Supported by




Prominent international speakers from




             h"p://workshop.eisbm.eu1
AirProm'Harmonisa,on'and'
     Sta,s,cal'Analysis'
                  Chris'Newby'
               Research'Associate'
                Data'2'Knowledge'
     Health'Sciences'&'Respiratory'Medicine'
             University'of'Leicester'
                       UK'
Harmonisa,on'of'BTS'severe'asthma'
      registry'and'UBioPred'
•  BTS'severe'asthma'registry'variables'based'on'
   informa,on'obtained'from'pa,ent'records'
   imputed'by'research'Nurses'
'
•  What'variables'can'be'obtained'from'both'
   cohorts'so'that'variable'defini,ons'remain'the'
   same'and'power'is'increased''
Data'Shaper'methodology''

                                       Aim:%
                                       To%provide%a%template%to%facilitate%
                                       harmoniza;on%between%pre>exis;ng%
              Cohort%2%                cohorts%and%support%the%design%of%
                                       emerging%ones.%
                           Cohort%3%
Cohort%1%
              common%                                               Data%
                        Cohort%4%                                   Pool%%

  Cohort%5%
Three'steps'to'harmonisa,on'
             Identify core sets of information to be shared
               (selection and definition of the variables)

                            DATA SCHEMA


Assess potential to share the core set of information between a group of
                                   cohorts

                    HARMONIZATION PLATFORM


            Achieve processing and pooling of information
                            (Real Data)

                   Processing and pooling platform
Data'Schema'Structure:'
        a"nested"hierarchical"structure"

Modules%                        M1%
Data'Schemer'
    Around'80'variables'poten,ally'can'be'
    harmonised'between'BTS'data'and'UBioPred'
                                                                                                       Harmonised'Variable'
Module'              Theme'                        Domain'                 Harmonised'Variable'Name'
                                                                                                       Descrip,on'

Clinical'Assessment' Individual'Disease'History'   Asthma'Disease'History' Age'of'onset'of'symptoms' age'of'onset'of'symptoms'
                                                                                                       severity'stage'determined'by'
Clinical'Assessment' Individual'Disease'History'   Asthma'Disease'History' ATS/ERS'severity'stage'
                                                                                                       ATS/ERS'guidelines'
                                                                                                       severity'stage'determined'by'
Clinical'Assessment' Individual'Disease'History'   Asthma'Disease'History' GINA'severity'stage'
                                                                                                       GINA'guidelines'

Physical'Measures' Body'Composi,on'Measures'       Body'Mass'Index'        BMI'                        height/weight'

Physical'Measures' Body'Composi,on'Measures'       Obesity'                Obese'                      BMI>=30'

Physical'Measures' Lung'Func,on'Measures'          Unstandardized'         Pre'Bronchodilator'FEV1'    PreBronchodilatorFev1'

Physical'Measures' Lung'Func,on'Measures'          Unstandardized'         Post'Bronchodilator'FEV1'   PostBronchodilatorFev1'
Three'steps'to'harmonisa,on'
             Identify core sets of information to be shared
               (selection and definition of the variables)

                            DATA SCHEMA


Assess potential to share the core set of information between a group of
                                   cohorts

                    HARMONIZATION PLATFORM


            Achieve processing and pooling of information
                            (Real Data)

                   Processing and pooling platform
BTS'Severe'asthma'analysis'
•  To'explore'the'heterogeneity'of'Severe'
   asthma'through'data'collected'in'registry'
•  Factor'analysis'carried'out'to'explore'variable'
   heterogeneity'
•  Cluster'analysis'carried'out'to'explore'pa,ent'
   heterogeneity'
•  Clusters'followed'over',me'to'determine'
   medical'outcomes'''
Factor'analysis'
''                                                   Component'

                                     1'             2'              3'         4'

                                Lung'Func,on'   BMI/Atopy'   Treatment'      Blood'
                                                                           Eosinophil'
BMI'                                .045'         .677'           .215'       .026'

Pre_bronchodilator'FVC'%'           .767'         _.340'          .086'       .246'
predicted'
Pre_bronchodilator'FEV1'(%)'        .986'         .029'           _.110'     _.023'
predicted'
Pre_bronchodilator'FEV1/FVC''       .674'         .372'           _.207'     _.266'

Blood'eosinophil'x109/L'            .010'         .033'           _.033'      .907'

Total'IgE'kU/L'                     .030'         _.520'          _.137'      .073'

BDP'equivalent'(mcg/day)'          _.070'         .079'           .710'       .114'

Age'at'onset'of'symptoms'          _.041'         .593'           _.397'      .254'

