SlideShare a Scribd company logo
1 of 28
Download to read offline
Mathematics II
Center of Mass
Definition
โ€ข Mass is a measure for the amount of substance / amount of substance
contained in an object
โ€ข Weight is the mass of an object that is affected by the force of gravity
โ€ข The center of mass and center of gravity is a point where the center of
the mass or weight of a line (1-D object), a plane (2-D object ) or a
space (3-D object) is concentrated. The location of the center of mass
is not affected by the gravity, while the center of gravity is influenced
by the gravity. Thus, the location of the center of mass does not always
coincide with the location of the center of gravity.
โ€ข Location of the center of mass:
โ€“ Located in the middle of a straight (homogeneous) line
โ€“ Located at the intersection of the diagonal of a plane (2-D object) and space (3-D
object0 for a homogeneous object in a regular shape.
โ€“ It can be located inside or outside the object depending on its homogeneity and
shape.
โ€ข Length is the measure of the line (1-D object) occupied by a substance
โ€ข Area is the size of the plane (2-D object) occupied by a substance
โ€ข Volume is a measure of the space (3-D object) occupied by a
substance
โ€ข Mass density is a measure of the concentration of mass on an object.
If the density is the same throughout the object, it is called
homogeneous or has a constant density.
Dimension Mass Density Formula Unit (IS)
1 l l = M/L kg/m
2 s s = M/A kg/m2
3 r r = M/V kg/m3
Center of Mass of a Plane
0 X-axis
Y-axis
โ€ข The picture beside is a plane of mass M
โ€ข The plane is divided (vertically) into n partitions of
mass ๏„m M
๏„mi
โ€ข See the partition i of mass ๏„mi.
โ€ข The partition has a center of mass in the middle of
plane at the coordinate (xi
*, yi
*)
yi*
xi*
โ€ข Each partition ๏„m has center of mass (xi
*, yi
*); i =
1,2, .. n
โ€ข On the whole, the object of mass M has a center of
mass at the coordinate ( าง
๐‘ฅ, เดค
๐‘ฆ)
0 X-axis
Y-axis
าง
๐‘ฅ
เดค
๐‘ฆ
โ€ข To find the center of mass
าง
๐‘ฅ, เดค
๐‘ฆ , we will use the concept of first moment
Concept of First Moment
โ€ข The first moment (ML) of a plane relative to a line L
is the product of multiplication of the mass and the
direct distance between the center of mass and the
line L.
0 X-axis
Y-axis
าง
๐‘ฅ
เดค
๐‘ฆ
โ€ข The moment on the Y-axis is called My, and the
moment on the X-axis is called Mx
๐‘€๐‘ฆ = าง
๐‘ฅ. ๐‘€
๐‘€๐‘ฅ = เดค
๐‘ฆ. ๐‘€
0 X-axis
Y-axis
โ€ข M, My, and Mx actually are the limit of summation
of the mass, the Y-moment and the X-moment
from all partition (see the picture in the right)
M
๏„mi
โ€ข For the partition i of mass ๏„mi, with center of
mass (xi*, yi*) :
yi*
xi*
โ€ข For all partitions of the plane, then :
โˆ†myi = xi* . โˆ†mi
โˆ†mxi = yi* . โˆ†mi
๐‘€๐‘ฆ โ‰ˆ ๐‘ฅ1
โˆ—
. โˆ†๐‘š1 + ๐‘ฅ2
โˆ—
. โˆ†๐‘š2 + โ‹ฏ + ๐‘ฅ๐‘–
โˆ—
. โˆ†๐‘š๐‘– + โ‹ฏ + ๐‘ฅ๐‘›
โˆ—. โˆ†๐‘š๐‘›
๐‘€ โ‰ˆ โˆ†๐‘š1 + โˆ†๐‘š2 + โ‹ฏ + โˆ†๐‘š๐‘– + โ‹ฏ + โˆ†๐‘š๐‘›
โ‰ˆ เท
๐‘–=1
๐‘›
โˆ†๐‘š๐‘–
โ‰ˆ เท
๐‘–=1
๐‘›
๐‘ฅ๐‘–
โˆ—
. โˆ†๐‘š๐‘–
๐‘€๐‘ฅ โ‰ˆ ๐‘ฆ1
โˆ—
. โˆ†๐‘š1 + ๐‘ฆ2
โˆ—
. โˆ†๐‘š2 + โ‹ฏ + ๐‘ฆ๐‘–
โˆ—
. โˆ†๐‘š๐‘– + โ‹ฏ + ๐‘ฆ๐‘›
โˆ—. โˆ†๐‘š๐‘› โ‰ˆ เท
๐‘–=1
๐‘›
๐‘ฆ๐‘–
โˆ—
. โˆ†๐‘š๐‘–
Thus, for n approaching infinity, the limits are :
Since M = ฯƒ A,
then dM = ฯƒ dA
My
dM
Mx dM
(ฯƒ = mass density for 2-D objects)
So, center of mass of a plane (for homogenous s) can be expressed :
Center of mass of plane under a curve
X-axis
a=0
Y-axis
)
(x
f
y =
b
๏„xi
)
( i
x
f
๏„Ai
Xi
*
๏„Ai have a mass of ๏„mi.
