How AI Can Help in Data Analysis
• A quick introduction with Python
• Powered by Pandas & Scikit-Learn
What is AI in Data Analysis?
• - Enables pattern discovery
• - Helps with classification, prediction
• - Saves time and improves accuracy
Real-World Applications
• - Finance: Fraud detection
• - Retail: Customer segmentation
• - Healthcare: Risk prediction
• - Marketing: Sentiment analysis
Typical Workflow
• 1. Load data
• 2. Clean and preprocess
• 3. Apply AI model
• 4. Visualize results
Step 1: Load Data
• Use Pandas to load and preview datasets from
CSV/Excel
Python Code: Load Data
• import pandas as pd
• data = pd.read_csv('data.csv')
• data.head()
Step 2: Preprocess
• - Handle missing data
• - Encode categorical values
• - Normalize or scale data
Python Code: Preprocess
• data.fillna(0, inplace=True)
• data['category'] =
data['category'].astype('category').cat.codes
Step 3: Train AI Model
• Use machine learning models like Linear
Regression, Decision Trees, etc.
Python Code: Train Model
• from sklearn.linear_model import
LinearRegression
• model = LinearRegression()
• model.fit(X, y)
Step 4: Predict
• Make predictions based on trained model
• Useful for forecasting, recommendations
Python Code: Prediction
• predicted = model.predict([[5]])
• print(predicted)
Visualizing Results
• Use matplotlib or seaborn for insights via
graphs
Python Code: Visualization
• import matplotlib.pyplot as plt
• data.plot(kind='scatter', x='hours', y='score')
• plt.show()
Summary
• - AI + Python = Smarter Analysis
• - Easy to use libraries
• - Great for automation & insight discovery

AI_Data_Analysis_Python_Presentation.pptx

  • 1.
    How AI CanHelp in Data Analysis • A quick introduction with Python • Powered by Pandas & Scikit-Learn
  • 2.
    What is AIin Data Analysis? • - Enables pattern discovery • - Helps with classification, prediction • - Saves time and improves accuracy
  • 3.
    Real-World Applications • -Finance: Fraud detection • - Retail: Customer segmentation • - Healthcare: Risk prediction • - Marketing: Sentiment analysis
  • 4.
    Typical Workflow • 1.Load data • 2. Clean and preprocess • 3. Apply AI model • 4. Visualize results
  • 5.
    Step 1: LoadData • Use Pandas to load and preview datasets from CSV/Excel
  • 6.
    Python Code: LoadData • import pandas as pd • data = pd.read_csv('data.csv') • data.head()
  • 7.
    Step 2: Preprocess •- Handle missing data • - Encode categorical values • - Normalize or scale data
  • 8.
    Python Code: Preprocess •data.fillna(0, inplace=True) • data['category'] = data['category'].astype('category').cat.codes
  • 9.
    Step 3: TrainAI Model • Use machine learning models like Linear Regression, Decision Trees, etc.
  • 10.
    Python Code: TrainModel • from sklearn.linear_model import LinearRegression • model = LinearRegression() • model.fit(X, y)
  • 11.
    Step 4: Predict •Make predictions based on trained model • Useful for forecasting, recommendations
  • 12.
    Python Code: Prediction •predicted = model.predict([[5]]) • print(predicted)
  • 13.
    Visualizing Results • Usematplotlib or seaborn for insights via graphs
  • 14.
    Python Code: Visualization •import matplotlib.pyplot as plt • data.plot(kind='scatter', x='hours', y='score') • plt.show()
  • 15.
    Summary • - AI+ Python = Smarter Analysis • - Easy to use libraries • - Great for automation & insight discovery