SlideShare a Scribd company logo
1 of 26
Download to read offline
LT1013/LT1014
Quad Precision Op Amp (LT1014)
Dual Precision Op Amp (LT1013)
Description

Features
	 Single Supply Operation
		 Input Voltage Range Extends to Ground
		 Output Swings to Ground While Sinking Current
n	 Pin Compatible to 1458 and 324 with Precision Specs
n	 Guaranteed Offset Voltage: 150µV Max
n	 Guaranteed Low Drift: 2µV/°C Max
n	 Guaranteed Offset Current: 0.8nA Max
n	 Guaranteed High Gain
		 5mA Load Current: 1.5 Million Min
		 17mA Load Current: 0.8 Million Min
n	 Guaranteed Low Supply Current: 500µA Max
n	 Low Voltage Noise, 0.1Hz to 10Hz: 0.55µV
P-P
n	 Low Current Noise—Better than 0P-07, 0.07pA/√Hz
n

Applications

Both the LT1013 and LT1014 can be operated off a single
5V power supply: input common mode range includes
ground; the output can also swing to within a few millivolts
of ground. Crossover distortion, so apparent on previous
single-supply designs, is eliminated. A full set of specifications is provided with ± 15V and single 5V supplies.

L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear
Technology Corporation. All other trademarks are the property of their respective owners.

Typical Application

LT1014 Distribution of Offset Voltage

3-Channel Thermocouple Thermometer
4k

13

LT1014

2

3
260Ω

4

LT1014

1

OUTPUT A
10mV/°C

11

1.8k
1M

5

LT1014

+

USE TYPE K THERMOCOUPLES. ALL RESISTORS = 1% FILM.
COLD JUNCTION COMPENSATION ACCURATE
TO ±1°C FROM 0°C TO 60°C.
USE 4TH AMPLIFIER FOR OUTPUT C.

300
200
100

6

–

4k

VS = ±15V
TA = 25°C
425 LT1014s
(1700 OP AMPS)
500 TESTED FROM
THREE RUNS
400 J PACKAGE
600

NUMBER OF UNITS

+

YSI 44007
5k
AT 25°C

1684Ω

12

–

14

700

5V

+

LT1004
1.2V

1M

299k

–

5V

The LT1014’s low offset voltage of 50µV, drift of 0.3µV/°C,
offset current of 0.15nA, gain of 8 million, common mode
rejection of 117dB and power supply rejection of 120dB
qualify it as four truly precision operational amplifiers.
Particularly important is the low offset voltage, since no
offset null terminals are provided in the quad configuration.
Although supply current is only 350µA per amplifier, a new
output stage design sources and sinks in excess of 20mA
of load current, while retaining high voltage gain.
Similarly, the LT1013 is the first precision dual op amp in the
8-pin industry standard configuration, upgrading the performance of such popular devices as the MC1458/MC1558,
LM158 and OP-221. The LT1013’s specifications are similar
to (even somewhat better than) the LT1014’s.

	 Battery-Powered Precision Instrumentation
		 Strain Gauge Signal Conditioners
		 Thermocouple Amplifiers
		 Instrumentation Amplifiers
n	 4mA to 20mA Current Loop Transmitters
n	 Multiple Limit Threshold Detection
n	 Active Filters
n	 Multiple Gain Blocks
n

3k

The LT ®1014 is the first precision quad operational amplifier
which directly upgrades designs in the industry standard
14-pin DIP LM324/LM348/OP-11/4156 pin configuration.
It is no longer necessary to compromise specifications,
while saving board space and cost, as compared to single
operational amplifiers.

7

OUTPUT B
10mV/°C

0
100
–300 –200 –100
0
200
INPUT OFFSET VOLTAGE (µV)

300

1013/14 TA02

10134fd
LT1013/LT1014
Absolute Maximum Ratings

(Note 1)

Supply Voltage........................................................ ± 22V
Differential Input Voltage........................................ ± 30V
Input Voltage................ Equal to Positive Supply Voltage
.
		
............. 5V Below Negative Supply Voltage
Output Short-Circuit Duration........................... Indefinite
Storage Temperature Range
	 All Grades...........................................– 65°C to 150°C

Lead Temperature (Soldering, 10 sec.).................. 300°C
Operating Temperature Range
	 LT1013AM/LT1013M/
	 LT1014AM/LT1014M..........................– 55 °C to 125°C
	 LT1013AC/LT1013C/LT1013D
	 LT1014AC/LT1014C/LT1014D................... 0°C to 70°C
	 LT1013I/ LT1014I..................................– 40°C to 85°C

Pin Configuration
LT1013

LT1013

LT1013
TOP VIEW

TOP VIEW

8

–IN A 2

7

OUTPUT B

+IN A 3

+

–

6

–IN B

+

–

7

5

+IN B

OUTA

+INB 3

+

6

V+

–INB 4

–

5

V+

OUTPUT A 1

–INA

+

V– 2

8

–

+INA 1

TOP VIEW
V+

OUTB

V– 4

A
B

OUTPUT A 1

NOTE: THIS PIN CONFIGURATION DIFFERS FROM
THE STANDARD 8-PIN DUAL-IN-LINE CONFIGURATION

+IN A 3

+ – 6 –IN B
4

5 +IN B

TJMAX = 125°C, θJA = 55°C/W

OBSOLETE PACKAGE

OBSOLETE PACKAGE

Consider the N or S8 Packages for Alternate Source
LT1014

7 OUTPUT B
B

V–(CASE)
H PACKAGE
8-LEAD TO-5 METAL CAN

J8 PACKAGE
8-LEAD CERDIP
TJMAX = 150°C, JA = 100°C

TJMAX = 150°C, θJA = 190°C/W

A

–IN A 2 – +

N8 PACKAGE
8-LEAD PDIP
TJMAX = 150°C, JA = 130°C

S8 PACKAGE
8-LEAD PLASTIC SO

8

Consider the N or S8 (Not N8) Packages for Alternate Source

LT1014
TOP VIEW

15 –IN D

+IN A 3

14 +IN D

V+ 4

13 V –

+IN B 5

12 +IN C

–IN B 6

11 –IN C

OUTPUT B 7

10 OUTPUT C

NC 8

9
SW PACKAGE
16-LEAD PLASTIC SO

TJMAX = 150°C, θJA = 130°C/W

NC

2

+IN A

3

V+

4

+IN B

5

–IN B

6

OUTPUT B

7

–

–IN A 2

–IN A

A

+

16 OUTPUT D

14 OUTPUT D
13 –IN D

+

OUTPUT A 1

1
–

OUTPUT A

TOP VIEW

12 +IN D

D

11 V–
+
B
–

+ 10 +IN C
C
– 9 –IN C
8

OUTPUT C

N PACKAGE
14-LEAD PDIP
TJMAX = 150°C, JA = 100°C
J PACKAGE
14-LEAD CERDIP
TJMAX = 150°C, JA = 100°C

OBSOLETE PACKAGE

Consider the N or SW Packages for Alternate Source

10134fd
LT1013/LT1014
Order Information
LEAD FREE FINISH

TAPE AND REEL

PART MARKING

PACKAGE DESCRIPTION

TEMPERATURE RANGE

LT1013DS8#PBF

LT1013DS8#TRPBF

1013

8-Lead Plastic SO

0°C to 70°C

LT1013IS8#PBF

LT1013IS8#TRPBF

1013I

8-Lead Plastic SO

–40°C to 85°C

LT1013ACN8#PBF

LT1013ACN8#TRPBF

LT1013ACN8

8-Lead PDIP

0°C to 70°C

LT1013CN8#PBF

LT1013CN8#TRPBF

LT1013CN8

8-Lead PDIP

0°C to 70°C

LT1013DN8#PBF

LT1013DN8#TRPBF

LT1013DN8

8-Lead PDIP

0°C to 70°C

LT1013IN8#PBF

LT1013IN8#TRPBF

LT1013IN8

8-Lead PDIP

–40°C to 85°C

LT1014DSW#PBF

LT1014DSW#TRPBF

LT1014DSW

16-Lead Plastic SO

0°C to 70°C

LT1014ISW#PBF

LT1014ISW#TRPBF

LT1014ISW

16-Lead Plastic SO

–40°C to 85°C

LT1014ACN#PBF

LT1014ACN#TRPBF

LT1014ACN

14-Lead PDIP

0°C to 70°C

LT1014CN#PBF

LT1014CN#TRPBF

LT1014CN

14-Lead PDIP

0°C to 70°C

LT1014DN#PBF

LT1014DN#TRPBF

LT1014DN

14-Lead PDIP

0°C to 70°C

LT1014IN#PBF

LT1014IN#TRPBF

LT1014IN

14-Lead PDIP

–40°C to 85°C

LT1013AMJ8#PBF

LT1013AMJ8#TRPBF

LT1013AMJ8

8-Lead CERDIP

–55°C to 125°C (OBSOLETE)

LT1013MJ8#PBF

LT1013MJ8#TRPBF

LT1013MJ8

8-Lead CERDIP

–55°C to 125°C (OBSOLETE)

LT1013ACJ8#PBF

LT1013ACJ8#TRPBF

LT1013ACJ8

8-Lead CERDIP

0°C to 70°C (OBSOLETE)

LT1013CJ8#PBF

LT1013CJ8#TRPBF

LT1013CJ8

8-Lead CERDIP

0°C to 70°C (OBSOLETE)

LT1013AMH#PBF

LT1013AMH#TRPBF

LT1013AMH

8-Lead TO-5 Metal Can

–55°C to 125°C (OBSOLETE)

LT1013MH#PBF

LT1013MH#TRPBF

LT1013MH

8-Lead TO-5 Metal Can

–55°C to 125°C (OBSOLETE)

LT1013ACH#PBF

LT1013ACH#TRPBF

LT1013ACH

8-Lead TO-5 Metal Can

0°C to 70°C (OBSOLETE)

LT1013CH#PBF

LT1013CH#TRPBF

LT1013CH

8-Lead TO-5 Metal Can

0°C to 70°C (OBSOLETE)

LT1014AMJ#PBF

LT1014AMJ#TRPBF

LT1014AMJ

14-Lead CERDIP

–55°C to 125°C (OBSOLETE)

LT1014MJ#PBF

LT1014MJ#TRPBF

LT1014MJ

14-Lead CERDIP

–55°C to 125°C (OBSOLETE)

LT1014ACJ#PBF

LT1014ACJ#TRPBF

LT1014ACJ

14-Lead CERDIP

0°C to 70°C (OBSOLETE)

LT1014CJ#PBF

LT1014CJ#TRPBF

LT1014CJ

14-Lead CERDIP

0°C to 70°C (OBSOLETE)

Consult LTC Marketing for parts specified with wider operating temperature ranges.
Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

10134fd
LT1013/LT1014
Electrical Characteristics
	

TA = 25°C. VS = ±15V, VCM = 0V unless otherwise noted.

SYMBOL

PARAMETER

CONDITIONS

VOS

Input Offset Voltage

LT1013AM/AC
LT1014AM/AC
MIN
TYP
MAX

LT1013C/D/I/M
LT1014C/D/I/M
MIN
TYP
MAX

40
50

60
60
200

LT1013
LT1014
LT1013D/I, LT1014D/I

150
180

Long-Term Input Offset Voltage
Stability

0.4

ISO

Input Offset Current

0.15

0.8

IB

Input Bias Current

12

20

en

Input Noise Voltage

0.1Hz to 10Hz

en

Input Noise Voltage Density

fO = 10Hz
fO = 1000Hz

Input Noise Current Density

fO = 10Hz

300
300
800

0.5

UNITS
µV
µV
µV
µV/Mo.

0.2

1.5

15

30

nA
nA

0.55

0.55

24
22

24
22

nV/√Hz
nV/√Hz

AVOL

0.07

pA/√Hz

Input Resistance – Differential
(Note 2)
	
Common Mode

in

100

400
5

70

300
4

MΩ
GΩ

Large-Signal Voltage Gain

1.5
0.8

8.0
2.5

1.2
0.5

7.0
2.0

V/µV
V/µV

13.5
–15.0

13.8
–15.3

13.5
–15.0

13.8
–15.3

VO = ± 10V, RL = 2k
VO = ±10V, RL = 600Ω

Input Voltage Range

0.07

µVP-P

V
V

CMRR

Common Mode Rejection Ratio

VCM = 13.5V, –15.0V

100

117

97

114

dB

PSRR

Power Supply Rejection Ratio

VS = ±2V to ±18V

103

120

100

117

dB

Channel Separation

VO = ±10V, RL = 2k

123

140

120

137

dB

Output Voltage Swing

RL = 2k

±13

±14

±12.5

±14

V

0.2

0.4

0.2

0.4

V/µs

VOUT

Slew Rate
IS

Supply Current

Per Amplifier

0.35

0.50

0.35

0.55

mA

LT1013AM/AC
LT1014AM/AC
MIN
TYP
MAX

LT1013C/D/I/M
LT1014C/D/I/M
MIN
TYP
MAX

UNITS

60
70

250
280

90
90
250

450
450
950

µV
µV
µV

TA = 25°C. VS+ = 5V, VS– = 0V, VOUT = 1.4V, VCM = 0V unless otherwise noted
SYMBOL

PARAMETER

CONDITIONS

VOS

Input Offset Voltage

LT1013
LT1014
LT1013D/I, LT1014D/I

IOS

Input Offset Current

0.2

1.3

0.3

2.0

nA

IB

Input Bias Current

15

35

18

50

nA

AVOL

Large-Signal Voltage Gain

VO = 5mV to 4V, RL = 500Ω

Input Voltage Range
VOUT

IS

Output Voltage Swing

Supply Current

1.0
3.5

Output Low, No Load
Output Low, 600Ω to Ground
Output Low, ISINK = 1mA
Output High, No Load
Output High, 600Ω to
Ground
Per Amplifier

4.0
3.4

1.0

3.8
– 0.3

V/µV

3.5
0

15
5
220
4.4
4.0

25
10
350

0.31

0.45

3.8
– 0.3

V
V

4.0
3.4

15
5
220
4.4
4.0

25
10
350

mV
mV
mV
V
V

0.32

0.50

mA

10134fd
LT1013/LT1014
Electrical Characteristics

	
The l denotes the specifications which apply over the temperature range
– 55°C ≤ TA ≤ 125°C. VS = ±15V, VCM = 0V unless otherwise noted.
SYMBOL PARAMETER
VOS

Input Offset Voltage

Input Offset Voltage Drift

CONDITIONS

MIN

LT1013AM
TYP MAX

LT1013M/LT1014M
MIN TYP MAX

UNITS

80

300

90

350

110

550

µV

l

80
120
250

450
450
900

90
150
300

480
480
960

100
200
400

750
750
1500

µV
µV
µV

(Note 3)

l

0.4

2.0

0.4

2.0

0.5

2.5

µV/°C

VS = 5V, 0V; VO = 1.4V

l
l

0.3
0.6

2.5
6.0

0.3
0.7

2.8
7.0

0.4
0.9

5.0
10.0

nA
nA

VS = 5V, 0V; VO = 1.4V

l
l

15
20

30
80

15
25

30
90

18
28

45
120

nA
nA

VS = 5V, 0V; VO = 1.4V
– 55°C ≤ TA ≤ 100°C
VCM = 0.1V, TA = 125°C
VCM = 0V, TA = 125°C

Input Offset Current

IB

Input Bias Current

AVOL

Large-Signal Voltage Gain

VO = ±10V, RL = 2k

l

0.5

2.0

CMRR

Common Mode Rejection

VCM = 13.0V, –14.9V

l

97

PSRR

Power Supply Rejection
Ratio

VS = ±2V to ±18V

l

100

VOUT

Output Voltage Swing

RL = 2k
VS = 5V, 0V
RL = 600Ω to Ground
Output Low
Output High

l

l
l

Supply Current
Per Amplifier

LT1014AM
TYP MAX

l

IOS

IS

MIN

VS = 5V, 0V; VO = 1.4V

l
l

0.4

2.0

0.25

2.0

V/µV

114

96

114

94

113

dB

117

100

117

97

116

dB

±12

±13.8

±12

±13.8

3.2

6
3.8

15

3.2

6
3.8

15

0.38
0.34

0.60
0.55

0.38
0.34

0.60
0.55

±11.5 ±13.8

3.1

V

6
3.8

18

mV
V

0.38
0.34

0.7
0.65

mA
mA

10134fd
LT1013/LT1014
Electrical Characteristics

	
The l denotes the specifications which apply over the temperature range
–40°C ≤ TA ≤ 85°C for LT1013I, LT1014I, 0°C ≤ TA ≤ 70°C for LT1013C, LT1013D, LT1014C, LT1014D. VS = ±15V, VCM = 0V unless
otherwise noted.