๏„mi = s ๏„Ai = s f(xi) ๏„xi
Accumulate ๏„Ai and ๏„mi, take the
limit, then state in integral form:
๏„Ai = f(xi) ๏„xi
๐ด = เถฑ
๐‘Ž
๐‘
๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ
๐‘€ = ฯƒ เถฑ
๐‘Ž
๐‘
๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ = ฯƒ. ๐ด
Note : in this case, xi* is located in the middle of partition i
X-axis
a=0
Y-axis
)
(x
f
y =
b
xi
yi
*
The partition i has center of mass (xi*, yi*)
๏„Ai
xi
*
Identify the position of xi* and yi*
xi* = xi and
๐‘€๐‘ฆ = ๐œŽ เถฑ
๐‘Ž
๐‘
๐‘ฅ ๐‘‘๐ด = ๐œŽ เถฑ
๐‘Ž
๐‘
๐‘ฅ. ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ
yi* = ยฝ f(xi)
โˆ†๐‘š๐‘ฆ๐‘–= ๐‘ฅ๐‘–
โˆ—
โˆ†๐‘š๐‘– = ๐‘ฅ๐‘–
โˆ—
๐œŽโˆ†๐ด๐‘–
Identify the moments of โˆ†myi and โˆ†mxi
โˆ†๐‘š๐‘ฅ๐‘–= ๐‘ฆ๐‘–
โˆ—
โˆ†๐‘š๐‘– = ๐‘ฆ๐‘–
โˆ—
๐œŽโˆ†๐ด๐‘–
Accumulate ๏„myi and ๏„mxi, take the limit,
then state in integral form:
๐‘€๐‘ฅ = ๐œŽ เถฑ
๐‘Ž
๐‘
๐‘ฆ ๐‘‘๐ด = ๐œŽ เถฑ
๐‘Ž
๐‘
1
2
๐‘“ ๐‘ฅ . ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ =
๐œŽ
2
เถฑ
๐‘Ž
๐‘
๐‘“ ๐‘ฅ 2
๐‘‘๐‘ฅ
So, the center of mass of
the plane will be:
=
๐œŽ โ€ซืฌโ€ฌ๐‘Ž
๐‘
๐‘ฅ. ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ
๐œŽ๐ด
=
1
2
๐œŽ โ€ซืฌโ€ฌ
๐‘Ž
๐‘
๐‘“ ๐‘ฅ 2
๐‘‘๐‘ฅ
๐œŽ๐ด
sb. y
b
a
)
(x
f
y =
)
(x
g
y =
0 sb. x
๏„xi
xi
)
(
)
( i
i x
g
x
f โˆ’
๏„Ai
Note : in this case, xi* is located in the middle of partition i
๏„Ai have a mass of ๏„mi.
๏„mi = s ๏„Ai = s (f(xi)-g(xi)) ๏„xi
Accumulate ๏„Ai and ๏„mi, take the
limit, then state in integral form:
๏„Ai = f(xi)-g(xi) ๏„xi
๐ด = เถฑ
๐‘Ž
๐‘
(๐‘“ ๐‘ฅ โˆ’ ๐‘” ๐‘ฅ )๐‘‘๐‘ฅ
๐‘€ = ฯƒ เถฑ
๐‘Ž
๐‘
(๐‘“ ๐‘ฅ โˆ’ ๐‘”(๐‘ฅ))๐‘‘๐‘ฅ = ฯƒ. ๐ด
The partition i has center of mass (xi*, yi*)
yi
*
Identify the position of xi* and yi*
xi* = xi and yi* = ยฝ (f(xi) - g(xi)) + g(xi)
= ยฝ (f(xi) + g(xi))
xi
*
sb. y
b
a
)
(x
f
y =
)
(x
g
y =
0 sb. x
๏„xi
xi
)
(
)
( i
i x
g
x
f โˆ’
๏„Ai
xi
*
yi
*
๐‘€๐‘ฆ = ๐œŽ เถฑ
๐‘Ž
๐‘
๐‘ฅ ๐‘‘๐ด = ๐œŽ เถฑ
๐‘Ž
๐‘
๐‘ฅ(๐‘“ ๐‘ฅ โˆ’ ๐‘”(๐‘ฅ))๐‘‘๐‘ฅ
Accumulate ๏„myi and ๏„mxi, take the limit,
then state in integral form:
๐‘€๐‘ฅ = ๐œŽ เถฑ
๐‘Ž
๐‘
๐‘ฆ ๐‘‘๐ด = ๐œŽ เถฑ
๐‘Ž
๐‘
1
2
(๐‘“ ๐‘ฅ + ๐‘”(๐‘ฅ)). (๐‘“ ๐‘ฅ โˆ’ ๐‘” ๐‘ฅ )๐‘‘๐‘ฅ =
๐œŽ
2
เถฑ
๐‘Ž
๐‘
๐‘“ ๐‘ฅ 2
โˆ’ ๐‘” ๐‘ฅ 2
๐‘‘๐‘ฅ
So, the center of mass of
the plane will be:
=
๐œŽ โ€ซืฌโ€ฌ๐‘Ž
๐‘
๐‘ฅ. (๐‘“ ๐‘ฅ โˆ’ ๐‘” ๐‘ฅ )๐‘‘๐‘ฅ
๐œŽ๐ด
=
1
2
๐œŽ โ€ซืฌโ€ฌ๐‘Ž
๐‘
๐‘“ ๐‘ฅ 2
โˆ’ ๐‘” ๐‘ฅ 2
๐‘‘๐‘ฅ
๐œŽ๐ด
Find the center of mass of a region bounded by : f(x) = 4 โ€“ x2,
x = 0, and y = 0. (At first quadrant)
โˆ†x 2 x
y
0
f(x) = 4 โ€“ x2
4
x
f(x)
M = s A
x* = x
My = M x* = s A x
M = s A
y* = ยฝ f(x)
Mx = M y* = s A ยฝ f(x)
M = s A =
16
3
๐œŽ
โˆ†๐ด = ๐‘“ ๐‘ฅ โˆ†๐‘ฅ
๐ด = เถฑ
0
2
๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ
So, the center of mass is (3/4, 8/5)
+
+
โˆ†๐‘€๐‘ฆ = ๐œŽ. ๐‘ฅ. ๐‘“ ๐‘ฅ โˆ†๐‘ฅ
๐‘€๐‘ฆ = ๐œŽ เถฑ
0
2
๐‘ฅ. ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ
= ๐œŽ เถฑ
0
2
๐‘ฅ 4 โˆ’ ๐‘ฅ2 ๐‘‘๐‘ฅ
= ๐œŽ
= ๐œŽ ๐œŽ
โˆ†๐‘€๐‘ฅ = 1
2
๐œŽ. ๐‘“ ๐‘ฅ 2โˆ†๐‘ฅ
๐‘€๐‘ฅ = 1
2
๐œŽ เถฑ
0
2
๐‘“ ๐‘ฅ 2 ๐‘‘๐‘ฅ
= ๐œŽ
= ๐œŽ
= ๐œŽ
๐œŽ
=
4๐œŽ
เต—
16
3 ๐œŽ
=
3
4
=
เต—
128
15 ๐œŽ
เต—
16
3 ๐œŽ
=
8
5
Find the center of mass of a region bounded by parabola y2 = 10x and
line y = x, if Mass density ฯƒ = 1.
