SlideShare a Scribd company logo
1 of 12
An Efficient Analytical Development Strategy for
Rapid Development of Biopharmaceuticals
Abstract
Expedited development of biopharmaceuticals requires a focused, consistent and efficient analytical
development strategy. For commonly monitored critical quality attributes, robust platform methods can
be implemented and used for a defined class of molecules thus minimizing the need for additional
development. For new compounds, or when new attributes need to be monitored, additional method
development will be required but this process can be accelerated by adopting a focused approach
consisting of four stages with well-defined deliverables (method definition, technology selection,
method development/optimization, and method performance evaluation).
Once the method requirements are defined and the initial method established, the key method
parameters with the biggest impact on the method performance are identified through systematic
assessments of the different method steps. Development activities are then prioritized to minimize the
time needed to create an intrinsically robust method which meets the pre-established method
requirements and is adequately controlled to prevent drift during routine use. Job aids, method
assessment templates, and standardized method validation strategies can be implemented to ensure
the development approach is consistent within an organization and to reduce method development
time and cost.
Introduction
The availability of reliable analytical methods to monitor the quality attributes of a new biological entity
(NBE) is critical for guiding process and product development activities throughout the different
product development stages. Analytical methods are also required to monitor the drug substance and
drug product to assure that applicable standards of identity, strength, quality, and purity are met.
During early-stage development the analytical results are used to support candidate selection, pre-
formulation screening, and to confirm that the materials created using the initial early-stage drug
substance (DS) and drug product (DP) manufacturing process are suitable to support the non-clinical
safety and first in human (FIH) studies. In addition, data from analytical comparability studies are used
throughout a program to demonstrate that changes made to the drug substance and drug product
manufacturing process do not adversely impact the critical quality attributes associated with efficacy
and safety.
Over the years, multiple regulatory approval pathways have been introduced for rapid
commercialization of new medicinal products such as the breakthrough therapy designation in the
United States, PRIME in the European Union, and Sakigake designation in Japan.
Subscribe to our e-Newsletters
Stay up to date with the latest news, articles, and events. Plus, get special offers
from American Pharmaceutical Review – all delivered right to your inbox!Sign up now!
This has created an additional need to reduce the time required to establish suitable methods to
support process and product development activities and create the analytical control strategy. In this
paper, we will focus on approaches which can be used to expedite the development of robust GMP
methods to facilitate rapid development of NBEs.
Role of Analytical Methods in The Product Control
Strategy
To expedite drug development it is necessary to have an understanding of the relevant quality
attributes of a new entity to ensure the analytical development activities are consistently focused on
the key methods needed to monitor these attributes. The critical quality attributes (CQAs) are derived
from the quality target product profile (QTPP) and take into consideration structure function
information available for the NBE or class of NBEs. For common entities such as monoclonal
antibodies the CQA assessment can be based on platform knowledge as well as literature
information. Once identified, the CQAs are used to drive the process development activities to ensure
robust unit operations are established which result in a consistent and well-controlled product. A
thorough understanding of the impact of the different unit operations on the CQAs forms the basis for
establishing the overall control strategy through a combination of process control, analytical control,
site control, raw material control, and contaminant control measures. A schematic overview of the
relationship between product understanding, process understanding and the control strategy is
provided in Figure 1.
The Analytical Method Development Process
The goal of the analytical development activities is to create robust methods which are suitable for
their intended purpose to support the various aspects and stages of product development. In addition,
methods which are intended for GMP release and stability testing of clinical/commercial materials are
expected to be validated in a phase-appropriate manner. Although such a requirement does not apply
to methods used to support non-GMP process or product development activities, it is essential that
the performance characteristics of these methods are evaluated and documented prior to use (this
includes determining the bias relative to the proposed QC methods) since the results obtained with
the inprocess methods are relied upon to make key process development decisions (Figure 2). A
structured approach to method development can significantly reduce the time required to create
robust methods and to establish their suitability for use.
Although a systematic development process is generally applicable, the approach described in this
paper is primarily used to accelerate the development and validation of GMP methods.
Zoom In
The method development process for GMP methods can be divided into four distinct stages: (1)
method definition, (2) technology platform selection, (3) development (including optimization with
design of experiments), and (4) method performance qualification/validation. An overview of the
different stages of the method development process is provided in Figure 3.
The outcome of the development process is 1) a defined analytical procedure with detailed
instructions describing how the method is performed, 2) a method development report with supporting
information justifying the conditions and replication strategy established for the method, 3) a method
control strategy, defined based on an assessment of the major sources of variability associated with
the key steps in the method, to ensure that the method performs consistently during routine use, and
4) a method qualification/ validation report documenting the phase appropriate validation of the
method. The following sections describe the output for each of the four method development stages.
Analytical target profile (method definition)
The first step of the method development process is to define the method based on its intended use
to monitor one or more relevant quality attributes of the NBE (i.e. scope, purpose, material type,
method category, and performance expectations). The analytical target profile (ATP) serves as a
prospective summary of required method characteristics (e.g. accuracy, precision) and contains the
proposed target acceptance criteria which have been established for the NBE. The ATP ensures that
the developed method will be suitable for its intended purpose, i.e. measurement of the quality
attributes of the drug substance, drug product or in-process samples with appropriate accuracy,
precision, and/or sensitivity. The analytical target profile is a living document which is reviewed and/or
updated at the different stage gates of the development program to guide further method
development work as knowledge of the product and the methods increases. Other reasons for
updating the ATP can include a change in the method requirements resulting from regulatory
feedback or changes in the manufacturing process or formulation. The key elements of the ATP are
summarized in Table 1.
Zoom In
In addition to the elements listed in Table 1, the ATP should also capture specific requirements or
constraints which impact the method selection or development. This may include
 Method-specific performance attributes (e.g., calibration model, technology preference)
 Business needs (e.g., duration of analysis, cycle time and throughput,capacity,required standards,controls,and
reagents)
 Operational needs (e.g., lab constraints,skills or capability in the QC laboratory, safety constraints such as
compliance with the REACH regulation in Europe and/orthe need to minimize excessive reliance on manual
pipetting to avoid repetitive motion injuries)
The target performance characteristics for the methods provided in the ATP (i.e. accuracy,
intermediate precision, range, quantitation limit, detection limit, sensitivity, specificity, target
measurement uncertainty etc.) should be established based on project requirements and take into
consideration the applicable regulatory expectations, industry practice, and internal company
standards or practices.
Technology platform selection
The starting point of technology platform selection is to gather information regarding the most suitable
techniques or approaches based on the quality attribute that needs to be evaluated taking into
consideration the required performance characteristics specified in the ATP. Knowledge gathering
can be based on literature searches, evaluation of prior internal development work and/or through
communication with research teams or other development groups within the company.
For common modalities a panel of platform methods can be established and qualified. These methods
can be leveraged for new molecules within the same class by confirming their “suitability for use”