SYMBOL PARAMETER
VOS

Input Offset Voltage

Average Input Offset
Voltage Drift

LT1013AC
MIN TYP MAX

CONDITIONS
LT1013D/I, LT1014D/I
VS = 5V, 0V; VO = 1.4V
LT1013D/I, LT1014D/I
VS = 5V, 0V; VO = 1.4V
(Note 3)
LT1013D/I, LT1014D/I

LT1014AC
MIN TYP MAX

55

240

65

270

75

350

85

LT1013C/D/I
LT1014C/D/I
MIN TYP MAX

380

UNITS

80
230
110

l

400
1000
570

µV
µV
µV

280

l
l
l

1200

µV

l
l

0.3

2.0

0.3

2.0

0.4
0.7

2.5
5.0

µV/°C
µV/°C

l
l

0.2
0.4

1.5
3.5

0.2
0.4

1.7
4.0

0.3
0.5

2.8
6.0

nA
nA

l
l

13
18

25
55

13
20

25
60

16
24

38
90

nA
nA

IOS

Input Offset Current

IB

Input Bias Current

AVOL

Large-Signal Voltage Gain

VO = ±10V, RL = 2k

l

1.0

5.0

1.0

5.0

0.7

4.0

V/µV

CMRR

Common Mode Rejection
Ratio

VCM = 13.0V, –15.0V

l

98

116

98

116

94

113

dB

PSRR

Power Supply Rejection
Ratio

VS = ±2V to ±18V

l

101

119

101

119

97

116

dB

VOUT

Output Voltage Swing

RL = 2k
VS = 5V, 0V; RL = 600Ω
Output Low
Output High

l ±12.5 ±13.9

IS

Supply Current per Amplifier

VS = 5V, 0V; VO = 1.4V
VS = 5V, 0V; VO = 1.4V

VS = 5V, 0V; VO = 1.4V

Note 1: Stresses beyond those listed under Absolute Maximum Ratings
may cause permanent damage to the device. Exposure to any Absolute
Rating condition for extended periods may affect device reliability
and lifetime.

l
l
l
l

±12.5 ±13.9

6
3.9

13

0.36
0.32

3.3

0.55
0.50

3.3

±12.0 ±13.9

6
3.9

13

0.36
0.32

0.55
0.50

3.2

V

6
3.9

13

mV
V

0.37
0.34

0.60
0.55

mA
mA

Note 2: This parameter is guaranteed by design and is not tested. Typical
parameters are defined as the 60% yield of parameter distributions of
individual amplifiers; i.e., out of 100 LT1014s (or 100 LT1013s) typically
240 op amps (or 120 ) will be better than the indicated specification.
Note 3: This parameter is not 100% tested.

10134fd
LT1013/LT1014
Typical Performance Characteristics
Offset Voltage Drift with
Temperature of Representative
Units

0

–100

5
VS = 5V, 0V, –55°C TO 125°C
VS = ±15V, 0V, –55°C TO 125°C

1

VS = 5V, 0V, 25°C
0.1
RS

VS = ±15V, 0V, 25°C

RS

–200
–25

50
25
0
75
TEMPERATURE (°C)

100

0.01

125

1k

LT1014

1

LT1013 CERDIP (J) PACKAGE

–

0

100

0.1Hz to 10Hz Noise

VS = 5V, 0V

VS = ±15V

60
40
20

10

100

1k
10k
FREQUENCY (Hz)

100k

TA = 25 C
VS = 2V TO 18V

100
NEGATIVE
SUPPLY

80
60
40

VS = ±15V + 1VP-P SINE WAVE
TA = 25°C

20
0
0.1

1M

POSITIVE
SUPPLY

1

10

100 1k
10k
FREQUENCY (Hz)

1013/14 TPC04

TA = 25°C
VS = ±2V TO ±18V

160

NUMBER OF UNITS

VOLTAGE NOISE

30

1

10
100
FREQUENCY (Hz)

140
120
100
80
60
40

1/f CORNER 2Hz

20

1k
1013/14 TPC07

0

10

Supply Current vs Temperature

VS = ±15V
TA = 25°C
328 UNITS TESTED
FROM THREE RUNS

180

CURRENT NOISE

8

460

200

100

6
4
TIME (SECONDS)

1013/14 TPC06

10Hz Voltage Noise
Distribution

300

2

0

1M

1013/14 TPC05

Noise Spectrum
1000

100k

SUPPLY CURRENT PER AMPLIFIER (µA)

80

5

NOISE VOLTAGE (200nV/DIV)

TA = 25°C

1
3
4
2
TIME AFTER POWER ON (MINUTES)

0

1013/14 TPC03

Power Supply Rejection Ratio
vs Frequency
POWER SUPPLY REJECTION RATIO (dB)

COMMON MODE REJECTION RATIO (dB)

LT1013 METAL CAN (H) PACKAGE
2

120

120

VOLTAGE NOISE DENSITY (nV/√Hz)
CURRENT NOISE DENSITY (fA/√Hz)

3

1013/14 TPC02

Common Mode Rejection Ratio
vs Frequency

10

+

VS = ±15V
TA = 25°C

4

3k 10k 30k 100k 300k 1M 3M 10M
BALANCED SOURCE RESISTANCE (Ω)

1013/14 TPC01

0

CHANGE IN OFFSET VOLTAGE (µV)

INPUT OFFSET VOLTAGE (mV)

100

–50

Warm-Up Drift

10

VS = ±15V

200

INPUT OFFSET VOLTAGE (µV)

Offset Voltage vs Balanced
Source Resistance

10

20
40
50
30
VOLTAGE NOISE DENSITY (nV/√Hz)

60

1013/14 TPC08

420

380

VS = ±15V

340

VS = 5V, 0V

300

260
–50

–25

50
25
0
75
TEMPERATURE (°C)

100

125

1013/14 TPC09

10134fd
LT1013/LT1014
Typical Performance Characteristics

4

10

3

5

2

0

VS = 5V, 0V

VS = ±15V

1

–5

0

–10

–1

0

–5

–25
–10
–15
–20
INPUT BIAS CURRENT (nA)

–15
–30

1.0

–30

VCM = 0V

0.6

0.4
VS = 5V, 0V

VS

=±

V

2.5

0.2

–20
VS = 5V, 0V
–15

.5V

V S = ±2

VS = ±15V

–10
–5

VS = ±15V
0
–50

–25

50
25
0
75
TEMPERATURE (°C)

100

125

0
–50 –25

50
25
75
0
TEMPERATURE (°C)

100

125

1013/14 TPC12

1013/14 TPC11

Output Saturation vs Sink
Current vs Temperature

Small-Signal Transient
Response, VS = ± 15V

Large-Signal Transient
Response, VS = ± 15V

V+ = 5V TO 30V
V – = 0V
ISINK = 10mA

1
ISINK = 5mA

5V/DIV

20mV/DIV

SATURATION VOLTAGE (V)

VCM = 0V

–25

0.8

1013/14 TPC10

10

Input Bias Current
vs Temperature

INPUT BIAS CURRENT (nA)

15

TA = 25°C

INPUT OFFSET CURRENT (nA)

5

Input Offset Current
vs Temperature
COMMON MODE INPUT VOLTAGE, VS = ±15V (V)

COMMON MODE INPUT VOLTAGE, VS = +5V, 0V (V)

Input Bias Current
vs Common Mode Voltage

ISINK = 1mA

0.1

ISINK = 100µA
ISINK = 10µA

AV = +1	

ISINK = 0
0.01
–50

–25

0
25
50
75
TEMPERATURE (°C)

100

2µs/DIV	

AV = +1	

1013/14 TPC14

50µs/DIV	

1013/14 TPC15

125

1013/14 TPC13

Large-Signal Transient
Response, VS = 5V, 0V

Small-Signal Transient
Response, VS = 5V, 0V

Large-Signal Transient
Response, VS = 5V, 0V

4V
100mV

4V

2V

2V

0V

50mV

0V

0
AV = +1	
20µs/DIV	
RL = 600Ω TO GROUND
INPUT = 0V TO 100mV PULSE

1013/14 TPC16

AV = +1	
10µs/DIV	
RL = 4.7k TO 5V
INPUT = 0V TO 4V PULSE

1013/14 TPC17

AV = +1	
10µs/DIV	
NO LOAD
INPUT = 0V TO 4V PULSE

1013/14 TPC18

10134fd
LT1013/LT1014
typical performance characteristics
Output Short-Circuit Current
vs Time
VS = ±15V

–55°C

TA = –55°C, VS = ±15V

25°C

20

125°C

0
125°C

–20

TA = –55°C, VS = 5V, 0V
TA = 25°C, VS = 5V, 0V

1M
TA = 125°C, VS = 5V, 0V

25°C

–30

–55°C

1
2
0
3
TIME FROM OUTPUT SHORT TO GROUND (MINUTES)

100k
100

1k
LOAD RESISTANCE TO GROUND (Ω)

80
TA = 25°C
VCM = 0V
100
CL = 100pF

140

180

5V, 0V

200
–10
0.1

0.3

1
3
FREQUENCY (MHz)

10
1013/14 TPC22

CHANNEL SEPARATION (dB)

VOLTAGE GAIN (dB)

±15V

5V, 0V

40

0
–20
0.01 0.1

10k

1

10 100 1k 10k 100k 1M 10M
FREQUENCY (Hz)
1013/14 TPC21

160

PHASE SHIFT (DEGREES)

120

160
0

VS = ±15V

Channel Separation
vs Frequency

±15V
GAIN

VS = 5V, 0V

60

1013/14 TPC20

Gain, Phase vs Frequency

10

80

VO = 20mV TO 3.5V
WITH VS = 5V, 0V

1013/14 TPC19

PHASE

100

20

VO = ±10V WITH VS = ±15V

–40

20

TA = 25°C
CL = 100pF

120

TA = 125°C, VS = ±15V

10

–10

Voltage Gain vs Frequency
140

TA = 25°C, VS = ±15V

VOLTAGE GAIN (dB)

30

Voltage Gain vs Load Resistance
10M

VOLTAGE GAIN (V/V)

SHORT-CIRCUIT CURRENT (mA)
SINKING
SOURCING

40

VS = ±15V
TA = 25°C
VIN = 20Vp-p to 5kHz
RL = 2k

140
LIMITED BY
THERMAL
INTERACTION

120

RS = 1kΩ

100

LIMITED BY
PIN TO PIN
CAPACITANCE

80

60

RS = 100Ω

10

100

10k
1k
FREQUENCY (Hz)

100k

1M

1013/14 TPC23

applications information
Single Supply Operation
The LT1013/LT1014 are fully specified for single supply
operation, i.e., when the negative supply is 0V. Input
common mode range includes ground; the output swings
within a few millivolts of ground. Single supply operation,
however, can create special difficulties, both at the input
and at the output. The LT1013/LT1014 have specific circuitry
which addresses these problems.
At the input, the driving signal can fall below 0V—inadvertently or on a transient basis. If the input is more
than a few hundred millivolts below ground, two distinct

problems can occur on previous single supply designs,
such as the LM124, LM158, OP-20, OP-21, OP-220,
OP‑221, OP‑420:
a) When the input is more than a diode drop below
ground, unlimited current will flow from the substrate
(V – terminal) to the input. This can destroy the unit. On
the LT1013/LT1014, the 400Ω resistors, in series with the
input (see Schematic Diagram), protect the devices even
when the input is 5V below ground.
10134fd
LT1013/LT1014
Applications Information
b) When the input is more than 400mV below ground
(at 25°C), the input stage saturates (transistors Q3 and
Q4) and phase reversal occurs at the output. This can
cause lock-up in servo systems. Due to a unique phase
reversal protection circuitry (Q21, Q22, Q27, Q28), the
LT1013/LT1014’s outputs do not reverse, as illustrated
below, even when the inputs are at –1.5V.
There is one circumstance, however, under which the phase
reversal protection circuitry does not function: when the
other op amp on the LT1013, or one specific amplifier of
the other three on the LT1014, is driven hard into negative
saturation at the output.
Phase reversal protection does not work on amplifier:
A when D’s output is in negative saturation. B’s and C’s
outputs have no effect.
B when C’s output is in negative saturation. A’s and D’s
outputs have no effect.
C when B’s output is in negative saturation. A’s and D’s
outputs have no effect.

D when A’s output is negative saturation. B’s and C’s
outputs have no effect.
At the output, the aforementioned single supply designs
either cannot swing to within 600mV of ground (OP-20)
or cannot sink more than a few microamperes while swinging to ground (LM124, LM158). The LT1013/LT1014’s
all-NPN output stage maintains its low output resistance and
high gain characteristics until the output is saturated.
In dual supply operations, the output stage is crossover
distortion-free.
Comparator Applications
The single supply operation of the LT1013/LT1014 lends
itself to its use as a precision comparator with TTL compatible output:
In systems using both op amps and comparators, the
LT1013/LT1014 can perform multiple duties; for example,
on the LT1014, two of the devices can be used as op amps
and the other two as comparators.

Voltage Follower with Input Exceeding the Negative Common Mode Range
4V

4V

2V

2V

0V

2V

4V

0V

0V

6VP-P INPUT, – 1.5V TO 4.5V

LM324, LM358, OP-20
EXHIBIT OUTPUT PHASE
REVERSAL

LT1013/LT1014
NO PHASE REVERSAL

INPUT (mV)	

0

– 100

Comparator Fall Response Time
to 10mV, 5mV, 2mV Overdrives
OUTPUT (V)

OUTPUT (V)

4

	

Comparator Rise Response Time
10mV, 5mV, 2mV Overdrives

INPUT (mV)	

2

0

VS = 5V, 0V

50µs/DIV

100

	

2

4

0

0

VS = 5V, 0V

50µs/DIV
10134fd

10
LT1013/LT1014
Applications Information
Low Supply Operation

Test Circuit for Offset Voltage and
Offset Drift with Temperature

The minimum supply voltage for proper operation of the
LT1013/LT1014 is 3.4V (three Ni-Cad batteries). Typical
supply current at this voltage is 290µA, therefore power
dissipation is only one milliwatt per amplifier.

50k*
15V

–
100Ω*

VO

Noise Testing

+
50k*

For applications information on noise testing and calculations, please see the LT1007 or LT1008 data sheet.

LT1013
OR LT1014
–15V

*RESISTOR MUST HAVE LOW
THERMOELECTRIC POTENTIAL.
**THIS CIRCUIT IS ALSO USED AS THE BURN-IN
CONFIGURATION, WITH SUPPLY VOLTAGES
INCREASED TO ±20V.
VO = 1000VOS
LT1013/14 F06

Typical Applications
5V Single Supply Dual Instrumentation Amplifier

50MHz Thermal RMS-to-DC Converter
100k*

+INPUT
5V

LT1014
3

10k*

5

6

300Ω*

5V
4
LT1014

5

8

1/2 LT1013

–

7

4

OUTPUT A
R2

3
R1

7

–INPUT

18

+INPUT

10k*

+

1µF

1µF

1µF
100k*

6

2

10k*

+

10k

1

+

30k*

–

30k*

6

5

0.01

–

2

5V

1/2 LTC1043

7

15

11

10k*

1/2 LTC1043

0.01

LT1014

10k

12

INPUT
300mV–
10VRMS
BRN

T1A
GRN

1µF

T1B

RED

T2B
GRN

BRN

T2A

2

11
1µF

1µF
10

RED

3

8

14

+

0.01

–

13

20k
FULLSCALE
TRIM

10k

1/2 LT1013

–

1

OUTPUT B
R2

12

+
LT1014

9

+

–

8

0V TO 4V
OUTPUT

–INPUT
10k*

13

14
16
0.01

10k*

R1
OFFSET = 150mV
R2 + 1.
GAIN =
R1
CMRR = 120dB.
COMMON MODE RANGE IS 0V TO 5V.
1013/14 TA04

2% ACCURACY, DC–50MHz.
100:1 CREST FACTOR CAPABILITY.
* 0.1% RESISTOR.
T1–T2 = YELLOW SPRINGS INST. CO. THERMISTOR COMPOSITE #44018.
ENCLOSE T1 AND T2 IN STYROFOAM.
7.5mW DISSIPATION.