0
sb. y
sb. x
10
y2 = 10x
y = x
10
x* = x
y* = ยฝ [f(x) - g(x)] + g(x)
= ยฝ [f(x) + g(x)]
M = s A = 1. A = A
โˆ†x
x
f(x)-g(x)
= 4
= 5
So, the center of mass is (4, 5)
โˆ†๐‘€๐‘ฆ = ๐œŽ. ๐‘ฅ. โˆ†๐ด
= x.
๐‘€๐‘ฆ = เถฑ
0
10
๐‘ฅ 10. ๐‘ฅ
1
2 โˆ’ ๐‘ฅ ๐‘‘๐‘ฅ
โˆ†๐‘€๐‘ฅ = ๐œŽ. ๐‘ฆ. โˆ†๐ด
= ๐œŽ. ๐‘ฅ. (๐‘“ ๐‘ฅ โˆ’ ๐‘” ๐‘ฅ )โˆ†๐‘ฅ = ๐œŽ. 1
2
(๐‘“ ๐‘ฅ + ๐‘” ๐‘ฅ )(๐‘“ ๐‘ฅ โˆ’ ๐‘” ๐‘ฅ )โˆ†๐‘ฅ
MX
Center of Mass of
A Solid of
Revolution(1)
โ€ข A region bounded by y = f(x), x = a, x = b, and X-axis, is
rotated around X-axis.
โ€ข Approximate the volume of the partition, add up,
take a limit and state ini integral form:
๏„V = ๏ฐr2h โ†’ ๏„Vi = ๏ฐ f(xi)2๏„xi
V = lim ๏ƒฅ ๏ฐ f(xi)2๏„xi
โ€ข Partition ๏„Vi has a mass of ๏„mi :
๏„mi = r ๏„Vi = r ๏ฐ f(xi)2๏„xi
M = lim ๏ƒฅ r ๏ฐ f(xi)2๏„xi
โ€ข Moment ๏„Mi to YOZ-plane (๏„Myz) :
๏„Myz = xi*r๏„Vi = xi*r๏ฐf(xi)2๏„xi
Myz = lim ๏ƒฅ xi* r ๏ฐ f(xi)2๏„xi
โ€ข So, the center of mass is :
๏„xi
๏„xi
xi
y
z
x
)
(x
f
)
( i
x
f
r =
y
x
b
a = 0
b
a = 0
)
(x
f
y =
๏ฐ
๏ฐ
Note: here, ฯ is mass density for 3-D object
Center of Mass of
A Solid of
Revolution (2)
โ€ข A region bounded by y = f(x), x = a = 0, x = b, and X-
axis, rotated around Y-axis.
โ€ข Using shell method:
๏„V = 2๏ฐrh๏„r โ†’ ๏„Vi = 2๏ฐxif(xi)๏„xi
โ€ข Partition ๏„Vi has a mass of ๏„mi
๏„mi = r ๏„Vi = 2r๏ฐxif(xi)๏„xi
โ€ข Moment ๏„Mi to the XOZ-plane (๏„Mxz)
๏„Mxz = yi* r ๏„Vi = yi* r 2๏ฐxif(xi)๏„xi = ยฝ f(xi) r 2๏ฐxif(xi)๏„xi
โ€ข So, the center of mass is :
a=0
x
b
x
๏„x
)
(x
f
y =
f(x)
y
bโ€™
r = x
๏„x
h = f(x)
a=0
x
b
y
bโ€™
z
Mxz
M = 2r๏ฐ
Center of Mass of
A Solid of
Revolution (3)
โ€ข A region bounded by y = f(x), x = a = 0, x = b, and X-
axis, rotated around Y-axis.
โ€ข Using washer method:
๏„V = ๏ฐ(R2-r2)h โ†’ ๏„Vi ๏‚ป ๏ฐ(b2-f(yi)2)๏„yi
โ€ข Partition ๏„Vi has a mass of ๏„mi
๏„mi = r ๏„Vi = r๏ฐ(b2-f(yi)2)๏„yi
โ€ข Moment ๏„Mi to the XOZ-plane (๏„Mxz)
๏„Mxz = yi* r ๏„Vi = yi* r๏ฐ(b2-f(yi)2)๏„yi
โ€ข So:
a=0
x
b
2
x
y =
y
bโ€™
๏„y
r=x=f(y)
R = b
y
bโ€™
a=0
z
x
๏ฐ
๏ฐ
Mxz
Find the center of mass of a region bounded by: y = 4 โ€“ x2, x =
0, and y = 0, rotated around X-axis, if Mass Density = 1.
โˆ†x 2 x
y
0
Y = 4 โ€“ x2
4
x
y
M = r V
x* = x
Myz = M x* = r V x
M = r V = V
So, the center of mass is (5/8, 0)
Find the center of mass of a region bounded by: y = 4 โ€“ x2, x =
0, and y = 0, rotatetd around Y-axis, if mass density = 1.
โˆ†x 2 x
y
0
Y = 4 โ€“ x2
4
x
y
M = r V
y* = ยฝ y
Mxz = M y* = r V ยฝ y
M = r V = V
So, the center of mass is (0, 4/3)
Mxz
Mxz
a
b
Exercise
2
y
x =
y
x โˆ’
= 6
2
Y
6
X
0
6
Calculate the center of mass of the solid of
revolution:
1. If the plane is rotated around the X-axis
2. If the plane is rotated around the Y-axis
4
y
y = 2x
2
2
x
y =
x
Calculate the center of mass of the solid of
revolution:
1. If the plane is rotated around the X-axis
2. If the plane is rotated around the Y-axis
Moment of Inertia
โ€ข Moment of inertia (IL) of a mass with respect to a
line-L is the second moment of a plane to line-L. It
is the multiplication of the mass and the square of
the distance (perpendicular) between the elements
to L.
