Class-Ib Ribonucleotide reductases are manganese-containing enzymes suited for performing the conversion of ribonucleotides to deoxyribonucleotides, which are essential for DNA synthesis and repair.
1
Anirban Sil
Reg. No.20233224
Thesis Supervisor-Dr. Debangsu Sil
Dimanganese Cluster as a
Structural and Functional Model
for Class-Ib Ribonucleotide Reductases
Departmental Seminar
17th
September 2024
2.
2
Introduction
Image: Gyunghoon "Kenny"Kang
Newly discovered enzyme “square dance” helps generate DNA building blocks – MIT Departme
nt of Chemistry
Ribonucleotides Deoxyribonucleotides
3.
Quaternary structure ofthe active holoenzyme complex in class I RNR
Boal et al. J. Biol. Chem. 2021, 297, 101137 3
4.
4
Proposed pathway forelectron transfer from metallocofactor to active site of RNR
in E. Coli
Bennati et al. Chem. Sci., 2016, 7, 2170–2178
5.
5
Schematic of ribonucleotidereduction and radical translocation (RT) in class I
Ribonucleotide Reductase.
Boal et al. J. Biol. Chem. 2021, 297, 101137
7
Mechanism for tyrosineradical formation by the enzymatic
cofactor of Class-Ib RNRs from E. Coli
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
8.
Previously reported similartype of complexes
N N
O
N
N
N
N N
N
N
N
MnII
MnII
O O
2+
N N
N N
N
N
O
Mn Mn
O O
O
O
+
McDonald et al. Angew. Chem. Int. Ed. 2019, 58, 5718 –5722
N
N
S
MnII
S
N
N
S
S
Ph
Ph
Ph
Ph
Mn
II
N
N
S
MnII
SH
N
N
S
S
Ph
Ph
Ph
Ph
Mn
II
+
McDonald et al. Angew. Chem. Int. Ed. 2018, 57, 918 –922
Duboc et al. Angew. Chem. Int. Ed. 2017, 129, 8323-8327
8
Duboc et al. Angew. Chem. Int. Ed. 2017, 56, 8211-8215
10
OH
OH OH O
OOH O
O O O
O S
N
S
N
O
S
N
O
N
N
N
N
N
N
MnO2
Reflux
5 days
dry DMF
N2 atmos.
DABCO
BF3.Et2O
Toluene
inert atmos.
N
N
H N
S
S
N
N
N
N
N
N
N
N
N
N
N
N KOH in MeOH
Reflux 18h
I2
stirring 3h (r.t)
Cl
N
S
Yellow crystals
3/1 Toluene/H2O
stirring at r.t 18 h
stirring 18 h
(A) (B)
(C) (D)
(E)
(F)
Synthesis of ligand
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
11.
11
1
H-NMR and 13
C-NMRspectrum of ligand
S
S
N
N
N
N
N
N
N
N
N
N
N
N
1
H-NMR spectrum of ligand
13
C-NMR spectrum of ligand
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
12.
Reaction scheme forsynthesis of metal complex
S
S
N
N
N
N
N
N
N
N
N
N
N
N
MeCN/KC8
inert atmosphere (N2)
Mn(OAc)2·4H2O (4 eqv.)
NaClO4·H2O (3 eqv.)
N
N
N
N
N
N
S
Mn Mn
O O
O
O
[MnII
2(OAc)2(BPMT)]ClO4
(complex 1)
+
average Mn-S = 2.59 Å
average Mn-S-Mn = 86.250
average Mn-Mn = 3.541 Å 12
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
14
Reactivity of complex1 with superoxide
N
N
N
N
N
N
S
Mn Mn
O O
O
O
[MnII
2(OAc)2(BPMT)]+
N N
N
N
N
N
S
MnIII
MnII
O
O
[Mn(O2)Mn(BPMT)]2+
KO2/18-Crown-6
CH3CN/DMF
(00
C)
+ 2+
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
15.
15
Resonance Raman spectrumat -300
C
N N
N
N
N
N
S
MnIII
MnII
O
O
[Mn(O2)Mn(BPMT)]2+
2+
N N
N
N
N
N
S
MnIII
MnII
O18
O18
[Mn(O2)Mn(BPMT)]2+
2+
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
16.
16
DFT optimized structureof complex 2
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
N
N
N
N
N
N
S
Mn Mn
O O
O
O
[MnII
2(OAc)2(BPMT)]+
N N
N
N
N
N
S
MnIII
MnII
O
O
[Mn(O2)Mn(BPMT)]2+
KO2/18-Crown-6
CH3CN/DMF
(00
C)
+ 2+
DFT optimized structure of complex 2
Complex 1 Complex 2
ν(O-O) stretching frequency (calculated) = 814 cm-1
ν(O-O) stretching frequency (experimental) = 791 cm-1
17.
17
Ray et al.Angew. Chem. Int. Ed. 2023, 62, 17076
X-Ray absorption spectroscopy
N
N
N
N
N
N
S
Mn Mn
O O
O
O
[MnII
2(OAc)2(BPMT)]+
N N
N
N
N
N
S
MnIII
MnII
O
O
[Mn(O2)Mn(BPMT)]2+
KO2/18-Crown-6
CH3CN/DMF
(00
C)
+ 2+
Average oxidation state of Mn in complex 2
Shown in red is 2.6
Complex 2
Complex 1
Mn K-edge XAS spectra of 1 (black) and
Complex 2 (red)
MnO2
Mn2O3
MnO
18.
18
Comparison of Cyclicvoltammogram of complex 1 and Zn complex
N
N
N
N
N
N
S
Mn Mn
O O
O
O
[MnII
2(OAc)2(BPMT)]+
+
N
N
N
N
N
N
S
Zn Zn
O O
[ZnII
2(BPMT)(OAc)]2+
2+
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
0.38 V
19.