through proof of concept (POC) experiments as outlined in the decision tree in Figure 4. Proof of
concept experiments can be notebook driven and are designed to evaluate the method performance
(e.g. accuracy, precision, sensitivity, resolution) using representative material of the new molecule in
the relevant matrices (e.g. protein A eluate, DS, DP) and across the expected concentration range.
The purpose of these experiments is to determine whether the new molecule is compatible with the
existing platform methods by comparing the results obtained from the POC experiments against the
historical experience with these methods as well as against the ATP requirements. If the method is
intended to be stability-indicating, degraded material should be evaluated as part of the POC
assessment to ensure relevant impurities can be detected.
Once initial compatibility with the platform method has been established, limited experiments are
performed at the extremes of the proven acceptable ranges for the key product specific Analytical
Quality Attributes (AQA) previously established for the method. These attributes are most often
associated with the sample preparation unit operation and, based on platform risk assessments,
would have been associated with high risk scores in the method assessment documents supporting
the platform methods as explained in the following section. Consistent performance of the method at
the extremes of the design space, when used with a new molecule, will confirm that the method
remains robust and is performing as intended. However, if significant changes in the method
parameters are required to obtain acceptable performance of a platform method with a new molecule,
resulting in setpoints outside of the previously established design space, the platform method is
considered not suitable and a new method would need to be developed.
To ensure consistency, job aids can be developed to describe the relevant POC experiments required
to show that the platform method is suitable for use for a new molecule. The job aids should contain
experimental strategies and designs for confirming the analytical quality attributes and provide
instructions for performing a (statistical) comparison of the results against the historical performance
data available for the platform methods. If the molecule fits the platform a significant reduction in
method development cost and time can be realized during early stage development by leveraging the
method performance data available for the platform method. In late stage, if the drug substance and
drug product still fit the platform, additional savings can be realized since the robustness experiments
required to verify the design space of the platform AQAs can be more limited in scope, thus saving
significant resources and time.
Method development
Once the analytical technology platform for a new method has been selected (e.g. HPLC, ELISA) and
the basic method parameters have been established, systematic method assessments can be used
as an efficient tool to holistically evaluate and document the potential impact of the different method
parameters on the ability of the method to consistently generate accurate and precise results.
An effective approach for performing method assessments relies on categorizing the individual
instructions in the proposed method into different unit operations (e.g. reagent preparation, sample
preparation, instrument set-up, and data analysis) as shown in Figure 5. For each of the instructions
the potential failure mode is identified and the expected impact of systematic or random changes in a
method parameter on the accuracy, precision, and sensitivity of the method is assessed using a
three-tiered ranking system (low (1), medium (3), and high (5)). In addition, the impact is weighted
based on the likelihood that the failure mode occurs (likely (1) or unlikely (5)). The expected impact of
each evaluated parameter on method performance is subsequently captured as a risk probability
number (RPN) which is the product of the scores assigned to the individual attributes divided by the
likelihood score. The RPN is sorted in descending order to identify the factors posing the highest risk
to accuracy, precision or sensitivity of the method thus allowing a prioritization of the development
experiments. The method assessment is completed by late stage development and should be
updated as knowledge regarding the method under development increases.
Interactions between method parameters create additional challenges during the method
development process. If interactions are suspected, properly powered design of experiments (DOEs)
should be performed to establish the optimal design space for the combined set of interacting
parameters. In most cases the interactions between parameters are constrained within a method unit
operation thus simplifying the experimental design needed to find suitable conditions to meet the ATP
requirements and define the design space.
Once the method parameters have been optimized the replication strategy should be defined taking
into consideration the variability of the method and the ATP requirements. Based on the established
strategy the calculations to obtain the final reportable result for the method, including the number of
significant figures, should be described in the analytical procedure. Only the final reportable results
are compared to the acceptance criteria for the sample in case a disposition needs to be performed.
Zoom In
Finally, a method control strategy is established to provide assurance that the method continues to
perform as intended during routine use. The method control strategy should include regulatory or
compendial requirements/expectations and consider the critical method parameters as well as
requirements for critical reagents, standards and/or control samples. In addition, it should define the
system suitability criteria and sample acceptance criteria. The elements of the method control strategy
should be captured in the analytical procedure and explained in the development report.
Method performance qualification/validation
For platform methods, which are leveraged to support early stage programs, there is limited need to
collect molecule-specific qualification data. The qualification results obtained when the methods were
originally established, combined with the information collected as part of the performance monitoring
of the method when used routinely for other programs, provide a robust data set to show the
suitability and consistency of the method. Appropriately designed and documented “fit to platform”
proof of concept experiments are therefore sufficient to confirm that the methods are suitable for use.
For newly developed methods, phase appropriate qualification/validation is performed upon
completion of the development activities to confirm the consistency of the method and to demonstrate
that it has met the requirements of the ATP. The scope of the validation activities is defined based on
the method type and the clinical phase of the program. For early stage programs the Analytical Target
Profile combined with an approved standard operating procedure which describes the approaches
required to evaluate the validation characteristics for different method types can be used to avoid the
need to generate individual protocols for each validation exercise. However, for late stage methods,
formal validation protocols and reports should be used to prospectively describe the validation
activities and document the results.
Conclusions
Expedited analytical method development for therapeutics can be achieved using a well-designed
strategy consisting of the following key elements:
1. An analytical target profile, established based on the proposed analytical control strategy,to define the method
requirements prior to initiating method development. The method requirements should be established in
collaboration with other functions,in particular the process and formulation development teams.
2. Systematic method assessments to consistently focus development activities on method parameters with the
highest impact on method performance.
3. Implementation of platform methods for common modalities across multiple projects (and multiple laboratories,
if available) to minimize the need for new method development.
4. Creation of method development job aids to maintain consistency when performing method assessments orfit to
platform assessments.These job aids can also include definitions around platform fit considerations to facilitate
platform discipline.
5. Implementation of procedures for phase-appropriate method validation and creation of standardized templates
for the ATP, method development reports, and validation protocols/reports to ensure consistency and to
minimize writing and reviewing time.
References
1. ICH Q2 – International Conference on Harmonization Q2 (R1) 2005 - Validation of Analytical Procedures: Text
and Methodology
2. ICH Q3A(R2) – Guidance for Industry- Impurities in New Drug Substances
3. ICH Q3B(R2) –Impurities in New Drug Products
4. ICH Q3C(R6) –Impurities: Guideline for Residual Solvents
5. ICH Q3D(R) - Guideline for Elemental Impurities
6. ICH Q5E –Comparability of Biotechnological/Biological Products
7. ICH Q6B – Specifications: Test procedures and acceptance criteria for biotechnological/ biological products
8. FDA: 2015 Guidance for Industry: Analytical Procedures and Method Validation for Drugs and Biologics
9. USP <1220> The Analytical Procedure Lifecycle
10. USP <1224> Transfer of Analytical Procedures
11. PDA Technical Report 57, Analytical Method Validation and Transfer for Biotechnology Products
12. PDA Technical Report No. 57-2, Analytical Method Development and Qualification for Biotechnology Product

