BIG DATA: PROFILE AND SKILLS OF THE
INFORMATION PROFESSIONAL
Luísa Alvim
University of Évora, CIDEHUS (Portugal)
QQML 2018
22 - 25 MAY 2018 | CHANIA, CRETE, GREECE
Summary
• Introduction
• Definition of Big data;
• Profile and skills of the information professional for Big Data management;
EDISON Project;
• Results and discussion;
• Conclusions and future work.
2
Introduction
3
• Big Data
• Profile and skills for
Big Data
management
• Information
Professional
Big data
4
Big Data
5
Source: http://bahia.ugr.es/bigdade/index.php/bigdata-snapshots/
3vs
• Volume
• Velocity
• Variety
Doug Laney (2001)
Big Data
6
Source. https://www.m-brain.com/home/technology/big-data-with-8-vs/
Big data
The different phases of the process
Source: https://www.slideshare.net/cloudITbetter/big-data-building-blocks-with-aws-cloud/
7
DECISION
Big Data Management Cycle
8
Source: http://www.sanborn.com/the-big-geospatial-data-management-lifecycle/
Big Data Management
Data scientist
European e-Competence Framework
9
The Skills Framework for the Information Age - SFIA
Source: http://edison-project.eu/
10
Big Data management / EDISON
1. Data analysis;
2. Software and hardware development;
3. Skills and knowledge of scientific subjects (in the scope of business);
4. Data management and preservation;
5. Research methods.
11
Results and discussion
EDISON Project – data scientist
Information Professional:
• it works for the quality of life of the data and of the knowledge;
• it analyzes the data and facilitates organizations to generate knowledge for
action through the creation of information products;
• knowledge about legislation that affects data protection;
• the ethical aspects of information use;
• the knowledge about data preservation and recovery in user-oriented systems;
• ease of access and usability.
12
Results and discussion
Research data
13
Source: https://www.rd-alliance.org/
Source: http://forumgdi.rcaap.pt/
Source: http://www.dcc.ac.uk/events/research-data-management-forum-rdmf
14
Source: http://www.datainfolit.org/
Results and discussion
Data Literacy
Conclusions
• Big Data creates new opportunities for the development of new skills of the information
professional;
• The profile of the manager can be considered to be under construction - EDISON;
• Open data;
• The information professional is an expert who may be of utmost importance for the
management of Big Data;
• The new profile and the new ways of acting of the professional of the information require a
renewed academic and professional formation, oriented to the problematics of the scientific
field in which the multiple tasks of the manager of Big Data are inserted.
15
References
Alonso Arévalo, J., & Vásquez Vásquez, M. (2016). Big Data: la próxima «gran cosa» en la gestión de la información. BiD: Textos Universitaris de Biblioteconomia I
Documentación, (36). Retrieved from http://bid.ub.edu/es/36/alonso.htm&gt
CEN European Committee for Standardization. (2014). European e-Competence Framework 3.0. Retrieved from http://www.ecompetences.eu/wp-
content/uploads/2014/02/European-e-Competence-Framework-3.0_CEN_CWA_16234-1_2014.pdf
Chen, M., Mao, S., & Liu, Y. (2014). Big Data: A Survey. Mobile Networks and Applications, 19(2), 171–209. http://doi.org/10.1007/s11036-013-0489-0
Conselho Europeu das Associações de Informação e Documentação. (2005). Euro-Referencial I-D. Lisboa: INCITE.
Costa, C., & Santos, M. (2017). The data scientist profile and its representativeness in the European e-Competence framework and the skills framework for the information
age. International Journal of Information Management.
Demchenko, I., & Belloum, A. (2016). Data Science competence framework: Approch and first working. EDISON Discussion Document. Retrieved from http://edison-
project.eu/sites/edison-project.eu/files/attached_files/node-29/edison-cf-ds-draft-cc-v06.pdf
Demchenko, I., & Belloum, A. (2017). EDISON: Discussion Document: Part 1. Data Science Competence Framework (CF-DS) release 2. Retrieved from http://edison-
project.eu/sites/edison-project.eu/files/filefield_paths/edison_cf-ds-release2-v08_0.pdf
EDISON Project UE. (2015). EDISON: Building the data science profession. Retrieved from http://edison-project.eu/
García Alsina, M. (2017). Big Data: Gestión y explotación de grandes volúmenes de datos. Barcelona: Editorial UOC.
O’Reilly Media. (2017). Big Data Now. United States of America: O’Reilly Media.
Ochôa, P. (2017). Painel Perfis e competências profissionais. In Encontro Curadoria Digital – Estratégias e experiências: atas.
Príncipe, P., & Furtado, F. (2017). Relatório do 2o Fórum de Gestão de Dados de Informação. Retrieved from http://hdl.handle.net/1822/46338
Research Data Alliance. (2016). 23 coisas: Bibliotecas e Dados Científicos.
SAS. (2013). Big Data Analytics: An assessment of demand for labour and skills, 2012-2017. London. Retrieved from
file:///C:/Users/luisa/Downloads/BigDataAnalyticsAnassessmentofdemandforlabourandskills2012-2017 (1).pdf
16
Luísa Alvim
mluisa.alvim@gmail.com
Thank you
Research work carried out within the scope of UID/HIS/00057/2013 (POCI-01-
0145-FEDER-007702), FCT/Portugal, COMPETE, FEDER, Portugal2020.