โ€ข Moment of inertia with respect to X-axis is Iy, and
Moment of inertia with respect to Y-axis is Ix
Moment of Inertia of A Plane
0 sb. x
sb. y
yi*
xi*
๏„mi
๐ผ๐‘ฆ โ‰ˆ ๐‘ฅ1
โˆ—2
. โˆ†๐‘š1 + ๐‘ฅ2
โˆ—2
. โˆ†๐‘š2 + โ‹ฏ + ๐‘ฅ๐‘–
โˆ—2
. โˆ†๐‘š๐‘– + โ‹ฏ + ๐‘ฅ๐‘›
โˆ—2
. โˆ†๐‘š๐‘› โ‰ˆ เท
๐‘–=1
๐‘›
๐‘ฅ๐‘–
โˆ—2
. โˆ†๐‘š๐‘–
๐ผ๐‘ฅ โ‰ˆ ๐‘ฆ1
โˆ—2
. โˆ†๐‘š1 + ๐‘ฆ2
โˆ—2
. โˆ†๐‘š2 + โ‹ฏ + ๐‘ฆ๐‘–
โˆ—2
. โˆ†๐‘š๐‘– + โ‹ฏ + ๐‘ฆ๐‘›
โˆ—2
. โˆ†๐‘š๐‘› โ‰ˆ เท
๐‘–=1
๐‘›
๐‘ฆ๐‘–
โˆ—2
. โˆ†๐‘š๐‘–
Moment Inertia of A Plane
If n approaching infinity then :
M = ฯƒ A dM = ฯƒ dA
(ฯƒ = mass density for 2-D)
๐ผ๐‘ฅ = lim
๐‘›โ†’โˆž
เท
๐‘–=1
๐‘›
๐‘ฆ๐‘–
โˆ—2
โˆ†๐‘š๐‘– = เถฑ๐‘ฆ2๐‘‘๐‘€
๐ผ๐‘ฆ = lim
๐‘›โ†’โˆž
เท
๐‘–=1
๐‘›
๐‘ฅ๐‘–
โˆ—2
โˆ†๐‘š๐‘– = เถฑ๐‘ฅ2๐‘‘๐‘€
With the same steps as we did for center of mass equations,
try to generate the equations for moment inertia using integral.

More Related Content

Similar to 5_Math-2_2024_center of mass aand MI.pdf

Some Common Fixed Point Theorems for Multivalued Mappings in Two Metric Spaces
Some Common Fixed Point Theorems for Multivalued Mappings in Two Metric SpacesSome Common Fixed Point Theorems for Multivalued Mappings in Two Metric Spaces
Some Common Fixed Point Theorems for Multivalued Mappings in Two Metric SpacesIJMER
ย 
Esercizi_Andrea_Mauro_b.pdf
Esercizi_Andrea_Mauro_b.pdfEsercizi_Andrea_Mauro_b.pdf
Esercizi_Andrea_Mauro_b.pdfBEATRIZJAIMESGARCIA
ย 
MEKANIKA Bab 1-pusat-massa1
MEKANIKA Bab 1-pusat-massa1MEKANIKA Bab 1-pusat-massa1
MEKANIKA Bab 1-pusat-massa1Fathur Rozaq
ย 
Prof. V. V. Nalawade, Notes CGMI with practice numerical
Prof. V. V. Nalawade, Notes CGMI with practice numericalProf. V. V. Nalawade, Notes CGMI with practice numerical
Prof. V. V. Nalawade, Notes CGMI with practice numericalVrushali Nalawade
ย 
Centroid and Moment of Inertia from mechanics of material by hibbler related ...
Centroid and Moment of Inertia from mechanics of material by hibbler related ...Centroid and Moment of Inertia from mechanics of material by hibbler related ...
Centroid and Moment of Inertia from mechanics of material by hibbler related ...FREE LAUNCER
ย 
Prof. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of Inertia
Prof. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of InertiaProf. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of Inertia
Prof. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of InertiaVrushali Nalawade
ย 
CM7-0_ Center of mass.pdf
CM7-0_ Center of mass.pdfCM7-0_ Center of mass.pdf
CM7-0_ Center of mass.pdfRusselMiranda6
ย 
Chapter 4
Chapter 4Chapter 4
Chapter 4krishn_desai
ย 
Common Fixed Point Theorems For Occasionally Weakely Compatible Mappings
Common Fixed Point Theorems For Occasionally Weakely Compatible MappingsCommon Fixed Point Theorems For Occasionally Weakely Compatible Mappings
Common Fixed Point Theorems For Occasionally Weakely Compatible Mappingsiosrjce
ย 
Lesson 14 centroid of volume
Lesson 14 centroid of volumeLesson 14 centroid of volume
Lesson 14 centroid of volumeLawrence De Vera
ย 
MA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docx
MA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docxMA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docx
MA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docxinfantsuk
ย 
Graphs of the Sine and Cosine Functions Lecture
Graphs of the Sine and Cosine Functions LectureGraphs of the Sine and Cosine Functions Lecture
Graphs of the Sine and Cosine Functions LectureFroyd Wess
ย 
Triple Integral
Triple IntegralTriple Integral
Triple IntegralHusseinAli272
ย 
PaperNo8-HabibiSafari-IJAM-CHAOTICITY OF A PAIR OF OPERATORS
PaperNo8-HabibiSafari-IJAM-CHAOTICITY OF A PAIR OF OPERATORSPaperNo8-HabibiSafari-IJAM-CHAOTICITY OF A PAIR OF OPERATORS
PaperNo8-HabibiSafari-IJAM-CHAOTICITY OF A PAIR OF OPERATORSMezban Habibi
ย 
Ap review total
Ap review totalAp review total
Ap review totaljsawyer3434
ย 
PRESENTATION ON INTRODUCTION TO SEVERAL VARIABLES AND PARTIAL DERIVATIVES
PRESENTATION ON INTRODUCTION TO SEVERAL VARIABLES AND PARTIAL DERIVATIVES   PRESENTATION ON INTRODUCTION TO SEVERAL VARIABLES AND PARTIAL DERIVATIVES
PRESENTATION ON INTRODUCTION TO SEVERAL VARIABLES AND PARTIAL DERIVATIVES Mazharul Islam
ย 
Volumes of solid (slicing, disc, washer, cylindrical shell)
Volumes of solid (slicing, disc, washer, cylindrical shell)Volumes of solid (slicing, disc, washer, cylindrical shell)
Volumes of solid (slicing, disc, washer, cylindrical shell)MariaFaithDalay2
ย 
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) Property
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) PropertyFixed Point Theorem in Fuzzy Metric Space Using (CLRg) Property
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) Propertyinventionjournals
ย 

Similar to 5_Math-2_2024_center of mass aand MI.pdf (20)

Some Common Fixed Point Theorems for Multivalued Mappings in Two Metric Spaces
Some Common Fixed Point Theorems for Multivalued Mappings in Two Metric SpacesSome Common Fixed Point Theorems for Multivalued Mappings in Two Metric Spaces
Some Common Fixed Point Theorems for Multivalued Mappings in Two Metric Spaces
ย 
Esercizi_Andrea_Mauro_b.pdf
Esercizi_Andrea_Mauro_b.pdfEsercizi_Andrea_Mauro_b.pdf
Esercizi_Andrea_Mauro_b.pdf
ย 
MEKANIKA Bab 1-pusat-massa1
MEKANIKA Bab 1-pusat-massa1MEKANIKA Bab 1-pusat-massa1
MEKANIKA Bab 1-pusat-massa1
ย 
Classical mechanics
Classical mechanicsClassical mechanics
Classical mechanics
ย 
Prof. V. V. Nalawade, Notes CGMI with practice numerical
Prof. V. V. Nalawade, Notes CGMI with practice numericalProf. V. V. Nalawade, Notes CGMI with practice numerical
Prof. V. V. Nalawade, Notes CGMI with practice numerical
ย 
Centroid and Moment of Inertia from mechanics of material by hibbler related ...