More Related Content

What's hot

Understanding the 7 haccp principles
Understanding the 7 haccp principlesUnderstanding the 7 haccp principles
Understanding the 7 haccp principlesLinda Burns, CHI
 
Food safety Managementsystem, indian perspective
Food safety Managementsystem,  indian perspectiveFood safety Managementsystem,  indian perspective
Food safety Managementsystem, indian perspectiveVinay Kumar Srivastava
 
Haccp guidelines and status in india
Haccp guidelines and status in indiaHaccp guidelines and status in india
Haccp guidelines and status in indiaSugandhinatatajan
 
Hazard analysis critical control point (haccp)
Hazard analysis critical control point (haccp)Hazard analysis critical control point (haccp)
Hazard analysis critical control point (haccp)Allwyn Vyas. G
 
Hazard analysis and food control
Hazard analysis and food controlHazard analysis and food control
Hazard analysis and food controlMa E.C.C.
 
GLP - Good Laboratory Practices
GLP - Good Laboratory PracticesGLP - Good Laboratory Practices
GLP - Good Laboratory Practicessrilakshmisadam
 
FOOD SAFETY NOTES-QUALITY ASSURANCE
FOOD SAFETY NOTES-QUALITY ASSURANCEFOOD SAFETY NOTES-QUALITY ASSURANCE
FOOD SAFETY NOTES-QUALITY ASSURANCEParminder Mitter
 
Hazard Analysis Critical Control Point
Hazard Analysis Critical Control PointHazard Analysis Critical Control Point
Hazard Analysis Critical Control PointWBUAFS
 
ISO 22000 - Food Safety Management System and HACCP Implementation
ISO 22000 - Food Safety Management System and HACCP ImplementationISO 22000 - Food Safety Management System and HACCP Implementation
ISO 22000 - Food Safety Management System and HACCP ImplementationSobanManzoor1
 
How to assess your FSMS (Food Safety Management System)
How to assess your FSMS (Food Safety Management System)How to assess your FSMS (Food Safety Management System)
How to assess your FSMS (Food Safety Management System)ASRM20
 
Haccp hazard analysis and critical control point salman
Haccp  hazard analysis and critical control point   salmanHaccp  hazard analysis and critical control point   salman
Haccp hazard analysis and critical control point salmanSalmanLatif14
 
OECD principles of Good Laboratory Practice.
OECD principles of Good Laboratory Practice.OECD principles of Good Laboratory Practice.
OECD principles of Good Laboratory Practice.Gagandeep Jaiswal
 

What's hot (20)

HACCP (Hazard analysis criticle control point)
HACCP (Hazard analysis criticle control point)HACCP (Hazard analysis criticle control point)
HACCP (Hazard analysis criticle control point)
 
HACCP a practical approach
HACCP a practical approachHACCP a practical approach
HACCP a practical approach
 
Understanding the 7 haccp principles
Understanding the 7 haccp principlesUnderstanding the 7 haccp principles
Understanding the 7 haccp principles
 
Food safety Managementsystem, indian perspective
Food safety Managementsystem,  indian perspectiveFood safety Managementsystem,  indian perspective
Food safety Managementsystem, indian perspective
 
Introduction to HACCP
Introduction to HACCPIntroduction to HACCP
Introduction to HACCP
 
Haccp guidelines and status in india
Haccp guidelines and status in indiaHaccp guidelines and status in india
Haccp guidelines and status in india
 
Hazard analysis critical control point (haccp)
Hazard analysis critical control point (haccp)Hazard analysis critical control point (haccp)
Hazard analysis critical control point (haccp)
 
Hazard analysis and food control
Hazard analysis and food controlHazard analysis and food control
Hazard analysis and food control
 
GLP - Good Laboratory Practices
GLP - Good Laboratory PracticesGLP - Good Laboratory Practices
GLP - Good Laboratory Practices
 
FOOD SAFETY NOTES-QUALITY ASSURANCE
FOOD SAFETY NOTES-QUALITY ASSURANCEFOOD SAFETY NOTES-QUALITY ASSURANCE
FOOD SAFETY NOTES-QUALITY ASSURANCE
 
Hazard Analysis Critical Control Point
Hazard Analysis Critical Control PointHazard Analysis Critical Control Point
Hazard Analysis Critical Control Point
 
