SlideShare a Scribd company logo
1 of 117
1
2
If a moving links in a mechanism is running with considerable amount of linear
and/or angular accelerations, inertia forces are generated and these inertia
forces also must be overcome by the driving motor as an addition to the forces
exerted by the external load or work the mechanism does.
So, and are no longer applicable. The consideration that says all
forces on components of machine systems are in balance (static and dynamic
equilibrium ) is seldom in real machines (except when the machine is stopped)
I and m are inertial (bodily) properties. At this stage we need to know the
description of the inertial properties.
0

F

0

τ

a
F


m


α
τ


I


Governing rules will be:
3
Of course techniques for static force analysis are important, not only
because stationary structures must be designed to withstand their imposed
loads, but also because they introduce concepts and approaches that can be
built upon and extended to non equilibrium conditions .
Therefore the purpose of this chapter is to learn how much acceleration will
result from a system of unbalanced forces and also learn how these dynamic
forces can be assessed for systems that are not in equilibrium
4
Centroid is the point where the resultant of distributed force
system is assumed to act and generate the same dynamic
results.
C
entroid
R
esultant F
orce
3
2
1
3
3
2
2
1
1
m
m
m
m
x
m
x
m
x
x





5
If the distributed force is gravity force acting on each particle of mass, then
concentrated force itself is called the “weight” and the centroid is called the
“center of gravity” or “mass center”.
Mass times distance, mr, is called as the first mass moment. This concept of
first mass moment is normally used in deriving the center of mass of a system
of particles or a rigid body. In figure a series of masses are located on a line.
The center of mass or centroid is located at
x3
x1
x2
x
-
m
1 m
2 m
3
G






n
i
i
n
i
i
i
m
m
x
x
1
1
6
The coordinates of the masses located on a plane can be obtained as:
m
1
m
2
m
3
x
-
y
-
G
3
2
1
3
3
2
2
1
1
1
1
m
m
m
m
x
m
x
m
x
m
m
x
x n
i
i
n
i
i
i










3
2
1
3
3
2
2
1
1
1
1
m
m
m
m
y
m
y
m
y
m
m
y
y n
i
i
n
i
i
i














 n
i
i
n
i
i
i
m
m
z
z
1
1
7
This procedure can be extended to masses concentrated in a volume by simply
writing an equation for the z axis. A more general form of mass center location
for three dimensional body can be obtained by using integration instead of
summation. The relations then become




 n
i
i
n
i
i
i
m
m
x
x
1
1




 n
i
i
n
i
i
i
m
m
y
y
1
1
m
xdm
x


m
ydm
y


m
zdm
z


8
Mass moment of inertia is the name given to rotational inertia, the rotational
inertia analog of mass for linear motion. It appears in the relationships for the
dynamics of rotational motion. The Mass Moment of Inertia of a solid measures
the solid's ability to resist changes in rotational speed about a specific axis.
r
o
o
m
The moment of inertia for a point mass is just the mass times the square of
perpendicular distance to the rotation axis. The mass moment of inertia for a
single particle is given as:
m
r
I 2
00 
9
When calculating the mass moment of inertia for a rigid body, one thinks of the
body as a sum of particles, each having a mass of dm. Integration is used to
sum the moment of inertia of each dm to get the mass moment of inertia of
body. The equation for the mass moment of inertia of the rigid body is

 
 dm
r
dm
r
I 2
2
00
r
o
o
dm
10
The integration over mass can be replaced by integration over volume, area, or
length. For a fully three dimensional body using the density r one can relate the
element of mass to the element of volume.
x
y
dm
z
 dm
z
y
dm
r
I x
xx   

 2
2
2
 dm
z
x
dm
r
I y
yy   

 2
2
2
 dm
y
x
dm
r
I z
zz   

 2
2
2
rz
ry
rx
These three integrals are called the
principle mass moment of inertia of the
body. Another three similar integrals are



 xydm
I
I yx
xy



 yzdm
I
I zy
yz



 xzdm
I
I zx
xz
}mass products
of inertia of the
body
G
IC
G
, m
IC
G
, m
O
rigin
a
l B
od
y
k
M
o
de
l
11
Sometime in place of the mass moment of inertia the radius of gyration k is
provided. The mass moment of inertia can be calculated from k using the
relation
where m is the total mass of the body. One can interpret the radius of gyration as
the distance from the axis that one could put a single particle of mass m equal to
the mass of the rigid body and have this particle have the same mass moment of
inertia as the original body.
2
mk
I 
k
M
o
de
l
G
ICG
,m
ICG
,m
o o
d
12
The moment of inertia around any axis can be calculated from the moment of
inertia around parallel axis which passes through the center of mass. The
equation to calculate this is called the parallel axis theorem and is given as
2
md
I
I CG 

13
Solution: Mass moments of inertial of a point mass about an axis passing
through itself
What are the mass moments of inertial of a point mass about an axis passing
through itself and about an axis r distance away from it ?
o
o
m
  

 0
0
2
dm
dm
r
Ioo
14
Solution: Mass moments of inertial of a point mass about an axis passing
through itself
What are the mass moments of inertial of a point mass about an axis passing
through itself and about an axis r distance away from it ?
o
o
m
  

 0
0
2
dm
dm
r
Ioo
o
o
r
m
x
x
m
r
m
r
m
r
I
I xx
oo
2
2
2
0 




Mass moments of inertial of a point mass about an
axis r distance away from it. Using parallel axis
theorem
15
Solution:
Find the mass moment of inertia of a
slender rod of length L (slender rod means
that it has a length, and the remaining
dimensions are negligible small) about an
axis perpendicular to the rod and passing
through its mass center.
L
L/2
o
o
L
L/2
o
o
dx
x


2
/
0
2
*
2
L
oo dm
x
I
Let density of the material is r in kg/m.
Then, infinitesimal mass dm=rdx.
Substituting this into above equation,
 

2
/
0
2
*
2
L
oo dx
x
I r
12
2
mL

2
/
3
|
3
2 L
o
x
r
3
2
3
2 






L
r
16
An uniform steel bar shown in the figure is used as an oscillating cam follower.
Drive the equation of mass moment of inertia of the follower about an axis
through O. Use the density of steel r=7800 kg/m3.
k=2kN
/m
2 cm 25 cm 50 cm 25 cm
5 cm
y
x
O
2
2
2
y
x
r 