Centroid and Moment of Inertia from mechanics of material by hibbler related ...Centroid and Moment of Inertia from mechanics of material by hibbler related ...
Centroid and Moment of Inertia from mechanics of material by hibbler related ...
ย 
Solution set 3
Solution set 3Solution set 3
Solution set 3
ย 
Prof. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of Inertia
Prof. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of InertiaProf. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of Inertia
Prof. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of Inertia
ย 
CM7-0_ Center of mass.pdf
CM7-0_ Center of mass.pdfCM7-0_ Center of mass.pdf
CM7-0_ Center of mass.pdf
ย 
Chapter 4
Chapter 4Chapter 4
Chapter 4
ย 
Common Fixed Point Theorems For Occasionally Weakely Compatible Mappings
Common Fixed Point Theorems For Occasionally Weakely Compatible MappingsCommon Fixed Point Theorems For Occasionally Weakely Compatible Mappings
Common Fixed Point Theorems For Occasionally Weakely Compatible Mappings
ย 
Lesson 14 centroid of volume
Lesson 14 centroid of volumeLesson 14 centroid of volume
Lesson 14 centroid of volume
ย 
MA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docx
MA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docxMA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docx
MA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docx
ย 
Graphs of the Sine and Cosine Functions Lecture
Graphs of the Sine and Cosine Functions LectureGraphs of the Sine and Cosine Functions Lecture
Graphs of the Sine and Cosine Functions Lecture
ย 
Triple Integral
Triple IntegralTriple Integral
Triple Integral
ย 
PaperNo8-HabibiSafari-IJAM-CHAOTICITY OF A PAIR OF OPERATORS
PaperNo8-HabibiSafari-IJAM-CHAOTICITY OF A PAIR OF OPERATORSPaperNo8-HabibiSafari-IJAM-CHAOTICITY OF A PAIR OF OPERATORS
PaperNo8-HabibiSafari-IJAM-CHAOTICITY OF A PAIR OF OPERATORS
ย 
Ap review total
Ap review totalAp review total
Ap review total
ย 
PRESENTATION ON INTRODUCTION TO SEVERAL VARIABLES AND PARTIAL DERIVATIVES
PRESENTATION ON INTRODUCTION TO SEVERAL VARIABLES AND PARTIAL DERIVATIVES   PRESENTATION ON INTRODUCTION TO SEVERAL VARIABLES AND PARTIAL DERIVATIVES
PRESENTATION ON INTRODUCTION TO SEVERAL VARIABLES AND PARTIAL DERIVATIVES
ย 
Volumes of solid (slicing, disc, washer, cylindrical shell)
Volumes of solid (slicing, disc, washer, cylindrical shell)Volumes of solid (slicing, disc, washer, cylindrical shell)
Volumes of solid (slicing, disc, washer, cylindrical shell)
ย 
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) Property
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) PropertyFixed Point Theorem in Fuzzy Metric Space Using (CLRg) Property
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) Property
ย 

Recently uploaded

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
ย 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
ย 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
ย 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...RKavithamani
ย 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
ย 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
ย 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
ย 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
ย 
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdfssuser54595a
ย 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
ย 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
ย 
โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
ย 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
ย 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
ย 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
ย 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
ย 

Recently uploaded (20)

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
ย 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
ย 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
ย 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
ย 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
ย 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
ย 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
ย 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
ย 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
ย 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
ย 
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
ย 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
ย 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
ย 
โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
ย 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
ย 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
ย 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
ย 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
ย 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
ย 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
ย 

5_Math-2_2024_center of mass aand MI.pdf

  • 3. Definition โ€ข Mass is a measure for the amount of substance / amount of substance contained in an object โ€ข Weight is the mass of an object that is affected by the force of gravity โ€ข The center of mass and center of gravity is a point where the center of the mass or weight of a line (1-D object), a plane (2-D object ) or a space (3-D object) is concentrated. The location of the center of mass is not affected by the gravity, while the center of gravity is influenced by the gravity. Thus, the location of the center of mass does not always coincide with the location of the center of gravity. โ€ข Location of the center of mass: โ€“ Located in the middle of a straight (homogeneous) line โ€“ Located at the intersection of the diagonal of a plane (2-D object) and space (3-D object0 for a homogeneous object in a regular shape. โ€“ It can be located inside or outside the object depending on its homogeneity and shape.