1013/14 TA03

10134fd

11
LT1013/LT1014
typical Applications
Hot-Wire Anemometer
+15V

2k

6

0.01µF
33k

A2
LT1014

13

Q2
2k

7

150k*

12

12k

LT1004-1.2
6, 8

3.3k

500k

–15V
REMOVE LAMP'S GLASS ENVELOPE FROM 328 LAMP.
A1 SERVOS #328 LAMP TO CONSTANT TEMPERATURE.
A2-A3 FURNISH LINEAR OUTPUT vs FLOW RATE.
*1% RESISTOR.

9

10

A4
LT1014

10M
RESPONSE
TIME
ADJUST

2M
FULLSCALE
FLOW

4

1k
ZERO
FLOW

11
–15V

1µF

14

0V TO 10V =
0 TO 1000 FEET/MINUTE

100k

1µF
A3
LT1014

8

+

+

2k*

1

1000pF

–15V

–

A1
LT1014

3

5

15V
4

–

2
#328

150k*

+

27Ω
1W

13
Q4

Q1

–

220

10k*

Q1–Q4
CA3046

Q3

+

Q6
TIP12O OR
EQUIVALENT

TIE CA3046 PIN 13
Q5 TO –15V. DO NOT USE Q5

–

500pF

1013/14 TA05

Liquid Flowmeter
3.2k**

1M*
2

10M
RESPONSE
TIME

1

A1
LT1014

6

5

A2
LT1014

100k

+

3

6.25k**

6.98k*
5k
FLOW
CALIB

1M*
T1

7

1µF

1M*

6.25k**

–

15Ω
DALE
HL-25

1M*

+

3.2k*

–

15V

1k*

T2

15V
4.7k

1N4148

100k
2N4391

300pF

0.1

2.7k
–15V

9

10

8

A3
LT1014

+

383k*

–

LT1004-1.2

100k

100k

12

13

+

OUTPUT
0Hz TO 300Hz =
0 TO 300ML/MIN

15V
4
14

A4
LT1014

–

11
–15V

T1
FLOW

15Ω HEATER RESISTOR

T2
FLOW

PIPE

* 1% FILM RESISTOR.
** SUPPLIED WITH YSI THERMISTOR NETWORK.
T1, T2 YSI THERMISTOR NETWORK = #44201.
FLOW IN PIPE IS INVERSELY PROPORTIONAL TO
RESISTANCE OF T1–T2 TEMPERATURE DIFFERENCE.
A1–A2 PROVIDE GAIN. A3–A4 PROVIDE LINEARIZED
1013/14 TA06
FREQUENCY OUTPUT.
10134fd

12
LT1013/LT1014
typical Applications
5V Powered Precision Instrumentation Amplifier

–

TO
INPUT
CABLE SHIELDS

8

LT1014

9

10

+
200k*

10k

†

5V
13

RG (TYP 2k)
1µF

12

200k*
10k

5

10k*

7

LT1014

14

OUTPUT

11

10k*

+

20k

+INPUT

–

6

†

4

LT1014

+

3

–

20k

–INPUT

10k*

10k*

1

LT1014

+

†

–

2

5V

†

* 1% FILM RESISTOR. MATCH 10k's 0.05%
400,000
GAIN EQUATION: A =
+ 1.
RG
†
FOR HIGH SOURCE IMPEDANCES,
USE 2N2222 AS DIODES.

5V

1013/14 TA07

9V Battery Powered Strain Gauge Signal Conditioner
15k

9V 47µF
9V

0.068

LT1014

+

3

1N4148

4

–

2

11

22M
4.7k

1

330Ω
0.01

100k

2N2219
TO A/D RATIO
REFERENCE
100k

15

499

12
499

6

9
9

5
TO A/D
CONVERT COMMAND

10

13

LT1014

14

TO A/D

100k
LT1014

8

+

0.068

7

14
7 74C221

3k

5

LT1014

–

0.068

6

+

9V

15k

1

350Ω
STRAIN GAUGE
BRIDGE
13

+

9V

–

100k

–

100k

SAMPLED OPERATION GIVES LOW AVERAGE OPERATING CURRENT ≈ 650µA.
4.7k-0.01µF RC PROTECTS STRAIN BRIDGE FROM LONG TERM DRIFTS DUE TO
1013/14 TA08
HIGH ∆V/∆T STEPS.
10134fd

13
LT1013/LT1014
typical Applications
5V Powered Motor Speed Controller
No Tachometer Required
5V

+

100k

47

1k
82Ω

3

A1
1/2 LT1013

1

2k

Q3
2N5023

Q1
2N3904

+

0.47

330k

–

2

1N4001
1M

2k

6.8M

0.068

1/4 CD4016

A2
1/2 LT1013
4

+

7

–

5V
8

0.068

0.47

5

1N4001

1N4148

3.3M

6

1N4148

2k

MOTOR = CANON–FN30–R13N1B.
A1 DUTY CYCLE MODULATES MOTOR.
A2 SAMPLES MOTORS BACK EMF.

Q2

EIN
0V TO 3V

1013/14 TA09

5V Powered EEPROM Pulse Generator
5V
DALE
#TC-10-04 1N4148
2N2222

10Ω

5V

20k

0.05
0.1

2N2222
2N2222

4.7k
820

1N4148

1N4148

0.33
1N4148

270Ω

100k

100Ω

820

4.7M
1

1N4148

0.005

6

8
LT1013

5

+

MEETS ALL VPP PROGRAMMING SPECS WITH NO TRIMS AND
RUNS OFF 5V SUPPLY—NO EXTERNAL HIGH VOLTAGE SUPPLY REQUIRED.
SUITABLE FOR BATTERY POWERED USE (600µA QUIESCENT CURRENT).
*1% METAL FILM.

3

+

TTL INPUT

LT1013

–

1N4148

–

2

120k

4

7

1k

2N2222
OUTPUT
100k*

LT1004
1.2V

21V
600µs RC

6.19k
1013/14 TA10

10134fd

14
LT1013/LT1014
typical Applications
Methane Concentration Detector with Linearized Output
5V
1
* 1% METAL FILM RESISTOR
SENSOR = CALECTRO-GC ELECTRONICS #J4-807 OR FIGARO #813

14
LT1004
1.2V

0.033
390k*

9

10

–
+

A3
LT1014

100k*

8

13

11

12

5

8

LTC1044

–5V
10µF

1N4148 (4)

CD4016

4
10µF

+

2

–
+

74C04
A4
LT1014

14
74C04

5V

3

+

470pF

470pF
10k

5V
1

SENSOR

CA3046

Q1

Q2

2

3

–
+

–5V

Q4

5V
4
A1
LT1014

1

1N4148
OUTPUT
500ppm TO 10,000ppm
50Hz TO 1kHz

Q3

1000pF

2k

100k*

6

5

–
+

A2
LT1014

7

2k

150k*

12k*

1013/14 TA11

Low Power 9V to 5V Converter
9V INPUT

L

2N2905

1N4148

10k

+

5V
20mA

2N5434

47

390k
1%

HP5082-2811
VD = 200mV
9V

10k

100µA

8

+

7

LT1013

5

LT1013

–
4

1

+

5k
1000ppm
TRIM

74C04

14

–

2.7k

–5V

9V

6
47k

L = DALE TE-3/Q3/TA.
SHORT CIRCUIT CURRENT = 30mA.
≈ 75% EFFICIENCY.
SWITCHING PREREGULATOR CONTROLS DROP ACROSS FET TO 200mV.

2

3

120k
1%

330k
LT1004
1.2V

1013/14 TA12

10134fd

15
LT1013/LT1014
typical Applications
5V Powered 4mA to 20mA Current Loop Transmitter†
5V
Q3
2N2905
820Ω

10µF

T1

Q1
2N2905

+

68Ω

1N4002 (4)

10µF

+

74C04
(6)

0.002

0.33

100k
5V
8
A1
1/2 LT1013

1

+

100pF

5V

10k*
20mA
TRIM

4k*

3

4

†
12-BIT ACCURACY.
* 1% FILM.
T1 = PICO-31080.

10k*

2

10k*

1k
4mA
TRIM

4.3k

100Ω*

80k*
7

–

–

2k

A2
1/2 LT1013

LT1004
1.2V

+

Q4
2N2222

Q2
2N2905

820Ω

10k

10k

6

4mA TO 20mA OUT
TO LOAD
2.2kΩ MAXIMUM

5

INPUT
0V TO 4V

1013/14 TA13

Fully Floating Modification to 4mA-20mA Current Loop†
T1

A1
1/2 LT1013

100k

A2
1/2 LT1013

1
68k*

5

+

7

–

TO INVERTER
DRIVE

6

–

8

3

10µF

0.1Ω

+

5V

2
4mA TO 20mA OUT
FULLY FLOATING

+
4

4k*
10k*
5V

301Ω*
1k
20mA
TRIM

4.3k
LT1004
1.2V

1N4002 (4)

†

8-BIT ACCURACY.

2k
4mA
TRIM
INPUT
0V TO 4V

1013/14 TA14

10134fd

16
LT1013/LT1014
typical Applications
5V Powered, Linearized Platinum RTD Signal Conditioner
2M

200k

3

2N4250
(2)

A2
1/4 LT1014

1

150Ω

10

5k
LINEARITY

+

Q2

2

–

Q1

200k

8

OUTPUT
0V TO 4V =
0°C TO 400°C
±0.05°C

GAIN TRIM
1k

2M

3.01k

SENSOR

ROSEMOUNT
118MF

7

–

1.5k

A4
1/4 LT1014

+

167Ω

–

9
499Ω

A3
1/4 LT1014

6

8.25k
50k
ZERO
TRIM

5

2.4k
5%

+

274k

5V
4

–

A1
1/4 LT1014

+

14

5V

11

13

12

LT1009
2.5V

10k
250k

ALL RESISTORS ARE TRW-MAR-6 METAL FILM.
RATIO MATCH 2M–200K ± 0.01%.
TRIM SEQUENCE:
SET SENSOR TO 0° VALUE.
ADJUST ZERO FOR 0V OUT.
SET SENSOR TO 100°C VALUE.
ADJUST GAIN FOR 1.000V OUT.
SET SENSOR TO 400°C.
ADJUST LINEARITY FOR 4.000V OUT, REPEAT AS REQUIRED.

1013/14 TA15

Strain Gauge Bridge Signal Conditioner
5V
220

5V
8

4

8
4

LT1004
1.2V

301k

39k

100k

3
E

V ≈ –VREF
C

5

10k
ZERO
TRIM

VREF

LTC1044

+

100µF

+

2

2

1/2 LT1013

+

1

–

0.1

1.2VOUT REFERENCE
TO A/D CONVERTER
FOR RATIOMETRIC OPERATION
1mA MAXIMUM LOAD

D
PRESSURE
TRANSDUCER
350Ω

100µF

A

0.33

5

6

+
1/2 LT1013

7

OUTPUT

–

0V TO 3.5V
0psi TO 350psi

0.047
2k GAIN TRIM

* 1% FILM RESISTOR.
PRESSURE TRANSDUCER–BLH/DHF–350.
CIRCLED LETTER IS PIN NUMBER.

46k*

100Ω*
1013/14 TA16

10134fd

17
LT1013/LT1014
typical Applications
LVDT Signal Conditioner
7
0.005

30k

0.005

30k

5

6

8
FREQUENCY =
1.5kHz

5V

+

7

LT1013

11
LVDT

YEL-BLK

RDBLUE

–

BLUE

–5V

GRN
10k

4.7k

YEL-RD

1N914

BLK
12

LT1004
1.2V

2N4338
1.2k

10µF

100k

14

0.01
13

7.5k

100k
PHASE
TRIM

+

LVDT = SCHAEVITZ E-100.

3

+

1µF
2

1/2 LTC1043

100k
2

3

LT1013

1

–

200k

5V

+

8

7

LT1011

–

1

OUT
0V TO 3V

1k
10k

TO PIN 16, LT1043

4

1013/14 TA17

Triple Op Amp Instrumentation Amplifier with Bias Current Cancellation

1/4 LT1014

R2

1

–

2

+

3

R1
R3

2R
10M

RG

1/4 LT1014

7

+

5

+INPUT

R1

–

6

13

1/4 LT1014

8

OUTPUT

GAIN = 1 + 2R1 R3
RG R2

4

1/4 LT1014

–

2R
10M

+

12

10
R3

V+

R
5M

R2

+

9

–

–INPUT

11

10pF

14
INPUT BIAS CURRENT TYPICALLY 1nA
INPUT RESISTANCE = 3R = 15M FOR VALUES SHOWN
NEGATIVE COMMON MODE LIMIT = V – + IB 2R + 30mV
= 150mV for V – = 0V
IB = 12nA

100k
V–

18

1013/14 TA18

10134fd
LT1013/LT1014
typical Applications
Low Dropout Regulator for 6V Battery
12 OUTPUT
1N914
3

8

LTC1044
2

+
VBATT
6V

4

+

100Ω

10

5

10

2N2219

100k

100Ω

0.01Ω

1M
1.2k
6

5

–

3

LT1004
1.2V

2

A2
LT1013

5V OUTPUT

0.003µF

8

+

1

LT1013

–

120k

4

7

+

1N914

30k

0.009V DROPOUT AT 5mA OUTPUT.
0.108V DROPOUT AT 100mA OUTPUT.
IQUIESCENT = 850µA.

50k
OUTPUT ADJUST
1013/14 TA19

Voltage Controlled Current Source with Ground Referred Input and Output
5V
0V TO 2V

3

+

8

1/2 LT1013

2

–

1

4

0.68µF

1k

1/2 LTC1043
7

8

11
1µF

100Ω

1µF
12

13

14
IOUT = 0mA TO 15mA

VIN
100Ω
FOR BIPOLAR OPERATION,
RUN BOTH ICs FROM
A BIPOLAR SUPPLY.
IOUT =

1013/14 TA20

10134fd

19
LT1013/LT1014
typical Applications
6V to ±15V Regulating Converter
6V
1µF
15pF

10k

Q1

CLK 2

CLK 1 74C74

100kHz INPUT

D1

Q1

D2

2N3906
–16V

74C00

Q2

L1
1MHY

Q2

+

+V

10k

10k

+

2N3904

1

10
4

1.4M

0.005

2

LT1013

10k

15pF

15VOUT

16V
8

10
16V

22k

2N4391

+

22k

–

+

6V

200k
VOUT
ADJ

6V

3

100k

–16V
LT1004
1.2V

82k

–

7

6

LT1013
5

+
L1 = 24-104 AIE VERNITRON
0.005

= 1N4148

1M

2N5114

±5mA OUTPUT
75% EFFICIENCY

–15VOUT

1013/14 TA21

Low Power, 5V Driven, Temperature Compensated Crystal Oscillator (TXCO)†
5V
3

2

5V

1/2 LT1013

–

1
OSCILLATOR SUPPLY
STABILIZATION

4

1M*

5M*

RT1
3.2k

2.16k*

RT2
6.25k

RT

1M*
4.22M*

TEMPERATURE
COMPENSATION
GENERATOR

YSI 44201

8

3.4k*

4.3k

LT1009
2.5V

+

1M*

6

5

20k

–
1/2 LT1013

+

5V

7

100k

3.5MHz
XTAL

OSCILLATOR
MV-209

100Ω

100k

560k

4.22M*
* 1% FILM
3.5MHz XTAL = AT CUT – 35°20'
MOUNT RT NEAR XTAL
3mA POWER DRAIN
† THERMISTOR-AMPLIFIER-VARACTOR NETWORK GENERATES
A TEMPERATURE COEFFICIENT OPPOSITE THE CRYSTAL TO
MINIMIZE OVERALL OSCILLATOR DRIFT