17
Solution:
x
y
z
x
y
r
dx
dz
dy
t
w
l

 dm
r
Izz
2
dxdydz
dm r

 
 dxdydz
y
x
Izz r
)
( 2
2
x
y
z
dx
t
w
l
18
Solution:
x
y
z
dy
t
w
l

 
 dy
l
t
y
dx
w
t
x
Izz *
*
*
*
*
*
*
* 2
2
r
r

 

2
/
0
2
2
/
0
2
*
*
*
*
2
*
*
*
*
2
w
l
dy
y
l
t
dx
x
w
t r
r
19
Solution:
r
*
*
* t
w
l
m 
12
12
*
12
*
2
2
2
2
w
l
m
w
m
l
m
Izz














































3
2
*
*
*
*
2
3
2
*
*
*
*
2
3
3
w
l
t
l
w
t
Izz r
r 12
*
*
*
*
12
*
*
*
*
2
2
w
w
l
t
l
l
w
t
Izz r
r 

mass moment of inertia about O can be found by parallel axis theorem
48
4
7
4
12
*
2
2
2
2
2
2
2
0
w
l
m
l
m
w
l
m
d
m
I
I zz







m
kg
I .
139
.
1
48
05
.
0
*
4
1
*
7
8
.
7
2
2
0 


20
21
The slender bar of mass m is released form rest in the horizontal position as
shown. At that instant, determine the force exerted on the bar by the support A.
Freebody Diagram
Equations Of Motion
G
a
m
F






I
M 

22
The slender bar of mass m is
released form rest in the
horizontal position as shown. At
that instant, determine the force
exerted on the bar by the
support A.
Kinematics of the slender rod
?
? 


 y
x
G a
a
a



?



Freebody Diagram
Equations Of Motion
G
a
m
F







I
M 

x
x ma
F 

y
y ma
F 


A
A I
M 

23
The slender bar of mass m is
released form rest in the
horizontal position as shown. At
that instant, determine the force
exerted on the bar by the
support A.
Kinematics of the slender rod
?
? 


 y
x
G a
a
a



?



)
x
(
x r
ax







r
ay



x


r
At the instant bar is released, its angular velocity 0



0

x
a

j
l
i
l
k
ay






2
1
2
1
x 









0

x
a

l
ay
2
1


24
Freebody Diagram
Equations Of Motion

A
A I
M 

0
0 




x
x
x
x
A
m
A
ma
F















l
m
mg
A
ma
mg
A
ma
F
y
y
y
y
y
2
1
4
mg
Ay 
2
2 2
2
12 2 3
A G
ml l ml
I I md m
 
    
 
 
l
g
ml
l
mg
2
3
3
2
1 2











0

x
a

l
ay
2
1


25
D’Alembert’s principle permits the reduction of a problem in dynamics to one in
statics. This is accomplished by introducing a fictitious force equal in magnitude
to the product of the mass of the body and its acceleration, and directed opposite
to the acceleration. The result is a condition of kinetic equilibrium.
fictitious force and torque
0




 a
a
a
F




m
m
m
0




 α
α
α
τ




I
I
I
The meaning of the equation; i.e. indication of a dynamic case still holds true,
but equation, having zero on right hand side becomes very easy to solve, like
that in a “static force analysis” problem.
CG
SF
m, I
a

CG
SF
m, I
a

-ma
I
26
1. Do an acceleration analysis and calculate the linear acceleration of the
mass centers of each moving link. Also calculate the angular
acceleration of each moving link.
2. Masses and centroidal inertias of each moving link must be known
beforehand.
3. Add one fictitious force on each moving body equal to the mass of that
body times the acceleration of its mass center, direction opposite to its
acceleration, applied directly onto the center of gravity, apart from the
already existing real forces.
4. Add fictitious torque on each moving body equal to the centroidal inertia
of that body times its angular acceleration, direction or sense opposite to
that of acceleration apart from the already existing real torques.
5. Solve statically.
4
B
2
A
3
G
3
x

27
AB=10 cm, AG3=BG3=5 cm, =60o
m2=m4=0.5 kg, m3=0.8 kg, I3=0.01 kg.m2
In the figure, a double- slider mechanism working in horizontal plane is shown.
The slider at B is moving rightward with a constant velocity of 1 m/sec. Calculate
the amount of force on this mechanism in the given kinematic state.
B
A
B
A V
V
V






?

A
V

 s
m
VB /
1
AB
to
V
B
A 
 ?
B
V
A
V
B
A
V

 s
m
VA /
5774
.
0
s
m
V
B
A /
1547
.
1

4
B
2
A
3
G
3
x

28
In the figure, a double- slider mechanism working in horizontal plane is shown.
The slider at B is moving rightward with a constant velocity of 1 m/sec. Calculate
the amount of force on this mechanism in the given kinematic state.
B
A
B
A V
V
V





B
to
A
from
s
m
AB
V
a B
A
n
B
A
2
2
2
/
33
.
13
1
.
0
1547
.
1




?

A
a
B
A
B
A a
a
a





0
B
A
A a
a


 t
B
A
n
B
A a
a




AB
to
at
B
A

 ?
4
B
2
A
3
G
3
x

29
B
to
A
from
s
m
AB
V
a B
A
n
B
A
2
2
2
/
33
.
13
1
.
0
1547
.
1




?

A
a
B
A
A a
a


 t
B
A
n
B
A a
a




AB
to
at
B
A

 ?
2
/
698
,
7 s
m
at
B
A

t
B
A
a
A
a
2
/
396
.
15 s
m
aA 
G3
3
G
a
n
B
A
a
2
/
698
.
7
2
/
3
s
m
a
a A
G 

3

AB
at
B
A

CCW
s
rad
AB
at
B
A
2
3 /
98
.
78
1
.
0
698
.
7




4
B
2
A
3
G
3
x

30
t
B
A
a
A
a
2
/
396
.
15 s
m
aA 
G3
3
G
a
n
B
A
a
2
/
698
.
7
2
/
3
s
m
a
a A
G 

CCW
s
rad
AB
at
B
A
2
3 /
98
.
78
1
.
0
698
.
7




3
G
ma

A
ma

3

I

D’Alembert forces and moments
0
90
698
.
7
396
.
15
*
5
.
0 


 N
maA
0
90
1584
.
6
698
.
7
*
8
.
0
3



 N
maG
CW
Nm
I 7689
.
0
98
.
76
*
01
.
0
3 

 
4
B
2
A
3
G
3
x

31
N
698
.
7
N
1584
.
6
Nm
7689
.
0
B
F 4
B
2
A
3
G
3
N
698
.
7
N
1584
.
6
Nm
7689
.
0
B
F
12
F
14
F
32
4
B
2
A
3
G
3
N
698
.
7
N
1584
.
6
Nm
7689
.
0
B
F
12
F
14
F
 