  • 4. โ€ข Length is the measure of the line (1-D object) occupied by a substance โ€ข Area is the size of the plane (2-D object) occupied by a substance โ€ข Volume is a measure of the space (3-D object) occupied by a substance โ€ข Mass density is a measure of the concentration of mass on an object. If the density is the same throughout the object, it is called homogeneous or has a constant density. Dimension Mass Density Formula Unit (IS) 1 l l = M/L kg/m 2 s s = M/A kg/m2 3 r r = M/V kg/m3
  • 5. Center of Mass of a Plane 0 X-axis Y-axis โ€ข The picture beside is a plane of mass M โ€ข The plane is divided (vertically) into n partitions of mass ๏„m M ๏„mi โ€ข See the partition i of mass ๏„mi. โ€ข The partition has a center of mass in the middle of plane at the coordinate (xi *, yi *) yi* xi* โ€ข Each partition ๏„m has center of mass (xi *, yi *); i = 1,2, .. n โ€ข On the whole, the object of mass M has a center of mass at the coordinate ( าง ๐‘ฅ, เดค ๐‘ฆ) 0 X-axis Y-axis าง ๐‘ฅ เดค ๐‘ฆ โ€ข To find the center of mass าง ๐‘ฅ, เดค ๐‘ฆ , we will use the concept of first moment
  • 6. Concept of First Moment โ€ข The first moment (ML) of a plane relative to a line L is the product of multiplication of the mass and the direct distance between the center of mass and the line L. 0 X-axis Y-axis าง ๐‘ฅ เดค ๐‘ฆ โ€ข The moment on the Y-axis is called My, and the moment on the X-axis is called Mx ๐‘€๐‘ฆ = าง ๐‘ฅ. ๐‘€ ๐‘€๐‘ฅ = เดค ๐‘ฆ. ๐‘€
  • 7. 0 X-axis Y-axis โ€ข M, My, and Mx actually are the limit of summation of the mass, the Y-moment and the X-moment from all partition (see the picture in the right) M ๏„mi โ€ข For the partition i of mass ๏„mi, with center of mass (xi*, yi*) : yi* xi* โ€ข For all partitions of the plane, then : โˆ†myi = xi* . โˆ†mi โˆ†mxi = yi* . โˆ†mi ๐‘€๐‘ฆ โ‰ˆ ๐‘ฅ1 โˆ— . โˆ†๐‘š1 + ๐‘ฅ2 โˆ— . โˆ†๐‘š2 + โ‹ฏ + ๐‘ฅ๐‘– โˆ— . โˆ†๐‘š๐‘– + โ‹ฏ + ๐‘ฅ๐‘› โˆ—. โˆ†๐‘š๐‘› ๐‘€ โ‰ˆ โˆ†๐‘š1 + โˆ†๐‘š2 + โ‹ฏ + โˆ†๐‘š๐‘– + โ‹ฏ + โˆ†๐‘š๐‘› โ‰ˆ เท ๐‘–=1 ๐‘› โˆ†๐‘š๐‘– โ‰ˆ เท ๐‘–=1 ๐‘› ๐‘ฅ๐‘– โˆ— . โˆ†๐‘š๐‘– ๐‘€๐‘ฅ โ‰ˆ ๐‘ฆ1 โˆ— . โˆ†๐‘š1 + ๐‘ฆ2 โˆ— . โˆ†๐‘š2 + โ‹ฏ + ๐‘ฆ๐‘– โˆ— . โˆ†๐‘š๐‘– + โ‹ฏ + ๐‘ฆ๐‘› โˆ—. โˆ†๐‘š๐‘› โ‰ˆ เท ๐‘–=1 ๐‘› ๐‘ฆ๐‘– โˆ— . โˆ†๐‘š๐‘–
  • 8. Thus, for n approaching infinity, the limits are : Since M = ฯƒ A, then dM = ฯƒ dA My dM Mx dM (ฯƒ = mass density for 2-D objects) So, center of mass of a plane (for homogenous s) can be expressed :
  • 9. Center of mass of plane under a curve X-axis a=0 Y-axis ) (x f y = b ๏„xi ) ( i x f ๏„Ai Xi * ๏„Ai have a mass of ๏„mi. ๏„mi = s ๏„Ai = s f(xi) ๏„xi Accumulate ๏„Ai and ๏„mi, take the limit, then state in integral form: ๏„Ai = f(xi) ๏„xi ๐ด = เถฑ ๐‘Ž ๐‘ ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ ๐‘€ = ฯƒ เถฑ ๐‘Ž ๐‘ ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ = ฯƒ. ๐ด Note : in this case, xi* is located in the middle of partition i