19
Kinetic studies oncomplex 2
N
N
N
N
N
N
S
Mn Mn
O O
O
O
[MnII
2(OAc)2(BPMT)]+
N N
N
N
N
N
S
MnIII
MnII
O
O
[Mn(O2)Mn(BPMT)]2+
KO2/18-Crown-6
CH3CN/DMF
(00
C)
+ 2+
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
20.
Catalytic activity ofcomplex 2 on various substrates
N N
N
N
N
N
S
MnIII MnII
O
O
[Mn(O2)Mn(BPMT)]2+
2+
CHO
CHO
H
OH
2-PPA
CCA
2,6-DTBP
Complex 2
O16
CO2H
O
O
20
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
21.
21
Comparison of massspectrum of product (red) with ESI-Mass spectrum of
acetophenone (blue)
m/z
m/z
N N
N
N
N
N
S
MnIII MnII
O
O
2+
O
CHO
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
Abundance
100%
22.
22
Comparison of massspectrum of product after isotopic labelling of complex 2
m/z
m/z
N N
N
N
N
N
S
MnIII MnII
O18
O18
2+
O18
CHO
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
Abundance
23.
Catalytic activity ofcomplex 2 observed using UV-spectrum and kinetic studies
23
N N
N
N
N
N
S
MnIII MnII
O
O
2+
O
CHO
CHO
D
(a.)
(b.)
(a.) kobs(2-PPA) = 0.257 M-1
cm-1
(b.) kobs(α-[D1]-PPA) = 0.122 M-1
cm-1
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
24.
EPR spectrum afteraddition of 2-PPA to solution of complex 1 and excess KO2
24
N
N
N
N
N
N
S
Mn Mn
O O
O
O
[MnII
2(OAc)2(BPMT)]+
+
N N
N
N
N
N
S
MnIII MnII
O
O
[Mn(O2)Mn(BPMT)]2+
2+
KO2
CHO
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
25.
25
Proposed mechanism forcatalytic oxidation of 2-Phenylpropionaldehyde (2-PPA)
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
26.
26
Reaction of complex2 with 2-PPA in presence of CBr4
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
m/z
N N
N
N
N
N
S
MnIII MnII
O
O
2+
Br
CHO
CHO
CBr4
Abundance
27.
27
Ray et al.Angew. Chem. Int. Ed. 2023, 62, 17076
m/z
m/z
N N
N
N
N
N
S
MnIII MnII
O
O
2+
CHO CO2H
Comparison of mass spectrum of obtained product (red) with ESI-Mass spectrum
of cyclohexane-carboxylic acid (blue)
Abundance
100%
28.
Reactivity of complex2 with 2,6-DTBP observed using UV-visible and kinetic
studies
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076 28
N N
N
N
N
N
S
MnIII MnII
O
O
[Mn(O2)Mn(BPMT)]2+
2+ O
O
t
Bu t
Bu
t
Bu t
Bu
OH
t
Bu t
Bu
53%
30
Conclusion
The generationof a thiophenolate-bridged [Mn(II)O2Mn(III)]2+
core in 2
through activation of superoxide radical has been reported.
Complex 2 exhibits a 16-line St=1/2 EPR signal at g=2, which is typically
associated with an unusual μ-η1
:η2
binding mode of the peroxo ligand.
Complex 2 was capable of oxidation of 2-phenyl propionaldehyde, cyclohexane
carboxaldehyde and 2,6-di-tert-butyl-phenols.
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
32
Boal et al.J. Biol. Chem. 2021, 297, 101137
Ribonucleotide Reduction
Proposed pathway showing how Ribonucleotide reduction
takes place in four basic steps
33.
33
UV-Vis spectrum ofintermediate 2
UV-Vis spectrum of CmlI peroxo
intermediate
Comparison of UV-Vis spectrum of intermediate 2 with CmlI peroxo
intermediate
J. Am. Chem. Soc. 2015, 137, 1608−1617
N N
N
N
N
N
S
MnIII MnII
O
O
[Mn(O2)Mn(BPMT)]2+
2+
34.
34
Ray et al.Angew. Chem. Int. Ed. 2023, 62, 17076
Analysis of plots obtained from cyclic voltammetry
35.
35
Ray et al.Angew. Chem. Int. Ed. 2023, 62, 17076
CHO
CHO
CHO
MeO
CHO
HO
Reaction of complex 2 with substituted benzaldehyde
N N
N
N
N
N
S
MnIII MnII
O
O
[Mn(O2)Mn(BPMT)]2+
2+
36.
36
Ray et al.Angew. Chem. Int. Ed. 2023, 62, 17076
Hammet plot for reactivity of complex 2 with 4-substituted benzaldehydes
N N
N
N
N
N
S
MnIII MnII
O
O
[Mn(O2)Mn(BPMT)]2+
2+
Deformylated
products
CHO
X
(X=H,Me,OMe and OH)
37.
37
O
H/D
O
kH / kD= 1.22
Ray et al. Angew. Chem. Int. Ed. 2023, 62, 17076
Reactivity of complex 2 with substituted phenols
39
Annu Rev Biochem.2020; 89: 45–75.
N
N N
N
Co
O
OH
OH
A
CONH2
CONH2
CONH2
N
N
O
HO
O
OH
P
O
O-
O
NH
O
H2NOC
H2NOC
H2NOC
O
OH
OH
A
.
Fe S
Fe
S
S Fe
S
Fe
S
S
S
H2
N
O O
S
O
OH OH
A
Cys
Cys
Cys
N
H
O
.
5’-deoxyadenosyl
radical
Glycyl radical
Class II Ribonucleotide
Reductase
Class III Ribonucleotide
Reductase
Type II and Type III Ribonucleotide Reductase