SlideShare a Scribd company logo
1 of 23
Download to read offline
Ball Milling
     An efficient and ecologically friendly synthetic approach
                                      ‐‐‐ Jackie Ding
Content


Ball milling – solvent free approach


       Application in organic synthesis


                    Conclusion


                                          2
The 12 Principles of Green Chemistry

    Prevention of waste                Reduce Derivatives
    Atom Economy                       Use Renewable Feedstocks
    Less Hazardous Chemical            Catalysis
     Syntheses
                                        Design for Degradation
    Design Safer Chemicals
                                        Real-time Analysis for
    Safer Solvents and                  Pollution Prevention
     Auxiliaries
                                        Inherently Safer Chemistry
    Design for Energy Efficiency        for Accident Prevention



                                                                      3
Do I need to use a solvent?




                              4
The best solvent is no solvent
    Alternative solvents:
     water
     supercritical CO2
     ionic liquids

    Solventless Chemistry
     Mortar and pestle
     Ball milling



                                 5
Content
Principles of green chemistry




       Application in organic synthesis


                     Conclusion


                                          6
What is ball milling?
    A ball mill is a type of grinder used to grind materials
     into extremely fine powder.




                                                           7
Major parameters for ball milling

                 Temperature


         Size and Number of the balls


              Nature of the balls


               Rotation speed


                                        8
Types of Ball Mills

    Drum ball mills
    Jet-mills
    Bead-mills
    Horizontal rotary ball mills
    Vibration ball mills
    Planetary ball mills




                                    9
Vibration Mills




                  10
Mixer Mill MM 400




 Feed material: hard, medium-hard, soft, brittle, elastic, fibrous
 Material feed size: ≤ 8 mm
 Final fineness: ~ 5 µm
 Setting of vibrational frequency: digital, 3 - 30 Hz (180 - 1800 min-1)

                                                                      11
Planetary Mills




                  12
Planetary Ball Mill PM 400


               Feed material: soft, hard,
              brittle, fibrous (dry or wet);
               Material feed size: < 10 mm;
               Final fineness < 1 µm;
               No. of grinding stations: 4 / 2




                                              13
Content
Principles of green chemistry


 Ball milling – solvent free approach




                     Conclusion


                                        14
Application in Organic Synthesis
    Aldol Condensations
    Knoevenagel Condensations
    Baylis-Hillman Reaction
    Michael Reaction
    Wittig Reaction
    Fullerene Cycloadditions
    Suzuki Reaction
    Heck-Jeffery Reaction
    Radical Additions Mediated by Mn (III)
    Etc.
                                              15
Suzuki reaction
                         [Pd(PPh3)4] (5mol%)
                              K2CO3!(3 equivs.)
      B(OH)2   + Br-Ar                                           Ar
                                  NaCl
                               ball milling
                                30-60 min
                                                   Up to 96% yield
  S. F. Nielsen, O. Axelsson, Synth. Commun. 2000, 30, 3501.

  Br
                          KF-Al2O3/ Pd(OAc)2
  +                                                    Ar             Ac
                                 ball milling
B(OH)2                   Ac




  Entry           Rpm               T (min)       Yield%
  1               400               10            92
  2               800               5             94

 Franziska Schneider, Org. Proc. Res. & Develop., 2009, 13,44              16
Aldol Condensation
O                O                                       O     OH


                                (S)-proline
            H                   10 mol%
        +                   R                                             R
                                Ball milling (A)
                                or stirring (B)



Entry           R=   Method         t/h            Yield%    anti/syn   ee%
    1       4-NO2       A           5.5             99        89:11     94
    2       4-NO2       B           24              95        89:11     94
    3       3-NO2       A            7              94        88:12     >99
    4       3-NO2       B           16              89        82:18     98
    5       2-NO2       A            7              97        93:7      97
    6       2-NO2       B           36              89        91:9      97


            B. Rodr´ıguez, Angew. Chem., Int. Ed., 2006, 45, 6924
                                                                              17
Oxidation
       O                        O                                      O       R2
                      N                                           N                 O
                                           R2
R1             +                                Mn(OAc)3.2H2O
                                                  ball milling             O
R1             O      X                                           X
                                                  30Hz, 1h
     R1= CH3              X=CH or N
                                                                                        R1
                   R2 = -C6H5, -C6H5NO2,
                        -C6H5CN, etc.                            18 examples        R1
                                                                 up to 91% yield



 Conventional heating in organic solvent:
 a. Acetic acid, 80oC, argon atmosphere, yield 32%
 b. Ethanol, refluxing temperature for 12h, yield 48%




                      Guan-Wu Wang, J. Org. Chem. 73, 7088 (2008).                   18
Other applications of ball milling

    Fine particles

    Inorganic solids




                                 19
Drawbacks of ball milling


Purification of
 byproducts         •  Solution   Benign Solvents



It is not a magic
                    •  Solution   Under development
      wand.