2N2222
510pF
510pF

3.5MHz OUTPUT
0.03ppm/°C, 0°C TO 70°C
680Ω

1013/14 TA22

10134fd

20
LT1013/LT1014
schematic diagram
1/2 LT1013, 1/4 LT1014
V+

9k

9k

1.6k
Q13

Q6

Q5

1.6k

1.6k

Q16

100Ω

1k

800Ω

Q14

Q36
Q15

Q32

Q30

Q35

Q3
Q4
Q25

–

Q1

+
IN

Q26
2.5pF

400Ω

IN

Q33

21pF

3.9k

Q27

18Ω

2.4k

Q38
Q21

OUTPUT
Q2

Q41

14k

Q28

400Ω
Q22

Q39

Q18
Q12

Q29

Q10

4pF

Q31

Q11
Q9
75pF

10pF
Q7

Q8
5k

5k

Q40

Q19
2k

V–

J1

Q37

Q34

100pF
Q17
2k

42k

600Ω

Q23 Q24
Q20
1.3k

2k

30Ω
1013/14 SD

10134fd

21
LT1013/LT1014
Package Description
H Package
8-Lead TO-5 Metal Can (.200 Inch PCD)
(Reference LTC DWG # 05-08-1320)

.040
(1.016)
MAX

.335 – .370
(8.509 – 9.398)
DIA
.305 – .335
(7.747 – 8.509)

.027 – .045
(0.686 – 1.143)

45

PIN 1

.028 – .034
(0.711 – 0.864)
.050
(1.270)
MAX

SEATING
PLANE

.200
(5.080)
TYP

.165 – .185
(4.191 – 4.699)
GAUGE
PLANE

.010 – .045*
(0.254 – 1.143)

REFERENCE
PLANE
.500 – .750
(12.700 – 19.050)

.016 – .021**
(0.406 – 0.533)

.110 – .160
(2.794 – 4.064)
INSULATING
STANDOFF
*LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE
AND THE SEATING PLANE
.016 – .024
**FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS
(0.406 – 0.610)
H8(TO-5) 0.200 PCD 0204

J8 Package
8-Lead CERDIP (Narrow .300 Inch, Hermetic)
(Reference LTC DWG # 05-08-1110)

.300 BSC
(7.62 BSC)

CORNER LEADS OPTION
(4 PLCS)

.023 – .045
(0.584 – 1.143)
HALF LEAD
OPTION
.045 – .068
(1.143 – 1.650)
FULL LEAD
OPTION

.015 – .060
(0.381 – 1.524)

.008 – .018
(0.203 – 0.457)

.405
(10.287)
MAX

.005
(0.127)
MIN

.200
(5.080)
MAX

8

6

7

5

.025
(0.635)
RAD TYP

.220 – .310
(5.588 – 7.874)

0 – 15
1

NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE
OR TIN PLATE LEADS

.045 – .065
(1.143 – 1.651)
.014 – .026
(0.360 – 0.660)

.100
(2.54)
BSC

2

3

4

.125
3.175
MIN
J8 0801

J Package
14-Lead CERDIP (Narrow .300 Inch, Hermetic)
(Reference LTC DWG # 05-08-1110)
.200
(5.080)
MAX

.300 BSC
(7.62 BSC)

.015 – .060
(0.381 – 1.524)

.008 – .018
(0.203 – 0.457)

.005
(0.127)
MIN

.785
(19.939)
MAX
14

13

12

11

10

9

8

.220 – .310
(5.588 – 7.874)

.025
(0.635)
RAD TYP

0 – 15
1
.045 – .065
(1.143 – 1.651)

NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE
OR TIN PLATE LEADS

.014 – .026
(0.360 – 0.660)

.100
(2.54)
BSC

2

3

4

5

6

7

J14 0801

.125
(3.175)
MIN

OBSOLETE PACKAGES
10134fd

22
LT1013/LT1014
Package Description
N8 Package
8-Lead PDIP (Narrow .300 Inch)
(Reference LTC DWG # 05-08-1510)

.400*
(10.160)
MAX
8

7

6

5

1

2

3

4

.255 ± .015*
(6.477 ± 0.381)

.300 – .325
(7.620 – 8.255)

.065
(1.651)
TYP

.008 – .015
(0.203 – 0.381)

(

+.035
.325 –.015
8.255

+0.889
–0.381

.130 ± .005
(3.302 ± 0.127)

.045 – .065
(1.143 – 1.651)

)

.120
(3.048) .020
MIN (0.508)
MIN
.018 ± .003

.100
(2.54)
BSC

(0.457 ± 0.076)

N8 1002

NOTE:
1. DIMENSIONS ARE

INCHES
MILLIMETERS
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)

N Package
14-Lead PDIP (Narrow .300 Inch)
(Reference LTC DWG # 05-08-1510)

.770*
(19.558)
MAX
14

13

12

11

10

9

8

1

2

3

4

5

6

7

.255 ± .015*
(6.477 ± 0.381)

.300 – .325
(7.620 – 8.255)

.008 – .015
(0.203 – 0.381)

(

+.035
.325 –.015

+0.889
8.255
–0.381

NOTE:
1. DIMENSIONS ARE

)

.045 – .065
(1.143 – 1.651)

.130 ± .005
(3.302 ± 0.127)
.020
(0.508)
MIN

.065
(1.651)
TYP
.120
(3.048)
MIN

.005
(0.127) .100
MIN (2.54)
BSC

.018 ± .003
(0.457 ± 0.076)
N14 1103

INCHES
MILLIMETERS
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)

10134fd

23
LT1013/LT1014
Package Description
S6 Package
6-Lead Plastic TSOT-23

(Reference LTC DWG # 05-08-1636)

.050 BSC

.245
MIN

.045 ±.005

.189 – .197
(4.801 – 5.004)
NOTE 3

.160 ±.005

7

8
.010 – .020
45°
(0.254 – 0.508)
.008 – .010
(0.203 – 0.254)

.030 ±.005
TYP

0°– 8° TYP

.016 – .050
(0.406 – 1.270)

5

6

RECOMMENDED SOLDER PAD LAYOUT
.053 – .069
(1.346 – 1.752)

.150 – .157
(3.810 – 3.988)
NOTE 3

.228 – .244
(5.791 – 6.197)

.004 – .010
(0.101 – 0.254)
1

NOTE:
1. DIMENSIONS IN

3

2

4

.050
(1.270)
BSC

.014 – .019
(0.355 – 0.483)
TYP

INCHES
(MILLIMETERS)
2. DRAWING NOT TO SCALE
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006 (0.15mm)

SO8 0303

SW Package
XX-Lead Plastic Small Outline (Wide .300 Inch)
(Reference LTC DWG # 05-08-1620)

.050 BSC .045 ±.005

.030 ±.005
TYP
N

.005
(0.127)
RAD MIN

.009 – .013
(0.229 – 0.330)

NOTE:
1. DIMENSIONS IN

16

15

14

13

12

11

10

9

N
1
0° – 8° TYP

NOTE 3

.325 ±.005

.420
MIN

.291 – .299
(7.391 – 7.595)
NOTE 4
.010 – .029
45°
(0.254 – 0.737)

.398 – .413
(10.109 – 10.490)
NOTE 4

2

3

N/2

RECOMMENDED SOLDER PAD LAYOUT

.093 – .104
(2.362 – 2.642)

.394 – .419
(10.007 – 10.643)

NOTE 3

.037 – .045
(0.940 – 1.143)

.016 – .050
(0.406 – 1.270)

N/2

1

.050
(1.270)
BSC

.014 – .019
INCHES
(0.356 – 0.482)
(MILLIMETERS)
TYP
2. DRAWING NOT TO SCALE
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS
4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006 (0.15mm)

2

3

4

5

6

7

8

.004 – .012
(0.102 – 0.305)
S16 (WIDE) 0502

10134fd

24
LT1013/LT1014
Revision History

(Revision history begins at Rev D)

REV

DATE

DESCRIPTION

PAGE NUMBER

D

05/10

Updates to Typical Application “Hot-Wire Anemometer”

12

Updated Related Parts

26

10134fd

Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

25
LT1013/LT1014
Typical Application
Step-Up Switching Regulator for 6V Battery
INPUT
6V

22k

2N2222

2.2

OUTPUT
15V
50mA

+
LT1004
1.2V

L1
1MHY

200k
5

220pF
1N5821
1M

220k

3

+

0.001
2

LT1013

1

300Ω

130k

+
2N5262

6

+

8
LT1013

–

7

4

100
5.6k

–

0.1

5.6k

LT = AIE–VERNITRON 24–104
78% EFFICIENCY

1013/14 TA23

Related Parts
PART NUMBER

DESCRIPTION

COMMENTS

LT2078/LT2079

Dual/Quad 50µA Single Supply Precision Amplifier

50µA Max IS, 70µV Max VOS

LT2178/LT2179

Dual/Quad 17µA Single Supply Precision Amplifier

17µA Max IS, 70µV Max VOS

LTC6081/LTC6082

Dual/Quad 400µA Precision Rail-to-Rail Amplifier

VS = 2.7V to 6V, 400µA Max IS, 70µV VOS 0.8µV/°C TCVOS

LTC6078/LTC6079

Dual/Quad 72µA Precision Rail-to-Rail Amplifier

VS = 2.7V to 6V, 72µA Max IS, 25µV VOS 0.7µV/°C TCVOS

10134fd

26 Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900 ● FAX: (408) 434-0507

●

www.linear.com

LT 0510 REV D • PRINTED IN USA

 LINEAR TECHNOLOGY CORPORATION 1990

More Related Content

What's hot

Thesmdcodebook 130408190652-phpapp02
Thesmdcodebook 130408190652-phpapp02Thesmdcodebook 130408190652-phpapp02
Thesmdcodebook 130408190652-phpapp02Andy Jah
 
Original Mosfet SM4024N SM4024NSU 4024 TO-252-3 New
Original Mosfet SM4024N SM4024NSU 4024 TO-252-3 NewOriginal Mosfet SM4024N SM4024NSU 4024 TO-252-3 New
Original Mosfet SM4024N SM4024NSU 4024 TO-252-3 NewAUTHELECTRONIC
 
110 MSPS/140 MSPS Analog Interface
110 MSPS/140 MSPS Analog Interface110 MSPS/140 MSPS Analog Interface
110 MSPS/140 MSPS Analog InterfaceHua Duy Tien
 
Adjustable Ground Plane Antenna
Adjustable Ground Plane Antenna Adjustable Ground Plane Antenna
Adjustable Ground Plane Antenna Gayan Sameera
 
スパイス・パークの全リスト(2013年5月度)
スパイス・パークの全リスト(2013年5月度)スパイス・パークの全リスト(2013年5月度)
スパイス・パークの全リスト(2013年5月度)spicepark
 
Schneider electric code
Schneider electric codeSchneider electric code
Schneider electric codeElica Electric
 
AUG2012 SPICE PARK(ALL LIST) by SPICE PARK
AUG2012 SPICE PARK(ALL LIST) by SPICE PARKAUG2012 SPICE PARK(ALL LIST) by SPICE PARK
AUG2012 SPICE PARK(ALL LIST) by SPICE PARKTsuyoshi Horigome
 

What's hot (14)

Thesmdcodebook 130408190652-phpapp02
Thesmdcodebook 130408190652-phpapp02Thesmdcodebook 130408190652-phpapp02
Thesmdcodebook 130408190652-phpapp02
 
Original Mosfet SM4024N SM4024NSU 4024 TO-252-3 New
Original Mosfet SM4024N SM4024NSU 4024 TO-252-3 NewOriginal Mosfet SM4024N SM4024NSU 4024 TO-252-3 New
Original Mosfet SM4024N SM4024NSU 4024 TO-252-3 New
 
110 MSPS/140 MSPS Analog Interface
110 MSPS/140 MSPS Analog Interface110 MSPS/140 MSPS Analog Interface
110 MSPS/140 MSPS Analog Interface
 
854 f wiring
854 f wiring854 f wiring
854 f wiring
 
Datasheet
DatasheetDatasheet
Datasheet
 
Tda8947 j
Tda8947 jTda8947 j
Tda8947 j
 
Nlc co y-na60_02
Nlc co y-na60_02Nlc co y-na60_02
Nlc co y-na60_02
 
Adjustable Ground Plane Antenna
Adjustable Ground Plane Antenna Adjustable Ground Plane Antenna
Adjustable Ground Plane Antenna
 
スパイス・パークの全リスト(2013年5月度)
スパイス・パークの全リスト(2013年5月度)スパイス・パークの全リスト(2013年5月度)
スパイス・パークの全リスト(2013年5月度)
 
Schneider electric code
Schneider electric codeSchneider electric code
Schneider electric code
 
1258 onf bfv
1258   onf bfv1258   onf bfv
1258 onf bfv
 
Conductive Level Switches From Nivelco
Conductive Level Switches From NivelcoConductive Level Switches From Nivelco
Conductive Level Switches From Nivelco
 
AUG2012 SPICE PARK(ALL LIST) by SPICE PARK
AUG2012 SPICE PARK(ALL LIST) by SPICE PARKAUG2012 SPICE PARK(ALL LIST) by SPICE PARK
AUG2012 SPICE PARK(ALL LIST) by SPICE PARK
 
My designs
My designsMy designs
My designs
 

Similar to 3 channel thermocouple thermometer

3 channelthermocouplethermometer-131119093245-phpapp02
3 channelthermocouplethermometer-131119093245-phpapp023 channelthermocouplethermometer-131119093245-phpapp02
3 channelthermocouplethermometer-131119093245-phpapp02Satnam Wadwal
 
Ionnic Switching Systems
Ionnic Switching SystemsIonnic Switching Systems
Ionnic Switching SystemsRimsky Cheng
 
Lm 311 datasheet
Lm 311 datasheetLm 311 datasheet
Lm 311 datasheetAndy Medina
 
Advanced motions controls 20a14
Advanced motions controls 20a14Advanced motions controls 20a14
Advanced motions controls 20a14Electromate
 
Control & Isolation 5
Control & Isolation 5Control & Isolation 5
Control & Isolation 5Andy Birdsall
 
Lm741
Lm741Lm741
Lm741Jack
 
Advanced motion controls se10a8
Advanced motion controls se10a8Advanced motion controls se10a8
Advanced motion controls se10a8Electromate
 
Advanced motion controls 25a20
Advanced motion controls 25a20Advanced motion controls 25a20
Advanced motion controls 25a20Electromate
 
SETfuse All Product and Application ENG Version Jun 2 2015
SETfuse All Product and Application ENG Version Jun 2 2015SETfuse All Product and Application ENG Version Jun 2 2015
SETfuse All Product and Application ENG Version Jun 2 2015Apple Yu
 
Advanced motion controls se10a40
Advanced motion controls se10a40Advanced motion controls se10a40
Advanced motion controls se10a40Electromate
 
Advanced motion controls 50a20
Advanced motion controls 50a20Advanced motion controls 50a20
Advanced motion controls 50a20Electromate
 
Advanced motion controls be40a20
Advanced motion controls be40a20Advanced motion controls be40a20
Advanced motion controls be40a20Electromate
 
Advanced motion controls be40a8
Advanced motion controls be40a8Advanced motion controls be40a8
Advanced motion controls be40a8Electromate
 
Original Opto EL817 EL817C EL 817 SOP-4 New
Original Opto EL817 EL817C EL 817 SOP-4 NewOriginal Opto EL817 EL817C EL 817 SOP-4 New
Original Opto EL817 EL817C EL 817 SOP-4 NewAUTHELECTRONIC
 
Advanced motion controls s100a40ac
Advanced motion controls s100a40acAdvanced motion controls s100a40ac
Advanced motion controls s100a40acElectromate
 
Advanced motion controls be25a20
Advanced motion controls be25a20Advanced motion controls be25a20
Advanced motion controls be25a20Electromate
 
Update 5 models in SPICE PARK(APR2018)
Update 5 models in SPICE PARK(APR2018)Update 5 models in SPICE PARK(APR2018)
Update 5 models in SPICE PARK(APR2018)Tsuyoshi Horigome
 

Similar to 3 channel thermocouple thermometer (20)

3 channelthermocouplethermometer-131119093245-phpapp02
3 channelthermocouplethermometer-131119093245-phpapp023 channelthermocouplethermometer-131119093245-phpapp02
3 channelthermocouplethermometer-131119093245-phpapp02
 
