1
Anirban Sil
Reg. No. 20233224
Thesis Supervisor-Dr. Debangsu Sil
Dimanganese Cluster as a
Structural and Functional Model
for Class-Ib Ribonucleotide Reductases
Departmental Seminar
17th
September 2024
2
Introduction
Image: Gyunghoon "Kenny" Kang
Newly discovered enzyme “square dance” helps generate DNA building blocks – MIT Departme
nt of Chemistry
Ribonucleotides Deoxyribonucleotides
Quaternary structure of the active holoenzyme complex in class I RNR
Boal et al. J. Biol. Chem. 2021, 297, 101137 3
4
Proposed pathway for electron transfer from metallocofactor to active site of RNR
in E. Coli
Bennati et al. Chem. Sci., 2016, 7, 2170–2178
5
Schematic of ribonucleotide reduction and radical translocation (RT) in class I
Ribonucleotide Reductase.
Boal et al. J. Biol. Chem. 2021, 297, 101137
6
Five different subclasses of Type I Ribonucleotide Reductase
Boal et al. J. Biol. Chem. 2021, 297, 101137
7
Mechanism for tyrosine radical formation by the enzymatic
cofactor of Class-Ib RNRs from E. Coli
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
Previously reported similar type of complexes
N N
O
N
N
N
N N
N
N
N
MnII
MnII
O O
2+
N N
N N
N
N
O
Mn Mn
O O
O
O
+
McDonald et al. Angew. Chem. Int. Ed. 2019, 58, 5718 –5722
N
N
S
MnII
S
N
N
S
S
Ph
Ph
Ph
Ph
Mn
II
N
N
S
MnII
SH
N
N
S
S
Ph
Ph
Ph
Ph
Mn
II
+
McDonald et al. Angew. Chem. Int. Ed. 2018, 57, 918 –922
Duboc et al. Angew. Chem. Int. Ed. 2017, 129, 8323-8327
8
Duboc et al. Angew. Chem. Int. Ed. 2017, 56, 8211-8215
9
10
OH
OH OH O
O OH O
O O O
O S
N
S
N
O
S
N
O
N
N
N
N
N
N
MnO2
Reflux
5 days
dry DMF
N2 atmos.
DABCO
BF3.Et2O
Toluene
inert atmos.
N
N
H N
S
S
N
N
N
N
N
N
N
N
N
N
N
N KOH in MeOH
Reflux 18h
I2
stirring 3h (r.t)
Cl
N
S
Yellow crystals
3/1 Toluene/H2O
stirring at r.t 18 h
stirring 18 h
(A) (B)
(C) (D)
(E)
(F)
Synthesis of ligand
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
11
1
H-NMR and 13
C-NMR spectrum of ligand
S
S
N
N
N
N
N
N
N
N
N
N
N
N
1
H-NMR spectrum of ligand
13
C-NMR spectrum of ligand
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
Reaction scheme for synthesis of metal complex
S
S
N
N
N
N
N
N
N
N
N
N
N
N
MeCN/KC8
inert atmosphere (N2)
Mn(OAc)2·4H2O (4 eqv.)
NaClO4·H2O (3 eqv.)