                                                    20
Conclusion
    Ball milling should be considered as a potentially
     attractive solution for solvent-free synthesis.




                           One-pot               Tip of
     Solvent free
                           process              iceberg




                                                          21
Reference
    Lance Frazer, Environmental health perspectives, 2003, 111, 10
    Belen Rodríguez, Adv. Synth. Catal. 2007, 349, 2213
    Ana Lazuen Garay, Chem. Soc. Rev., 2007, 36, 846–855
    Raphael Janot, Progress in Materials Science 50 (2005) 1–92
    Andreas Theisen, “Green Chemistry”in the Laboratory, TECHNICAL
     REPORT, www.retsch.com
    G Kaupp, Solvent-free organic synthesis, Wiley-VCH, 2009.
    S. F. Nielsen, O. Axelsson, Synth. Commun. 2000, 30, 3501.
    Franziska Schneider, Org. Proc. Res. & Develop., 2009, 13,44
    B. Rodr´ıguez, Angew. Chem., Int. Ed., 2006, 45, 6924
    Guan-Wu Wang, J. Org. Chem. 73, 7088 (2008).
    G.Kaupp, Top. Curr. Chem. 254, 95 (2005).
    M. Reza Naimi-Jamal, Eur. J. Org. Chem. 2009, 3567–3572.
                                                               22
23

More Related Content

What's hot

Thermodynamics and adsorption studies of rhodamine-b dye onto organoclay
Thermodynamics and adsorption studies of rhodamine-b dye onto organoclayThermodynamics and adsorption studies of rhodamine-b dye onto organoclay
Thermodynamics and adsorption studies of rhodamine-b dye onto organoclayInnspub Net
 
CeO2 Nanoparticles Report
CeO2 Nanoparticles ReportCeO2 Nanoparticles Report
CeO2 Nanoparticles ReportAyeman Mazdi
 
Synthesis Of Cobalt Doped Titania Nano Materials Assisted By Anionic Heteroge...
Synthesis Of Cobalt Doped Titania Nano Materials Assisted By Anionic Heteroge...Synthesis Of Cobalt Doped Titania Nano Materials Assisted By Anionic Heteroge...
Synthesis Of Cobalt Doped Titania Nano Materials Assisted By Anionic Heteroge...IJERA Editor
 
Amine Titration in Polyurea resin
Amine Titration in Polyurea resinAmine Titration in Polyurea resin
Amine Titration in Polyurea resinAshish K Mahaseth
 
Hot Melt Extrusion For Amorphous Formulations
Hot Melt Extrusion For Amorphous FormulationsHot Melt Extrusion For Amorphous Formulations
Hot Melt Extrusion For Amorphous Formulationsasarode
 
Removal of phenol from aqueous solutions
Removal of phenol from aqueous solutionsRemoval of phenol from aqueous solutions
Removal of phenol from aqueous solutionsiaemedu
 
Report Sostenibilità Palladio Zannini 2012
Report Sostenibilità Palladio Zannini 2012Report Sostenibilità Palladio Zannini 2012
Report Sostenibilità Palladio Zannini 2012PalladioZannini
 
Solution and plasma polymerization
Solution and plasma polymerization Solution and plasma polymerization
Solution and plasma polymerization amanshaikh89
 
063 11206 (4486-4490)
063 11206 (4486-4490)063 11206 (4486-4490)
063 11206 (4486-4490)sunilove
 
Equilibrium and kinetic studies on the adsorption of methylene blue from aque...
Equilibrium and kinetic studies on the adsorption of methylene blue from aque...Equilibrium and kinetic studies on the adsorption of methylene blue from aque...
Equilibrium and kinetic studies on the adsorption of methylene blue from aque...suresh899
 
IRJET- Colours Removal using Iron Oxide Nano Paarticles
IRJET-  	  Colours Removal using Iron Oxide Nano PaarticlesIRJET-  	  Colours Removal using Iron Oxide Nano Paarticles
IRJET- Colours Removal using Iron Oxide Nano PaarticlesIRJET Journal
 