Oral'Steroid'dose'(mg)'            _.059'         .134'           .641'      _.130'
4'Clusters'found'using'mixture'
                modelling''
•  Cluster'1,'severe'airflow'obstruc,on'
'
•  Cluster'2,'non_obese,'minimal'airflow'
   Obstruc,on'

•  Cluster'3,'obese,'minimal'airflow'obstruc,on'

•  Cluster'4,'moderate'airflow'obstruc,on'with'
   higher'number'of'exacerba,ons'and'on'larger'
   amounts'of'treatment'
Variable%                           Cluster%1%     Cluster%2%     Cluster%3%      Cluster%4% p>
                                    (N=106)%       (N=129)%        (N=80)%         (N=34)%   value%
                                     ‘Severe%   ‘Non>obese%        ‘Obese%       ‘Moderate%
                                     airflow%    minimal%           minimal%        airflow%
                                  obstruc;on’% airflow%             airflow%      obstruc;on’%
                                                obstruc;on’%     obstruc;on’%
BMI%                               28.7'(3.96)'   24.7'(3.76)'    36.8'(5.0)'   29.2'(6.44)' <0.001'

Atopy%(%)%%                           47'             61'            61'             71'       0.057'
Reflux%history%%(%%yes)%               56'             67'            48'             35'       0.001'
HAD%Anxiety%score%%                  8'(6)'          7'(5)'        9'(6.5)'      8.5'(5.75)'   0.042'
Pre>bronchodilator%FEV1%          43.4'(11.3)'    78.4'(20.5)'   78.3'(17.8)'   62.8'(23.3)'   <0.001'
Predicted%(%)%
Pre%Bronchodilator%FVC%            67.2'(17)'     91.1'(17.1)'   88.4'(16.8)'   81.2'(18.8)' <0.001'
Predicted%(%)%
FEV1%FVC%Pre%Bronchodilator%      52.6'(13.9)'    68.1'(13.7)'   69.5'(10.3)'   61.1'(16.3)' <0.001'
(%)%
Blood%Eosinophil%count%109/l%     0.36'(0.39)'    0.29'(0.50)'   0.28'(0.41)'   0.42'(0.28)' 0.511'
Rescue%steroid%courses%in%last%      4'(5)'          3'(4)'         5'(4)'         5'(6)'    0.002'
year%(n)%
BDP%equivalent%inhaled%           1650'(501)'     1540'(647)'    1640'(541)'    4050'(1030)' 0.011'
steroid%dose%(mcg)%
Age%At%Onset%Of%Symptoms%           26'(22)'        26'(20)'       29'(17)'       19'(17)'     0.162'
(years)%
Cluster'Outcomes'over',me'
                                               Cluster%1%                 Cluster%2%                Cluster%3%                 Cluster%4%
                                            ‘Severe%airflow%         ‘Non>Obese%minimal%          ‘Obese%minimal%           ‘Moderate%airflow%
                                              obstruc;on’%           airflow%obstruc;on’%       airflow%obstruc;on’%           obstruc;on’%
                                                                              %




                                         Difference'     P_value'    Difference'     P_value'    Difference'     P_value'    Difference'     P_value'



BMI%                                    0.65'(2.34)'    0.011'     1.43'(2.51)' <0.001' 0.59'(3.44)'          0.152'     1.72'(2.56)'    0.001'

Pre%bronchodilator%%FEV1%               0.39'(0.58)'    <0.001'    0.08'(0.60)'    0.201'     0.03'(0.52)'    0.628'     0.10'(0.72)'    0.488'

Pre>bronchodilator%%FEV1%%%predicted%     15'(22)'      <0.001'       2'(27)'      0.593'        3'(21)'      0.318'        5''(25)'     0.308'

Blood%Eosinophil%count,%%x%109/l%       _0.19'(0.46)'   0.001'     _0.22'(0.72)'   0.011'     _0.22'(0.46)'   0.004'     _0.15'(2.79)'    0.11''

BDP%equivalent%(mcg/day)%                140'(713)'     0.051'      276'(839)'     0.001'       8'(798)'      0.931'     _1576'(1576)'   <0.001'

%%on%steroids%at%follow%up%                58%'         0.071'        50%'         0.002'        58%'         0.064'         74%'        0.096'

Rescue%steroid%courses%in%last%year%%      0'('5)'      0.005'        0'(6)'       0.021'        _2'(4)'      0.001'        _2'(5)'      0.004''
Cluster'Classifier'
•  Predicts'which'cluster'a'pa,ent'belongs'to'at'a'
   certain'point'in',me'