 12
12 0
;
0 F
F
F
F
F B
B
x
N
F
F
Fy
86
.
13
0
1584
.
6
698
.
7
;
0
14
14







N
F
F
MB
11
.
15
0867
.
0
3087
.
1
0
60
sin
*
1
.
0
*
60
cos
*
05
.
0
*
1584
.
6
60
cos
*
1
.
0
*
698
.
7
7698
.
0
;
0
12
12










 N
FB 11
.
15
+
x
y
4
B
2
A
3
G
3
x

33
3
G
ma

A
ma

3

I

0
90
698
.
7
396
.
15
*
5
.
0 


 N
maA
0
90
1584
.
6
698
.
7
*
8
.
0
3



 N
maG
CW
Nm
I 7689
.
0
98
.
76
*
01
.
0
3 

 
3
G
ma

3

I

3
G
ma

3
G
ma

h
h
ma
I G *
3
3 
 

3
3
G
ma
I
h


m
h 125
.
0
1589
.
6
7689
.
0


h
3
G
ma

3
G
ma

4
B
2
A
3
G
3
x

34
h
N
1584
.
6
N
698
.
7
B
F 4
B
2
A
3
G
3
N
698
.
7
B
F
12
F
14
F
m
h 125
.
0
1589
.
6
7689
.
0


h
N
1584
.
6
35
4
B
2
A
3
G
3
N
698
.
7
B
F
12
F
14
F
h
N
1584
.
6
 



 12
12 0
;
0 F
F
F
F
F B
B
x
N
F
F
Fy
86
.
13
0
1584
.
6
698
.
7
;
0
14
14







N
F
F
MB
11
.
15
0867
.
0
3087
.
1
0
60
sin
*
1
.
0
*
60
cos
*
1
.
0
*
698
.
7
60
cos
*
)
125
.
0
05
.
0
(
*
1584
.
6
;
0
12
12










 N
FB 11
.
15
+
x
y
At the crank angle shown and asuming that gravity
and friction effects are negligible, find all the
constraint forces and the driving torque required
to produce the velocity and acceleration
conditions specified.
36
Gaziantep University
Example 15.4:
ˆ
RAO= 60 mm, RO
2 ˆ
m4 = 5 kg, IG = 0.025 kg · m2, IG = 0.012 kg · m2, IG = 0.054 kg · m2, α 2 = 0, α 3 = -119k rad/s2, α 4 = -625k rad/s2, AG = 162∠-
2 3 4 3
73.2° m/s2, AG = 104∠233° m/s2, FC = -0.8 j kN.
4
Figure 15.9
Calculate the inertia forces and inertia torques
−m A =0
2 G2
−m A =−(1.5)(46.8
i−155j)=−70.2i+233j(N)
3 G3
−m A =−(5.0)(−62.6i −83.1j)=−313i+415j(N)
4 G4
−I α =0
G2
2
−I α =−(0.012)(
−119k) =1.43k(N ⋅m)
G3 3
−I α =−(0.054)(−625k)=33.8k(N ⋅m)
G4
4
15-12
Gaziantep University
Considering the free-body diagram of link 4 and 3 respectively,
M = R ×(−m A ) +(−I α ) + R ×F + R ×F = 0
∑ O4 G4O4 4 G4 G4 4 CO4 c BO4 34
M = R ×(−m A ) +(−I α ) + R ×F = 0
∑ A G3A 3 G3 G3 3 BA 43
x y
M = 25.2k +33.8k −96k + (−125F +83F )k = 0
∑ O4 34 34
x y
M =18.6k +1.43k + (70.5F − 208F )k = 0
∑ A 34 34
F =− 300i −39j
34
F = F +F +F +(−m A ) = 0
∑ i4 14 34 C 4 G
4
Summing forces on the link 2,3,4,
F =− 13i +390j(N)
14
F = F +F +(−m A ) = 0
∑ i3 23 43 3 G3
F =− 230i −238j(N)
23
F = F +F +(−m A ) = 0
∑ i2 12 32 2 G2
F = F =− F
12 23 32
M = R ×F +M +(−I α ) = 0
∑ O AO 32 12 G 2
2 2 2
M =− R ×F =18.6k(N ⋅m)
12 AO2 32
15-13
Gaziantep University
15.5 The Principle of Superposition
Linear System: the response or output of a system is directly proportional to the drive or input to the system.
In the absence of Coulomb or dry friction, most mechanisms are linear for force analysis purpose.
The principle of superposition: for linear systems the individual responses to several disturbances or driving
functions can be superposed on each other to obtain the total response
of the system.
Example:
nonlinear factor: static or Coulomb friction, systems with clearances or backlash
systems with springs that change stiffness as they are deflected
Complete dynamic force analysis of a planar motion mechanism:
(1) make a kinematic analysis of the mechanism. (2) make a
complete static force analysis of the mechanism.
(3) calculate the inertia forces and inertia torques for each link or element of the mechanism.
make another complete force analysis of the mechanism.
(4) add the results of steps 2 and 3 to obtain the resultant forces and torques on each link.
15-14
40
Crank AB of the mechanism shown is balanced such that the mass center is at A.
Mass center of the link CD is at its mid point. At the given instant, link 4 is
translating rightward with constant velocity of 5 m/sec. Calculate the amount of
motor torque required on crank AB to keep at the given kinematics state.
1
4
2
3
A
C
B
D
=45
F
AC=10 cm, CB=BD=4 cm,
AF=2 cm CG3=4 cm,
m2=m3=m4=5 kg,
I2=I3=I4=0.05 kg-m2
41
Crank AB of the mechanism shown is balanced such that the mass center is at A. Mass center of the link CD is at its mid
point. At the given instant, link 4 is translating rightward with constant velocity of 5 m/sec. Calculate the amount of motor
torque required on crank AB to keep at the given kinematics state.
1
4
2
3
A
C
B
D
=45
F
AC=10 cm, CB=BD=4 cm, AF=2 cm CG3=4
cm, m2=m3=m4=5 kg, I2=I3=I4=0.05 kg-m2
C
B
C
B V
V
V





AB
to
VB 
 ?