Shir technology april 2013
Shir technology april 2013Shir technology april 2013
Shir technology april 2013PilarCocera
 
Uv visible mecanismo nitrito y nitratos
Uv visible mecanismo nitrito y nitratosUv visible mecanismo nitrito y nitratos
Uv visible mecanismo nitrito y nitratosarianni20
 

What's hot (15)

Thermodynamics and adsorption studies of rhodamine-b dye onto organoclay
Thermodynamics and adsorption studies of rhodamine-b dye onto organoclayThermodynamics and adsorption studies of rhodamine-b dye onto organoclay
Thermodynamics and adsorption studies of rhodamine-b dye onto organoclay
 
CeO2 Nanoparticles Report
CeO2 Nanoparticles ReportCeO2 Nanoparticles Report
CeO2 Nanoparticles Report
 
Synthesis Of Cobalt Doped Titania Nano Materials Assisted By Anionic Heteroge...
Synthesis Of Cobalt Doped Titania Nano Materials Assisted By Anionic Heteroge...Synthesis Of Cobalt Doped Titania Nano Materials Assisted By Anionic Heteroge...
Synthesis Of Cobalt Doped Titania Nano Materials Assisted By Anionic Heteroge...
 
Doe 2015
Doe 2015Doe 2015
Doe 2015
 
Amine Titration in Polyurea resin
Amine Titration in Polyurea resinAmine Titration in Polyurea resin
Amine Titration in Polyurea resin
 
Hot Melt Extrusion For Amorphous Formulations
Hot Melt Extrusion For Amorphous FormulationsHot Melt Extrusion For Amorphous Formulations
Hot Melt Extrusion For Amorphous Formulations
 
Removal of phenol from aqueous solutions
Removal of phenol from aqueous solutionsRemoval of phenol from aqueous solutions
Removal of phenol from aqueous solutions
 
Report Sostenibilità Palladio Zannini 2012
Report Sostenibilità Palladio Zannini 2012Report Sostenibilità Palladio Zannini 2012
Report Sostenibilità Palladio Zannini 2012
 
Solution and plasma polymerization
Solution and plasma polymerization Solution and plasma polymerization
Solution and plasma polymerization
 
Chromic phenomena
Chromic phenomenaChromic phenomena
Chromic phenomena
 
063 11206 (4486-4490)
063 11206 (4486-4490)063 11206 (4486-4490)
063 11206 (4486-4490)
 
Equilibrium and kinetic studies on the adsorption of methylene blue from aque...
Equilibrium and kinetic studies on the adsorption of methylene blue from aque...Equilibrium and kinetic studies on the adsorption of methylene blue from aque...
Equilibrium and kinetic studies on the adsorption of methylene blue from aque...
 
IRJET- Colours Removal using Iron Oxide Nano Paarticles
IRJET-  	  Colours Removal using Iron Oxide Nano PaarticlesIRJET-  	  Colours Removal using Iron Oxide Nano Paarticles
IRJET- Colours Removal using Iron Oxide Nano Paarticles
 
Shir technology april 2013
Shir technology april 2013Shir technology april 2013
Shir technology april 2013
 
Uv visible mecanismo nitrito y nitratos
Uv visible mecanismo nitrito y nitratosUv visible mecanismo nitrito y nitratos
Uv visible mecanismo nitrito y nitratos
 

Viewers also liked

Nanofabrication Technologies
Nanofabrication TechnologiesNanofabrication Technologies
Nanofabrication Technologiestabirsir
 
Nano technology fabrication methods
Nano  technology fabrication methodsNano  technology fabrication methods
Nano technology fabrication methodskamal330
 
Chemical Vapour Deposition
Chemical Vapour DepositionChemical Vapour Deposition
Chemical Vapour DepositionViji Vijitha
 
Cvd & pvd by shreya
Cvd & pvd by shreyaCvd & pvd by shreya
Cvd & pvd by shreyaShreya Modi
 
Synthesis of Nano Materials
Synthesis of Nano MaterialsSynthesis of Nano Materials
Synthesis of Nano MaterialsJp Reddy
 
Preparation of Nanoparticles
Preparation of NanoparticlesPreparation of Nanoparticles
Preparation of Nanoparticleshephz
 
Chemical vapour deposition
Chemical vapour depositionChemical vapour deposition
Chemical vapour depositionSethu Ram
 

Viewers also liked (10)