•  Based'on'the'probability'of'being'in'
   mul,variate'normal'distribu,on'of'subset'of'
   variables'for'each'cluster'

•  97%'correct'cluster'membership'
Cluster'Classifier''
'
•  At'follow'up'54%'of'pa,ents'remained'in'same'cluster'

 %%                             Predicted%clusters%from%year%follow%up%data%
 Baseline%cluster%%   Cluster'1'       Cluster'2'        Cluster'3'       Cluster'4'


 1%%                   34.6%'           32.7%'            23.1%'               9.6%'


 2%%%                  10.6%'           66.7%'            10.6%'               12.1%'

 3%%%                  11.4%'            0.0%'            80.0%'               8.6%'

 4%%%                  25.0%'           35.0%'            20.0%'               20.0%'
Medical'Systems'Biology'
Pre'Bron'        Pre'Bron'
 FEV1/'%'                                                      Pre'Bron'      Post'Bron'
                  FVC/%'
                                                               FEV1/FVC'      FEV1/FVC'
Predicted'       Predicted'


         Lung'                 Mucus'
                              Plugging'          Bronchiectasis'         Lung'
       Restric,on'
                                                                      Obstruc,on'


                         Bronchiole'wall'
                                                  Nasal'Polyps'
                           thickening'



      %'eosinophils'                                                    Blood'
       in'Sputum'                                                     eosinophil'
                                            Total'IgE'                  Count'
                                          blood'count'
BTS'                  Cohort'1'                   Cohort'2'
                                                                                   M'
                            Pre'Bron'     Post'Bron'
Pre'Bron'      Post'Bron'
                            FEV1/FVC'     FEV1/FVC'
                                                       Pre'Bron'      Post'Bron'   E'
FEV1/FVC'      FEV1/FVC'                               FEV1/FVC'      FEV1/FVC'
                                                                                   T'
                                                                                   A'
                                                                                   '
           Lung'                    Lung'                        Lung'
                                 Obstruc,on'                                       A'
        Obstruc,on'                                           Obstruc,on'
                                                                                   N'
                                                                                   A'
                                                                                   L'
      %'eosinophils'in'        %'eosinophils'in'
                                                             %'eosinophils'in'
                                                                                   Y'
         Sputum'                  Sputum'                                          S'
                                                                Sputum'
                                                                                   I'
                                                                                   S'

     Blood'eosinophil'         Blood'eosinophil'           Blood'eosinophil'
          Count'                    Count'                      Count'




                                Blood'eosinophil'              Biomarker'
                                 Count'in'Tissue'                levels'
linking'with'other'cohorts'
•  Meta'analysis'of'models'to'expand'and'verify'
   cohort'specific'models''
'
•  Harmonisa,on'of'data'so'a'combined'version'
   of'data'exists'and'can'be'used'for'future'
   greater'powered'analysis'
'
•  Verifica,on'of'exis,ng'models'in'other'
   cohorts'