Big Data: Profile and Skills of the Information Professional.

  • 1.
    BIG DATA: PROFILEAND SKILLS OF THE INFORMATION PROFESSIONAL Luísa Alvim University of Évora, CIDEHUS (Portugal) QQML 2018 22 - 25 MAY 2018 | CHANIA, CRETE, GREECE
  • 2.
    Summary • Introduction • Definitionof Big data; • Profile and skills of the information professional for Big Data management; EDISON Project; • Results and discussion; • Conclusions and future work. 2
  • 3.
    Introduction 3 • Big Data •Profile and skills for Big Data management • Information Professional
  • 4.
  • 5.
  • 6.
  • 7.
    Big data The differentphases of the process Source: https://www.slideshare.net/cloudITbetter/big-data-building-blocks-with-aws-cloud/ 7 DECISION
  • 8.
    Big Data ManagementCycle 8 Source: http://www.sanborn.com/the-big-geospatial-data-management-lifecycle/
  • 9.
    Big Data Management Datascientist European e-Competence Framework 9 The Skills Framework for the Information Age - SFIA
  • 10.
  • 11.
    Big Data management/ EDISON 1. Data analysis; 2. Software and hardware development; 3. Skills and knowledge of scientific subjects (in the scope of business); 4. Data management and preservation; 5. Research methods. 11
  • 12.
    Results and discussion EDISONProject – data scientist Information Professional: • it works for the quality of life of the data and of the knowledge; • it analyzes the data and facilitates organizations to generate knowledge for action through the creation of information products; • knowledge about legislation that affects data protection; • the ethical aspects of information use; • the knowledge about data preservation and recovery in user-oriented systems; • ease of access and usability. 12
  • 13.
    Results and discussion Researchdata 13 Source: https://www.rd-alliance.org/ Source: http://forumgdi.rcaap.pt/ Source: http://www.dcc.ac.uk/events/research-data-management-forum-rdmf
  • 14.
  • 15.
    Conclusions • Big Datacreates new opportunities for the development of new skills of the information professional; • The profile of the manager can be considered to be under construction - EDISON; • Open data; • The information professional is an expert who may be of utmost importance for the management of Big Data; • The new profile and the new ways of acting of the professional of the information require a renewed academic and professional formation, oriented to the problematics of the scientific field in which the multiple tasks of the manager of Big Data are inserted. 15
  • 16.
    References Alonso Arévalo, J.,& Vásquez Vásquez, M. (2016). Big Data: la próxima «gran cosa» en la gestión de la información. BiD: Textos Universitaris de Biblioteconomia I Documentación, (36). Retrieved from http://bid.ub.edu/es/36/alonso.htm&gt CEN European Committee for Standardization. (2014). European e-Competence Framework 3.0. Retrieved from http://www.ecompetences.eu/wp- content/uploads/2014/02/European-e-Competence-Framework-3.0_CEN_CWA_16234-1_2014.pdf Chen, M., Mao, S., & Liu, Y. (2014). Big Data: A Survey. Mobile Networks and Applications, 19(2), 171–209. http://doi.org/10.1007/s11036-013-0489-0 Conselho Europeu das Associações de Informação e Documentação. (2005). Euro-Referencial I-D. Lisboa: INCITE. Costa, C., & Santos, M. (2017). The data scientist profile and its representativeness in the European e-Competence framework and the skills framework for the information age. International Journal of Information Management. Demchenko, I., & Belloum, A. (2016). Data Science competence framework: Approch and first working. EDISON Discussion Document. Retrieved from http://edison- project.eu/sites/edison-project.eu/files/attached_files/node-29/edison-cf-ds-draft-cc-v06.pdf Demchenko, I., & Belloum, A. (2017). EDISON: Discussion Document: Part 1. Data Science Competence Framework (CF-DS) release 2. Retrieved from http://edison- project.eu/sites/edison-project.eu/files/filefield_paths/edison_cf-ds-release2-v08_0.pdf EDISON Project UE. (2015). EDISON: Building the data science profession. Retrieved from http://edison-project.eu/ García Alsina, M. (2017). Big Data: Gestión y explotación de grandes volúmenes de datos. Barcelona: Editorial UOC. O’Reilly Media. (2017). Big Data Now. United States of America: O’Reilly Media. Ochôa, P. (2017). Painel Perfis e competências profissionais. In Encontro Curadoria Digital – Estratégias e experiências: atas. Príncipe, P., & Furtado, F. (2017). Relatório do 2o Fórum de Gestão de Dados de Informação. Retrieved from http://hdl.handle.net/1822/46338 Research Data Alliance. (2016). 23 coisas: Bibliotecas e Dados Científicos. SAS. (2013). Big Data Analytics: An assessment of demand for labour and skills, 2012-2017. London. Retrieved from file:///C:/Users/luisa/Downloads/BigDataAnalyticsAnassessmentofdemandforlabourandskills2012-2017 (1).pdf 16
  • 17.
    Luísa Alvim mluisa.alvim@gmail.com Thank you Researchwork carried out within the scope of UID/HIS/00057/2013 (POCI-01- 0145-FEDER-007702), FCT/Portugal, COMPETE, FEDER, Portugal2020.