HACCP Plan
HACCP PlanHACCP Plan
HACCP Plan
 
Haccp system
Haccp system Haccp system
Haccp system
 
Chapter 5 haccp
Chapter 5 haccpChapter 5 haccp
Chapter 5 haccp
 
ISO 22000 - Food Safety Management System and HACCP Implementation
ISO 22000 - Food Safety Management System and HACCP ImplementationISO 22000 - Food Safety Management System and HACCP Implementation
ISO 22000 - Food Safety Management System and HACCP Implementation
 
How to assess your FSMS (Food Safety Management System)
How to assess your FSMS (Food Safety Management System)How to assess your FSMS (Food Safety Management System)
How to assess your FSMS (Food Safety Management System)
 
Haccp System
Haccp SystemHaccp System
Haccp System
 
HACCP plan for pastry
HACCP plan for pastryHACCP plan for pastry
HACCP plan for pastry
 
Haccp hazard analysis and critical control point salman
Haccp  hazard analysis and critical control point   salmanHaccp  hazard analysis and critical control point   salman
Haccp hazard analysis and critical control point salman
 
OECD principles of Good Laboratory Practice.
OECD principles of Good Laboratory Practice.OECD principles of Good Laboratory Practice.
OECD principles of Good Laboratory Practice.
 

Similar to An efficient analytical development strategy for rapid development of biopharmaceuticals

Pat process analytical technique
Pat  process analytical techniquePat  process analytical technique
Pat process analytical techniqueSalmanLatif14
 
JPBA published-a platform aQbD approach for multiple methods development
JPBA published-a platform aQbD approach for multiple methods developmentJPBA published-a platform aQbD approach for multiple methods development
JPBA published-a platform aQbD approach for multiple methods developmentJianmei Kochling
 
PHARMACEUTICAL VALIDATION
PHARMACEUTICAL VALIDATIONPHARMACEUTICAL VALIDATION
PHARMACEUTICAL VALIDATIONJayeshRajput7
 
Essentials in qb_d
Essentials in qb_dEssentials in qb_d
Essentials in qb_dPRASAD PSR
 
A Review on Step-by-Step Analytical Method Validation
A Review on Step-by-Step Analytical Method ValidationA Review on Step-by-Step Analytical Method Validation
A Review on Step-by-Step Analytical Method Validationiosrphr_editor
 
Quality by Design
Quality by DesignQuality by Design
Quality by Designmahesh745
 
Seminar on validation by ranjeet singh
Seminar on validation by ranjeet singhSeminar on validation by ranjeet singh
Seminar on validation by ranjeet singhRanjeet Singh
 
Ich Q8 Pharmaceutical Development( comparison with Q9 and Q10 )
Ich Q8 Pharmaceutical Development( comparison with Q9 and Q10 )Ich Q8 Pharmaceutical Development( comparison with Q9 and Q10 )
Ich Q8 Pharmaceutical Development( comparison with Q9 and Q10 )DhrutiPatel61
 
Quality management systems - INDUSTRIAL PHARMACY ll
Quality management systems - INDUSTRIAL PHARMACY llQuality management systems - INDUSTRIAL PHARMACY ll
Quality management systems - INDUSTRIAL PHARMACY llJafarali Masi
 
Concept of qa, qc, gmp 112070804010
Concept of qa, qc, gmp  112070804010Concept of qa, qc, gmp  112070804010
Concept of qa, qc, gmp 112070804010Patel Parth
 
Transfer technologypharmaceuticalmanufacturingtrs961annex7[1]
Transfer technologypharmaceuticalmanufacturingtrs961annex7[1]Transfer technologypharmaceuticalmanufacturingtrs961annex7[1]
Transfer technologypharmaceuticalmanufacturingtrs961annex7[1]Flu Plant
 
DEFINITION,PRINCIPLE, OBJECTIVES, ELEMENTS AND TOOLS OF QUALITY BY DESIGN (Qb...
DEFINITION,PRINCIPLE, OBJECTIVES, ELEMENTS AND TOOLS OF QUALITY BY DESIGN (Qb...DEFINITION,PRINCIPLE, OBJECTIVES, ELEMENTS AND TOOLS OF QUALITY BY DESIGN (Qb...
DEFINITION,PRINCIPLE, OBJECTIVES, ELEMENTS AND TOOLS OF QUALITY BY DESIGN (Qb...Durgadevi Ganesan
 

Similar to An efficient analytical development strategy for rapid development of biopharmaceuticals (20)

Pat process analytical technique
Pat  process analytical techniquePat  process analytical technique
Pat process analytical technique
 
JPBA published-a platform aQbD approach for multiple methods development
JPBA published-a platform aQbD approach for multiple methods developmentJPBA published-a platform aQbD approach for multiple methods development
JPBA published-a platform aQbD approach for multiple methods development
 
PHARMACEUTICAL VALIDATION
PHARMACEUTICAL VALIDATIONPHARMACEUTICAL VALIDATION
PHARMACEUTICAL VALIDATION
 
Essentials in qb_d
Essentials in qb_dEssentials in qb_d
Essentials in qb_d
 
Prospective Validation NSR.pdf
Prospective Validation NSR.pdfProspective Validation NSR.pdf
Prospective Validation NSR.pdf
 
A Review on Step-by-Step Analytical Method Validation
A Review on Step-by-Step Analytical Method ValidationA Review on Step-by-Step Analytical Method Validation
A Review on Step-by-Step Analytical Method Validation
 
Quality by Design
Quality by DesignQuality by Design
Quality by Design
 
USFDA-CGMP pdf.pdf
USFDA-CGMP pdf.pdfUSFDA-CGMP pdf.pdf
USFDA-CGMP pdf.pdf
 
Seminar on validation by ranjeet singh
Seminar on validation by ranjeet singhSeminar on validation by ranjeet singh
Seminar on validation by ranjeet singh
 
Ich Q8 Pharmaceutical Development( comparison with Q9 and Q10 )
Ich Q8 Pharmaceutical Development( comparison with Q9 and Q10 )Ich Q8 Pharmaceutical Development( comparison with Q9 and Q10 )
Ich Q8 Pharmaceutical Development( comparison with Q9 and Q10 )
 
