Barisan dan deret aritmetika merupakan barisan bilangan yang selisih antar suku tetap. Rumus umum suku ke-n barisan aritmetika adalah Un = a + (n-1)b, sedangkan rumus umum jumlah n suku pertama deret aritmetika adalah S = n(2a + (n-1)b).
A. Barisan Aritmetika
•Definisi
• Bilangan yang tetap tersebut disebut beda
dan dilambangkan dengan b.
• Perhatikan juga barisan-barisan bilangan
berikut ini.
a. 1, 4, 7, 10, 13, ...
b. 2, 8, 14, 20, ... Barisan
Aritmetika
c. 30, 25, 20, 15, ...
Barisanaritmetika adalah suatubarisan bilangan yang selisih
setiap dua sukuberturutanselalumerupakan bilangan tetap
(konstan).
3.
Contoh :
a. 1,4, 7, 10, 13, ...
+3 +3 +3 +3
Pada barisan ini, suku berikutnya diperoleh dari
suku sebelumnya ditambah 3. Dapat dikatakan
bahwa beda sukunya 3 atau b =3.
b. 2, 8, 14, 20, ...
+6 +6 +6
Pada barisan ini, suku berikutnya diperoleh dari
suku sebelumnya ditambah 6. Dapat dikatakan
bahwa beda sukunya 6 atau b = 6.
4.
c. 30, 25,20, 15, ...
–5 –5 –5
Pada barisan ini, suku berikutnya diperoleh dari
suku sebelumnya ditambah –5. Dapat dikatakan
bahwa beda sukunya –5 atau b = –5.
Secara umum dapat dikatakan sebagai berikut.
Rumus umum suku ke-n barisan aritmetika dengan
suku pertama (U ) dilambangkan dengan a dan beda
dengan b dapat ditentukan seperti berikut.
Jika Un adalah suku ke-n dari suatu barisan aritmetika maka
berlaku b=Un–Un–1.
1
5.
U = a
U= U + b = a + b
U = U + b = (a + b) + b = a + 2b
U = U + b = (a + 2b) + b = a + 3b
U = U + b = (a + 3b) + b = a + 4b
.
.
.
U = U + b = a + (n – 1)b
Jadi, rumus suku ke-n dari barisan aritmetika adalah
Keterangan: Un = suku ke-n
a = suku pertama
b = beda
n = banyak suku
U =a+ (n–1)b
1
1
2
2
3
3
4
4
5
n
n
1
n
6.
Contoh 1 :
Tentukansuku ke-8 dan ke-20 dari barisan –3, 2, 7,
12, ....
Jawab:
–3, 2, 7, 12, …
Suku pertama adalah a = –3 dan
bedanya b = 2 – (–3) = 5.
Dengan menyubstitusikan a dan b, diperoleh :
U = –3 + (n – 1)5.
Suku ke-8 : U = –3 + (8 – 1)5 = 32.
Suku ke-20 : U = –3 + (20 – 1)5 = 92.
n
8
20
7.
Contoh 2 :
Diketahuibarisan aritmetika –2, 1, 4, 7, ..., 40.
Tentukan banyak suku barisan tersebut.
Jawab:
Diketahui barisan aritmetika –2, 1, 4, 7, ..., 40.
Dari barisan tersebut, diperoleh a = –2, b = 1 – (–2)
= 3,dan
U = 40.
Rumus suku ke-n adalah U = a + (n – 1)b sehingga;
40 = –2 + (n – 1)3
40 = 3n – 5
3n = 45
Karena 3n = 45, diperoleh n = 15.
Jadi, banyaknya suku dari barisan di atas adalah 15.
n
n
8.
B. Deret Aritmetika
•Definisi
• Deret aritmetika adalah jumlah n suku pertama
barisan aritmetika. Jumlah n suku pertama dari
suatu barisan bilangan dinotasikan S .
Dengan demikian, S = U1 + U2 + U3 + ... + U .