 sec
/
5 m
VC
BC
to
V
C
B 
 ?
s
m
VC /
5

5 m/s
s
m
V
C
B /
05
.
5

s
m
VB /
85
.
3

42
Crank AB of the mechanism shown is balanced such
that the mass center is at A. Mass center of the link
CD is at its mid point. At the given instant, link 4 is
translating rightward with constant velocity of 5 m/sec.
Calculate the amount of motor torque required on
crank AB to keep at the given kinematics state.
1
4
2
3
A
C
B
D
=45
F
AC=10 cm, CB=BD=4 cm, AF=2 cm CG3=5
cm, m2=m3=m4=5 kg, I2=I3=I4=0.05 kg-m2
C
B
C
B a
a
a




 0

C
a
n
C
B
n
C
B
t
B
n
B a
a
a
a 




A
to
B
from
s
m
AB
V
a B
n
B
2
2
2
/
5
.
192
077
.
0
85
.
3



BC
to
at
C
B 
 ?
C
to
B
from
s
m
BC
V
a C
B
n
C
B
2
2
2
/
6
.
637
04
.
0
05
.
5



AB
to
at
B 
 ?
2
/
5
.
192 s
m
an
B 
2
/
6
.
637 s
m
an
C
B 
2
/
483 s
m
at
C
B 
2
/
776 s
m
at
B 
43
Crank AB of the mechanism shown is balanced such
that the mass center is at A. Mass center of the link
CD is at its mid point. At the given instant, link 4 is
translating rightward with constant velocity of 5 m/sec.
Calculate the amount of motor torque required on
crank AB to keep at the given kinematics state.
1
4
2
3
A
C
B
D
=45
F
AC=10 cm, CB=BD=4 cm, AF=2 cm CG3=5
cm, m2=m3=m4=5 kg, I2=I3=I4=0.05 kg-m2
?
?,
?, 3
2 

 B
a


2
/
5
.
192 s
m
an
B 
2
/
6
.
637 s
m
an
C
B 
2
/
483 s
m
at
C
B 
2
/
776 s
m
at
B 
CCW
s
rad
AB
at
B
2
2
2 /
10078
077
.
0
776
* 


 

CW
s
rad
BC
at
C
B
2
3
3 /
20000
04
.
0
800
* 


 

B
a

262
/
800 2

 s
m
aB
B
3
2
44
D’Alembert forces and moments
1
4
2
3
A
C
B
D
=45
F
2
/
5
.
192 s
m
an
B 
2
/
6
.
637 s
m
an
C
B 
2
/
483 s
m
at
C
B 
2
/
776 s
m
at
B 
CCW
s
rad 2
2 /
10078


CW
s
rad 2
3 /
20000


B
a

262
/
800 2

 s
m
aB
B
I33
I22

82
4000
800
5
3 


 N
*
a
m B
CW
Nm
*
.
I 504
10078
05
0
2
2 

 
CCW
Nm
*
.
I 1000
20000
05
0
3
3 

 
m2=m3=m4=5 kg, I2=I3=I4=0.05 kg-m2
-m3aB

45
1
4
2
3
A
C
B
D
=45
F
I33
I22
-m3aB

4
2
3
A
C
B
D
=
45
F
C
B
A
2
2
°
504 Nm

4000 N
1000 Nm
Cy
F
Cx
F
Bx
F By
F
By
F
Bx
F
Cy
F
Cx
F
Ax
F
Ay
F
4
A
F
A4
46
4
2
3
A
C
B
D
=
45
F
C
B
A
2
2
°
504 Nm

4000 N
1000 Nm
Cy
F
Cx
F
Bx
F By
F
By
F
Bx
F
Cy
F
Cx
F
Ax
F
Ay
F
4
A
F
A4
 



 Bx
Ax
Bx
Ax
x F
F
F
F
;
F 0
0
 




 By
Ay
By
Ay
y F
F
F
F
;
F 0
0
0
0714
0
02828
0
504
0
22
22
504
0











By
Bx
By
Bx
A
F
*
.
F
*
.
cos
*
AB
*
F
sin
*
AB
F
T
;
M
47
4
2
3
A
C
B
D
=
45
F
C
B
A
2
2
°
504 Nm

4000 N
1000 Nm
Cy
F
Cx
F
Bx
F By
F
By
F
Bx
F
Cy
F
Cx
F
Ax
F
Ay
F
4
A
F
A4
0
69
.
556
;
0
82
cos
*
4000
;
0 






 Bx
Cx
Bx
Cx
x F
F
F
F
F
0
07
.
3961
;
0
82
sin
*
4000
;
0 






 By
Cy
By
Cy
y F
F
F
F
F
0
*
02828
.
0
*
02828
.
0
1000
;
0
45
cos
*
*
45
sin
*
1000
;
0 






 Cy
Cx
Cy
Cx
B F
F
BC
F
BC
F
M
48
4
2
3
A
C
B
D
=
45
F
C
B
A
2
2
°
504 Nm

4000 N
1000 Nm
Cy
F
Cx
F
Bx
F By
F
By
F
Bx
F
Cy
F
Cx
F
Ax
F
Ay
F
4
A
F
A4
 

 0
0 Cx
x F
;
F
 


 0
0 4
Ay
Cy
y F
F
;
F
 

 0
0 4 CA
*
F
T
;
M Cy
A
A
49
4
2
3
A
C
B
D
=
45
F
C
B
A
2
2
°
504
Nm

4000 N
1000
Nm
Cy
F
Cx
F
Bx
F By
F
By
F
Bx
F
Cy
F
Cx
F
Ax
F
Ay
F
4
A
F
A
4
 



 Bx
Ax
Bx
Ax
x F
F
F
F
;
F 0
0
 




 By
Ay
By
Ay
y F
F
F
F
;
F 0
0
0
*
0714
.
0
*
02828
.
0
504
0
22
cos
*
*
22
sin
*
504
;
0












By
Bx
By
Bx
A
F
F
T
AB
F
AB
F
T
M
0
69
.
556
;
0
82
cos
*
4000
;
0








Bx
Cx
Bx
Cx
x
F
F
F
F
F
0
07
.
3961
;
0
82
sin
*
4000
;
0








By
Cy
By
Cy
y
F
F
F
F
F
0
*
02828
.
0
*
02828
.
0
1000
;
0
45
cos
*
*
45
sin
*
1000
;
0








Cy
Cx
Cy
Cx
B
F
F
BC
F
BC
F
M
 

 0
;
0 Cx
x F
F
 


 0
0 4
Ay
Cy
y F
F
;
F
 

 0
0 4 CA
*
F
T
;
M Cy
A
A
N
.
FBx 69
556

 N
.
.
FCy 34
35355
02828
0
1000


N
.
.
.
FBy 41
39316
07
3961
34
35355 


CCW
Nm
.
T
.
*
.
)
.
(
*
.
93
3326
0
41
39316
0714
0
69
556
02828
0
504






50
51
If the boundaries (surfaces) of the volume is well defined mathemetically, we
calculate Mass Moment of Inertia by integration. if this is not possible and a
specimen exist, we move it and measure the motion. Motion is related to the
mass moment of inertia.
O
G