Ionnic Switching Systems
Ionnic Switching SystemsIonnic Switching Systems
Ionnic Switching Systems
 
Lm 311 datasheet
Lm 311 datasheetLm 311 datasheet
Lm 311 datasheet
 
Advanced motions controls 20a14
Advanced motions controls 20a14Advanced motions controls 20a14
Advanced motions controls 20a14
 
Control & Isolation 5
Control & Isolation 5Control & Isolation 5
Control & Isolation 5
 
Mp8126 r1.03 1384507
Mp8126 r1.03 1384507Mp8126 r1.03 1384507
Mp8126 r1.03 1384507
 
Lm741
Lm741Lm741
Lm741
 
Advanced motion controls se10a8
Advanced motion controls se10a8Advanced motion controls se10a8
Advanced motion controls se10a8
 
Advanced motion controls 25a20
Advanced motion controls 25a20Advanced motion controls 25a20
Advanced motion controls 25a20
 
SETfuse All Product and Application ENG Version Jun 2 2015
SETfuse All Product and Application ENG Version Jun 2 2015SETfuse All Product and Application ENG Version Jun 2 2015
SETfuse All Product and Application ENG Version Jun 2 2015
 
Advanced motion controls se10a40
Advanced motion controls se10a40Advanced motion controls se10a40
Advanced motion controls se10a40
 
Advanced motion controls 50a20
Advanced motion controls 50a20Advanced motion controls 50a20
Advanced motion controls 50a20
 
Tlv3491 556299
Tlv3491 556299Tlv3491 556299
Tlv3491 556299
 
Advanced motion controls be40a20
Advanced motion controls be40a20Advanced motion controls be40a20
Advanced motion controls be40a20
 
Advanced motion controls be40a8
Advanced motion controls be40a8Advanced motion controls be40a8
Advanced motion controls be40a8
 
330cl
 330cl 330cl
330cl
 
Original Opto EL817 EL817C EL 817 SOP-4 New
Original Opto EL817 EL817C EL 817 SOP-4 NewOriginal Opto EL817 EL817C EL 817 SOP-4 New
Original Opto EL817 EL817C EL 817 SOP-4 New
 
Advanced motion controls s100a40ac
Advanced motion controls s100a40acAdvanced motion controls s100a40ac
Advanced motion controls s100a40ac
 
Advanced motion controls be25a20
Advanced motion controls be25a20Advanced motion controls be25a20
Advanced motion controls be25a20
 
Update 5 models in SPICE PARK(APR2018)
Update 5 models in SPICE PARK(APR2018)Update 5 models in SPICE PARK(APR2018)
Update 5 models in SPICE PARK(APR2018)
 

Recently uploaded

Ten Organizational Design Models to align structure and operations to busines...
Ten Organizational Design Models to align structure and operations to busines...Ten Organizational Design Models to align structure and operations to busines...
Ten Organizational Design Models to align structure and operations to busines...Seta Wicaksana
 
8447779800, Low rate Call girls in Saket Delhi NCR
8447779800, Low rate Call girls in Saket Delhi NCR8447779800, Low rate Call girls in Saket Delhi NCR
8447779800, Low rate Call girls in Saket Delhi NCRashishs7044
 
8447779800, Low rate Call girls in Tughlakabad Delhi NCR
8447779800, Low rate Call girls in Tughlakabad Delhi NCR8447779800, Low rate Call girls in Tughlakabad Delhi NCR
8447779800, Low rate Call girls in Tughlakabad Delhi NCRashishs7044
 
Investment in The Coconut Industry by Nancy Cheruiyot
Investment in The Coconut Industry by Nancy CheruiyotInvestment in The Coconut Industry by Nancy Cheruiyot
Investment in The Coconut Industry by Nancy Cheruiyotictsugar
 
Call Girls Miyapur 7001305949 all area service COD available Any Time
Call Girls Miyapur 7001305949 all area service COD available Any TimeCall Girls Miyapur 7001305949 all area service COD available Any Time
Call Girls Miyapur 7001305949 all area service COD available Any Timedelhimodelshub1
 
Marketing Management Business Plan_My Sweet Creations
Marketing Management Business Plan_My Sweet CreationsMarketing Management Business Plan_My Sweet Creations
Marketing Management Business Plan_My Sweet Creationsnakalysalcedo61
 
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu MenzaYouth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu Menzaictsugar
 
BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,noida100girls
 
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfIntro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfpollardmorgan
 
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...lizamodels9
 
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...lizamodels9
 
Call Girls In Radisson Blu Hotel New Delhi Paschim Vihar ❤️8860477959 Escorts...
Call Girls In Radisson Blu Hotel New Delhi Paschim Vihar ❤️8860477959 Escorts...Call Girls In Radisson Blu Hotel New Delhi Paschim Vihar ❤️8860477959 Escorts...
Call Girls In Radisson Blu Hotel New Delhi Paschim Vihar ❤️8860477959 Escorts...lizamodels9
 
Future Of Sample Report 2024 | Redacted Version
Future Of Sample Report 2024 | Redacted VersionFuture Of Sample Report 2024 | Redacted Version
Future Of Sample Report 2024 | Redacted VersionMintel Group
 
NewBase 19 April 2024 Energy News issue - 1717 by Khaled Al Awadi.pdf
NewBase  19 April  2024  Energy News issue - 1717 by Khaled Al Awadi.pdfNewBase  19 April  2024  Energy News issue - 1717 by Khaled Al Awadi.pdf
NewBase 19 April 2024 Energy News issue - 1717 by Khaled Al Awadi.pdfKhaled Al Awadi
 
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607dollysharma2066
 
Marketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent ChirchirMarketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent Chirchirictsugar
 
Case study on tata clothing brand zudio in detail
Case study on tata clothing brand zudio in detailCase study on tata clothing brand zudio in detail
Case study on tata clothing brand zudio in detailAriel592675
 
8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR
8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR
8447779800, Low rate Call girls in Shivaji Enclave Delhi NCRashishs7044
 
Lean: From Theory to Practice — One City’s (and Library’s) Lean Story… Abridged
Lean: From Theory to Practice — One City’s (and Library’s) Lean Story… AbridgedLean: From Theory to Practice — One City’s (and Library’s) Lean Story… Abridged
Lean: From Theory to Practice — One City’s (and Library’s) Lean Story… AbridgedKaiNexus
 
Buy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail AccountsBuy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail AccountsBuy Verified Accounts
 

Recently uploaded (20)

Ten Organizational Design Models to align structure and operations to busines...
Ten Organizational Design Models to align structure and operations to busines...Ten Organizational Design Models to align structure and operations to busines...
Ten Organizational Design Models to align structure and operations to busines...
 
8447779800, Low rate Call girls in Saket Delhi NCR
8447779800, Low rate Call girls in Saket Delhi NCR8447779800, Low rate Call girls in Saket Delhi NCR
8447779800, Low rate Call girls in Saket Delhi NCR
 
8447779800, Low rate Call girls in Tughlakabad Delhi NCR
8447779800, Low rate Call girls in Tughlakabad Delhi NCR8447779800, Low rate Call girls in Tughlakabad Delhi NCR
8447779800, Low rate Call girls in Tughlakabad Delhi NCR
 
Investment in The Coconut Industry by Nancy Cheruiyot
Investment in The Coconut Industry by Nancy CheruiyotInvestment in The Coconut Industry by Nancy Cheruiyot
Investment in The Coconut Industry by Nancy Cheruiyot
 
Call Girls Miyapur 7001305949 all area service COD available Any Time
Call Girls Miyapur 7001305949 all area service COD available Any TimeCall Girls Miyapur 7001305949 all area service COD available Any Time
Call Girls Miyapur 7001305949 all area service COD available Any Time
 
Marketing Management Business Plan_My Sweet Creations
Marketing Management Business Plan_My Sweet CreationsMarketing Management Business Plan_My Sweet Creations
Marketing Management Business Plan_My Sweet Creations
 
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu MenzaYouth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
 
BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
 
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfIntro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
 
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...
 
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
 
Call Girls In Radisson Blu Hotel New Delhi Paschim Vihar ❤️8860477959 Escorts...
Call Girls In Radisson Blu Hotel New Delhi Paschim Vihar ❤️8860477959 Escorts...Call Girls In Radisson Blu Hotel New Delhi Paschim Vihar ❤️8860477959 Escorts...
Call Girls In Radisson Blu Hotel New Delhi Paschim Vihar ❤️8860477959 Escorts...
 
Future Of Sample Report 2024 | Redacted Version
Future Of Sample Report 2024 | Redacted VersionFuture Of Sample Report 2024 | Redacted Version
Future Of Sample Report 2024 | Redacted Version
 
NewBase 19 April 2024 Energy News issue - 1717 by Khaled Al Awadi.pdf
NewBase  19 April  2024  Energy News issue - 1717 by Khaled Al Awadi.pdfNewBase  19 April  2024  Energy News issue - 1717 by Khaled Al Awadi.pdf
NewBase 19 April 2024 Energy News issue - 1717 by Khaled Al Awadi.pdf
 
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
 
Marketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent ChirchirMarketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent Chirchir
 
Case study on tata clothing brand zudio in detail
Case study on tata clothing brand zudio in detailCase study on tata clothing brand zudio in detail
Case study on tata clothing brand zudio in detail
 
8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR
8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR
8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR
 
Lean: From Theory to Practice — One City’s (and Library’s) Lean Story… Abridged
Lean: From Theory to Practice — One City’s (and Library’s) Lean Story… AbridgedLean: From Theory to Practice — One City’s (and Library’s) Lean Story… Abridged
Lean: From Theory to Practice — One City’s (and Library’s) Lean Story… Abridged
 
Buy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail AccountsBuy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail Accounts
 