AirProm Harmonisation and Statistical Analysis

  • 1.
    Supported by Prominent internationalspeakers from h"p://workshop.eisbm.eu1
  • 2.
    AirProm'Harmonisa,on'and' Sta,s,cal'Analysis' Chris'Newby' Research'Associate' Data'2'Knowledge' Health'Sciences'&'Respiratory'Medicine' University'of'Leicester' UK'
  • 3.
    Harmonisa,on'of'BTS'severe'asthma' registry'and'UBioPred' •  BTS'severe'asthma'registry'variables'based'on' informa,on'obtained'from'pa,ent'records' imputed'by'research'Nurses' ' •  What'variables'can'be'obtained'from'both' cohorts'so'that'variable'defini,ons'remain'the' same'and'power'is'increased''
  • 4.
    Data'Shaper'methodology'' Aim:% To%provide%a%template%to%facilitate% harmoniza;on%between%pre>exis;ng% Cohort%2% cohorts%and%support%the%design%of% emerging%ones.% Cohort%3% Cohort%1% common% Data% Cohort%4% Pool%% Cohort%5%
  • 5.
    Three'steps'to'harmonisa,on' Identify core sets of information to be shared (selection and definition of the variables) DATA SCHEMA Assess potential to share the core set of information between a group of cohorts HARMONIZATION PLATFORM Achieve processing and pooling of information (Real Data) Processing and pooling platform
  • 6.
    Data'Schema'Structure:' a"nested"hierarchical"structure" Modules% M1%
  • 7.
    Data'Schemer' Around'80'variables'poten,ally'can'be' harmonised'between'BTS'data'and'UBioPred' Harmonised'Variable' Module' Theme' Domain' Harmonised'Variable'Name' Descrip,on' Clinical'Assessment' Individual'Disease'History' Asthma'Disease'History' Age'of'onset'of'symptoms' age'of'onset'of'symptoms' severity'stage'determined'by' Clinical'Assessment' Individual'Disease'History' Asthma'Disease'History' ATS/ERS'severity'stage' ATS/ERS'guidelines' severity'stage'determined'by' Clinical'Assessment' Individual'Disease'History' Asthma'Disease'History' GINA'severity'stage' GINA'guidelines' Physical'Measures' Body'Composi,on'Measures' Body'Mass'Index' BMI' height/weight' Physical'Measures' Body'Composi,on'Measures' Obesity' Obese' BMI>=30' Physical'Measures' Lung'Func,on'Measures' Unstandardized' Pre'Bronchodilator'FEV1' PreBronchodilatorFev1' Physical'Measures' Lung'Func,on'Measures' Unstandardized' Post'Bronchodilator'FEV1' PostBronchodilatorFev1'
  • 8.
    Three'steps'to'harmonisa,on' Identify core sets of information to be shared (selection and definition of the variables) DATA SCHEMA Assess potential to share the core set of information between a group of cohorts HARMONIZATION PLATFORM Achieve processing and pooling of information (Real Data) Processing and pooling platform
  • 9.
    BTS'Severe'asthma'analysis' •  To'explore'the'heterogeneity'of'Severe' asthma'through'data'collected'in'registry' •  Factor'analysis'carried'out'to'explore'variable' heterogeneity' •  Cluster'analysis'carried'out'to'explore'pa,ent' heterogeneity' •  Clusters'followed'over',me'to'determine' medical'outcomes'''
  • 10.
    Factor'analysis' '' Component' 1' 2' 3' 4' Lung'Func,on' BMI/Atopy' Treatment' Blood' Eosinophil' BMI' .045' .677' .215' .026' Pre_bronchodilator'FVC'%' .767' _.340' .086' .246' predicted' Pre_bronchodilator'FEV1'(%)' .986' .029' _.110' _.023' predicted' Pre_bronchodilator'FEV1/FVC'' .674' .372' _.207' _.266' Blood'eosinophil'x109/L' .010' .033' _.033' .907' Total'IgE'kU/L' .030' _.520' _.137' .073' BDP'equivalent'(mcg/day)' _.070' .079' .710' .114' Age'at'onset'of'symptoms' _.041' .593' _.397' .254' Oral'Steroid'dose'(mg)' _.059' .134' .641' _.130'
  • 11.
    4'Clusters'found'using'mixture' modelling'' •  Cluster'1,'severe'airflow'obstruc,on' ' •  Cluster'2,'non_obese,'minimal'airflow' Obstruc,on' •  Cluster'3,'obese,'minimal'airflow'obstruc,on' •  Cluster'4,'moderate'airflow'obstruc,on'with' higher'number'of'exacerba,ons'and'on'larger' amounts'of'treatment'