N
N
N
N
N
N
S
Mn Mn
O O
O
O
[MnII
2(OAc)2(BPMT)]ClO4
(complex 1)
+
average Mn-S = 2.59 Å
average Mn-S-Mn = 86.250
average Mn-Mn = 3.541 Å 12
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
13
N
N
N
N
N
N
S
Mn Mn
O
O
O
O
[MnII
2(OAc)2(BPMT)]+
N N
N
N
N
N
S
MnIII MnII
O
O
[Mn(O2)Mn(BPMT)]2+
KO2/18-Crown-6
CH3CN/DMF
(00
C)
+ 2+
Reactivity of complex 1 with superoxide
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
14
Reactivity of complex 1 with superoxide
N
N
N
N
N
N
S
Mn Mn
O O
O
O
[MnII
2(OAc)2(BPMT)]+
N N
N
N
N
N
S
MnIII
MnII
O
O
[Mn(O2)Mn(BPMT)]2+
KO2/18-Crown-6
CH3CN/DMF
(00
C)
+ 2+
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
15
Resonance Raman spectrum at -300
C
N N
N
N
N
N
S
MnIII
MnII
O
O
[Mn(O2)Mn(BPMT)]2+
2+
N N
N
N
N
N
S
MnIII
MnII
O18
O18
[Mn(O2)Mn(BPMT)]2+
2+
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
16
DFT optimized structure of complex 2
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
N
N
N
N
N
N
S
Mn Mn
O O
O
O
[MnII
2(OAc)2(BPMT)]+
N N
N
N
N
N
S
MnIII
MnII
O
O
[Mn(O2)Mn(BPMT)]2+
KO2/18-Crown-6
CH3CN/DMF
(00
C)
+ 2+
DFT optimized structure of complex 2
Complex 1 Complex 2
ν(O-O) stretching frequency (calculated) = 814 cm-1
ν(O-O) stretching frequency (experimental) = 791 cm-1
17
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
X-Ray absorption spectroscopy
N
N
N
N
N
N
S
Mn Mn
O O
O
O
[MnII
2(OAc)2(BPMT)]+
N N
N
N
N
N
S
MnIII
MnII
O
O
[Mn(O2)Mn(BPMT)]2+
KO2/18-Crown-6
CH3CN/DMF
(00
C)
+ 2+
Average oxidation state of Mn in complex 2
Shown in red is 2.6
Complex 2
Complex 1
Mn K-edge XAS spectra of 1 (black) and
Complex 2 (red)
MnO2
Mn2O3
MnO
18
Comparison of Cyclic voltammogram of complex 1 and Zn complex
N
N
N
N
N
N
S
Mn Mn
O O
O
O
[MnII
2(OAc)2(BPMT)]+
+
N
N
N
N
N
N
S
Zn Zn
O O
[ZnII
2(BPMT)(OAc)]2+
2+
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
0.38 V
19
Kinetic studies on complex 2
N
N
N
N
N
N
S
Mn Mn
O O
O
O
[MnII
2(OAc)2(BPMT)]+
N N
N
N
N
N
S
MnIII
MnII
O
O
[Mn(O2)Mn(BPMT)]2+
KO2/18-Crown-6
CH3CN/DMF
(00
C)
+ 2+
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
Catalytic activity of complex 2 on various substrates
N N
N
N
N
N
S
MnIII MnII
O
O
[Mn(O2)Mn(BPMT)]2+
2+
CHO
CHO
H
OH
2-PPA
CCA
2,6-DTBP
Complex 2
O16
CO2H
O
O
20
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
21
Comparison of mass spectrum of product (red) with ESI-Mass spectrum of
acetophenone (blue)
m/z
m/z
N N
N
N
N
N
S
MnIII MnII
O
O
2+
O
CHO
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
Abundance
100%
22
Comparison of mass spectrum of product after isotopic labelling of complex 2
m/z
m/z
N N
N
N
N
N
S
MnIII MnII
O18
O18
2+
O18
CHO
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
Abundance
Catalytic activity of complex 2 observed using UV-spectrum and kinetic studies
23
N N
N
N
N
N
S
MnIII MnII
O
O
2+
O
CHO
CHO
D
(a.)
(b.)