G
  


o
o I
M
52
Differential equation of motion of the compound pendulum. This is a second
order nonlinear differential equation. To ease the solution this equation must be
linearized which can be linearized by using Taylor series expansion then
O
G

mg
mgsin mgcos

sin
mg
r
M G
o 



 

o
G
o I
mg
r
M 


 sin
rG
0
sin 
 
 mg
r
I G
o



 
sin
0

 
 mg
r
I G
o


53
Where A&B are arbitrary coefficient related with the initial values of the motion
t is time
n is natural circular frequency
O
G

mg
mgsin mgcos
rG
o
o
G
o
I
I
mg
r
I 0

 


0

 
 mg
r
I G
o


0

 

o
G
I
mg
r


2
n
)
sin(
)
cos( t
B
t
A n
n 

 

54
When
O
G

mg
mgsin mgcos
rG
)
sin(
)
cos( t
B
t
A n
n 

 

o
G
n
I
mg
r


.
sec
.
rad
0
;
0
;
0 0








t
t
)
0
sin(
)
0
cos(
0 n
n B
A 

 

0
1
A

0

)
cos(
)
sin( t
B
t
A n
n
n
n 



 



)
0
cos(
)
0
sin(
0 n
n
n
n B
A 


 


1
0
0

B
55
)
sin(
)
cos( t
B
t
A n
n 

 

0


A 0

B
)
cos(
0 t
n


 
t
n

0

0


1 cycle
Elapsed time for one cycle is called period 
n



2


2 
4
56
n



2

o
G
n
I
mg
r


Procedure
Measure time; say 20 cycles by a stopwach.
Calculate one period by dividing this time into 20, which minimize the
personal mistakes.
0
2
2
I
mg
rG








 With only unknown I0
57
Differential equation of motion of the Torsional pendulum.

 k




 

o
I
k 

0

 
 k
Io


o
o
o
o
I
I
k
I
I 0

 



k

0
2
2
I
k








 With only unknown I0
58

sin
5
.
0
2
*
2 mg
b
MG 


mg


mg/2 mg/2

0.5mgcos
0.5mgsin
0.5mgsin
0.5mgsin
G
G


0
I
MG
 
0
sin
2

 

mbg
IG


b
l
59
mg


mg/2 mg/2
G
G
0
sin
2

 

mbg
IG


b
l

l

2
b 
 l
b

2


l
b
2


 
sin
0
2

 

mbg
IG


0
4
2

 

l
g
mb
IG


60
mg


mg/2 mg/2
G
G
b
l

l

2
b
0
4
2

 

l
g
mb
IG


G
G
G
G
I
lI
g
mb
I
I 0
4
2

 


0
4
2

 

G
lI
g
mb


G
lI
g
mb
4
2 2
2









61
© 2007 Sadettin Kapucu
 Coordinate Transformation
› Reference coordinate frame
OXYZ
› Body-attached frame O’uvw
w
v
u k
j
i w
v
u
uvw p
p
p
P 



62
z
y
x k
j
i z
y
x
xyz p
p
p
P 



x
y
z
P
u
v
w
O,
Point represented in OXYZ:
z
w
y
v
x
u p
p
p
p
p
p 


T
z
y
x
xyz p
p
p
P ]
,
,
[

Point represented in O’uvw:
Two frames coincide ==>
O’
 Mutually perpendicular  Unit vectors
63
Properties of orthonormal coordinate frame
0
0
0






j
k
k
i
j
i






1
|
|
1
|
|
1
|
|



k
j
i



Properties: Dot Product
Let and be arbitrary vectors in and be
the angle from to , then
3
R 

cos
y
x
y
x 

x y
x y
x
y

 Coordinate Transformation
› Rotation only
w
v
u k
j
i w
v
u
uvw p
p
p
P 



64
x
y
z
P
z
y
x k
j
i z
y
x
xyz p
p
p
P 



uvw
xyz RP
P  u
v
w
How to relate the coordinate in these two frames?
 Basic Rotation
› , , and represent
the projections of onto OX,
OY, OZ axes, respectively
› Since
65
y
p
x
p
x
p
P
y
p z
p
w
v
u
x p
p
p
P
p w
x
v
x
u
x
x k
i
j
i
i
i
i 







w
v
u
y p
p
p
P
p w
y
v
y
u
y
y k
j
j
j
i
j
j 







w
v
u
z p
p
p
P
p w
z
v
z
u
z
z k
k
j
k
i
k
k 







w
v
u k
j
i w
v
u p
p
p
P 


x
y
z
P
u
v
w
z
p
 Basic Rotation Matrix
› Rotation about x-axis with
66








































w
v
u
z
y
x
p
p
p
p
p
p
w
z
v
z
u
z
w
y
v
y
u
y
w
x
v
x
u
x
k
k
j
k
i
k
k
j
j
j
i
j
k
i
j
i
i
i
x
z
y
v
w
P
u


















C
S
S
C
)
,
x
(
Rot
0
0
0
0
1

 Is it True?
› Rotation about x axis with
67








cos
p
sin
p
p
sin
p
cos
p
p
p
p
p
p
p
cos
sin
sin
cos
p
p
p
w
v
z
w
v
y
u
x
w
v
u
z
y
x





































0
0
0
0
1
x
z
y
v
w
P
u


› Rotation about x-axis with
› Rotation about y-axis with
› Rotation about z-axis with
68
uvw
xyz RP
P 

















C
S
S
C
)
,
x
(
Rot
0
0
0
0
1
C
S
S
C
)
,
y
(
Rot

















0
0
1
0
0









 

1
0
0
0
0
)
,
( 



 C
S
S
C
z
Rot



 Basic Rotation Matrix
› Obtain the coordinate of from the coordinate
of








































z
y
x
w
v
u
p
p
p
p
p
p
z
w
y
w
x
w
z
v
y
v
x
v
z
u
y
u
x
u
k
k
j
k
i
k
k
j
j
j
i
j
k
i
j
i
i
i
69
uvw
xyz RP
P 




















w
z
v
z
u
z
w
y
v
y
u
y
w
x
v
x
u
x
k
k
j
k
i
k
k
j
j
j
i
j
k
i
j
i
i
i
R
xyz
uvw QP
P 
T
R
R
Q 
 1
3
1
I
R
R
R
R
QR T


 
uvw
P xyz
P
<== 3X3 identity matrix
Dot products are commutative!
 A point is attached to a rotating frame,
the frame rotates 60 degree about the OZ axis of
the reference frame. Find the coordinates of the
point relative to the reference frame after the
rotation.
70
)
2
,
3
,
4
(

uvw
a






























 