  • 12.
    Variable% Cluster%1% Cluster%2% Cluster%3% Cluster%4% p> (N=106)% (N=129)% (N=80)% (N=34)% value% ‘Severe% ‘Non>obese% ‘Obese% ‘Moderate% airflow% minimal% minimal% airflow% obstruc;on’% airflow% airflow% obstruc;on’% obstruc;on’% obstruc;on’% BMI% 28.7'(3.96)' 24.7'(3.76)' 36.8'(5.0)' 29.2'(6.44)' <0.001' Atopy%(%)%% 47' 61' 61' 71' 0.057' Reflux%history%%(%%yes)% 56' 67' 48' 35' 0.001' HAD%Anxiety%score%% 8'(6)' 7'(5)' 9'(6.5)' 8.5'(5.75)' 0.042' Pre>bronchodilator%FEV1% 43.4'(11.3)' 78.4'(20.5)' 78.3'(17.8)' 62.8'(23.3)' <0.001' Predicted%(%)% Pre%Bronchodilator%FVC% 67.2'(17)' 91.1'(17.1)' 88.4'(16.8)' 81.2'(18.8)' <0.001' Predicted%(%)% FEV1%FVC%Pre%Bronchodilator% 52.6'(13.9)' 68.1'(13.7)' 69.5'(10.3)' 61.1'(16.3)' <0.001' (%)% Blood%Eosinophil%count%109/l% 0.36'(0.39)' 0.29'(0.50)' 0.28'(0.41)' 0.42'(0.28)' 0.511' Rescue%steroid%courses%in%last% 4'(5)' 3'(4)' 5'(4)' 5'(6)' 0.002' year%(n)% BDP%equivalent%inhaled% 1650'(501)' 1540'(647)' 1640'(541)' 4050'(1030)' 0.011' steroid%dose%(mcg)% Age%At%Onset%Of%Symptoms% 26'(22)' 26'(20)' 29'(17)' 19'(17)' 0.162' (years)%
  • 13.
    Cluster'Outcomes'over',me' Cluster%1% Cluster%2% Cluster%3% Cluster%4% ‘Severe%airflow% ‘Non>Obese%minimal% ‘Obese%minimal% ‘Moderate%airflow% obstruc;on’% airflow%obstruc;on’% airflow%obstruc;on’% obstruc;on’% % Difference' P_value' Difference' P_value' Difference' P_value' Difference' P_value' BMI% 0.65'(2.34)' 0.011' 1.43'(2.51)' <0.001' 0.59'(3.44)' 0.152' 1.72'(2.56)' 0.001' Pre%bronchodilator%%FEV1% 0.39'(0.58)' <0.001' 0.08'(0.60)' 0.201' 0.03'(0.52)' 0.628' 0.10'(0.72)' 0.488' Pre>bronchodilator%%FEV1%%%predicted% 15'(22)' <0.001' 2'(27)' 0.593' 3'(21)' 0.318' 5''(25)' 0.308' Blood%Eosinophil%count,%%x%109/l% _0.19'(0.46)' 0.001' _0.22'(0.72)' 0.011' _0.22'(0.46)' 0.004' _0.15'(2.79)' 0.11'' BDP%equivalent%(mcg/day)% 140'(713)' 0.051' 276'(839)' 0.001' 8'(798)' 0.931' _1576'(1576)' <0.001' %%on%steroids%at%follow%up% 58%' 0.071' 50%' 0.002' 58%' 0.064' 74%' 0.096' Rescue%steroid%courses%in%last%year%% 0'('5)' 0.005' 0'(6)' 0.021' _2'(4)' 0.001' _2'(5)' 0.004''
  • 14.
    Cluster'Classifier' •  Predicts'which'cluster'a'pa,ent'belongs'to'at'a' certain'point'in',me' •  Based'on'the'probability'of'being'in' mul,variate'normal'distribu,on'of'subset'of' variables'for'each'cluster' •  97%'correct'cluster'membership'
  • 15.
    Cluster'Classifier'' ' •  At'follow'up'54%'of'pa,ents'remained'in'same'cluster' %% Predicted%clusters%from%year%follow%up%data% Baseline%cluster%% Cluster'1' Cluster'2' Cluster'3' Cluster'4' 1%% 34.6%' 32.7%' 23.1%' 9.6%' 2%%% 10.6%' 66.7%' 10.6%' 12.1%' 3%%% 11.4%' 0.0%' 80.0%' 8.6%' 4%%% 25.0%' 35.0%' 20.0%' 20.0%'
  • 16.
    Medical'Systems'Biology' Pre'Bron' Pre'Bron' FEV1/'%' Pre'Bron' Post'Bron' FVC/%' FEV1/FVC' FEV1/FVC' Predicted' Predicted' Lung' Mucus' Plugging' Bronchiectasis' Lung' Restric,on' Obstruc,on' Bronchiole'wall' Nasal'Polyps' thickening' %'eosinophils' Blood' in'Sputum' eosinophil' Total'IgE' Count' blood'count'
  • 17.
    BTS' Cohort'1' Cohort'2' M' Pre'Bron' Post'Bron' Pre'Bron' Post'Bron' FEV1/FVC' FEV1/FVC' Pre'Bron' Post'Bron' E' FEV1/FVC' FEV1/FVC' FEV1/FVC' FEV1/FVC' T' A' ' Lung' Lung' Lung' Obstruc,on' A' Obstruc,on' Obstruc,on' N' A' L' %'eosinophils'in' %'eosinophils'in' %'eosinophils'in' Y' Sputum' Sputum' S' Sputum' I' S' Blood'eosinophil' Blood'eosinophil' Blood'eosinophil' Count' Count' Count' Blood'eosinophil' Biomarker' Count'in'Tissue' levels'
  • 18.
    linking'with'other'cohorts' •  Meta'analysis'of'models'to'expand'and'verify' cohort'specific'models'' ' •  Harmonisa,on'of'data'so'a'combined'version' of'data'exists'and'can'be'used'for'future' greater'powered'analysis' ' •  Verifica,on'of'exis,ng'models'in'other' cohorts'