Quality risk management sop
Quality risk management sopQuality risk management sop
Quality risk management sop
 
Pqs220610.Ppt
Pqs220610.PptPqs220610.Ppt
Pqs220610.Ppt
 
Pqs220610.ppt
Pqs220610.pptPqs220610.ppt
Pqs220610.ppt
 
Pqs220610.Ppt
Pqs220610.PptPqs220610.Ppt
Pqs220610.Ppt
 
Quality management systems - INDUSTRIAL PHARMACY ll
Quality management systems - INDUSTRIAL PHARMACY llQuality management systems - INDUSTRIAL PHARMACY ll
Quality management systems - INDUSTRIAL PHARMACY ll
 
Concept of qa, qc, gmp 112070804010
Concept of qa, qc, gmp  112070804010Concept of qa, qc, gmp  112070804010
Concept of qa, qc, gmp 112070804010
 
Transfer technologypharmaceuticalmanufacturingtrs961annex7[1]
Transfer technologypharmaceuticalmanufacturingtrs961annex7[1]Transfer technologypharmaceuticalmanufacturingtrs961annex7[1]
Transfer technologypharmaceuticalmanufacturingtrs961annex7[1]
 
Quality by Design
Quality by DesignQuality by Design
Quality by Design
 
Process validation
Process validationProcess validation
Process validation
 
DEFINITION,PRINCIPLE, OBJECTIVES, ELEMENTS AND TOOLS OF QUALITY BY DESIGN (Qb...
DEFINITION,PRINCIPLE, OBJECTIVES, ELEMENTS AND TOOLS OF QUALITY BY DESIGN (Qb...DEFINITION,PRINCIPLE, OBJECTIVES, ELEMENTS AND TOOLS OF QUALITY BY DESIGN (Qb...
DEFINITION,PRINCIPLE, OBJECTIVES, ELEMENTS AND TOOLS OF QUALITY BY DESIGN (Qb...
 

More from ManivannanKathirvel1

An Efficient Analytical Development Strategy for Rapid Development of Biophar...
An Efficient Analytical Development Strategy for Rapid Development of Biophar...An Efficient Analytical Development Strategy for Rapid Development of Biophar...
An Efficient Analytical Development Strategy for Rapid Development of Biophar...ManivannanKathirvel1
 
guideline-investigation-bioequivalence.pdf
guideline-investigation-bioequivalence.pdfguideline-investigation-bioequivalence.pdf
guideline-investigation-bioequivalence.pdfManivannanKathirvel1
 
ASEAN-Guideline-Conduct-Bioequivalence 2015.PDF
ASEAN-Guideline-Conduct-Bioequivalence 2015.PDFASEAN-Guideline-Conduct-Bioequivalence 2015.PDF
ASEAN-Guideline-Conduct-Bioequivalence 2015.PDFManivannanKathirvel1
 

More from ManivannanKathirvel1 (7)

validation of disso method 2.pdf
validation of disso method  2.pdfvalidation of disso method  2.pdf
validation of disso method 2.pdf
 
dissolution and surfactants.pdf
dissolution and surfactants.pdfdissolution and surfactants.pdf
dissolution and surfactants.pdf
 
An Efficient Analytical Development Strategy for Rapid Development of Biophar...
An Efficient Analytical Development Strategy for Rapid Development of Biophar...An Efficient Analytical Development Strategy for Rapid Development of Biophar...
An Efficient Analytical Development Strategy for Rapid Development of Biophar...
 
guideline-investigation-bioequivalence.pdf
guideline-investigation-bioequivalence.pdfguideline-investigation-bioequivalence.pdf
guideline-investigation-bioequivalence.pdf
 
ASEAN-Guideline-Conduct-Bioequivalence 2015.PDF
ASEAN-Guideline-Conduct-Bioequivalence 2015.PDFASEAN-Guideline-Conduct-Bioequivalence 2015.PDF
ASEAN-Guideline-Conduct-Bioequivalence 2015.PDF
 
ASEAN_BE_Guidelines.pdf
ASEAN_BE_Guidelines.pdfASEAN_BE_Guidelines.pdf
ASEAN_BE_Guidelines.pdf
 
BCS classification of drugs.pdf
BCS classification of drugs.pdfBCS classification of drugs.pdf
BCS classification of drugs.pdf
 

Recently uploaded

Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% SafeBangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safenarwatsonia7
 
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...Miss joya
 
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore EscortsCall Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escortsvidya singh
 
Call Girl Number in Panvel Mumbai📲 9833363713 💞 Full Night Enjoy
Call Girl Number in Panvel Mumbai📲 9833363713 💞 Full Night EnjoyCall Girl Number in Panvel Mumbai📲 9833363713 💞 Full Night Enjoy
Call Girl Number in Panvel Mumbai📲 9833363713 💞 Full Night Enjoybabeytanya
 
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...narwatsonia7
 
Call Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalore
Call Girl Bangalore Nandini 7001305949 Independent Escort Service BangaloreCall Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalore
Call Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalorenarwatsonia7
 
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...indiancallgirl4rent
 
Call Girls Service Navi Mumbai Samaira 8617697112 Independent Escort Service ...
Call Girls Service Navi Mumbai Samaira 8617697112 Independent Escort Service ...Call Girls Service Navi Mumbai Samaira 8617697112 Independent Escort Service ...
Call Girls Service Navi Mumbai Samaira 8617697112 Independent Escort Service ...Call girls in Ahmedabad High profile
 
Kesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls Service
Kesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls ServiceKesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls Service
Kesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls Servicemakika9823
 
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiCall Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiNehru place Escorts
 
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort ServicePremium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Servicevidya singh
 
CALL ON ➥9907093804 🔝 Call Girls Hadapsar ( Pune) Girls Service
CALL ON ➥9907093804 🔝 Call Girls Hadapsar ( Pune)  Girls ServiceCALL ON ➥9907093804 🔝 Call Girls Hadapsar ( Pune)  Girls Service
CALL ON ➥9907093804 🔝 Call Girls Hadapsar ( Pune) Girls ServiceMiss joya
 