3 channel thermocouple thermometer

  • 1. LT1013/LT1014 Quad Precision Op Amp (LT1014) Dual Precision Op Amp (LT1013) Description Features Single Supply Operation Input Voltage Range Extends to Ground Output Swings to Ground While Sinking Current n Pin Compatible to 1458 and 324 with Precision Specs n Guaranteed Offset Voltage: 150µV Max n Guaranteed Low Drift: 2µV/°C Max n Guaranteed Offset Current: 0.8nA Max n Guaranteed High Gain 5mA Load Current: 1.5 Million Min 17mA Load Current: 0.8 Million Min n Guaranteed Low Supply Current: 500µA Max n Low Voltage Noise, 0.1Hz to 10Hz: 0.55µV P-P n Low Current Noise—Better than 0P-07, 0.07pA/√Hz n Applications Both the LT1013 and LT1014 can be operated off a single 5V power supply: input common mode range includes ground; the output can also swing to within a few millivolts of ground. Crossover distortion, so apparent on previous single-supply designs, is eliminated. A full set of specifications is provided with ± 15V and single 5V supplies. L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. Typical Application LT1014 Distribution of Offset Voltage 3-Channel Thermocouple Thermometer 4k 13 LT1014 2 3 260Ω 4 LT1014 1 OUTPUT A 10mV/°C 11 1.8k 1M 5 LT1014 + USE TYPE K THERMOCOUPLES. ALL RESISTORS = 1% FILM. COLD JUNCTION COMPENSATION ACCURATE TO ±1°C FROM 0°C TO 60°C. USE 4TH AMPLIFIER FOR OUTPUT C. 300 200 100 6 – 4k VS = ±15V TA = 25°C 425 LT1014s (1700 OP AMPS) 500 TESTED FROM THREE RUNS 400 J PACKAGE 600 NUMBER OF UNITS + YSI 44007 5k AT 25°C 1684Ω 12 – 14 700 5V + LT1004 1.2V 1M 299k – 5V The LT1014’s low offset voltage of 50µV, drift of 0.3µV/°C, offset current of 0.15nA, gain of 8 million, common mode rejection of 117dB and power supply rejection of 120dB qualify it as four truly precision operational amplifiers. Particularly important is the low offset voltage, since no offset null terminals are provided in the quad configuration. Although supply current is only 350µA per amplifier, a new output stage design sources and sinks in excess of 20mA of load current, while retaining high voltage gain. Similarly, the LT1013 is the first precision dual op amp in the 8-pin industry standard configuration, upgrading the performance of such popular devices as the MC1458/MC1558, LM158 and OP-221. The LT1013’s specifications are similar to (even somewhat better than) the LT1014’s. Battery-Powered Precision Instrumentation Strain Gauge Signal Conditioners Thermocouple Amplifiers Instrumentation Amplifiers n 4mA to 20mA Current Loop Transmitters n Multiple Limit Threshold Detection n Active Filters n Multiple Gain Blocks n 3k The LT ®1014 is the first precision quad operational amplifier which directly upgrades designs in the industry standard 14-pin DIP LM324/LM348/OP-11/4156 pin configuration. It is no longer necessary to compromise specifications, while saving board space and cost, as compared to single operational amplifiers. 7 OUTPUT B 10mV/°C 0 100 –300 –200 –100 0 200 INPUT OFFSET VOLTAGE (µV) 300 1013/14 TA02 10134fd
  • 2. LT1013/LT1014 Absolute Maximum Ratings (Note 1) Supply Voltage........................................................ ± 22V Differential Input Voltage........................................ ± 30V Input Voltage................ Equal to Positive Supply Voltage . ............. 5V Below Negative Supply Voltage Output Short-Circuit Duration........................... Indefinite Storage Temperature Range All Grades...........................................– 65°C to 150°C Lead Temperature (Soldering, 10 sec.).................. 300°C Operating Temperature Range LT1013AM/LT1013M/ LT1014AM/LT1014M..........................– 55 °C to 125°C LT1013AC/LT1013C/LT1013D LT1014AC/LT1014C/LT1014D................... 0°C to 70°C LT1013I/ LT1014I..................................– 40°C to 85°C Pin Configuration LT1013 LT1013 LT1013 TOP VIEW TOP VIEW 8 –IN A 2 7 OUTPUT B +IN A 3 + – 6 –IN B + – 7 5 +IN B OUTA +INB 3 + 6 V+ –INB 4 – 5 V+ OUTPUT A 1 –INA + V– 2 8 – +INA 1 TOP VIEW V+ OUTB V– 4 A B OUTPUT A 1 NOTE: THIS PIN CONFIGURATION DIFFERS FROM THE STANDARD 8-PIN DUAL-IN-LINE CONFIGURATION +IN A 3 + – 6 –IN B 4 5 +IN B TJMAX = 125°C, θJA = 55°C/W OBSOLETE PACKAGE OBSOLETE PACKAGE Consider the N or S8 Packages for Alternate Source LT1014 7 OUTPUT B B V–(CASE) H PACKAGE 8-LEAD TO-5 METAL CAN J8 PACKAGE 8-LEAD CERDIP TJMAX = 150°C, JA = 100°C TJMAX = 150°C, θJA = 190°C/W A –IN A 2 – + N8 PACKAGE 8-LEAD PDIP TJMAX = 150°C, JA = 130°C S8 PACKAGE 8-LEAD PLASTIC SO 8 Consider the N or S8 (Not N8) Packages for Alternate Source LT1014 TOP VIEW 15 –IN D +IN A 3 14 +IN D V+ 4 13 V – +IN B 5 12 +IN C –IN B 6 11 –IN C OUTPUT B 7 10 OUTPUT C NC 8 9 SW PACKAGE 16-LEAD PLASTIC SO TJMAX = 150°C, θJA = 130°C/W NC 2 +IN A 3 V+ 4 +IN B 5 –IN B 6 OUTPUT B 7 – –IN A 2 –IN A A + 16 OUTPUT D 14 OUTPUT D 13 –IN D + OUTPUT A 1 1 – OUTPUT A TOP VIEW 12 +IN D D 11 V– + B – + 10 +IN C C – 9 –IN C 8 OUTPUT C N PACKAGE 14-LEAD PDIP TJMAX = 150°C, JA = 100°C J PACKAGE 14-LEAD CERDIP TJMAX = 150°C, JA = 100°C OBSOLETE PACKAGE Consider the N or SW Packages for Alternate Source 10134fd
  • 3. LT1013/LT1014 Order Information LEAD FREE FINISH TAPE AND REEL PART MARKING PACKAGE DESCRIPTION TEMPERATURE RANGE LT1013DS8#PBF LT1013DS8#TRPBF 1013 8-Lead Plastic SO 0°C to 70°C LT1013IS8#PBF LT1013IS8#TRPBF 1013I 8-Lead Plastic SO –40°C to 85°C LT1013ACN8#PBF LT1013ACN8#TRPBF LT1013ACN8 8-Lead PDIP 0°C to 70°C LT1013CN8#PBF LT1013CN8#TRPBF LT1013CN8 8-Lead PDIP 0°C to 70°C LT1013DN8#PBF LT1013DN8#TRPBF LT1013DN8 8-Lead PDIP 0°C to 70°C LT1013IN8#PBF LT1013IN8#TRPBF LT1013IN8 8-Lead PDIP –40°C to 85°C LT1014DSW#PBF LT1014DSW#TRPBF LT1014DSW 16-Lead Plastic SO 0°C to 70°C LT1014ISW#PBF LT1014ISW#TRPBF LT1014ISW 16-Lead Plastic SO –40°C to 85°C LT1014ACN#PBF LT1014ACN#TRPBF LT1014ACN 14-Lead PDIP 0°C to 70°C LT1014CN#PBF LT1014CN#TRPBF LT1014CN 14-Lead PDIP 0°C to 70°C LT1014DN#PBF LT1014DN#TRPBF LT1014DN 14-Lead PDIP 0°C to 70°C LT1014IN#PBF LT1014IN#TRPBF LT1014IN 14-Lead PDIP –40°C to 85°C LT1013AMJ8#PBF LT1013AMJ8#TRPBF LT1013AMJ8 8-Lead CERDIP –55°C to 125°C (OBSOLETE) LT1013MJ8#PBF LT1013MJ8#TRPBF LT1013MJ8 8-Lead CERDIP –55°C to 125°C (OBSOLETE) LT1013ACJ8#PBF LT1013ACJ8#TRPBF LT1013ACJ8 8-Lead CERDIP 0°C to 70°C (OBSOLETE) LT1013CJ8#PBF LT1013CJ8#TRPBF LT1013CJ8 8-Lead CERDIP 0°C to 70°C (OBSOLETE) LT1013AMH#PBF LT1013AMH#TRPBF LT1013AMH 8-Lead TO-5 Metal Can –55°C to 125°C (OBSOLETE) LT1013MH#PBF LT1013MH#TRPBF LT1013MH 8-Lead TO-5 Metal Can –55°C to 125°C (OBSOLETE) LT1013ACH#PBF LT1013ACH#TRPBF LT1013ACH 8-Lead TO-5 Metal Can 0°C to 70°C (OBSOLETE) LT1013CH#PBF LT1013CH#TRPBF LT1013CH 8-Lead TO-5 Metal Can 0°C to 70°C (OBSOLETE) LT1014AMJ#PBF LT1014AMJ#TRPBF LT1014AMJ 14-Lead CERDIP –55°C to 125°C (OBSOLETE) LT1014MJ#PBF LT1014MJ#TRPBF LT1014MJ 14-Lead CERDIP –55°C to 125°C (OBSOLETE) LT1014ACJ#PBF LT1014ACJ#TRPBF LT1014ACJ 14-Lead CERDIP 0°C to 70°C (OBSOLETE) LT1014CJ#PBF LT1014CJ#TRPBF LT1014CJ 14-Lead CERDIP 0°C to 70°C (OBSOLETE) Consult LTC Marketing for parts specified with wider operating temperature ranges. Consult LTC Marketing for information on non-standard lead based finish parts. For more information on lead free part marking, go to: http://www.linear.com/leadfree/ For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/ 10134fd
  • 4. LT1013/LT1014 Electrical Characteristics TA = 25°C. VS = ±15V, VCM = 0V unless otherwise noted. SYMBOL PARAMETER CONDITIONS VOS Input Offset Voltage LT1013AM/AC LT1014AM/AC MIN TYP MAX LT1013C/D/I/M LT1014C/D/I/M MIN TYP MAX 40 50 60 60 200 LT1013 LT1014 LT1013D/I, LT1014D/I 150 180 Long-Term Input Offset Voltage Stability 0.4 ISO Input Offset Current 0.15 0.8 IB Input Bias Current 12 20 en Input Noise Voltage 0.1Hz to 10Hz en Input Noise Voltage Density fO = 10Hz fO = 1000Hz Input Noise Current Density fO = 10Hz 300 300 800 0.5 UNITS µV µV µV µV/Mo. 0.2 1.5 15 30 nA nA 0.55 0.55 24 22 24 22 nV/√Hz nV/√Hz AVOL 0.07 pA/√Hz Input Resistance – Differential (Note 2) Common Mode in 100 400 5 70 300 4 MΩ GΩ Large-Signal Voltage Gain 1.5 0.8 8.0 2.5 1.2 0.5 7.0 2.0 V/µV V/µV 13.5 –15.0 13.8 –15.3 13.5 –15.0 13.8 –15.3 VO = ± 10V, RL = 2k VO = ±10V, RL = 600Ω Input Voltage Range 0.07 µVP-P V V CMRR Common Mode Rejection Ratio VCM = 13.5V, –15.0V 100 117 97 114 dB PSRR Power Supply Rejection Ratio VS = ±2V to ±18V 103 120 100 117 dB Channel Separation VO = ±10V, RL = 2k 123 140 120 137 dB Output Voltage Swing RL = 2k ±13 ±14 ±12.5 ±14 V 0.2 0.4 0.2 0.4 V/µs VOUT Slew Rate IS Supply Current Per Amplifier 0.35 0.50 0.35 0.55 mA LT1013AM/AC LT1014AM/AC MIN TYP MAX LT1013C/D/I/M LT1014C/D/I/M MIN TYP MAX UNITS 60 70 250 280 90 90 250 450 450 950 µV µV µV TA = 25°C. VS+ = 5V, VS– = 0V, VOUT = 1.4V, VCM = 0V unless otherwise noted SYMBOL PARAMETER CONDITIONS VOS Input Offset Voltage LT1013 LT1014 LT1013D/I, LT1014D/I IOS Input Offset Current 0.2 1.3 0.3 2.0 nA IB Input Bias Current 15 35 18 50 nA AVOL Large-Signal Voltage Gain VO = 5mV to 4V, RL = 500Ω Input Voltage Range VOUT IS Output Voltage Swing Supply Current 1.0 3.5 Output Low, No Load Output Low, 600Ω to Ground Output Low, ISINK = 1mA Output High, No Load Output High, 600Ω to Ground Per Amplifier 4.0 3.4 1.0 3.8 – 0.3 V/µV 3.5 0 15 5 220 4.4 4.0 25 10 350 0.31 0.45 3.8 – 0.3 V V 4.0 3.4 15 5 220 4.4 4.0 25 10 350 mV mV mV V V 0.32 0.50 mA 10134fd
  • 5. LT1013/LT1014 Electrical Characteristics The l denotes the specifications which apply over the temperature range – 55°C ≤ TA ≤ 125°C. VS = ±15V, VCM = 0V unless otherwise noted. SYMBOL PARAMETER VOS Input Offset Voltage Input Offset Voltage Drift CONDITIONS MIN LT1013AM TYP MAX LT1013M/LT1014M MIN TYP MAX UNITS 80 300 90 350 110 550 µV l 80 120 250 450 450 900 90 150 300 480 480 960 100 200 400 750 750 1500 µV µV µV (Note 3) l 0.4 2.0 0.4 2.0 0.5 2.5 µV/°C VS = 5V, 0V; VO = 1.4V l l 0.3 0.6 2.5 6.0 0.3 0.7 2.8 7.0 0.4 0.9 5.0 10.0 nA nA VS = 5V, 0V; VO = 1.4V l l 15 20 30 80 15 25 30 90 18 28 45 120 nA nA VS = 5V, 0V; VO = 1.4V – 55°C ≤ TA ≤ 100°C VCM = 0.1V, TA = 125°C VCM = 0V, TA = 125°C Input Offset Current IB Input Bias Current AVOL Large-Signal Voltage Gain VO = ±10V, RL = 2k l 0.5 2.0 CMRR Common Mode Rejection VCM = 13.0V, –14.9V l 97 PSRR Power Supply Rejection Ratio VS = ±2V to ±18V l 100 VOUT Output Voltage Swing RL = 2k VS = 5V, 0V RL = 600Ω to Ground Output Low Output High l l l Supply Current Per Amplifier LT1014AM TYP MAX l IOS IS MIN VS = 5V, 0V; VO = 1.4V l l 0.4 2.0 0.25 2.0 V/µV 114 96 114 94 113 dB 117 100 117 97 116 dB ±12 ±13.8 ±12 ±13.8 3.2 6 3.8 15 3.2 6 3.8 15 0.38 0.34 0.60 0.55 0.38 0.34 0.60 0.55 ±11.5 ±13.8 3.1 V 6 3.8 18 mV V 0.38 0.34 0.7 0.65 mA mA 10134fd
  • 6. LT1013/LT1014 Electrical Characteristics The l denotes the specifications which apply over the temperature range –40°C ≤ TA ≤ 85°C for LT1013I, LT1014I, 0°C ≤ TA ≤ 70°C for LT1013C, LT1013D, LT1014C, LT1014D. VS = ±15V, VCM = 0V unless otherwise noted. SYMBOL PARAMETER VOS Input Offset Voltage Average Input Offset Voltage Drift LT1013AC MIN TYP MAX CONDITIONS LT1013D/I, LT1014D/I VS = 5V, 0V; VO = 1.4V LT1013D/I, LT1014D/I VS = 5V, 0V; VO = 1.4V (Note 3) LT1013D/I, LT1014D/I LT1014AC MIN TYP MAX 55 240 65 270 75 350 85 LT1013C/D/I LT1014C/D/I MIN TYP MAX 380 UNITS 80 230 110 l 400 1000 570 µV µV µV 280 l l l 1200 µV l l 0.3 2.0 0.3 2.0 0.4 0.7 2.5 5.0 µV/°C µV/°C l l 0.2 0.4 1.5 3.5 0.2 0.4 1.7 4.0 0.3 0.5 2.8 6.0 nA nA l l 13 18 25 55 13 20 25 60 16 24 38 90 nA nA IOS Input Offset Current IB Input Bias Current AVOL Large-Signal Voltage Gain VO = ±10V, RL = 2k l 1.0 5.0 1.0 5.0 0.7 4.0 V/µV CMRR Common Mode Rejection Ratio VCM = 13.0V, –15.0V l 98 116 98 116 94 113 dB PSRR Power Supply Rejection Ratio VS = ±2V to ±18V l 101 119 101 119 97 116 dB VOUT Output Voltage Swing RL = 2k VS = 5V, 0V; RL = 600Ω Output Low Output High l ±12.5 ±13.9 IS Supply Current per Amplifier VS = 5V, 0V; VO = 1.4V VS = 5V, 0V; VO = 1.4V VS = 5V, 0V; VO = 1.4V Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Rating condition for extended periods may affect device reliability and lifetime. l l l l ±12.5 ±13.9 6 3.9 13 0.36 0.32 3.3 0.55 0.50 3.3 ±12.0 ±13.9 6 3.9 13 0.36 0.32 0.55 0.50 3.2 V 6 3.9 13 mV V 0.37 0.34 0.60 0.55 mA mA Note 2: This parameter is guaranteed by design and is not tested. Typical parameters are defined as the 60% yield of parameter distributions of individual amplifiers; i.e., out of 100 LT1014s (or 100 LT1013s) typically 240 op amps (or 120 ) will be better than the indicated specification. Note 3: This parameter is not 100% tested. 10134fd