Untuk memahami langkah-langkah menentukan
rumus S , perhatikan contoh berikut :
Misalkan U1, U2, U3, ..., Un merupakan suku-suku dari suatu barisan
aritmetika. U1 + U2 + U3 + ... + Udisebut deretaritmetika,dengan U = a+
(n–1)b. n
n
n
n
n
n
9.
Contoh 1 :
Diketahuisuatu barisan aritmetika 2, 5, 8, 11,
14. Tentukan jumlah kelima suku barisan tersebut.
Jawab:
Jumlah kelima suku 2, 5, 8, 11, 14 dapat
dituliskansebagai berikut.
S = 2 + 5 + 8 + 11 + 14
S = 14 + 11 + 8 + 5 + 2
2S = 16 + 16 + 16 + 16 + 16
2S = 5 x 16
S = S = 40
Jadi, jumlah kelima suku barisan tersebut adalah 40.
5
5
5
5 5
5
2
16
5
10.
Menentukan rumus umumuntuk S
sebagai berikut. Diketahui rumus umum
suku ke-n dari barisan aritmetika adalah
U = a + (n – 1)b. Oleh karena itu,
U = a = a
U = a + b = U – (a – 2)b
U = a + 2b = U – (n – 3)b
. . .
. . .
. . .
U = a + (n – 1)b = U
n
n
1
2
3
n
n
n n
11.
Dengan demikian, diperoleh;
S = a + (a + b) + (a + 2b) + ... + (a + (n – 1)b)
= a + (U – (n – 2) b) + (U – (n – 3) b) + ... + U
............ (1)
Dapat pula dinyatakan bahwa besar setiap suku adalah
b kurang dari suku berikutnya.
U = U – b
U = U – b = U – 2b
U = U – b = U – 3b
Demikian seterusnya sehingga S dapat dituliskan
S = a + (U – (n – 1)b) + … + (U – 2b) + (U – b) + U
.......... (2)
n
n
n n
1
n
1
n
2
n
2
n
3
n
n
n
n
n
n n n n
n
12.
Dari persamaan 1dan 2 jika kita jumlahkan, diperoleh ;
S = a + (U – (n – 2)b) + (U – (n – 3)b) + ... +U
S = U + (U – b) + (U – 2b) + ... + a
2S = (a + U ) + (a + U )+ (a + U ) + ... + (a + U )
n suku
Dengan demikian, 2S = n(a + U )
S = n(a + U )
S = n(a + (a + (n – 1)b))
S = n(2a + (n – 1)b)
n n n n
n n n n
n n n n n
n n
n
n
n
2
1
2
1
2
1
n
13.
Jadi, rumus umumjumlah n suku pertama deret
aritmetika adalah
Keterangan:
S = jumlah n suku pertama
a = suku pertama
b = beda
U = suku ke-n
n = banyak suku
S= n(a+U)atau
S=n[2a+(n– 1)b]
14.
Contoh 2:
Carilah jumlah100 suku pertama dari deret 2 + 4 + 6 +
8 +....
Jawab:
Diketahui bahwa a = 2, b = 4 – 2 = 2, dan n = 100.
S = x 100 {2(2) + (100 – 1)2}
= 50 {4 + 198}
= 50 (202)
= 10.100
Jadi, jumlah 100 suku pertama dari deret tersebut
adalah 10.100.
100
2
1
15.
Contoh 3:
Hitunglah jumlahsemua bilangan asli kelipatan 3
yang kurang dari 100.
Jawab:
Bilangan asli kelipatan 3 yang kurang dari 100 adalah
3, 6, 9, 12, ..., 99 sehingga diperoleh
a = 3, b = 3, dan U = 99.
Terlebih dahulu kita cari n sebagai berikut ;
U = a + (n – 1)b
99 = 3 + (n – 1)3
3n = 99
n = 33
Jumlah dari deret tersebut adalah
n
n
16.
S = n(a + U )
S = x 33(3 + 99)
= 1.683
Jadi, jumlah bilangan asli kelipatan 3 yang kurang
dari 100 adalah 1.683
n n
2
1
2
1
33