(a.) kobs(2-PPA) = 0.257 M-1
cm-1
(b.) kobs(α-[D1]-PPA) = 0.122 M-1
cm-1
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
EPR spectrum after addition of 2-PPA to solution of complex 1 and excess KO2
24
N
N
N
N
N
N
S
Mn Mn
O O
O
O
[MnII
2(OAc)2(BPMT)]+
+
N N
N
N
N
N
S
MnIII MnII
O
O
[Mn(O2)Mn(BPMT)]2+
2+
KO2
CHO
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
25
Proposed mechanism for catalytic oxidation of 2-Phenylpropionaldehyde (2-PPA)
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
26
Reaction of complex 2 with 2-PPA in presence of CBr4
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
m/z
N N
N
N
N
N
S
MnIII MnII
O
O
2+
Br
CHO
CHO
CBr4
Abundance
27
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
m/z
m/z
N N
N
N
N
N
S
MnIII MnII
O
O
2+
CHO CO2H
Comparison of mass spectrum of obtained product (red) with ESI-Mass spectrum
of cyclohexane-carboxylic acid (blue)
Abundance
100%
Reactivity of complex 2 with 2,6-DTBP observed using UV-visible and kinetic
studies
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076 28
N N
N
N
N
N
S
MnIII MnII
O
O
[Mn(O2)Mn(BPMT)]2+
2+ O
O
t
Bu t
Bu
t
Bu t
Bu
OH
t
Bu t
Bu
53%
29
N N
N
N
N
N
S
MnIII MnII
O
O
[Mn(O2)Mn(BPMT)]2+
2+
OH
OH
t
Bu
t
Bu
t
Bu
t
Bu
OH
t
Bu
t
Bu
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
Reactivity of complex 2 with 2,4-DTBP observed using UV-visible and kinetic
studies
10%
30
Conclusion
 The generation of a thiophenolate-bridged [Mn(II)O2Mn(III)]2+
core in 2
through activation of superoxide radical has been reported.
 Complex 2 exhibits a 16-line St=1/2 EPR signal at g=2, which is typically
associated with an unusual μ-η1
:η2
binding mode of the peroxo ligand.
 Complex 2 was capable of oxidation of 2-phenyl propionaldehyde, cyclohexane
carboxaldehyde and 2,6-di-tert-butyl-phenols.
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
31
Thank you
32
Boal et al. J. Biol. Chem. 2021, 297, 101137
Ribonucleotide Reduction
Proposed pathway showing how Ribonucleotide reduction
takes place in four basic steps
33
UV-Vis spectrum of intermediate 2
UV-Vis spectrum of CmlI peroxo
intermediate
Comparison of UV-Vis spectrum of intermediate 2 with CmlI peroxo
intermediate
J. Am. Chem. Soc. 2015, 137, 1608−1617
N N
N
N
N
N
S
MnIII MnII
O
O
[Mn(O2)Mn(BPMT)]2+
2+
34
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
Analysis of plots obtained from cyclic voltammetry
35
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
CHO
CHO
CHO
MeO
CHO
HO
Reaction of complex 2 with substituted benzaldehyde
N N
N
N
N
N
S
MnIII MnII
O
O
[Mn(O2)Mn(BPMT)]2+
2+
36
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
Hammet plot for reactivity of complex 2 with 4-substituted benzaldehydes
N N
N
N
N
N
S
MnIII MnII
O
O
[Mn(O2)Mn(BPMT)]2+
2+
Deformylated
products
CHO
X
(X=H,Me,OMe and OH)
37
O
H/D
O
kH / kD = 1.22
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
Reactivity of complex 2 with substituted phenols
38
λmax (nm) ε (M-1
cm-1
)
380 nm 3875
510 nm 1470
560 nm 1050
695 nm 400
39
Annu Rev Biochem. 2020; 89: 45–75.
N
N N
N
Co
O
OH
OH
A
CONH2
CONH2
CONH2
N
N
O
HO
O
OH
P
O
O-
O
NH
O
H2NOC
H2NOC
H2NOC
O
OH
OH
A
.
Fe S
Fe
S
S Fe
S
Fe
S
S
S
H2
N
O O
S
O
OH OH
A
Cys
Cys
Cys
N
H
O
.
5’-deoxyadenosyl
radical
Glycyl radical
Class II Ribonucleotide
Reductase
Class III Ribonucleotide
Reductase
Type II and Type III Ribonucleotide Reductase
40
O
O S
N
O
(D)
S
N
O
N
N
N
N
N
N
(E)
1,2-dichloroethane
glacial acetic acid
N
N
H N
NaHB(OAc)3
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
41
Mn2+
Mn3+ + e-
Ecell = -1.542 V
Dioxygen reduction is
unfavourable!