  • 10. X-axis a=0 Y-axis ) (x f y = b xi yi * The partition i has center of mass (xi*, yi*) ๏„Ai xi * Identify the position of xi* and yi* xi* = xi and ๐‘€๐‘ฆ = ๐œŽ เถฑ ๐‘Ž ๐‘ ๐‘ฅ ๐‘‘๐ด = ๐œŽ เถฑ ๐‘Ž ๐‘ ๐‘ฅ. ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ yi* = ยฝ f(xi) โˆ†๐‘š๐‘ฆ๐‘–= ๐‘ฅ๐‘– โˆ— โˆ†๐‘š๐‘– = ๐‘ฅ๐‘– โˆ— ๐œŽโˆ†๐ด๐‘– Identify the moments of โˆ†myi and โˆ†mxi โˆ†๐‘š๐‘ฅ๐‘–= ๐‘ฆ๐‘– โˆ— โˆ†๐‘š๐‘– = ๐‘ฆ๐‘– โˆ— ๐œŽโˆ†๐ด๐‘– Accumulate ๏„myi and ๏„mxi, take the limit, then state in integral form: ๐‘€๐‘ฅ = ๐œŽ เถฑ ๐‘Ž ๐‘ ๐‘ฆ ๐‘‘๐ด = ๐œŽ เถฑ ๐‘Ž ๐‘ 1 2 ๐‘“ ๐‘ฅ . ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ = ๐œŽ 2 เถฑ ๐‘Ž ๐‘ ๐‘“ ๐‘ฅ 2 ๐‘‘๐‘ฅ So, the center of mass of the plane will be: = ๐œŽ โ€ซืฌโ€ฌ๐‘Ž ๐‘ ๐‘ฅ. ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ ๐œŽ๐ด = 1 2 ๐œŽ โ€ซืฌโ€ฌ ๐‘Ž ๐‘ ๐‘“ ๐‘ฅ 2 ๐‘‘๐‘ฅ ๐œŽ๐ด
  • 11. sb. y b a ) (x f y = ) (x g y = 0 sb. x ๏„xi xi ) ( ) ( i i x g x f โˆ’ ๏„Ai Note : in this case, xi* is located in the middle of partition i ๏„Ai have a mass of ๏„mi. ๏„mi = s ๏„Ai = s (f(xi)-g(xi)) ๏„xi Accumulate ๏„Ai and ๏„mi, take the limit, then state in integral form: ๏„Ai = f(xi)-g(xi) ๏„xi ๐ด = เถฑ ๐‘Ž ๐‘ (๐‘“ ๐‘ฅ โˆ’ ๐‘” ๐‘ฅ )๐‘‘๐‘ฅ ๐‘€ = ฯƒ เถฑ ๐‘Ž ๐‘ (๐‘“ ๐‘ฅ โˆ’ ๐‘”(๐‘ฅ))๐‘‘๐‘ฅ = ฯƒ. ๐ด The partition i has center of mass (xi*, yi*) yi * Identify the position of xi* and yi* xi* = xi and yi* = ยฝ (f(xi) - g(xi)) + g(xi) = ยฝ (f(xi) + g(xi)) xi *
  • 12. sb. y b a ) (x f y = ) (x g y = 0 sb. x ๏„xi xi ) ( ) ( i i x g x f โˆ’ ๏„Ai xi * yi * ๐‘€๐‘ฆ = ๐œŽ เถฑ ๐‘Ž ๐‘ ๐‘ฅ ๐‘‘๐ด = ๐œŽ เถฑ ๐‘Ž ๐‘ ๐‘ฅ(๐‘“ ๐‘ฅ โˆ’ ๐‘”(๐‘ฅ))๐‘‘๐‘ฅ Accumulate ๏„myi and ๏„mxi, take the limit, then state in integral form: ๐‘€๐‘ฅ = ๐œŽ เถฑ ๐‘Ž ๐‘ ๐‘ฆ ๐‘‘๐ด = ๐œŽ เถฑ ๐‘Ž ๐‘ 1 2 (๐‘“ ๐‘ฅ + ๐‘”(๐‘ฅ)). (๐‘“ ๐‘ฅ โˆ’ ๐‘” ๐‘ฅ )๐‘‘๐‘ฅ = ๐œŽ 2 เถฑ ๐‘Ž ๐‘ ๐‘“ ๐‘ฅ 2 โˆ’ ๐‘” ๐‘ฅ 2 ๐‘‘๐‘ฅ So, the center of mass of the plane will be: = ๐œŽ โ€ซืฌโ€ฌ๐‘Ž ๐‘ ๐‘ฅ. (๐‘“ ๐‘ฅ โˆ’ ๐‘” ๐‘ฅ )๐‘‘๐‘ฅ ๐œŽ๐ด = 1 2 ๐œŽ โ€ซืฌโ€ฌ๐‘Ž ๐‘ ๐‘“ ๐‘ฅ 2 โˆ’ ๐‘” ๐‘ฅ 2 ๐‘‘๐‘ฅ ๐œŽ๐ด
  • 13. Find the center of mass of a region bounded by : f(x) = 4 โ€“ x2, x = 0, and y = 0. (At first quadrant) โˆ†x 2 x y 0 f(x) = 4 โ€“ x2 4 x f(x) M = s A x* = x My = M x* = s A x M = s A y* = ยฝ f(x) Mx = M y* = s A ยฝ f(x) M = s A = 16 3 ๐œŽ โˆ†๐ด = ๐‘“ ๐‘ฅ โˆ†๐‘ฅ ๐ด = เถฑ 0 2 ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ
  • 14. So, the center of mass is (3/4, 8/5) + + โˆ†๐‘€๐‘ฆ = ๐œŽ. ๐‘ฅ. ๐‘“ ๐‘ฅ โˆ†๐‘ฅ ๐‘€๐‘ฆ = ๐œŽ เถฑ 0 2 ๐‘ฅ. ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ = ๐œŽ เถฑ 0 2 ๐‘ฅ 4 โˆ’ ๐‘ฅ2 ๐‘‘๐‘ฅ = ๐œŽ = ๐œŽ ๐œŽ โˆ†๐‘€๐‘ฅ = 1 2 ๐œŽ. ๐‘“ ๐‘ฅ 2โˆ†๐‘ฅ ๐‘€๐‘ฅ = 1 2 ๐œŽ เถฑ 0 2 ๐‘“ ๐‘ฅ 2 ๐‘‘๐‘ฅ = ๐œŽ = ๐œŽ = ๐œŽ ๐œŽ = 4๐œŽ เต— 16 3 ๐œŽ = 3 4 = เต— 128 15 ๐œŽ เต— 16 3 ๐œŽ = 8 5
  • 15. Find the center of mass of a region bounded by parabola y2 = 10x and line y = x, if Mass density ฯƒ = 1. 0 sb. y sb. x 10 y2 = 10x y = x 10 x* = x y* = ยฝ [f(x) - g(x)] + g(x) = ยฝ [f(x) + g(x)] M = s A = 1. A = A โˆ†x x f(x)-g(x)
  • 16. = 4 = 5 So, the center of mass is (4, 5) โˆ†๐‘€๐‘ฆ = ๐œŽ. ๐‘ฅ. โˆ†๐ด = x. ๐‘€๐‘ฆ = เถฑ 0 10 ๐‘ฅ 10. ๐‘ฅ 1 2 โˆ’ ๐‘ฅ ๐‘‘๐‘ฅ โˆ†๐‘€๐‘ฅ = ๐œŽ. ๐‘ฆ. โˆ†๐ด = ๐œŽ. ๐‘ฅ. (๐‘“ ๐‘ฅ โˆ’ ๐‘” ๐‘ฅ )โˆ†๐‘ฅ = ๐œŽ. 1 2 (๐‘“ ๐‘ฅ + ๐‘” ๐‘ฅ )(๐‘“ ๐‘ฅ โˆ’ ๐‘” ๐‘ฅ )โˆ†๐‘ฅ MX
  • 17. Center of Mass of A Solid of Revolution(1) โ€ข A region bounded by y = f(x), x = a, x = b, and X-axis, is rotated around X-axis. โ€ข Approximate the volume of the partition, add up, take a limit and state ini integral form: ๏„V = ๏ฐr2h โ†’ ๏„Vi = ๏ฐ f(xi)2๏„xi V = lim ๏ƒฅ ๏ฐ f(xi)2๏„xi โ€ข Partition ๏„Vi has a mass of ๏„mi : ๏„mi = r ๏„Vi = r ๏ฐ f(xi)2๏„xi M = lim ๏ƒฅ r ๏ฐ f(xi)2๏„xi โ€ข Moment ๏„Mi to YOZ-plane (๏„Myz) : ๏„Myz = xi*r๏„Vi = xi*r๏ฐf(xi)2๏„xi Myz = lim ๏ƒฅ xi* r ๏ฐ f(xi)2๏„xi โ€ข So, the center of mass is : ๏„xi ๏„xi xi y z x ) (x f ) ( i x f r = y x b a = 0 b a = 0 ) (x f y = ๏ฐ ๏ฐ Note: here, ฯ is mass density for 3-D object