Nano Ball Milling
Nano Ball MillingNano Ball Milling
Nano Ball Milling
 
Nanofabrication Technologies
Nanofabrication TechnologiesNanofabrication Technologies
Nanofabrication Technologies
 
Nano technology fabrication methods
Nano  technology fabrication methodsNano  technology fabrication methods
Nano technology fabrication methods
 
Chemical Vapour Deposition
Chemical Vapour DepositionChemical Vapour Deposition
Chemical Vapour Deposition
 
Physical vapor deposition
Physical vapor depositionPhysical vapor deposition
Physical vapor deposition
 
Cvd & pvd by shreya
Cvd & pvd by shreyaCvd & pvd by shreya
Cvd & pvd by shreya
 
Ball mill
Ball millBall mill
Ball mill
 
Synthesis of Nano Materials
Synthesis of Nano MaterialsSynthesis of Nano Materials
Synthesis of Nano Materials
 
Preparation of Nanoparticles
Preparation of NanoparticlesPreparation of Nanoparticles
Preparation of Nanoparticles
 
Chemical vapour deposition
Chemical vapour depositionChemical vapour deposition
Chemical vapour deposition
 

Similar to Eco-Friendly Ball Milling for Organic Synthesis

Review of chemical processes for the synthesis of sodium borohydride
Review of chemical processes for the synthesis of sodium borohydrideReview of chemical processes for the synthesis of sodium borohydride
Review of chemical processes for the synthesis of sodium borohydrideDigvijay Singh
 
Hiren Ppt Green Chem
Hiren Ppt Green ChemHiren Ppt Green Chem
Hiren Ppt Green ChemHiren Joshi
 
Microreactor fluorination-freiburg
Microreactor fluorination-freiburgMicroreactor fluorination-freiburg
Microreactor fluorination-freiburgJelliarko Palgunadi
 
nano catalysis as a prospectus of green chemistry
nano catalysis as a prospectus of green chemistry nano catalysis as a prospectus of green chemistry
nano catalysis as a prospectus of green chemistry Ankit Grover
 
Applications of catalysis- Physical Chemistry
Applications of catalysis- Physical ChemistryApplications of catalysis- Physical Chemistry
Applications of catalysis- Physical ChemistrySanchit Dhankhar
 
Mole Concept @Kidegalize Network_0772034474.pdf
Mole Concept @Kidegalize Network_0772034474.pdfMole Concept @Kidegalize Network_0772034474.pdf
Mole Concept @Kidegalize Network_0772034474.pdfBagalanaSteven
 
1,3-Dihydroxypropan-2-one (DHA) synthesis from Glycerol for pharmaceutical ap...
1,3-Dihydroxypropan-2-one (DHA) synthesis from Glycerol for pharmaceutical ap...1,3-Dihydroxypropan-2-one (DHA) synthesis from Glycerol for pharmaceutical ap...
1,3-Dihydroxypropan-2-one (DHA) synthesis from Glycerol for pharmaceutical ap...Simone Ripandelli
 
LiBH4 Hydrogen Storage Materials
LiBH4 Hydrogen Storage MaterialsLiBH4 Hydrogen Storage Materials
LiBH4 Hydrogen Storage Materialsrightcoastrider
 
Internship oral presentation
Internship oral presentationInternship oral presentation
Internship oral presentationAnh-Mai
 
Oral presentation
Oral presentationOral presentation
Oral presentationAnh-Mai
 
Oral presentation
Oral presentationOral presentation
Oral presentationAnh-Mai
 
ICWES15 -Comparative Absorption of Copper from Synthetic and Real Wastewater ...
ICWES15 -Comparative Absorption of Copper from Synthetic and Real Wastewater ...ICWES15 -Comparative Absorption of Copper from Synthetic and Real Wastewater ...
ICWES15 -Comparative Absorption of Copper from Synthetic and Real Wastewater ...Engineers Australia
 
Ozone_treatment_for_wastewater_treatment.pptx
Ozone_treatment_for_wastewater_treatment.pptxOzone_treatment_for_wastewater_treatment.pptx
Ozone_treatment_for_wastewater_treatment.pptxdaudpanjaitan2
 
Proline catalyzed aldol reaction
Proline catalyzed aldol reactionProline catalyzed aldol reaction
Proline catalyzed aldol reactionDebtanu Chakraborty
 
Are we there yet
Are we there yetAre we there yet
Are we there yetmasesane
 

Similar to Eco-Friendly Ball Milling for Organic Synthesis (20)