Chemistry of dioxygen reduction

Anirban_departmental_slides_for_RAC.pptx

  • 1.
    1 Anirban Sil Reg. No.20233224 Thesis Supervisor-Dr. Debangsu Sil Dimanganese Cluster as a Structural and Functional Model for Class-Ib Ribonucleotide Reductases Departmental Seminar 17th September 2024
  • 2.
    2 Introduction Image: Gyunghoon "Kenny"Kang Newly discovered enzyme “square dance” helps generate DNA building blocks – MIT Departme nt of Chemistry Ribonucleotides Deoxyribonucleotides
  • 3.
    Quaternary structure ofthe active holoenzyme complex in class I RNR Boal et al. J. Biol. Chem. 2021, 297, 101137 3
  • 4.
    4 Proposed pathway forelectron transfer from metallocofactor to active site of RNR in E. Coli Bennati et al. Chem. Sci., 2016, 7, 2170–2178
  • 5.
    5 Schematic of ribonucleotidereduction and radical translocation (RT) in class I Ribonucleotide Reductase. Boal et al. J. Biol. Chem. 2021, 297, 101137
  • 6.
    6 Five different subclassesof Type I Ribonucleotide Reductase Boal et al. J. Biol. Chem. 2021, 297, 101137
  • 7.
    7 Mechanism for tyrosineradical formation by the enzymatic cofactor of Class-Ib RNRs from E. Coli Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
  • 8.
    Previously reported similartype of complexes N N O N N N N N N N N MnII MnII O O 2+ N N N N N N O Mn Mn O O O O + McDonald et al. Angew. Chem. Int. Ed. 2019, 58, 5718 –5722 N N S MnII S N N S S Ph Ph Ph Ph Mn II N N S MnII SH N N S S Ph Ph Ph Ph Mn II + McDonald et al. Angew. Chem. Int. Ed. 2018, 57, 918 –922 Duboc et al. Angew. Chem. Int. Ed. 2017, 129, 8323-8327 8 Duboc et al. Angew. Chem. Int. Ed. 2017, 56, 8211-8215
  • 9.
  • 10.
    10 OH OH OH O OOH O O O O O S N S N O S N O N N N N N N MnO2 Reflux 5 days dry DMF N2 atmos. DABCO BF3.Et2O Toluene inert atmos. N N H N S S N N N N N N N N N N N N KOH in MeOH Reflux 18h I2 stirring 3h (r.t) Cl N S Yellow crystals 3/1 Toluene/H2O stirring at r.t 18 h stirring 18 h (A) (B) (C) (D) (E) (F) Synthesis of ligand Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
  • 11.
    11 1 H-NMR and 13 C-NMRspectrum of ligand S S N N N N N N N N N N N N 1 H-NMR spectrum of ligand 13 C-NMR spectrum of ligand Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
  • 12.
    Reaction scheme forsynthesis of metal complex S S N N N N N N N N N N N N MeCN/KC8 inert atmosphere (N2) Mn(OAc)2·4H2O (4 eqv.) NaClO4·H2O (3 eqv.) N N N N N N S Mn Mn O O O O [MnII 2(OAc)2(BPMT)]ClO4 (complex 1) + average Mn-S = 2.59 Å average Mn-S-Mn = 86.250 average Mn-Mn = 3.541 Å 12 Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
  • 13.
    13 N N N N N N S Mn Mn O O O O [MnII 2(OAc)2(BPMT)]+ N N N N N N S MnIIIMnII O O [Mn(O2)Mn(BPMT)]2+ KO2/18-Crown-6 CH3CN/DMF (00 C) + 2+ Reactivity of complex 1 with superoxide Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
  • 14.
    14 Reactivity of complex1 with superoxide N N N N N N S Mn Mn O O O O [MnII 2(OAc)2(BPMT)]+ N N N N N N S MnIII MnII O O [Mn(O2)Mn(BPMT)]2+ KO2/18-Crown-6 CH3CN/DMF (00 C) + 2+ Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
  • 15.