  • 7. LT1013/LT1014 Typical Performance Characteristics Offset Voltage Drift with Temperature of Representative Units 0 –100 5 VS = 5V, 0V, –55°C TO 125°C VS = ±15V, 0V, –55°C TO 125°C 1 VS = 5V, 0V, 25°C 0.1 RS VS = ±15V, 0V, 25°C RS –200 –25 50 25 0 75 TEMPERATURE (°C) 100 0.01 125 1k LT1014 1 LT1013 CERDIP (J) PACKAGE – 0 100 0.1Hz to 10Hz Noise VS = 5V, 0V VS = ±15V 60 40 20 10 100 1k 10k FREQUENCY (Hz) 100k TA = 25 C VS = 2V TO 18V 100 NEGATIVE SUPPLY 80 60 40 VS = ±15V + 1VP-P SINE WAVE TA = 25°C 20 0 0.1 1M POSITIVE SUPPLY 1 10 100 1k 10k FREQUENCY (Hz) 1013/14 TPC04 TA = 25°C VS = ±2V TO ±18V 160 NUMBER OF UNITS VOLTAGE NOISE 30 1 10 100 FREQUENCY (Hz) 140 120 100 80 60 40 1/f CORNER 2Hz 20 1k 1013/14 TPC07 0 10 Supply Current vs Temperature VS = ±15V TA = 25°C 328 UNITS TESTED FROM THREE RUNS 180 CURRENT NOISE 8 460 200 100 6 4 TIME (SECONDS) 1013/14 TPC06 10Hz Voltage Noise Distribution 300 2 0 1M 1013/14 TPC05 Noise Spectrum 1000 100k SUPPLY CURRENT PER AMPLIFIER (µA) 80 5 NOISE VOLTAGE (200nV/DIV) TA = 25°C 1 3 4 2 TIME AFTER POWER ON (MINUTES) 0 1013/14 TPC03 Power Supply Rejection Ratio vs Frequency POWER SUPPLY REJECTION RATIO (dB) COMMON MODE REJECTION RATIO (dB) LT1013 METAL CAN (H) PACKAGE 2 120 120 VOLTAGE NOISE DENSITY (nV/√Hz) CURRENT NOISE DENSITY (fA/√Hz) 3 1013/14 TPC02 Common Mode Rejection Ratio vs Frequency 10 + VS = ±15V TA = 25°C 4 3k 10k 30k 100k 300k 1M 3M 10M BALANCED SOURCE RESISTANCE (Ω) 1013/14 TPC01 0 CHANGE IN OFFSET VOLTAGE (µV) INPUT OFFSET VOLTAGE (mV) 100 –50 Warm-Up Drift 10 VS = ±15V 200 INPUT OFFSET VOLTAGE (µV) Offset Voltage vs Balanced Source Resistance 10 20 40 50 30 VOLTAGE NOISE DENSITY (nV/√Hz) 60 1013/14 TPC08 420 380 VS = ±15V 340 VS = 5V, 0V 300 260 –50 –25 50 25 0 75 TEMPERATURE (°C) 100 125 1013/14 TPC09 10134fd
  • 8. LT1013/LT1014 Typical Performance Characteristics 4 10 3 5 2 0 VS = 5V, 0V VS = ±15V 1 –5 0 –10 –1 0 –5 –25 –10 –15 –20 INPUT BIAS CURRENT (nA) –15 –30 1.0 –30 VCM = 0V 0.6 0.4 VS = 5V, 0V VS =± V 2.5 0.2 –20 VS = 5V, 0V –15 .5V V S = ±2 VS = ±15V –10 –5 VS = ±15V 0 –50 –25 50 25 0 75 TEMPERATURE (°C) 100 125 0 –50 –25 50 25 75 0 TEMPERATURE (°C) 100 125 1013/14 TPC12 1013/14 TPC11 Output Saturation vs Sink Current vs Temperature Small-Signal Transient Response, VS = ± 15V Large-Signal Transient Response, VS = ± 15V V+ = 5V TO 30V V – = 0V ISINK = 10mA 1 ISINK = 5mA 5V/DIV 20mV/DIV SATURATION VOLTAGE (V) VCM = 0V –25 0.8 1013/14 TPC10 10 Input Bias Current vs Temperature INPUT BIAS CURRENT (nA) 15 TA = 25°C INPUT OFFSET CURRENT (nA) 5 Input Offset Current vs Temperature COMMON MODE INPUT VOLTAGE, VS = ±15V (V) COMMON MODE INPUT VOLTAGE, VS = +5V, 0V (V) Input Bias Current vs Common Mode Voltage ISINK = 1mA 0.1 ISINK = 100µA ISINK = 10µA AV = +1 ISINK = 0 0.01 –50 –25 0 25 50 75 TEMPERATURE (°C) 100 2µs/DIV AV = +1 1013/14 TPC14 50µs/DIV 1013/14 TPC15 125 1013/14 TPC13 Large-Signal Transient Response, VS = 5V, 0V Small-Signal Transient Response, VS = 5V, 0V Large-Signal Transient Response, VS = 5V, 0V 4V 100mV 4V 2V 2V 0V 50mV 0V 0 AV = +1 20µs/DIV RL = 600Ω TO GROUND INPUT = 0V TO 100mV PULSE 1013/14 TPC16 AV = +1 10µs/DIV RL = 4.7k TO 5V INPUT = 0V TO 4V PULSE 1013/14 TPC17 AV = +1 10µs/DIV NO LOAD INPUT = 0V TO 4V PULSE 1013/14 TPC18 10134fd
  • 9. LT1013/LT1014 typical performance characteristics Output Short-Circuit Current vs Time VS = ±15V –55°C TA = –55°C, VS = ±15V 25°C 20 125°C 0 125°C –20 TA = –55°C, VS = 5V, 0V TA = 25°C, VS = 5V, 0V 1M TA = 125°C, VS = 5V, 0V 25°C –30 –55°C 1 2 0 3 TIME FROM OUTPUT SHORT TO GROUND (MINUTES) 100k 100 1k LOAD RESISTANCE TO GROUND (Ω) 80 TA = 25°C VCM = 0V 100 CL = 100pF 140 180 5V, 0V 200 –10 0.1 0.3 1 3 FREQUENCY (MHz) 10 1013/14 TPC22 CHANNEL SEPARATION (dB) VOLTAGE GAIN (dB) ±15V 5V, 0V 40 0 –20 0.01 0.1 10k 1 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) 1013/14 TPC21 160 PHASE SHIFT (DEGREES) 120 160 0 VS = ±15V Channel Separation vs Frequency ±15V GAIN VS = 5V, 0V 60 1013/14 TPC20 Gain, Phase vs Frequency 10 80 VO = 20mV TO 3.5V WITH VS = 5V, 0V 1013/14 TPC19 PHASE 100 20 VO = ±10V WITH VS = ±15V –40 20 TA = 25°C CL = 100pF 120 TA = 125°C, VS = ±15V 10 –10 Voltage Gain vs Frequency 140 TA = 25°C, VS = ±15V VOLTAGE GAIN (dB) 30 Voltage Gain vs Load Resistance 10M VOLTAGE GAIN (V/V) SHORT-CIRCUIT CURRENT (mA) SINKING SOURCING 40 VS = ±15V TA = 25°C VIN = 20Vp-p to 5kHz RL = 2k 140 LIMITED BY THERMAL INTERACTION 120 RS = 1kΩ 100 LIMITED BY PIN TO PIN CAPACITANCE 80 60 RS = 100Ω 10 100 10k 1k FREQUENCY (Hz) 100k 1M 1013/14 TPC23 applications information Single Supply Operation The LT1013/LT1014 are fully specified for single supply operation, i.e., when the negative supply is 0V. Input common mode range includes ground; the output swings within a few millivolts of ground. Single supply operation, however, can create special difficulties, both at the input and at the output. The LT1013/LT1014 have specific circuitry which addresses these problems. At the input, the driving signal can fall below 0V—inadvertently or on a transient basis. If the input is more than a few hundred millivolts below ground, two distinct problems can occur on previous single supply designs, such as the LM124, LM158, OP-20, OP-21, OP-220, OP‑221, OP‑420: a) When the input is more than a diode drop below ground, unlimited current will flow from the substrate (V – terminal) to the input. This can destroy the unit. On the LT1013/LT1014, the 400Ω resistors, in series with the input (see Schematic Diagram), protect the devices even when the input is 5V below ground. 10134fd
  • 10. LT1013/LT1014 Applications Information b) When the input is more than 400mV below ground (at 25°C), the input stage saturates (transistors Q3 and Q4) and phase reversal occurs at the output. This can cause lock-up in servo systems. Due to a unique phase reversal protection circuitry (Q21, Q22, Q27, Q28), the LT1013/LT1014’s outputs do not reverse, as illustrated below, even when the inputs are at –1.5V. There is one circumstance, however, under which the phase reversal protection circuitry does not function: when the other op amp on the LT1013, or one specific amplifier of the other three on the LT1014, is driven hard into negative saturation at the output. Phase reversal protection does not work on amplifier: A when D’s output is in negative saturation. B’s and C’s outputs have no effect. B when C’s output is in negative saturation. A’s and D’s outputs have no effect. C when B’s output is in negative saturation. A’s and D’s outputs have no effect. D when A’s output is negative saturation. B’s and C’s outputs have no effect. At the output, the aforementioned single supply designs either cannot swing to within 600mV of ground (OP-20) or cannot sink more than a few microamperes while swinging to ground (LM124, LM158). The LT1013/LT1014’s all-NPN output stage maintains its low output resistance and high gain characteristics until the output is saturated. In dual supply operations, the output stage is crossover distortion-free. Comparator Applications The single supply operation of the LT1013/LT1014 lends itself to its use as a precision comparator with TTL compatible output: In systems using both op amps and comparators, the LT1013/LT1014 can perform multiple duties; for example, on the LT1014, two of the devices can be used as op amps and the other two as comparators. Voltage Follower with Input Exceeding the Negative Common Mode Range 4V 4V 2V 2V 0V 2V 4V 0V 0V 6VP-P INPUT, – 1.5V TO 4.5V LM324, LM358, OP-20 EXHIBIT OUTPUT PHASE REVERSAL LT1013/LT1014 NO PHASE REVERSAL INPUT (mV) 0 – 100 Comparator Fall Response Time to 10mV, 5mV, 2mV Overdrives OUTPUT (V) OUTPUT (V) 4 Comparator Rise Response Time 10mV, 5mV, 2mV Overdrives INPUT (mV) 2 0 VS = 5V, 0V 50µs/DIV 100 2 4 0 0 VS = 5V, 0V 50µs/DIV 10134fd 10
  • 11. LT1013/LT1014 Applications Information Low Supply Operation Test Circuit for Offset Voltage and Offset Drift with Temperature The minimum supply voltage for proper operation of the LT1013/LT1014 is 3.4V (three Ni-Cad batteries). Typical supply current at this voltage is 290µA, therefore power dissipation is only one milliwatt per amplifier. 50k* 15V – 100Ω* VO Noise Testing + 50k* For applications information on noise testing and calculations, please see the LT1007 or LT1008 data sheet. LT1013 OR LT1014 –15V *RESISTOR MUST HAVE LOW THERMOELECTRIC POTENTIAL. **THIS CIRCUIT IS ALSO USED AS THE BURN-IN CONFIGURATION, WITH SUPPLY VOLTAGES INCREASED TO ±20V. VO = 1000VOS LT1013/14 F06 Typical Applications 5V Single Supply Dual Instrumentation Amplifier 50MHz Thermal RMS-to-DC Converter 100k* +INPUT 5V LT1014 3 10k* 5 6 300Ω* 5V 4 LT1014 5 8 1/2 LT1013 – 7 4 OUTPUT A R2 3 R1 7 –INPUT 18 +INPUT 10k* + 1µF 1µF 1µF 100k* 6 2 10k* + 10k 1 + 30k* – 30k* 6 5 0.01 – 2 5V 1/2 LTC1043 7 15 11 10k* 1/2 LTC1043 0.01 LT1014 10k 12 INPUT 300mV– 10VRMS BRN T1A GRN 1µF T1B RED T2B GRN BRN T2A 2 11 1µF 1µF 10 RED 3 8 14 + 0.01 – 13 20k FULLSCALE TRIM 10k 1/2 LT1013 – 1 OUTPUT B R2 12 + LT1014 9 + – 8 0V TO 4V OUTPUT –INPUT 10k* 13 14 16 0.01 10k* R1 OFFSET = 150mV R2 + 1. GAIN = R1 CMRR = 120dB. COMMON MODE RANGE IS 0V TO 5V. 1013/14 TA04 2% ACCURACY, DC–50MHz. 100:1 CREST FACTOR CAPABILITY. * 0.1% RESISTOR. T1–T2 = YELLOW SPRINGS INST. CO. THERMISTOR COMPOSITE #44018. ENCLOSE T1 AND T2 IN STYROFOAM. 7.5mW DISSIPATION. 1013/14 TA03 10134fd 11
  • 12. LT1013/LT1014 typical Applications Hot-Wire Anemometer +15V 2k 6 0.01µF 33k A2 LT1014 13 Q2 2k 7 150k* 12 12k LT1004-1.2 6, 8 3.3k 500k –15V REMOVE LAMP'S GLASS ENVELOPE FROM 328 LAMP. A1 SERVOS #328 LAMP TO CONSTANT TEMPERATURE. A2-A3 FURNISH LINEAR OUTPUT vs FLOW RATE. *1% RESISTOR. 9 10 A4 LT1014 10M RESPONSE TIME ADJUST 2M FULLSCALE FLOW 4 1k ZERO FLOW 11 –15V 1µF 14 0V TO 10V = 0 TO 1000 FEET/MINUTE 100k 1µF A3 LT1014 8 + + 2k* 1 1000pF –15V – A1 LT1014 3 5 15V 4 – 2 #328 150k* + 27Ω 1W 13 Q4 Q1 – 220 10k* Q1–Q4 CA3046 Q3 + Q6 TIP12O OR EQUIVALENT TIE CA3046 PIN 13 Q5 TO –15V. DO NOT USE Q5 – 500pF 1013/14 TA05 Liquid Flowmeter 3.2k** 1M* 2 10M RESPONSE TIME 1 A1 LT1014 6 5 A2 LT1014 100k + 3 6.25k** 6.98k* 5k FLOW CALIB 1M* T1 7 1µF 1M* 6.25k** – 15Ω DALE HL-25 1M* + 3.2k* – 15V 1k* T2 15V 4.7k 1N4148 100k 2N4391 300pF 0.1 2.7k –15V 9 10 8 A3 LT1014 + 383k* – LT1004-1.2 100k 100k 12 13 + OUTPUT 0Hz TO 300Hz = 0 TO 300ML/MIN 15V 4 14 A4 LT1014 – 11 –15V T1 FLOW 15Ω HEATER RESISTOR T2 FLOW PIPE * 1% FILM RESISTOR. ** SUPPLIED WITH YSI THERMISTOR NETWORK. T1, T2 YSI THERMISTOR NETWORK = #44201. FLOW IN PIPE IS INVERSELY PROPORTIONAL TO RESISTANCE OF T1–T2 TEMPERATURE DIFFERENCE. A1–A2 PROVIDE GAIN. A3–A4 PROVIDE LINEARIZED 1013/14 TA06 FREQUENCY OUTPUT. 10134fd 12
  • 13. LT1013/LT1014 typical Applications 5V Powered Precision Instrumentation Amplifier – TO INPUT CABLE SHIELDS 8 LT1014 9 10 + 200k* 10k † 5V 13 RG (TYP 2k) 1µF 12 200k* 10k 5 10k* 7 LT1014 14 OUTPUT 11 10k* + 20k +INPUT – 6 † 4 LT1014 + 3 – 20k –INPUT 10k* 10k* 1 LT1014 + † – 2 5V † * 1% FILM RESISTOR. MATCH 10k's 0.05% 400,000 GAIN EQUATION: A = + 1. RG † FOR HIGH SOURCE IMPEDANCES, USE 2N2222 AS DIODES. 5V 1013/14 TA07 9V Battery Powered Strain Gauge Signal Conditioner 15k 9V 47µF 9V 0.068 LT1014 + 3 1N4148 4 – 2 11 22M 4.7k 1 330Ω 0.01 100k 2N2219 TO A/D RATIO REFERENCE 100k 15 499 12 499 6 9 9 5 TO A/D CONVERT COMMAND 10 13 LT1014 14 TO A/D 100k LT1014 8 + 0.068 7 14 7 74C221 3k 5 LT1014 – 0.068 6 + 9V 15k 1 350Ω STRAIN GAUGE BRIDGE 13 + 9V – 100k – 100k SAMPLED OPERATION GIVES LOW AVERAGE OPERATING CURRENT ≈ 650µA. 4.7k-0.01µF RC PROTECTS STRAIN BRIDGE FROM LONG TERM DRIFTS DUE TO 1013/14 TA08 HIGH ∆V/∆T STEPS. 10134fd 13