Review of chemical processes for the synthesis of sodium borohydride
Review of chemical processes for the synthesis of sodium borohydrideReview of chemical processes for the synthesis of sodium borohydride
Review of chemical processes for the synthesis of sodium borohydride
 
Hiren Ppt Green Chem
Hiren Ppt Green ChemHiren Ppt Green Chem
Hiren Ppt Green Chem
 
Microreactor fluorination-freiburg
Microreactor fluorination-freiburgMicroreactor fluorination-freiburg
Microreactor fluorination-freiburg
 
nano catalysis as a prospectus of green chemistry
nano catalysis as a prospectus of green chemistry nano catalysis as a prospectus of green chemistry
nano catalysis as a prospectus of green chemistry
 
Applications of catalysis- Physical Chemistry
Applications of catalysis- Physical ChemistryApplications of catalysis- Physical Chemistry
Applications of catalysis- Physical Chemistry
 
Mole Concept @Kidegalize Network_0772034474.pdf
Mole Concept @Kidegalize Network_0772034474.pdfMole Concept @Kidegalize Network_0772034474.pdf
Mole Concept @Kidegalize Network_0772034474.pdf
 
Presentation_(B4-1).pdf
Presentation_(B4-1).pdfPresentation_(B4-1).pdf
Presentation_(B4-1).pdf
 
Vijay ppisr
Vijay ppisrVijay ppisr
Vijay ppisr
 
1,3-Dihydroxypropan-2-one (DHA) synthesis from Glycerol for pharmaceutical ap...
1,3-Dihydroxypropan-2-one (DHA) synthesis from Glycerol for pharmaceutical ap...1,3-Dihydroxypropan-2-one (DHA) synthesis from Glycerol for pharmaceutical ap...
1,3-Dihydroxypropan-2-one (DHA) synthesis from Glycerol for pharmaceutical ap...
 
LiBH4 Hydrogen Storage Materials
LiBH4 Hydrogen Storage MaterialsLiBH4 Hydrogen Storage Materials
LiBH4 Hydrogen Storage Materials
 
Internship oral presentation
Internship oral presentationInternship oral presentation
Internship oral presentation
 
Oral presentation
Oral presentationOral presentation
Oral presentation
 
Oral presentation
Oral presentationOral presentation
Oral presentation
 
ICWES15 -Comparative Absorption of Copper from Synthetic and Real Wastewater ...
ICWES15 -Comparative Absorption of Copper from Synthetic and Real Wastewater ...ICWES15 -Comparative Absorption of Copper from Synthetic and Real Wastewater ...
ICWES15 -Comparative Absorption of Copper from Synthetic and Real Wastewater ...
 
Ozone_treatment_for_wastewater_treatment.pptx
Ozone_treatment_for_wastewater_treatment.pptxOzone_treatment_for_wastewater_treatment.pptx
Ozone_treatment_for_wastewater_treatment.pptx
 
Ashish ppt
Ashish pptAshish ppt
Ashish ppt
 
Sulfated zirconia[1]
Sulfated zirconia[1]Sulfated zirconia[1]
Sulfated zirconia[1]
 
Proline catalyzed aldol reaction
Proline catalyzed aldol reactionProline catalyzed aldol reaction
Proline catalyzed aldol reaction
 