Call Girl Number in Vashi Mumbai📲 9833363713 💞 Full Night Enjoy
Call Girl Number in Vashi Mumbai📲 9833363713 💞 Full Night EnjoyCall Girl Number in Vashi Mumbai📲 9833363713 💞 Full Night Enjoy
Call Girl Number in Vashi Mumbai📲 9833363713 💞 Full Night Enjoybabeytanya
 
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...Taniya Sharma
 
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls JaipurCall Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipurparulsinha
 
Aspirin presentation slides by Dr. Rewas Ali
Aspirin presentation slides by Dr. Rewas AliAspirin presentation slides by Dr. Rewas Ali
Aspirin presentation slides by Dr. Rewas AliRewAs ALI
 
Call Girls Yelahanka Bangalore 📲 9907093804 💞 Full Night Enjoy
Call Girls Yelahanka Bangalore 📲 9907093804 💞 Full Night EnjoyCall Girls Yelahanka Bangalore 📲 9907093804 💞 Full Night Enjoy
Call Girls Yelahanka Bangalore 📲 9907093804 💞 Full Night Enjoynarwatsonia7
 

Recently uploaded (20)

Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% SafeBangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safe
 
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
 
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...
 
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore EscortsCall Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
 
Call Girl Number in Panvel Mumbai📲 9833363713 💞 Full Night Enjoy
Call Girl Number in Panvel Mumbai📲 9833363713 💞 Full Night EnjoyCall Girl Number in Panvel Mumbai📲 9833363713 💞 Full Night Enjoy
Call Girl Number in Panvel Mumbai📲 9833363713 💞 Full Night Enjoy
 
Escort Service Call Girls In Sarita Vihar,, 99530°56974 Delhi NCR
Escort Service Call Girls In Sarita Vihar,, 99530°56974 Delhi NCREscort Service Call Girls In Sarita Vihar,, 99530°56974 Delhi NCR
Escort Service Call Girls In Sarita Vihar,, 99530°56974 Delhi NCR
 
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...
VIP Call Girls Tirunelveli Aaradhya 8250192130 Independent Escort Service Tir...
 
Call Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalore
Call Girl Bangalore Nandini 7001305949 Independent Escort Service BangaloreCall Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalore
Call Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalore
 
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
(Rocky) Jaipur Call Girl - 9521753030 Escorts Service 50% Off with Cash ON De...
 
Call Girls Service Navi Mumbai Samaira 8617697112 Independent Escort Service ...
Call Girls Service Navi Mumbai Samaira 8617697112 Independent Escort Service ...Call Girls Service Navi Mumbai Samaira 8617697112 Independent Escort Service ...
Call Girls Service Navi Mumbai Samaira 8617697112 Independent Escort Service ...
 
Kesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls Service
Kesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls ServiceKesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls Service
Kesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls Service
 
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiCall Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
 
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort ServicePremium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
 
CALL ON ➥9907093804 🔝 Call Girls Hadapsar ( Pune) Girls Service
CALL ON ➥9907093804 🔝 Call Girls Hadapsar ( Pune)  Girls ServiceCALL ON ➥9907093804 🔝 Call Girls Hadapsar ( Pune)  Girls Service
CALL ON ➥9907093804 🔝 Call Girls Hadapsar ( Pune) Girls Service
 
Call Girl Number in Vashi Mumbai📲 9833363713 💞 Full Night Enjoy
Call Girl Number in Vashi Mumbai📲 9833363713 💞 Full Night EnjoyCall Girl Number in Vashi Mumbai📲 9833363713 💞 Full Night Enjoy
Call Girl Number in Vashi Mumbai📲 9833363713 💞 Full Night Enjoy
 
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
 
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls JaipurCall Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
 
sauth delhi call girls in Bhajanpura 🔝 9953056974 🔝 escort Service
sauth delhi call girls in Bhajanpura 🔝 9953056974 🔝 escort Servicesauth delhi call girls in Bhajanpura 🔝 9953056974 🔝 escort Service
sauth delhi call girls in Bhajanpura 🔝 9953056974 🔝 escort Service
 
Aspirin presentation slides by Dr. Rewas Ali
Aspirin presentation slides by Dr. Rewas AliAspirin presentation slides by Dr. Rewas Ali
Aspirin presentation slides by Dr. Rewas Ali
 
Call Girls Yelahanka Bangalore 📲 9907093804 💞 Full Night Enjoy
Call Girls Yelahanka Bangalore 📲 9907093804 💞 Full Night EnjoyCall Girls Yelahanka Bangalore 📲 9907093804 💞 Full Night Enjoy
Call Girls Yelahanka Bangalore 📲 9907093804 💞 Full Night Enjoy
 

An efficient analytical development strategy for rapid development of biopharmaceuticals

