SlideShare a Scribd company logo
1 of 41
2.1
Chapter 2
Network Models
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
2.2
2-1 LAYERED TASKS
We use the concept of layers in our daily life. As an
example, let us consider two friends who communicate
through postal mail. The process of sending a letter to a
friend would be complex if there were no services
available from the post office.
Sender, Receiver, and Carrier
Hierarchy
Topics discussed in this section:
2.3
Figure 2.1 Tasks involved in sending a letter
2.4
2-2 THE OSI MODEL
Established in 1947, the International Standards
Organization (ISO) is a multinational body dedicated to
worldwide agreement on international standards. An ISO
standard that covers all aspects of network
communications is the Open Systems Interconnection
(OSI) model. It was first introduced in the late 1970s.
Layered Architecture
Peer-to-Peer Processes
Encapsulation
Topics discussed in this section:
2.5
ISO is the organization.
OSI is the model.
Note
2.6
Figure 2.2 Seven layers of the OSI model
2.7
Figure 2.3 The interaction between layers in the OSI model
2.8
Figure 2.4 An exchange using the OSI model
2.9
2-3 LAYERS IN THE OSI MODEL
In this section we briefly describe the functions of each
layer in the OSI model.
Physical Layer
Data Link Layer
Network Layer
Transport Layer
Session Layer
Presentation Layer
Application Layer
Topics discussed in this section:
2.10
Figure 2.5 Physical layer
2.11
The physical layer is responsible for movements of
individual bits from one hop (node) to the next.
Note
2.12
Figure 2.6 Data link layer
2.13
The data link layer is responsible for moving
frames from one hop (node) to the next.
Note
2.14
Figure 2.7 Hop-to-hop delivery
2.15
Figure 2.8 Network layer
2.16
The network layer is responsible for the
delivery of individual packets from
the source host to the destination host.
Note
2.17
Figure 2.9 Source-to-destination delivery
2.18
Figure 2.10 Transport layer
2.19
The transport layer is responsible for the delivery
of a message from one process to another.
Note
2.20
Figure 2.11 Reliable process-to-process delivery of a message
2.21
Figure 2.12 Session layer
2.22
The session layer is responsible for dialog
control and synchronization.
Note
2.23
Figure 2.13 Presentation layer
2.24
The presentation layer is responsible for translation,
compression, and encryption.
Note
2.25
Figure 2.14 Application layer
2.26
The application layer is responsible for
providing services to the user.
Note
2.27
Figure 2.15 Summary of layers
2.28
2-4 TCP/IP PROTOCOL SUITE
The layers in the TCP/IP protocol suite do not exactly
match those in the OSI model. The original TCP/IP
protocol suite was defined as having four layers: host-to-
network, internet, transport, and application. However,
when TCP/IP is compared to OSI, we can say that the
TCP/IP protocol suite is made of five layers: physical,
data link, network, transport, and application.
Physical and Data Link Layers
Network Layer
Transport Layer
Application Layer
Topics discussed in this section:
2.29
Figure 2.16 TCP/IP and OSI model
2.30
2-5 ADDRESSING
Four levels of addresses are used in an internet employing
the TCP/IP protocols: physical, logical, port, and specific.
Physical Addresses
Logical Addresses
Port Addresses
Specific Addresses
Topics discussed in this section:
2.31
Figure 2.17 Addresses in TCP/IP
2.32
Figure 2.18 Relationship of layers and addresses in TCP/IP
2.33
In Figure 2.19 a node with physical address 10 sends a
frame to a node with physical address 87. The two nodes
are connected by a link (bus topology LAN). As the
figure shows, the computer with physical address 10 is
the sender, and the computer with physical address 87 is
the receiver.
Example 2.1
2.34
Figure 2.19 Physical addresses
2.35
Most local-area networks use a 48-bit (6-byte) physical
address written as 12 hexadecimal digits; every byte (2
hexadecimal digits) is separated by a colon, as shown
below:
Example 2.2
07:01:02:01:2C:4B
A 6-byte (12 hexadecimal digits) physical address.
2.36
Figure 2.20 shows a part of an internet with two routers
connecting three LANs. Each device (computer or
router) has a pair of addresses (logical and physical) for
each connection. In this case, each computer is
connected to only one link and therefore has only one
pair of addresses. Each router, however, is connected to
three networks (only two are shown in the figure). So
each router has three pairs of addresses, one for each
connection.
Example 2.3
2.37
Figure 2.20 IP addresses
2.38
Figure 2.21 shows two computers communicating via the
Internet. The sending computer is running three
processes at this time with port addresses a, b, and c. The
receiving computer is running two processes at this time
with port addresses j and k. Process a in the sending
computer needs to communicate with process j in the
receiving computer. Note that although physical
addresses change from hop to hop, logical and port
addresses remain the same from the source to
destination.
Example 2.4
2.39
Figure 2.21 Port addresses
2.40
The physical addresses will change from hop to hop,
but the logical addresses usually remain the same.
Note
2.41
Example 2.5
A port address is a 16-bit address represented by one
decimal number as shown.
753
A 16-bit port address represented
as one single number.