  • 18. Center of Mass of A Solid of Revolution (2) โ€ข A region bounded by y = f(x), x = a = 0, x = b, and X- axis, rotated around Y-axis. โ€ข Using shell method: ๏„V = 2๏ฐrh๏„r โ†’ ๏„Vi = 2๏ฐxif(xi)๏„xi โ€ข Partition ๏„Vi has a mass of ๏„mi ๏„mi = r ๏„Vi = 2r๏ฐxif(xi)๏„xi โ€ข Moment ๏„Mi to the XOZ-plane (๏„Mxz) ๏„Mxz = yi* r ๏„Vi = yi* r 2๏ฐxif(xi)๏„xi = ยฝ f(xi) r 2๏ฐxif(xi)๏„xi โ€ข So, the center of mass is : a=0 x b x ๏„x ) (x f y = f(x) y bโ€™ r = x ๏„x h = f(x) a=0 x b y bโ€™ z Mxz M = 2r๏ฐ
  • 19. Center of Mass of A Solid of Revolution (3) โ€ข A region bounded by y = f(x), x = a = 0, x = b, and X- axis, rotated around Y-axis. โ€ข Using washer method: ๏„V = ๏ฐ(R2-r2)h โ†’ ๏„Vi ๏‚ป ๏ฐ(b2-f(yi)2)๏„yi โ€ข Partition ๏„Vi has a mass of ๏„mi ๏„mi = r ๏„Vi = r๏ฐ(b2-f(yi)2)๏„yi โ€ข Moment ๏„Mi to the XOZ-plane (๏„Mxz) ๏„Mxz = yi* r ๏„Vi = yi* r๏ฐ(b2-f(yi)2)๏„yi โ€ข So: a=0 x b 2 x y = y bโ€™ ๏„y r=x=f(y) R = b y bโ€™ a=0 z x ๏ฐ ๏ฐ Mxz
  • 20. Find the center of mass of a region bounded by: y = 4 โ€“ x2, x = 0, and y = 0, rotated around X-axis, if Mass Density = 1. โˆ†x 2 x y 0 Y = 4 โ€“ x2 4 x y M = r V x* = x Myz = M x* = r V x M = r V = V
  • 21. So, the center of mass is (5/8, 0)
  • 22. Find the center of mass of a region bounded by: y = 4 โ€“ x2, x = 0, and y = 0, rotatetd around Y-axis, if mass density = 1. โˆ†x 2 x y 0 Y = 4 โ€“ x2 4 x y M = r V y* = ยฝ y Mxz = M y* = r V ยฝ y M = r V = V
  • 23. So, the center of mass is (0, 4/3) Mxz Mxz a b
  • 24. Exercise 2 y x = y x โˆ’ = 6 2 Y 6 X 0 6 Calculate the center of mass of the solid of revolution: 1. If the plane is rotated around the X-axis 2. If the plane is rotated around the Y-axis
  • 25. 4 y y = 2x 2 2 x y = x Calculate the center of mass of the solid of revolution: 1. If the plane is rotated around the X-axis 2. If the plane is rotated around the Y-axis
  • 27. โ€ข Moment of inertia (IL) of a mass with respect to a line-L is the second moment of a plane to line-L. It is the multiplication of the mass and the square of the distance (perpendicular) between the elements to L. โ€ข Moment of inertia with respect to X-axis is Iy, and Moment of inertia with respect to Y-axis is Ix Moment of Inertia of A Plane 0 sb. x sb. y yi* xi* ๏„mi ๐ผ๐‘ฆ โ‰ˆ ๐‘ฅ1 โˆ—2 . โˆ†๐‘š1 + ๐‘ฅ2 โˆ—2 . โˆ†๐‘š2 + โ‹ฏ + ๐‘ฅ๐‘– โˆ—2 . โˆ†๐‘š๐‘– + โ‹ฏ + ๐‘ฅ๐‘› โˆ—2 . โˆ†๐‘š๐‘› โ‰ˆ เท ๐‘–=1 ๐‘› ๐‘ฅ๐‘– โˆ—2 . โˆ†๐‘š๐‘– ๐ผ๐‘ฅ โ‰ˆ ๐‘ฆ1 โˆ—2 . โˆ†๐‘š1 + ๐‘ฆ2 โˆ—2 . โˆ†๐‘š2 + โ‹ฏ + ๐‘ฆ๐‘– โˆ—2 . โˆ†๐‘š๐‘– + โ‹ฏ + ๐‘ฆ๐‘› โˆ—2 . โˆ†๐‘š๐‘› โ‰ˆ เท ๐‘–=1 ๐‘› ๐‘ฆ๐‘– โˆ—2 . โˆ†๐‘š๐‘–
  • 28. Moment Inertia of A Plane If n approaching infinity then : M = ฯƒ A dM = ฯƒ dA (ฯƒ = mass density for 2-D) ๐ผ๐‘ฅ = lim ๐‘›โ†’โˆž เท ๐‘–=1 ๐‘› ๐‘ฆ๐‘– โˆ—2 โˆ†๐‘š๐‘– = เถฑ๐‘ฆ2๐‘‘๐‘€ ๐ผ๐‘ฆ = lim ๐‘›โ†’โˆž เท ๐‘–=1 ๐‘› ๐‘ฅ๐‘– โˆ—2 โˆ†๐‘š๐‘– = เถฑ๐‘ฅ2๐‘‘๐‘€ With the same steps as we did for center of mass equations, try to generate the equations for moment inertia using integral.