    15 Resonance Raman spectrumat -300 C N N N N N N S MnIII MnII O O [Mn(O2)Mn(BPMT)]2+ 2+ N N N N N N S MnIII MnII O18 O18 [Mn(O2)Mn(BPMT)]2+ 2+ Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
  • 16.
    16 DFT optimized structureof complex 2 Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076 N N N N N N S Mn Mn O O O O [MnII 2(OAc)2(BPMT)]+ N N N N N N S MnIII MnII O O [Mn(O2)Mn(BPMT)]2+ KO2/18-Crown-6 CH3CN/DMF (00 C) + 2+ DFT optimized structure of complex 2 Complex 1 Complex 2 ν(O-O) stretching frequency (calculated) = 814 cm-1 ν(O-O) stretching frequency (experimental) = 791 cm-1
  • 17.
    17 Ray et al.Angew. Chem. Int. Ed. 2023, 62, 17076 X-Ray absorption spectroscopy N N N N N N S Mn Mn O O O O [MnII 2(OAc)2(BPMT)]+ N N N N N N S MnIII MnII O O [Mn(O2)Mn(BPMT)]2+ KO2/18-Crown-6 CH3CN/DMF (00 C) + 2+ Average oxidation state of Mn in complex 2 Shown in red is 2.6 Complex 2 Complex 1 Mn K-edge XAS spectra of 1 (black) and Complex 2 (red) MnO2 Mn2O3 MnO
  • 18.
    18 Comparison of Cyclicvoltammogram of complex 1 and Zn complex N N N N N N S Mn Mn O O O O [MnII 2(OAc)2(BPMT)]+ + N N N N N N S Zn Zn O O [ZnII 2(BPMT)(OAc)]2+ 2+ Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076 0.38 V
  • 19.
    19 Kinetic studies oncomplex 2 N N N N N N S Mn Mn O O O O [MnII 2(OAc)2(BPMT)]+ N N N N N N S MnIII MnII O O [Mn(O2)Mn(BPMT)]2+ KO2/18-Crown-6 CH3CN/DMF (00 C) + 2+ Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
  • 20.
    Catalytic activity ofcomplex 2 on various substrates N N N N N N S MnIII MnII O O [Mn(O2)Mn(BPMT)]2+ 2+ CHO CHO H OH 2-PPA CCA 2,6-DTBP Complex 2 O16 CO2H O O 20 Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
  • 21.
    21 Comparison of massspectrum of product (red) with ESI-Mass spectrum of acetophenone (blue) m/z m/z N N N N N N S MnIII MnII O O 2+ O CHO Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076 Abundance 100%
  • 22.
    22 Comparison of massspectrum of product after isotopic labelling of complex 2 m/z m/z N N N N N N S MnIII MnII O18 O18 2+ O18 CHO Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076 Abundance
  • 23.
    Catalytic activity ofcomplex 2 observed using UV-spectrum and kinetic studies 23 N N N N N N S MnIII MnII O O 2+ O CHO CHO D (a.) (b.) (a.) kobs(2-PPA) = 0.257 M-1 cm-1 (b.) kobs(α-[D1]-PPA) = 0.122 M-1 cm-1 Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
  • 24.
    EPR spectrum afteraddition of 2-PPA to solution of complex 1 and excess KO2 24 N N N N N N S Mn Mn O O O O [MnII 2(OAc)2(BPMT)]+ + N N N N N N S MnIII MnII O O [Mn(O2)Mn(BPMT)]2+ 2+ KO2 CHO Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
  • 25.
    25 Proposed mechanism forcatalytic oxidation of 2-Phenylpropionaldehyde (2-PPA) Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
  • 26.
    26 Reaction of complex2 with 2-PPA in presence of CBr4 Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076 m/z N N N N N N S MnIII MnII O O 2+ Br CHO CHO CBr4 Abundance
  • 27.