More Related Content

Similar to All about Network Models under Data Communications

Similar to All about Network Models under Data Communications (20)

L2_Networks_OSI_TCP_IP.pptx
L2_Networks_OSI_TCP_IP.pptxL2_Networks_OSI_TCP_IP.pptx
L2_Networks_OSI_TCP_IP.pptx
 
Ch2
Ch2Ch2
Ch2
 
Osi model34
Osi model34Osi model34
Osi model34
 
Lecture 1 osi model
Lecture 1 osi modelLecture 1 osi model
Lecture 1 osi model
 
Ch2 v1
Ch2 v1Ch2 v1
Ch2 v1
 
Data Communication And Networking - Network Models
Data Communication And Networking - Network ModelsData Communication And Networking - Network Models
Data Communication And Networking - Network Models
 
ch02.ppt
ch02.pptch02.ppt
ch02.ppt
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Chapter 2 - Network Models
Chapter 2 - Network ModelsChapter 2 - Network Models
Chapter 2 - Network Models
 
1
11
1
 
Ch02
Ch02Ch02
Ch02
 
Network Models in Networking.
Network Models in Networking.Network Models in Networking.
Network Models in Networking.
 
1
11
1
 
02 Network Models
02 Network Models02 Network Models
02 Network Models
 
Chapter 2 network models -computer_network
Chapter 2   network models -computer_networkChapter 2   network models -computer_network
Chapter 2 network models -computer_network
 
CH#4. Network Model.ppt
CH#4. Network Model.pptCH#4. Network Model.ppt
CH#4. Network Model.ppt
 
Ch02 network models-jdb
Ch02 network models-jdbCh02 network models-jdb
Ch02 network models-jdb
 
Chapter 2: Network Models
Chapter 2: Network ModelsChapter 2: Network Models
Chapter 2: Network Models
 
Ch02
Ch02Ch02
Ch02
 
Network_Model. In the field of Computer Networking.ppt
Network_Model. In the field of Computer Networking.pptNetwork_Model. In the field of Computer Networking.ppt
Network_Model. In the field of Computer Networking.ppt
 

More from Johnny Jean Tigas

All About Storyboarding in connection with Computer animation
All About Storyboarding in connection with Computer animationAll About Storyboarding in connection with Computer animation
All About Storyboarding in connection with Computer animationJohnny Jean Tigas
 
Algorithm, Pseudocode and Flowcharting in C++
Algorithm, Pseudocode and Flowcharting in C++Algorithm, Pseudocode and Flowcharting in C++
Algorithm, Pseudocode and Flowcharting in C++Johnny Jean Tigas
 
Switch Case Statement in C++ Programming Language
Switch Case Statement in C++ Programming LanguageSwitch Case Statement in C++ Programming Language
Switch Case Statement in C++ Programming LanguageJohnny Jean Tigas
 
National Learning Camp Assessment Orientation
National Learning Camp Assessment OrientationNational Learning Camp Assessment Orientation
National Learning Camp Assessment OrientationJohnny Jean Tigas
 
Configuring IPv4 and IPv6 Addressing to STEM
Configuring IPv4 and IPv6 Addressing to STEMConfiguring IPv4 and IPv6 Addressing to STEM
Configuring IPv4 and IPv6 Addressing to STEMJohnny Jean Tigas
 
A presentation design for the students in Science & Technologygy
A presentation design for the students in Science & TechnologygyA presentation design for the students in Science & Technologygy
A presentation design for the students in Science & TechnologygyJohnny Jean Tigas
 
Maintaining training facilities
Maintaining training facilitiesMaintaining training facilities
Maintaining training facilitiesJohnny Jean Tigas
 

More from Johnny Jean Tigas (8)

All About Storyboarding in connection with Computer animation
All About Storyboarding in connection with Computer animationAll About Storyboarding in connection with Computer animation
All About Storyboarding in connection with Computer animation
 
Algorithm, Pseudocode and Flowcharting in C++
Algorithm, Pseudocode and Flowcharting in C++Algorithm, Pseudocode and Flowcharting in C++
Algorithm, Pseudocode and Flowcharting in C++
 
Switch Case Statement in C++ Programming Language
Switch Case Statement in C++ Programming LanguageSwitch Case Statement in C++ Programming Language
Switch Case Statement in C++ Programming Language
 
National Learning Camp Assessment Orientation
National Learning Camp Assessment OrientationNational Learning Camp Assessment Orientation
National Learning Camp Assessment Orientation
 
Configuring IPv4 and IPv6 Addressing to STEM
Configuring IPv4 and IPv6 Addressing to STEMConfiguring IPv4 and IPv6 Addressing to STEM
Configuring IPv4 and IPv6 Addressing to STEM
 
A presentation design for the students in Science & Technologygy
A presentation design for the students in Science & TechnologygyA presentation design for the students in Science & Technologygy
A presentation design for the students in Science & Technologygy
 