  • 1. An Efficient Analytical Development Strategy for Rapid Development of Biopharmaceuticals Abstract Expedited development of biopharmaceuticals requires a focused, consistent and efficient analytical development strategy. For commonly monitored critical quality attributes, robust platform methods can be implemented and used for a defined class of molecules thus minimizing the need for additional development. For new compounds, or when new attributes need to be monitored, additional method development will be required but this process can be accelerated by adopting a focused approach consisting of four stages with well-defined deliverables (method definition, technology selection, method development/optimization, and method performance evaluation). Once the method requirements are defined and the initial method established, the key method parameters with the biggest impact on the method performance are identified through systematic assessments of the different method steps. Development activities are then prioritized to minimize the time needed to create an intrinsically robust method which meets the pre-established method requirements and is adequately controlled to prevent drift during routine use. Job aids, method assessment templates, and standardized method validation strategies can be implemented to ensure the development approach is consistent within an organization and to reduce method development time and cost. Introduction The availability of reliable analytical methods to monitor the quality attributes of a new biological entity (NBE) is critical for guiding process and product development activities throughout the different product development stages. Analytical methods are also required to monitor the drug substance and drug product to assure that applicable standards of identity, strength, quality, and purity are met. During early-stage development the analytical results are used to support candidate selection, pre- formulation screening, and to confirm that the materials created using the initial early-stage drug substance (DS) and drug product (DP) manufacturing process are suitable to support the non-clinical safety and first in human (FIH) studies. In addition, data from analytical comparability studies are used
  • 2. throughout a program to demonstrate that changes made to the drug substance and drug product manufacturing process do not adversely impact the critical quality attributes associated with efficacy and safety. Over the years, multiple regulatory approval pathways have been introduced for rapid commercialization of new medicinal products such as the breakthrough therapy designation in the United States, PRIME in the European Union, and Sakigake designation in Japan. Subscribe to our e-Newsletters Stay up to date with the latest news, articles, and events. Plus, get special offers from American Pharmaceutical Review – all delivered right to your inbox!Sign up now! This has created an additional need to reduce the time required to establish suitable methods to support process and product development activities and create the analytical control strategy. In this paper, we will focus on approaches which can be used to expedite the development of robust GMP methods to facilitate rapid development of NBEs. Role of Analytical Methods in The Product Control Strategy To expedite drug development it is necessary to have an understanding of the relevant quality attributes of a new entity to ensure the analytical development activities are consistently focused on the key methods needed to monitor these attributes. The critical quality attributes (CQAs) are derived from the quality target product profile (QTPP) and take into consideration structure function information available for the NBE or class of NBEs. For common entities such as monoclonal antibodies the CQA assessment can be based on platform knowledge as well as literature information. Once identified, the CQAs are used to drive the process development activities to ensure robust unit operations are established which result in a consistent and well-controlled product. A thorough understanding of the impact of the different unit operations on the CQAs forms the basis for establishing the overall control strategy through a combination of process control, analytical control, site control, raw material control, and contaminant control measures. A schematic overview of the relationship between product understanding, process understanding and the control strategy is provided in Figure 1.
  • 3. The Analytical Method Development Process The goal of the analytical development activities is to create robust methods which are suitable for their intended purpose to support the various aspects and stages of product development. In addition, methods which are intended for GMP release and stability testing of clinical/commercial materials are expected to be validated in a phase-appropriate manner. Although such a requirement does not apply to methods used to support non-GMP process or product development activities, it is essential that the performance characteristics of these methods are evaluated and documented prior to use (this includes determining the bias relative to the proposed QC methods) since the results obtained with the inprocess methods are relied upon to make key process development decisions (Figure 2). A structured approach to method development can significantly reduce the time required to create robust methods and to establish their suitability for use. Although a systematic development process is generally applicable, the approach described in this paper is primarily used to accelerate the development and validation of GMP methods.
  • 5. The method development process for GMP methods can be divided into four distinct stages: (1) method definition, (2) technology platform selection, (3) development (including optimization with design of experiments), and (4) method performance qualification/validation. An overview of the different stages of the method development process is provided in Figure 3. The outcome of the development process is 1) a defined analytical procedure with detailed instructions describing how the method is performed, 2) a method development report with supporting information justifying the conditions and replication strategy established for the method, 3) a method control strategy, defined based on an assessment of the major sources of variability associated with the key steps in the method, to ensure that the method performs consistently during routine use, and 4) a method qualification/ validation report documenting the phase appropriate validation of the method. The following sections describe the output for each of the four method development stages. Analytical target profile (method definition) The first step of the method development process is to define the method based on its intended use to monitor one or more relevant quality attributes of the NBE (i.e. scope, purpose, material type, method category, and performance expectations). The analytical target profile (ATP) serves as a prospective summary of required method characteristics (e.g. accuracy, precision) and contains the proposed target acceptance criteria which have been established for the NBE. The ATP ensures that the developed method will be suitable for its intended purpose, i.e. measurement of the quality attributes of the drug substance, drug product or in-process samples with appropriate accuracy, precision, and/or sensitivity. The analytical target profile is a living document which is reviewed and/or updated at the different stage gates of the development program to guide further method development work as knowledge of the product and the methods increases. Other reasons for updating the ATP can include a change in the method requirements resulting from regulatory feedback or changes in the manufacturing process or formulation. The key elements of the ATP are summarized in Table 1.
  • 6. Zoom In In addition to the elements listed in Table 1, the ATP should also capture specific requirements or constraints which impact the method selection or development. This may include
  • 7.  Method-specific performance attributes (e.g., calibration model, technology preference)  Business needs (e.g., duration of analysis, cycle time and throughput,capacity,required standards,controls,and reagents)  Operational needs (e.g., lab constraints,skills or capability in the QC laboratory, safety constraints such as compliance with the REACH regulation in Europe and/orthe need to minimize excessive reliance on manual pipetting to avoid repetitive motion injuries) The target performance characteristics for the methods provided in the ATP (i.e. accuracy, intermediate precision, range, quantitation limit, detection limit, sensitivity, specificity, target measurement uncertainty etc.) should be established based on project requirements and take into consideration the applicable regulatory expectations, industry practice, and internal company standards or practices. Technology platform selection The starting point of technology platform selection is to gather information regarding the most suitable techniques or approaches based on the quality attribute that needs to be evaluated taking into consideration the required performance characteristics specified in the ATP. Knowledge gathering can be based on literature searches, evaluation of prior internal development work and/or through communication with research teams or other development groups within the company. For common modalities a panel of platform methods can be established and qualified. These methods can be leveraged for new molecules within the same class by confirming their “suitability for use” through proof of concept (POC) experiments as outlined in the decision tree in Figure 4. Proof of concept experiments can be notebook driven and are designed to evaluate the method performance (e.g. accuracy, precision, sensitivity, resolution) using representative material of the new molecule in the relevant matrices (e.g. protein A eluate, DS, DP) and across the expected concentration range. The purpose of these experiments is to determine whether the new molecule is compatible with the existing platform methods by comparing the results obtained from the POC experiments against the historical experience with these methods as well as against the ATP requirements. If the method is intended to be stability-indicating, degraded material should be evaluated as part of the POC assessment to ensure relevant impurities can be detected. Once initial compatibility with the platform method has been established, limited experiments are performed at the extremes of the proven acceptable ranges for the key product specific Analytical Quality Attributes (AQA) previously established for the method. These attributes are most often