    27 Ray et al.Angew. Chem. Int. Ed. 2023, 62, 17076 m/z m/z N N N N N N S MnIII MnII O O 2+ CHO CO2H Comparison of mass spectrum of obtained product (red) with ESI-Mass spectrum of cyclohexane-carboxylic acid (blue) Abundance 100%
  • 28.
    Reactivity of complex2 with 2,6-DTBP observed using UV-visible and kinetic studies Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076 28 N N N N N N S MnIII MnII O O [Mn(O2)Mn(BPMT)]2+ 2+ O O t Bu t Bu t Bu t Bu OH t Bu t Bu 53%
  • 29.
    29 N N N N N N S MnIII MnII O O [Mn(O2)Mn(BPMT)]2+ 2+ OH OH t Bu t Bu t Bu t Bu OH t Bu t Bu Rayet al. Angew. Chem. Int. Ed. 2023, 62, 17076 Reactivity of complex 2 with 2,4-DTBP observed using UV-visible and kinetic studies 10%
  • 30.
    30 Conclusion  The generationof a thiophenolate-bridged [Mn(II)O2Mn(III)]2+ core in 2 through activation of superoxide radical has been reported.  Complex 2 exhibits a 16-line St=1/2 EPR signal at g=2, which is typically associated with an unusual μ-η1 :η2 binding mode of the peroxo ligand.  Complex 2 was capable of oxidation of 2-phenyl propionaldehyde, cyclohexane carboxaldehyde and 2,6-di-tert-butyl-phenols. Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
  • 31.
  • 32.
    32 Boal et al.J. Biol. Chem. 2021, 297, 101137 Ribonucleotide Reduction Proposed pathway showing how Ribonucleotide reduction takes place in four basic steps
  • 33.
    33 UV-Vis spectrum ofintermediate 2 UV-Vis spectrum of CmlI peroxo intermediate Comparison of UV-Vis spectrum of intermediate 2 with CmlI peroxo intermediate J. Am. Chem. Soc. 2015, 137, 1608−1617 N N N N N N S MnIII MnII O O [Mn(O2)Mn(BPMT)]2+ 2+
  • 34.
    34 Ray et al.Angew. Chem. Int. Ed. 2023, 62, 17076 Analysis of plots obtained from cyclic voltammetry
  • 35.
    35 Ray et al.Angew. Chem. Int. Ed. 2023, 62, 17076 CHO CHO CHO MeO CHO HO Reaction of complex 2 with substituted benzaldehyde N N N N N N S MnIII MnII O O [Mn(O2)Mn(BPMT)]2+ 2+
  • 36.
    36 Ray et al.Angew. Chem. Int. Ed. 2023, 62, 17076 Hammet plot for reactivity of complex 2 with 4-substituted benzaldehydes N N N N N N S MnIII MnII O O [Mn(O2)Mn(BPMT)]2+ 2+ Deformylated products CHO X (X=H,Me,OMe and OH)
  • 37.
    37 O H/D O kH / kD= 1.22 Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076 Reactivity of complex 2 with substituted phenols
  • 38.
    38 λmax (nm) ε(M-1 cm-1 ) 380 nm 3875 510 nm 1470 560 nm 1050 695 nm 400
  • 39.
    39 Annu Rev Biochem.2020; 89: 45–75. N N N N Co O OH OH A CONH2 CONH2 CONH2 N N O HO O OH P O O- O NH O H2NOC H2NOC H2NOC O OH OH A . Fe S Fe S S Fe S Fe S S S H2 N O O S O OH OH A Cys Cys Cys N H O . 5’-deoxyadenosyl radical Glycyl radical Class II Ribonucleotide Reductase Class III Ribonucleotide Reductase Type II and Type III Ribonucleotide Reductase
  • 40.
    40 O O S N O (D) S N O N N N N N N (E) 1,2-dichloroethane glacial aceticacid N N H N NaHB(OAc)3 Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
  • 41.
    41 Mn2+ Mn3+ + e- Ecell= -1.542 V Dioxygen reduction is unfavourable! Chemistry of dioxygen reduction