2
964
.
4
598
.
0
2
3
4
1
0
0
0
5
.
0
866
.
0
0
866
.
0
5
.
0
)
60
,
( uvw
xyz a
z
Rot
a
 A point is the coordinate w.r.t. the
reference coordinate system, find the
corresponding point w.r.t. the rotated
OU-V-W coordinate system if it has been
rotated 60 degree about OZ axis.
)
2
,
3
,
4
(

xyz
a
uvw
a
71



































2
964
.
1
598
.
4
2
3
4
1
0
0
0
5
.
0
866
.
0
0
866
.
0
5
.
0
)
60
,
( xyz
T
uvw a
z
Rot
a
72
• position vector of P
in {B} is transformed
to position vector of P
in {A}
• description of {B} as
seen from an observer
in {A}
Rotation of {B} with respect to {A}
Translation of the origin of {B} with respect to origin of {A}
 Two Special Cases
1. Translation only
› Axes of {B} and {A} are
parallel
2. Rotation only
› Origins of {B} and {A}
are coincident
73
1

B
A
R
'
o
A
P
B
B
A
P
A
r
r
R
r 

0
'

o
A
r
74
• Coordinate transformation from {B} to {A}
• Homogeneous transformation matrix
'
o
A
P
B
B
A
P
A
r
r
R
r 




















 1
1
0
1 3
1
' P
B
o
A
B
A
P
A
r
r
R
r













 


1
0
1
0
1
3
3
3
3
1
'
P
R
r
R
T
o
A
B
A
B
A
Position
vector
Rotation
matrix
Scaling
 Special cases
1. Translation
2. Rotation
75









1
0
0
3
1
1
3
B
A
B
A R
T









1
0 3
1
'
3
3
o
A
B
A r
I
T
 Translation along Z-axis with h:
76
x
y
z
P
u
v
w
O, O’













1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
)
,
(
h
h
z
Trans



















































1
1
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
h
p
p
p
p
p
p
h
z
y
x
w
v
u
w
v
u
x
y
z P
u
v
w
O, O’
h
 Rotation about the X-axis by






































1
1
0
0
0
0
0
0
0
0
0
0
1
1
w
v
u
p
p
p
C
S
S
C
z
y
x




77














1
0
0
0
0
0
0
0
0
0
0
1
)
,
(





C
S
S
C
x
Rot
x
z
y
v
w
P
u
 Composite Homogeneous Transformation
Matrix
 Rules:
› Transformation (rotation/translation) w.r.t
(X,Y,Z) (OLD FRAME), using pre-
multiplication
› Transformation (rotation/translation) w.r.t
(U,V,W) (NEW FRAME), using post-
multiplication
78
 Find the homogeneous transformation matrix
(T) for the following operation:
4
4
,
,
,
, 
 I
T
T
T
T
T x
a
x
d
z
z 

79
:
axis
OZ
about
of
Rotation
axis
OZ
along
d
of
n
Translatio
axis
OX
along
a
of
n
Translatio
axis
OX
about
Rotation
Answer


















































 

1
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
0
0
0
0
1
0
0
0
1
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
0
0
1
0
0
0
0
0
0








C
S
S
C
a
d
C
S
S
C
 A frame in space (Geometric
Interpretation)
80
x
y
z
)
,
,
( z
y
x p
p
p
P













1
0
0
0
z
z
z
z
y
y
y
y
x
x
x
x
p
a
s
n
p
a
s
n
p
a
s
n
F
n
s
a






 

1
0
1
3
3
3 P
R
F
Principal axis n w.r.t. the reference coordinate system
 Translation
81
y
z
n
s
a n
s
a










































1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
z
z
z
z
z
y
y
y
y
y
x
x
x
x
x
z
z
z
z
y
y
y
y
x
x
x
x
z
y
x
new
d
p
a
s
n
d
p
a
s
n
d
p
a
s
n
p
a
s
n
p
a
s
n
p
a
s
n
d
d
d
F
old
z
y
x
new F
d
d
d
Trans
F 
 )
,
,
(
82
83
X
Z
Y
P
x
z
y
O
O’
Inertial Frame
Body coordinate system it
rotates at the same
angular velocity as the
body
Arbitrary point in the body


Rigid body angular
velocity wrt inertial frame
r
R
R o





84
o
R

x
Z
Y
P
x
z
y
O
O’
r

R

Position of P


k
p
j
p
i
p
r z
y
x







The position of P wrt inertial
coordinate frame
The absolute velocity of P is
dt
r
d
dt
R
d
dt
R
d
V o







r
R
R o





85
o
R

X
Z
Y
P
x
z
y
O
O
’
r

R



dt
k
d
p
dt
j
d
p
dt
i
d
p
k
dt
dp
j
dt
dp
i
dt
dp
dt
r
d
z
y
x
z
y
x













The absolute velocity of P is
dt
r
d
dt
R
d
dt
R
d
V o







dt
k
d
p
k
dt
dp
dt
j
d
p
j
dt
dp
dt
i
d
p
i
dt
dp
dt
r
d
z
z
y
y
x
x













Becomes zero
because body is rigid
r
x



r
x
dt
r
d 




r
R
R o





86
The absolute velocity of P is
dt
r
d
dt
R
d
dt
R
d
V o







o
o
V
dt
R
d 


r
x
dt
r
d 




r
x
V
V o







o
R

X
Z
Y
P
x
z
y
O
O
’
r

R



r
R
R o





87
The absolute velocity of P is
r
x
V
V o







Acceleration of P wrt inertial coordinate system is
dt
r
x
d
dt
V
d
dt
V
d
a o )
(