  • 8. associated with the sample preparation unit operation and, based on platform risk assessments, would have been associated with high risk scores in the method assessment documents supporting the platform methods as explained in the following section. Consistent performance of the method at the extremes of the design space, when used with a new molecule, will confirm that the method remains robust and is performing as intended. However, if significant changes in the method parameters are required to obtain acceptable performance of a platform method with a new molecule, resulting in setpoints outside of the previously established design space, the platform method is considered not suitable and a new method would need to be developed. To ensure consistency, job aids can be developed to describe the relevant POC experiments required to show that the platform method is suitable for use for a new molecule. The job aids should contain
  • 9. experimental strategies and designs for confirming the analytical quality attributes and provide instructions for performing a (statistical) comparison of the results against the historical performance data available for the platform methods. If the molecule fits the platform a significant reduction in method development cost and time can be realized during early stage development by leveraging the method performance data available for the platform method. In late stage, if the drug substance and drug product still fit the platform, additional savings can be realized since the robustness experiments required to verify the design space of the platform AQAs can be more limited in scope, thus saving significant resources and time. Method development Once the analytical technology platform for a new method has been selected (e.g. HPLC, ELISA) and the basic method parameters have been established, systematic method assessments can be used as an efficient tool to holistically evaluate and document the potential impact of the different method parameters on the ability of the method to consistently generate accurate and precise results. An effective approach for performing method assessments relies on categorizing the individual instructions in the proposed method into different unit operations (e.g. reagent preparation, sample preparation, instrument set-up, and data analysis) as shown in Figure 5. For each of the instructions the potential failure mode is identified and the expected impact of systematic or random changes in a method parameter on the accuracy, precision, and sensitivity of the method is assessed using a three-tiered ranking system (low (1), medium (3), and high (5)). In addition, the impact is weighted based on the likelihood that the failure mode occurs (likely (1) or unlikely (5)). The expected impact of each evaluated parameter on method performance is subsequently captured as a risk probability number (RPN) which is the product of the scores assigned to the individual attributes divided by the likelihood score. The RPN is sorted in descending order to identify the factors posing the highest risk to accuracy, precision or sensitivity of the method thus allowing a prioritization of the development experiments. The method assessment is completed by late stage development and should be updated as knowledge regarding the method under development increases. Interactions between method parameters create additional challenges during the method development process. If interactions are suspected, properly powered design of experiments (DOEs) should be performed to establish the optimal design space for the combined set of interacting parameters. In most cases the interactions between parameters are constrained within a method unit
  • 10. operation thus simplifying the experimental design needed to find suitable conditions to meet the ATP requirements and define the design space. Once the method parameters have been optimized the replication strategy should be defined taking into consideration the variability of the method and the ATP requirements. Based on the established strategy the calculations to obtain the final reportable result for the method, including the number of significant figures, should be described in the analytical procedure. Only the final reportable results are compared to the acceptance criteria for the sample in case a disposition needs to be performed. Zoom In Finally, a method control strategy is established to provide assurance that the method continues to perform as intended during routine use. The method control strategy should include regulatory or compendial requirements/expectations and consider the critical method parameters as well as requirements for critical reagents, standards and/or control samples. In addition, it should define the
  • 11. system suitability criteria and sample acceptance criteria. The elements of the method control strategy should be captured in the analytical procedure and explained in the development report. Method performance qualification/validation For platform methods, which are leveraged to support early stage programs, there is limited need to collect molecule-specific qualification data. The qualification results obtained when the methods were originally established, combined with the information collected as part of the performance monitoring of the method when used routinely for other programs, provide a robust data set to show the suitability and consistency of the method. Appropriately designed and documented “fit to platform” proof of concept experiments are therefore sufficient to confirm that the methods are suitable for use. For newly developed methods, phase appropriate qualification/validation is performed upon completion of the development activities to confirm the consistency of the method and to demonstrate that it has met the requirements of the ATP. The scope of the validation activities is defined based on the method type and the clinical phase of the program. For early stage programs the Analytical Target Profile combined with an approved standard operating procedure which describes the approaches required to evaluate the validation characteristics for different method types can be used to avoid the need to generate individual protocols for each validation exercise. However, for late stage methods, formal validation protocols and reports should be used to prospectively describe the validation activities and document the results. Conclusions Expedited analytical method development for therapeutics can be achieved using a well-designed strategy consisting of the following key elements: 1. An analytical target profile, established based on the proposed analytical control strategy,to define the method requirements prior to initiating method development. The method requirements should be established in collaboration with other functions,in particular the process and formulation development teams. 2. Systematic method assessments to consistently focus development activities on method parameters with the highest impact on method performance. 3. Implementation of platform methods for common modalities across multiple projects (and multiple laboratories, if available) to minimize the need for new method development.
  • 12. 4. Creation of method development job aids to maintain consistency when performing method assessments orfit to platform assessments.These job aids can also include definitions around platform fit considerations to facilitate platform discipline. 5. Implementation of procedures for phase-appropriate method validation and creation of standardized templates for the ATP, method development reports, and validation protocols/reports to ensure consistency and to minimize writing and reviewing time. References 1. ICH Q2 – International Conference on Harmonization Q2 (R1) 2005 - Validation of Analytical Procedures: Text and Methodology 2. ICH Q3A(R2) – Guidance for Industry- Impurities in New Drug Substances 3. ICH Q3B(R2) –Impurities in New Drug Products 4. ICH Q3C(R6) –Impurities: Guideline for Residual Solvents 5. ICH Q3D(R) - Guideline for Elemental Impurities 6. ICH Q5E –Comparability of Biotechnological/Biological Products 7. ICH Q6B – Specifications: Test procedures and acceptance criteria for biotechnological/ biological products 8. FDA: 2015 Guidance for Industry: Analytical Procedures and Method Validation for Drugs and Biologics 9. USP <1220> The Analytical Procedure Lifecycle 10. USP <1224> Transfer of Analytical Procedures 11. PDA Technical Report 57, Analytical Method Validation and Transfer for Biotechnology Products 12. PDA Technical Report No. 57-2, Analytical Method Development and Qualification for Biotechnology Product