Are we there yet
Are we there yetAre we there yet
Are we there yet
 
Microwave synthesis
Microwave synthesisMicrowave synthesis
Microwave synthesis
 

Eco-Friendly Ball Milling for Organic Synthesis

  • 1. Ball Milling An efficient and ecologically friendly synthetic approach ‐‐‐ Jackie Ding
  • 2. Content Ball milling – solvent free approach Application in organic synthesis Conclusion 2
  • 3. The 12 Principles of Green Chemistry   Prevention of waste   Reduce Derivatives   Atom Economy   Use Renewable Feedstocks   Less Hazardous Chemical   Catalysis Syntheses   Design for Degradation   Design Safer Chemicals   Real-time Analysis for   Safer Solvents and Pollution Prevention Auxiliaries   Inherently Safer Chemistry   Design for Energy Efficiency for Accident Prevention 3
  • 4. Do I need to use a solvent? 4
  • 5. The best solvent is no solvent   Alternative solvents: water supercritical CO2 ionic liquids   Solventless Chemistry Mortar and pestle Ball milling 5
  • 6. Content Principles of green chemistry Application in organic synthesis Conclusion 6
  • 7. What is ball milling?   A ball mill is a type of grinder used to grind materials into extremely fine powder. 7
  • 8. Major parameters for ball milling Temperature Size and Number of the balls Nature of the balls Rotation speed 8
  • 9. Types of Ball Mills   Drum ball mills   Jet-mills   Bead-mills   Horizontal rotary ball mills   Vibration ball mills   Planetary ball mills 9
  • 11. Mixer Mill MM 400  Feed material: hard, medium-hard, soft, brittle, elastic, fibrous  Material feed size: ≤ 8 mm  Final fineness: ~ 5 µm  Setting of vibrational frequency: digital, 3 - 30 Hz (180 - 1800 min-1) 11
  • 13. Planetary Ball Mill PM 400  Feed material: soft, hard, brittle, fibrous (dry or wet);  Material feed size: < 10 mm;  Final fineness < 1 µm;  No. of grinding stations: 4 / 2 13
  • 14. Content Principles of green chemistry Ball milling – solvent free approach Conclusion 14
  • 15. Application in Organic Synthesis   Aldol Condensations   Knoevenagel Condensations   Baylis-Hillman Reaction   Michael Reaction   Wittig Reaction   Fullerene Cycloadditions   Suzuki Reaction   Heck-Jeffery Reaction   Radical Additions Mediated by Mn (III)   Etc. 15
  • 16. Suzuki reaction [Pd(PPh3)4] (5mol%) K2CO3!(3 equivs.) B(OH)2 + Br-Ar Ar NaCl ball milling 30-60 min Up to 96% yield S. F. Nielsen, O. Axelsson, Synth. Commun. 2000, 30, 3501. Br KF-Al2O3/ Pd(OAc)2 + Ar Ac ball milling B(OH)2 Ac Entry Rpm T (min) Yield% 1 400 10 92 2 800 5 94 Franziska Schneider, Org. Proc. Res. & Develop., 2009, 13,44 16
  • 17. Aldol Condensation O O O OH (S)-proline H 10 mol% + R R Ball milling (A) or stirring (B) Entry R= Method t/h Yield% anti/syn ee% 1 4-NO2 A 5.5 99 89:11 94 2 4-NO2 B 24 95 89:11 94 3 3-NO2 A 7 94 88:12 >99 4 3-NO2 B 16 89 82:18 98 5 2-NO2 A 7 97 93:7 97 6 2-NO2 B 36 89 91:9 97 B. Rodr´ıguez, Angew. Chem., Int. Ed., 2006, 45, 6924 17
  • 18. Oxidation O O O R2 N N O R2 R1 + Mn(OAc)3.2H2O ball milling O R1 O X X 30Hz, 1h R1= CH3 X=CH or N R1 R2 = -C6H5, -C6H5NO2, -C6H5CN, etc. 18 examples R1 up to 91% yield Conventional heating in organic solvent: a. Acetic acid, 80oC, argon atmosphere, yield 32% b. Ethanol, refluxing temperature for 12h, yield 48% Guan-Wu Wang, J. Org. Chem. 73, 7088 (2008). 18
  • 19. Other applications of ball milling   Fine particles   Inorganic solids 19
  • 20. Drawbacks of ball milling Purification of byproducts •  Solution Benign Solvents It is not a magic •  Solution Under development wand. 20
  • 21. Conclusion   Ball milling should be considered as a potentially attractive solution for solvent-free synthesis. One-pot Tip of Solvent free process iceberg 21
  • 22. Reference   Lance Frazer, Environmental health perspectives, 2003, 111, 10   Belen Rodríguez, Adv. Synth. Catal. 2007, 349, 2213   Ana Lazuen Garay, Chem. Soc. Rev., 2007, 36, 846–855   Raphael Janot, Progress in Materials Science 50 (2005) 1–92   Andreas Theisen, “Green Chemistry”in the Laboratory, TECHNICAL REPORT, www.retsch.com   G Kaupp, Solvent-free organic synthesis, Wiley-VCH, 2009.   S. F. Nielsen, O. Axelsson, Synth. Commun. 2000, 30, 3501.   Franziska Schneider, Org. Proc. Res. & Develop., 2009, 13,44   B. Rodr´ıguez, Angew. Chem., Int. Ed., 2006, 45, 6924   Guan-Wu Wang, J. Org. Chem. 73, 7088 (2008).   G.Kaupp, Top. Curr. Chem. 254, 95 (2005).   M. Reza Naimi-Jamal, Eur. J. Org. Chem. 2009, 3567–3572. 22
  • 23. 23