 



dt
r
d
x
r
x
dt
d
a
a o










 
r
x
x
r
x
a
a o









 


o
R

X
Z
Y
P
x
z
y
O
O
’
r

R



88
89
90
The 0.8 m arm OA for a remote-control mechanism is pivoted about the horizontal x-axis of
the clevis, and the entire assembly rotates about the z-axis with a constant speed
N=60rev/min. Simultaneously the arm is being raised at the constant rate . For
the position where b=60o determine (a) angular velocity of OA, (b) the angular acceleration of
OA, (c) the velocity of point A, and (d) the acceleration of point A.
s
rad /
4

b

s
rad
N
z /
283
.
6
60
/
)
60
(
2
60
/
2 

 


s
rad
k
i
z
x /
283
.
6
4








 


x
x 









 k


283
.
6


2
/
13
.
25
4
283
.
6 s
rad
j
i
x
k







z


x

 



k
j
r



4
.
0
693
.
0 

s
m
k
j
i
k
j
i
r
x
V
/
77
.
2
60
.
1
35
.
4
4
.
0
693
.
0
0
283
.
6
0
4














 
s
rad
x /
4

 b
 
91
The 0.8 m arm OA for a remote-control mechanism is pivoted about the horizontal x-axis of
the clevis, and the entire assembly rotates about the z-axis with a constant speed
N=60rev/min. Simultaneously the arm is being raised at the constant rate . For
the position where b=60o determine (a) angular velocity of OA, (b) the angular acceleration of
OA, (c) the velocity of point A, and (d) the acceleration of point A.
s
rad /
4

b

s
rad
k
i
z
x /
283
.
6
4








 


2
/
13
.
25
4
283
.
6 s
rad
j
i
x
k







z


x

 



k
j
r



4
.
0
693
.
0 

V
x
r
x
r
x
x
r
x
a



















 )
(
2
/
40
.
6
44
.
38
11
.
20
77
.
2
60
.
1
35
.
4
283
.
6
0
4
4
.
0
693
.
0
0
0
13
.
25
0
s
m
k
j
i
k
j
i
k
j
i
a

















92
The electric motor with an attached disk is running at a constant low speed of 120
rey/mm in the direction shown. Its housing and mounting base are initially at rest.
The entire assembly is next set in rotation about the vertical Z-axis at the constant
rate N=60 rev/min with a fixed angle g of 300. Determine (a) the angular velocity
and angular acceleration of the disk, (b) the space and body cones, and (c) the
velocity and acceleration of point A at the top of the disk for the instant shown.
s
rad /
4

b

)
sin
(cos k
j



g
g 



s
rad
o /
4
60
/
)
2
(
120 

 

s
rad /
2
60
/
)
60
(
2 
 


K
k
o
o










 


s
rad
k
j
k
j
k
j
k
j
k
o
o
o
o
/
)
0
.
5
3
(
)
30
sin
2
4
(
)
30
cos
2
(
)
sin
(
)
cos
(
)
sin
(cos




























g

g
g
g


93
The electric motor with an attached disk is running at a constant low speed of 120
rey/mm in the direction shown. Its housing and mounting base are initially at rest.
The entire assembly is next set in rotation about the vertical Z-axis at the constant
rate N=60 rev/min with a fixed angle g of 300. Determine (a) the angular velocity
and angular acceleration of the disk, (b) the space and body cones, and (c) the
velocity and acceleration of point A at the top of the disk for the instant shown.
s
rad
o /
4
60
/
)
2
(
120 

 

s
rad /
2
60
/
)
60
(
2 
 


s
rad
k
j /
)
0
.
5
3
(




 

94
The electric motor with an attached disk is running at a constant low speed of 120
rey/mm in the direction shown. Its housing and mounting base are initially at rest.
The entire assembly is next set in rotation about the vertical Z-axis at the constant
rate N=60 rev/min with a fixed angle g of 300. Determine (a) the angular velocity
and angular acceleration of the disk, (b) the space and body cones, and (c) the
velocity and acceleration of point A at the top of the disk for the instant shown.
s
rad
o /
4
60
/
)
2
(
120 

 

s
rad /
2
60
/
)
60
(
2 
 










x



s
rad
i
i
i
i
i
o
o
o
/
4
.
68
30
cos
)
4
)(
2
(
)
cos
(
)
cos
sin
(
)
cos
sin
cos
( 2

















g

g
g
g
g
g

 
k
j
x
k
j o





)
sin
(
)
cos
(
)
sin
(cos g

g
g
g
 






95
The electric motor with an attached disk is running at a constant low speed of 120
rey/mm in the direction shown. Its housing and mounting base are initially at rest.
The entire assembly is next set in rotation about the vertical Z-axis at the constant
rate N=60 rev/min with a fixed angle g of 300. Determine (a) the angular velocity
and angular acceleration of the disk, (b) the space and body cones, and (c) the
velocity and acceleration of point A at the top of the disk for the instant shown.
s
rad
o /
4
60
/
)
2
(
120 

 

s
rad /
2
60
/
)
60
(
2 
 


s
rad
k
j /
)
0
.
5
3
(




 

96
The electric motor with an attached disk is running at a constant low speed of 120
rey/mm in the direction shown. Its housing and mounting base are initially at rest.
The entire assembly is next set in rotation about the vertical Z-axis at the constant
rate N=60 rev/min with a fixed angle g of 300. Determine (a) the angular velocity
and angular acceleration of the disk, (b) the space and body cones, and (c) the
velocity and acceleration of point A at the top of the disk for the instant shown.
s
rad /
4

b

k
j
r



250
.
0
125
.
0 

s
m
i
k
j
i
r
x
V /
1920
.
0
250
.
0
125
.
0
0
5
3
0










 



V
x
r
x
r
x
x
r
x
a















 


 )
(
2
/
83
.
11
6
.
26
)
192
.
0
(
)
5
3
(
)
250
.
0
125
.
0
(
4
.
68
s
m
k
j
i
x
k
j
k
j
x
i
a
















 

97
B
r

X
Z
Y
A
x
z
y
O
B
B
A
r

A
r



coordinate system rotates with
this angular velocirty


Body coordinate frame rotates
with this angular velocirty
B
F


Letting
r
x
r
V
V B
A










Denote the angular velocity of the reference wrt the body frame, the angular
velocity of the body is related to that of the coordinate system
B
F








The velocity of a point of the body may be represented by
r
x
V
V
r
x
r
x
V
V rel
B
B
F
B
A

















 
98
B
r

X
Z
Y
A
x
z
y
O
B
B
A
r

A
r



coordinate system rotates with
this angular velocirty


Body coordinate frame rotates
with this angular velocirty














B
A
B
A
B
A
B
A
B
A r
x
x
r
x
r
x
r
a
a














2
Acceleration of a point of the body is obtained as:
The velocity of a point of the body may be represented by








B
A
B
F
B
F
B
A
B
F
rel r
x
x
r
x
a









 rel
B
A
B
F V
x
r
x
x













 2
2 









































B
A
B
A
B
A
F
B
B
A
F
B
F
B
B
A
F
B
B
A
B
A
B
A
rel
rel
B
A
r
x
x
r
x
r
x
x
r
x
x
r
x
a
a
r
x
x
r
x
V
x
a
a
a