Maintaining training facilities
Maintaining training facilitiesMaintaining training facilities
Maintaining training facilities
 
Plan training session
Plan training sessionPlan training session
Plan training session
 

Recently uploaded

Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptxPoojaSen20
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersChitralekhaTherkar
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 

Recently uploaded (20)

Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptx
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of Powders
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 

All about Network Models under Data Communications

  • 1. 2.1 Chapter 2 Network Models Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
  • 2. 2.2 2-1 LAYERED TASKS We use the concept of layers in our daily life. As an example, let us consider two friends who communicate through postal mail. The process of sending a letter to a friend would be complex if there were no services available from the post office. Sender, Receiver, and Carrier Hierarchy Topics discussed in this section:
  • 3. 2.3 Figure 2.1 Tasks involved in sending a letter
  • 4. 2.4 2-2 THE OSI MODEL Established in 1947, the International Standards Organization (ISO) is a multinational body dedicated to worldwide agreement on international standards. An ISO standard that covers all aspects of network communications is the Open Systems Interconnection (OSI) model. It was first introduced in the late 1970s. Layered Architecture Peer-to-Peer Processes Encapsulation Topics discussed in this section:
  • 5. 2.5 ISO is the organization. OSI is the model. Note
  • 6. 2.6 Figure 2.2 Seven layers of the OSI model
  • 7. 2.7 Figure 2.3 The interaction between layers in the OSI model
  • 8. 2.8 Figure 2.4 An exchange using the OSI model
  • 9. 2.9 2-3 LAYERS IN THE OSI MODEL In this section we briefly describe the functions of each layer in the OSI model. Physical Layer Data Link Layer Network Layer Transport Layer Session Layer Presentation Layer Application Layer Topics discussed in this section:
  • 11. 2.11 The physical layer is responsible for movements of individual bits from one hop (node) to the next. Note
  • 12. 2.12 Figure 2.6 Data link layer
  • 13. 2.13 The data link layer is responsible for moving frames from one hop (node) to the next. Note
  • 16. 2.16 The network layer is responsible for the delivery of individual packets from the source host to the destination host. Note
  • 19. 2.19 The transport layer is responsible for the delivery of a message from one process to another. Note
  • 20. 2.20 Figure 2.11 Reliable process-to-process delivery of a message
  • 22. 2.22 The session layer is responsible for dialog control and synchronization. Note
  • 24. 2.24 The presentation layer is responsible for translation, compression, and encryption. Note
  • 26. 2.26 The application layer is responsible for providing services to the user. Note
  • 28. 2.28 2-4 TCP/IP PROTOCOL SUITE The layers in the TCP/IP protocol suite do not exactly match those in the OSI model. The original TCP/IP protocol suite was defined as having four layers: host-to- network, internet, transport, and application. However, when TCP/IP is compared to OSI, we can say that the TCP/IP protocol suite is made of five layers: physical, data link, network, transport, and application. Physical and Data Link Layers Network Layer Transport Layer Application Layer Topics discussed in this section:
  • 29. 2.29 Figure 2.16 TCP/IP and OSI model
  • 30. 2.30 2-5 ADDRESSING Four levels of addresses are used in an internet employing the TCP/IP protocols: physical, logical, port, and specific. Physical Addresses Logical Addresses Port Addresses Specific Addresses Topics discussed in this section:
  • 32. 2.32 Figure 2.18 Relationship of layers and addresses in TCP/IP
  • 33. 2.33 In Figure 2.19 a node with physical address 10 sends a frame to a node with physical address 87. The two nodes are connected by a link (bus topology LAN). As the figure shows, the computer with physical address 10 is the sender, and the computer with physical address 87 is the receiver. Example 2.1
  • 35. 2.35 Most local-area networks use a 48-bit (6-byte) physical address written as 12 hexadecimal digits; every byte (2 hexadecimal digits) is separated by a colon, as shown below: Example 2.2 07:01:02:01:2C:4B A 6-byte (12 hexadecimal digits) physical address.
  • 36. 2.36 Figure 2.20 shows a part of an internet with two routers connecting three LANs. Each device (computer or router) has a pair of addresses (logical and physical) for each connection. In this case, each computer is connected to only one link and therefore has only one pair of addresses. Each router, however, is connected to three networks (only two are shown in the figure). So each router has three pairs of addresses, one for each connection. Example 2.3
  • 37. 2.37 Figure 2.20 IP addresses
  • 38. 2.38 Figure 2.21 shows two computers communicating via the Internet. The sending computer is running three processes at this time with port addresses a, b, and c. The receiving computer is running two processes at this time with port addresses j and k. Process a in the sending computer needs to communicate with process j in the receiving computer. Note that although physical addresses change from hop to hop, logical and port addresses remain the same from the source to destination. Example 2.4
  • 40. 2.40 The physical addresses will change from hop to hop, but the logical addresses usually remain the same. Note
  • 41. 2.41 Example 2.5 A port address is a 16-bit address represented by one decimal number as shown. 753 A 16-bit port address represented as one single number.