate of 8.6%, whilst females experience it at a rate of 19.2%, according to a recent organisation report (GLOBOCAN-2018) [65]. Everyyear, 1.2 million people pass away from this illness. The American Cancer Society identified 48,100 incidences of DCID cancer in female patients. According to a US 2019 study, 41,760 women and 500 men are anticipated to pass away from breast cancer [66]. According to a US survey, there are 3.8 million women who are still living but are battling breast cancer. 2019 saw 59,838 incidences of Ductal Carcinoma in Situ (DCIS) breast cancer in US women [67]. 458,000 people have died from breast cancer worldwide. Chinese women died from breast cancer at a rate of 48% in 2012, compared to a global death rate of 52% [68]. Data from 1,517 women were examined in 2015 to determine the breast cancer survival and recurrence rates; the breast cancer recurrence rate was 100 and the mortality rate was 132[69]. VI. REVIEW OF MACHINE LEARNING ALGORITHMS FOR BREAST CANCER PREDICTION The major goal of this study is to evaluate several machine learning and data mining methods that have aided in breast cancer prediction. Finding the most precise and appropriate algorithm for breast cancer prediction is our main goal. In order to do this, we've gone over and examined previous research on breast cancer prediction algorithms. additionally examined research publications based on linear, nonlinear, naive bayes, K-nearest neighbour, support vector machine, and certain ensemble algorithms (Linear Regression, Logistic Regression, Linear Discriminant Analysis) (Decision Tree, Random Forest, Boosting and AdaBoost). The vast majority of researchers combined linear and nonlinear or nonlinear and ensemble techniques. As a result, we have divided our review article into sections that will compare and contrast each algorithm based on its accuracy level. Following that comparison, we will highlight the best machine learning method for predicting breast cancer. CONCLUSION In this paper, we have examined various data mining, machine learning, and deep learning methods for the prediction of breast cancer. Finding the best algorithm to more accurately forecast the onset of breast cancer is our key goal. This article's main goal is to showcase all of the prior research on machine learning algorithms that have been used to predict breast cancer. It also gives newcomers all the information they need to understand machine learning algorithms and provide the groundwork for deep learning. The review of this article begins with a discussion of the many forms of breast cancer. To learnmore about the main forms, symptoms, and causes of breast cancer, fourteen research publications were examined. Following that, a review of the most important machine learning, ensemble, and deep learning approaches was given. These techniques greatly elaborate the algorithms that are used to forecast breast cancer. There are still certain problems that will need to be resolved in future development. Researchers can use several data augmentation strategies to address the problem of the small amount of available dataset. Researchers should take into account the issue of the disparity between positive and negative data since it can result in bias towards either a positive or negative prediction. For accurate breast cancer diagnosis and prognosis, an essential problem with an uneven number of breast cancer photos against afflicted patches needs to be resolved.
  • 5. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 10 Issue: 01 | Jan 2023 www.irjet.net p-ISSN: 2395-0072 © 2023, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1131 REFERENCES: Wang, D. Zhang and Y. H. Huang “Breast Cancer Prediction Using Machine Learning” (2018), Vol. 66, NO. 7. B. Akbugday, "Classification of Breast Cancer Data Using Machine Learning Algorithms," 2019 Medical Technologies Congress (TIPTEKNO), Izmir, Turkey, 2019, pp. 1-4. Keles, M. Kaya, "Breast Cancer Prediction and Detection Using Data Mining Classification Algorithms: A Comparative Study." Tehnicki Vjesnik - Technical Gazette, vol. 26, no. 1, 2019, p. 149+. [4] V. Chaurasia and S. Pal, “Data Mining Techniques: To Predict and Resolve Breast Cancer Survivability”, IJCSMC, Vol. 3, Issue. 1, January 2014, pg.10 – 22. Delen, D.; Walker, G.; Kadam, A. Predicting breast cancer survivability: A comparison of three data mining methods. Artif. Intell. Med. 2005, 34, 113–127. R. K. Kavitha1, D. D. Rangasamy, “Breast Cancer Survivability Using Adaptive Voting Ensemble Machine Learning Algorithm Adaboost and CART Algorithm” Volume 3, Special Issue 1, February 2014 [7] P. Sinthia, R. Devi, S. Gayathri and R. Sivasankari, “Breast Cancer detection using PCPCET and ADEWNN”,CIEEE’ 17, p.63-65 Vikas Chaurasia and S.Pal, “Using Machine Learning Algorithms for Breast Cancer Risk Prediction and Diagnosis” (FAMS 2016) 83 ( 2016 ) 1064 – 1069 N. Khuriwal, N. Mishra. “A Review on Breast Cancer Diagnosis in Mammography Images Using Deep Learning Techniques”, (2018), Vol. 1, No. 1. Y. Khourdifi and M. Bahaj, "Feature Selection with Fast Correlation-Based Filter for Breast Cancer Prediction and Classification Using Machine Learning Algorithms," 2018 International Symposium on Advanced Electrical and Communication Technologies (ISAECT), Rabat, Morocco, 2018, pp. 1-6. R. M. Mohana, R. Delshi Howsalya Devi, Anita Bai, “Lung Cancer Detection using Nearest Neighbour Classifier”, International Journal of Recent Technology and Engineering (IJRTE), Volume-8, Issue-2S11, September 2019 Ch. Shravya, K. Pravalika, Shaik Subhani, “Prediction of Breast Cancer Using Supervised Machine Learning Techniques”, International Journal of Innovative Technology and Exploring Engineering (IJITEE), Volume-8 Issue-6, April 2019. Haifeng Wang and Sang Won Yoon, “Breast Cancer Prediction Using Data Mining Method”, Proceedings of the 2015 Industrial and Systems Engineering Research Conference, [14] Abdelghani Bellaachia, Erhan Guven, “Predicting Breast Cancer Survivability Using Data Mining Techniques”