  • 14. LT1013/LT1014 typical Applications 5V Powered Motor Speed Controller No Tachometer Required 5V + 100k 47 1k 82Ω 3 A1 1/2 LT1013 1 2k Q3 2N5023 Q1 2N3904 + 0.47 330k – 2 1N4001 1M 2k 6.8M 0.068 1/4 CD4016 A2 1/2 LT1013 4 + 7 – 5V 8 0.068 0.47 5 1N4001 1N4148 3.3M 6 1N4148 2k MOTOR = CANON–FN30–R13N1B. A1 DUTY CYCLE MODULATES MOTOR. A2 SAMPLES MOTORS BACK EMF. Q2 EIN 0V TO 3V 1013/14 TA09 5V Powered EEPROM Pulse Generator 5V DALE #TC-10-04 1N4148 2N2222 10Ω 5V 20k 0.05 0.1 2N2222 2N2222 4.7k 820 1N4148 1N4148 0.33 1N4148 270Ω 100k 100Ω 820 4.7M 1 1N4148 0.005 6 8 LT1013 5 + MEETS ALL VPP PROGRAMMING SPECS WITH NO TRIMS AND RUNS OFF 5V SUPPLY—NO EXTERNAL HIGH VOLTAGE SUPPLY REQUIRED. SUITABLE FOR BATTERY POWERED USE (600µA QUIESCENT CURRENT). *1% METAL FILM. 3 + TTL INPUT LT1013 – 1N4148 – 2 120k 4 7 1k 2N2222 OUTPUT 100k* LT1004 1.2V 21V 600µs RC 6.19k 1013/14 TA10 10134fd 14
  • 15. LT1013/LT1014 typical Applications Methane Concentration Detector with Linearized Output 5V 1 * 1% METAL FILM RESISTOR SENSOR = CALECTRO-GC ELECTRONICS #J4-807 OR FIGARO #813 14 LT1004 1.2V 0.033 390k* 9 10 – + A3 LT1014 100k* 8 13 11 12 5 8 LTC1044 –5V 10µF 1N4148 (4) CD4016 4 10µF + 2 – + 74C04 A4 LT1014 14 74C04 5V 3 + 470pF 470pF 10k 5V 1 SENSOR CA3046 Q1 Q2 2 3 – + –5V Q4 5V 4 A1 LT1014 1 1N4148 OUTPUT 500ppm TO 10,000ppm 50Hz TO 1kHz Q3 1000pF 2k 100k* 6 5 – + A2 LT1014 7 2k 150k* 12k* 1013/14 TA11 Low Power 9V to 5V Converter 9V INPUT L 2N2905 1N4148 10k + 5V 20mA 2N5434 47 390k 1% HP5082-2811 VD = 200mV 9V 10k 100µA 8 + 7 LT1013 5 LT1013 – 4 1 + 5k 1000ppm TRIM 74C04 14 – 2.7k –5V 9V 6 47k L = DALE TE-3/Q3/TA. SHORT CIRCUIT CURRENT = 30mA. ≈ 75% EFFICIENCY. SWITCHING PREREGULATOR CONTROLS DROP ACROSS FET TO 200mV. 2 3 120k 1% 330k LT1004 1.2V 1013/14 TA12 10134fd 15
  • 16. LT1013/LT1014 typical Applications 5V Powered 4mA to 20mA Current Loop Transmitter† 5V Q3 2N2905 820Ω 10µF T1 Q1 2N2905 + 68Ω 1N4002 (4) 10µF + 74C04 (6) 0.002 0.33 100k 5V 8 A1 1/2 LT1013 1 + 100pF 5V 10k* 20mA TRIM 4k* 3 4 † 12-BIT ACCURACY. * 1% FILM. T1 = PICO-31080. 10k* 2 10k* 1k 4mA TRIM 4.3k 100Ω* 80k* 7 – – 2k A2 1/2 LT1013 LT1004 1.2V + Q4 2N2222 Q2 2N2905 820Ω 10k 10k 6 4mA TO 20mA OUT TO LOAD 2.2kΩ MAXIMUM 5 INPUT 0V TO 4V 1013/14 TA13 Fully Floating Modification to 4mA-20mA Current Loop† T1 A1 1/2 LT1013 100k A2 1/2 LT1013 1 68k* 5 + 7 – TO INVERTER DRIVE 6 – 8 3 10µF 0.1Ω + 5V 2 4mA TO 20mA OUT FULLY FLOATING + 4 4k* 10k* 5V 301Ω* 1k 20mA TRIM 4.3k LT1004 1.2V 1N4002 (4) † 8-BIT ACCURACY. 2k 4mA TRIM INPUT 0V TO 4V 1013/14 TA14 10134fd 16
  • 17. LT1013/LT1014 typical Applications 5V Powered, Linearized Platinum RTD Signal Conditioner 2M 200k 3 2N4250 (2) A2 1/4 LT1014 1 150Ω 10 5k LINEARITY + Q2 2 – Q1 200k 8 OUTPUT 0V TO 4V = 0°C TO 400°C ±0.05°C GAIN TRIM 1k 2M 3.01k SENSOR ROSEMOUNT 118MF 7 – 1.5k A4 1/4 LT1014 + 167Ω – 9 499Ω A3 1/4 LT1014 6 8.25k 50k ZERO TRIM 5 2.4k 5% + 274k 5V 4 – A1 1/4 LT1014 + 14 5V 11 13 12 LT1009 2.5V 10k 250k ALL RESISTORS ARE TRW-MAR-6 METAL FILM. RATIO MATCH 2M–200K ± 0.01%. TRIM SEQUENCE: SET SENSOR TO 0° VALUE. ADJUST ZERO FOR 0V OUT. SET SENSOR TO 100°C VALUE. ADJUST GAIN FOR 1.000V OUT. SET SENSOR TO 400°C. ADJUST LINEARITY FOR 4.000V OUT, REPEAT AS REQUIRED. 1013/14 TA15 Strain Gauge Bridge Signal Conditioner 5V 220 5V 8 4 8 4 LT1004 1.2V 301k 39k 100k 3 E V ≈ –VREF C 5 10k ZERO TRIM VREF LTC1044 + 100µF + 2 2 1/2 LT1013 + 1 – 0.1 1.2VOUT REFERENCE TO A/D CONVERTER FOR RATIOMETRIC OPERATION 1mA MAXIMUM LOAD D PRESSURE TRANSDUCER 350Ω 100µF A 0.33 5 6 + 1/2 LT1013 7 OUTPUT – 0V TO 3.5V 0psi TO 350psi 0.047 2k GAIN TRIM * 1% FILM RESISTOR. PRESSURE TRANSDUCER–BLH/DHF–350. CIRCLED LETTER IS PIN NUMBER. 46k* 100Ω* 1013/14 TA16 10134fd 17
  • 18. LT1013/LT1014 typical Applications LVDT Signal Conditioner 7 0.005 30k 0.005 30k 5 6 8 FREQUENCY = 1.5kHz 5V + 7 LT1013 11 LVDT YEL-BLK RDBLUE – BLUE –5V GRN 10k 4.7k YEL-RD 1N914 BLK 12 LT1004 1.2V 2N4338 1.2k 10µF 100k 14 0.01 13 7.5k 100k PHASE TRIM + LVDT = SCHAEVITZ E-100. 3 + 1µF 2 1/2 LTC1043 100k 2 3 LT1013 1 – 200k 5V + 8 7 LT1011 – 1 OUT 0V TO 3V 1k 10k TO PIN 16, LT1043 4 1013/14 TA17 Triple Op Amp Instrumentation Amplifier with Bias Current Cancellation 1/4 LT1014 R2 1 – 2 + 3 R1 R3 2R 10M RG 1/4 LT1014 7 + 5 +INPUT R1 – 6 13 1/4 LT1014 8 OUTPUT GAIN = 1 + 2R1 R3 RG R2 4 1/4 LT1014 – 2R 10M + 12 10 R3 V+ R 5M R2 + 9 – –INPUT 11 10pF 14 INPUT BIAS CURRENT TYPICALLY 1nA INPUT RESISTANCE = 3R = 15M FOR VALUES SHOWN NEGATIVE COMMON MODE LIMIT = V – + IB 2R + 30mV = 150mV for V – = 0V IB = 12nA 100k V– 18 1013/14 TA18 10134fd
  • 19. LT1013/LT1014 typical Applications Low Dropout Regulator for 6V Battery 12 OUTPUT 1N914 3 8 LTC1044 2 + VBATT 6V 4 + 100Ω 10 5 10 2N2219 100k 100Ω 0.01Ω 1M 1.2k 6 5 – 3 LT1004 1.2V 2 A2 LT1013 5V OUTPUT 0.003µF 8 + 1 LT1013 – 120k 4 7 + 1N914 30k 0.009V DROPOUT AT 5mA OUTPUT. 0.108V DROPOUT AT 100mA OUTPUT. IQUIESCENT = 850µA. 50k OUTPUT ADJUST 1013/14 TA19 Voltage Controlled Current Source with Ground Referred Input and Output 5V 0V TO 2V 3 + 8 1/2 LT1013 2 – 1 4 0.68µF 1k 1/2 LTC1043 7 8 11 1µF 100Ω 1µF 12 13 14 IOUT = 0mA TO 15mA VIN 100Ω FOR BIPOLAR OPERATION, RUN BOTH ICs FROM A BIPOLAR SUPPLY. IOUT = 1013/14 TA20 10134fd 19
  • 20. LT1013/LT1014 typical Applications 6V to ±15V Regulating Converter 6V 1µF 15pF 10k Q1 CLK 2 CLK 1 74C74 100kHz INPUT D1 Q1 D2 2N3906 –16V 74C00 Q2 L1 1MHY Q2 + +V 10k 10k + 2N3904 1 10 4 1.4M 0.005 2 LT1013 10k 15pF 15VOUT 16V 8 10 16V 22k 2N4391 + 22k – + 6V 200k VOUT ADJ 6V 3 100k –16V LT1004 1.2V 82k – 7 6 LT1013 5 + L1 = 24-104 AIE VERNITRON 0.005 = 1N4148 1M 2N5114 ±5mA OUTPUT 75% EFFICIENCY –15VOUT 1013/14 TA21 Low Power, 5V Driven, Temperature Compensated Crystal Oscillator (TXCO)† 5V 3 2 5V 1/2 LT1013 – 1 OSCILLATOR SUPPLY STABILIZATION 4 1M* 5M* RT1 3.2k 2.16k* RT2 6.25k RT 1M* 4.22M* TEMPERATURE COMPENSATION GENERATOR YSI 44201 8 3.4k* 4.3k LT1009 2.5V + 1M* 6 5 20k – 1/2 LT1013 + 5V 7 100k 3.5MHz XTAL OSCILLATOR MV-209 100Ω 100k 560k 4.22M* * 1% FILM 3.5MHz XTAL = AT CUT – 35°20' MOUNT RT NEAR XTAL 3mA POWER DRAIN † THERMISTOR-AMPLIFIER-VARACTOR NETWORK GENERATES A TEMPERATURE COEFFICIENT OPPOSITE THE CRYSTAL TO MINIMIZE OVERALL OSCILLATOR DRIFT 2N2222 510pF 510pF 3.5MHz OUTPUT 0.03ppm/°C, 0°C TO 70°C 680Ω 1013/14 TA22 10134fd 20
  • 21. LT1013/LT1014 schematic diagram 1/2 LT1013, 1/4 LT1014 V+ 9k 9k 1.6k Q13 Q6 Q5 1.6k 1.6k Q16 100Ω 1k 800Ω Q14 Q36 Q15 Q32 Q30 Q35 Q3 Q4 Q25 – Q1 + IN Q26 2.5pF 400Ω IN Q33 21pF 3.9k Q27 18Ω 2.4k Q38 Q21 OUTPUT Q2 Q41 14k Q28 400Ω Q22 Q39 Q18 Q12 Q29 Q10 4pF Q31 Q11 Q9 75pF 10pF Q7 Q8 5k 5k Q40 Q19 2k V– J1 Q37 Q34 100pF Q17 2k 42k 600Ω Q23 Q24 Q20 1.3k 2k 30Ω 1013/14 SD 10134fd 21
  • 22. LT1013/LT1014 Package Description H Package 8-Lead TO-5 Metal Can (.200 Inch PCD) (Reference LTC DWG # 05-08-1320) .040 (1.016) MAX .335 – .370 (8.509 – 9.398) DIA .305 – .335 (7.747 – 8.509) .027 – .045 (0.686 – 1.143) 45 PIN 1 .028 – .034 (0.711 – 0.864) .050 (1.270) MAX SEATING PLANE .200 (5.080) TYP .165 – .185 (4.191 – 4.699) GAUGE PLANE .010 – .045* (0.254 – 1.143) REFERENCE PLANE .500 – .750 (12.700 – 19.050) .016 – .021** (0.406 – 0.533) .110 – .160 (2.794 – 4.064) INSULATING STANDOFF *LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE AND THE SEATING PLANE .016 – .024 **FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS (0.406 – 0.610) H8(TO-5) 0.200 PCD 0204 J8 Package 8-Lead CERDIP (Narrow .300 Inch, Hermetic) (Reference LTC DWG # 05-08-1110) .300 BSC (7.62 BSC) CORNER LEADS OPTION (4 PLCS) .023 – .045 (0.584 – 1.143) HALF LEAD OPTION .045 – .068 (1.143 – 1.650) FULL LEAD OPTION .015 – .060 (0.381 – 1.524) .008 – .018 (0.203 – 0.457) .405 (10.287) MAX .005 (0.127) MIN .200 (5.080) MAX 8 6 7 5 .025 (0.635) RAD TYP .220 – .310 (5.588 – 7.874) 0 – 15 1 NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS .045 – .065 (1.143 – 1.651) .014 – .026 (0.360 – 0.660) .100 (2.54) BSC 2 3 4 .125 3.175 MIN J8 0801 J Package 14-Lead CERDIP (Narrow .300 Inch, Hermetic) (Reference LTC DWG # 05-08-1110) .200 (5.080) MAX .300 BSC (7.62 BSC) .015 – .060 (0.381 – 1.524) .008 – .018 (0.203 – 0.457) .005 (0.127) MIN .785 (19.939) MAX 14 13 12 11 10 9 8 .220 – .310 (5.588 – 7.874) .025 (0.635) RAD TYP 0 – 15 1 .045 – .065 (1.143 – 1.651) NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS .014 – .026 (0.360 – 0.660) .100 (2.54) BSC 2 3 4 5 6 7 J14 0801 .125 (3.175) MIN OBSOLETE PACKAGES 10134fd 22
  • 23. LT1013/LT1014 Package Description N8 Package 8-Lead PDIP (Narrow .300 Inch) (Reference LTC DWG # 05-08-1510) .400* (10.160) MAX 8 7 6 5 1 2 3 4 .255 ± .015* (6.477 ± 0.381) .300 – .325 (7.620 – 8.255) .065 (1.651) TYP .008 – .015 (0.203 – 0.381) ( +.035 .325 –.015 8.255 +0.889 –0.381 .130 ± .005 (3.302 ± 0.127) .045 – .065 (1.143 – 1.651) ) .120 (3.048) .020 MIN (0.508) MIN .018 ± .003 .100 (2.54) BSC (0.457 ± 0.076) N8 1002 NOTE: 1. DIMENSIONS ARE INCHES MILLIMETERS *THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm) N Package 14-Lead PDIP (Narrow .300 Inch) (Reference LTC DWG # 05-08-1510) .770* (19.558) MAX 14 13 12 11 10 9 8 1 2 3 4 5 6 7 .255 ± .015* (6.477 ± 0.381) .300 – .325 (7.620 – 8.255) .008 – .015 (0.203 – 0.381) ( +.035 .325 –.015 +0.889 8.255 –0.381 NOTE: 1. DIMENSIONS ARE ) .045 – .065 (1.143 – 1.651) .130 ± .005 (3.302 ± 0.127) .020 (0.508) MIN .065 (1.651) TYP .120 (3.048) MIN .005 (0.127) .100 MIN (2.54) BSC .018 ± .003 (0.457 ± 0.076) N14 1103 INCHES MILLIMETERS *THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm) 10134fd 23
  • 24. LT1013/LT1014 Package Description S6 Package 6-Lead Plastic TSOT-23 (Reference LTC DWG # 05-08-1636) .050 BSC .245 MIN .045 ±.005 .189 – .197 (4.801 – 5.004) NOTE 3 .160 ±.005 7 8 .010 – .020 45° (0.254 – 0.508) .008 – .010 (0.203 – 0.254) .030 ±.005 TYP 0°– 8° TYP .016 – .050 (0.406 – 1.270) 5 6 RECOMMENDED SOLDER PAD LAYOUT .053 – .069 (1.346 – 1.752) .150 – .157 (3.810 – 3.988) NOTE 3 .228 – .244 (5.791 – 6.197) .004 – .010 (0.101 – 0.254) 1 NOTE: 1. DIMENSIONS IN 3 2 4 .050 (1.270) BSC .014 – .019 (0.355 – 0.483) TYP INCHES (MILLIMETERS) 2. DRAWING NOT TO SCALE 3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006 (0.15mm) SO8 0303 SW Package XX-Lead Plastic Small Outline (Wide .300 Inch) (Reference LTC DWG # 05-08-1620) .050 BSC .045 ±.005 .030 ±.005 TYP N .005 (0.127) RAD MIN .009 – .013 (0.229 – 0.330) NOTE: 1. DIMENSIONS IN 16 15 14 13 12 11 10 9 N 1 0° – 8° TYP NOTE 3 .325 ±.005 .420 MIN .291 – .299 (7.391 – 7.595) NOTE 4 .010 – .029 45° (0.254 – 0.737) .398 – .413 (10.109 – 10.490) NOTE 4 2 3 N/2 RECOMMENDED SOLDER PAD LAYOUT .093 – .104 (2.362 – 2.642) .394 – .419 (10.007 – 10.643) NOTE 3 .037 – .045 (0.940 – 1.143) .016 – .050 (0.406 – 1.270) N/2 1 .050 (1.270) BSC .014 – .019 INCHES (0.356 – 0.482) (MILLIMETERS) TYP 2. DRAWING NOT TO SCALE 3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS. THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS 4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006 (0.15mm) 2 3 4 5 6 7 8 .004 – .012 (0.102 – 0.305) S16 (WIDE) 0502 10134fd 24
  • 25. LT1013/LT1014 Revision History (Revision history begins at Rev D) REV DATE DESCRIPTION PAGE NUMBER D 05/10 Updates to Typical Application “Hot-Wire Anemometer” 12 Updated Related Parts 26 10134fd Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. 25
  • 26. LT1013/LT1014 Typical Application Step-Up Switching Regulator for 6V Battery INPUT 6V 22k 2N2222 2.2 OUTPUT 15V 50mA + LT1004 1.2V L1 1MHY 200k 5 220pF 1N5821 1M 220k 3 + 0.001 2 LT1013 1 300Ω 130k + 2N5262 6 + 8 LT1013 – 7 4 100 5.6k – 0.1 5.6k LT = AIE–VERNITRON 24–104 78% EFFICIENCY 1013/14 TA23 Related Parts PART NUMBER DESCRIPTION COMMENTS LT2078/LT2079 Dual/Quad 50µA Single Supply Precision Amplifier 50µA Max IS, 70µV Max VOS LT2178/LT2179 Dual/Quad 17µA Single Supply Precision Amplifier 17µA Max IS, 70µV Max VOS LTC6081/LTC6082 Dual/Quad 400µA Precision Rail-to-Rail Amplifier VS = 2.7V to 6V, 400µA Max IS, 70µV VOS 0.8µV/°C TCVOS LTC6078/LTC6079 Dual/Quad 72µA Precision Rail-to-Rail Amplifier VS = 2.7V to 6V, 72µA Max IS, 25µV VOS 0.7µV/°C TCVOS 10134fd 26 Linear Technology Corporation 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com LT 0510 REV D • PRINTED IN USA  LINEAR TECHNOLOGY CORPORATION 1990