 2
2
r
x
r
V
V B
A










99
The motor housing and its bracket rotate about the Z axis at the constant rate
The motor shaft and disk have a constant angular velocity of spin with respect
to the motor housing in the direction shown. If g constant at 30o, determine the velocity
and acceleration of point A at the top of the disk and angular acceleration  of the disk.
s
rad /
3


K


3


J
rB


350
.
0

k
j
r
B
A



120
.
0
300
.
0 

s
m
i
I
J
x
K
r
x
V B
B
/
05
.
1
05
.
1
350
.
0
3














rel
B
A V
r
x
V
V









s
m
i
i
i
k
j
x
K
r
x
B
A /
599
.
0
)
30
sin
36
.
0
(
)
30
cos
9
.
0
(
)
120
.
0
300
.
0
(
3







 









s
m
i
k
j
x
j
r
x
p
V
B
A
rel /
960
.
0
)
120
.
0
300
.
0
(
8










s
m
i
i
i
i
VA /
689
.
0
960
.
0
599
.
0
05
.
1











s
rad
p /
8

100
The motor housing and its bracket rotate about the Z axis at the constant rate
The motor shaft and disk have a constant angular velocity of spin with respect
to the motor housing in the direction shown. If g constant at 30o, determine the velocity
and acceleration of point A at the top of the disk and angular acceleration  of the disk.
s
rad /
3


2
/
899
.
0
73
.
2
)
30
sin
30
cos
(
15
.
3
15
.
3
)
350
.
0
3
(
3
)
(
s
m
k
j
k
j
J
J
x
K
x
K
r
x
x
V B
B



























 
2
/
899
.
0
557
.
1
)
599
.
0
(
3
)
120
.
0
300
.
0
(
3
3
)
(
s
m
k
j
i
x
K
k
j
x
K
x
K
r
x
x
B
A




















2
/
88
.
2
99
.
4
)
30
sin
30
cos
(
76
.
5
76
.
5
960
.
0
)
3
(
2
2 s
m
k
j
k
j
J
i
x
K
V
x rel








 








s
rad
p /
8















B
A
B
A
rel
rel
B
A r
x
x
r
x
V
x
a
a
a











2
0




2
/
68
.
7
))
120
.
0
300
.
0
(
8
(
8
)
( s
m
k
k
j
x
j
x
j
r
x
p
x
p
a
B
A
rel













2
/
086
.
8
703
.
0 s
m
k
j
aA




 2
2
2
/
12
.
8
086
.
8
703
.
0 s
m
aA 


2
/
8
.
20
)
30
cos
24
(
0 s
rad
i
i


 






)
8
3
(
3 j
K
x
K
x












 


101
102
x
z
y
CG


r
 
dt
L
d
F


dt
V
m
d CG )
(


dt
V
d
m CG


 
dt
H
d
M CG

  
 
dt
dm
r
x
x
r
d 





103
x
z
y
CG


r
 
dt
L
d
F


dt
V
m
d CG )
(


dt
V
d
m CG


C
z
y
x
CG
V
x
k
V
j
V
i
V
dt
V
d 













z
y
x
z
y
x
V
V
V
k
j
i






 i
V
V y
z
z
y


 
   j
V
V x
z
z
x


 

 k
V
V x
y
y
x


 

104
x
z
y
CG


r
 
dt
L
d
F


dt
V
m
d CG )
(


dt
V
d
m CG


C
z
y
x
CG
V
x
k
V
j
V
i
V
dt
V
d 













z
y
x
z
y
x
V
V
V
k
j
i






 i
V
V y
z
z
y


 
   j
V
V x
z
z
x


 

 k
V
V x
y
y
x


 

 
 

 y
z
z
y
x
x V
V
V
m
F 


 
 

 z
x
x
z
y
y V
V
V
m
F 


 
 

 x
y
y
x
z
z V
V
V
m
F 


105
x
z
y
CG


r
 
dt
H
d
M CG

  
 
dt
dm
r
x
x
r
d 





 
 

 y
z
z
y
x
x V
V
V
m
F 


 
 

 z
x
x
z
y
y V
V
V
m
F 


 
 

 x
y
y
x
z
z V
V
V
m
F 


z
y
x
z
y
x
r
r
r
k
j
i






 i
r
r y
z
z
y


 
   j
r
r x
z
z
x


 

 k
r
r x
y
y
x


 


r
x



106
x
z
y
CG


r
 
dt
H
d
M CG

  
 
dt
dm
r
x
x
r
d 





 
 

 y
z
z
y
x
x V
V
V
m
F 


 
 

 z
x
x
z
y
y V
V
V
m
F 


 
 

 x
y
y
x
z
z V
V
V
m
F 


x
y
y
x
z
x
x
z
y
z
z
y
z
y
x
r
r
r
r
r
r
r
r
r
k
j
i





 





 
r
x
x
r



 i
r
r y
z
z
y


 
   j
r
r x
z
z
x


 
  k
r
r x
y
y
x


 


r
x



107
x
z
y
CG


r
 
dt
H
d
M CG

  
 
dt
dm
r
x
x
r
d 





 
 

 y
z
z
y
x
x V
V
V
m
F 


 
 

 z
x
x
z
y
y V
V
V
m
F 


 
 

 x
y
y
x
z
z V
V
V
m
F 


x
y
y
x
z
x
x
z
y
z
z
y
z
y
x
r
r
r
r
r
r
r
r
r
k
j
i





 





 
r
x
x
r




   
 i
r
r
r
r
r
r z
x
x
z
z
x
y
y
x
y




 



   
  j
r
r
r
r
r
r y
z
z
y
z
x
y
y
x
x




 



   
 k
r
r
r
r
r
r y
z
z
y
y
z
x
x
z
x




 



108
x
z
y
CG


r
 
dt
H
d
M CG

  
 
dt
dm
r
x
x
r
d 





 
 

 y
z
z
y
x
x V
V
V
m
F 


 
 

 z
x
x
z
y
y V
V
V
m
F 


 
 

 x
y
y
x
z
z V
V
V
m
F 


  
 dm
r
x
x
r



    
  dm
i
r
r
r
r
r
r z
x
x
z
z
x
y
y
x
y
 








   
  dm
j
r
r
r
r
r
r y
z
z
y
z
x
y
y
x
x
 








   
  dm
k
r
r
r
r
r
r y
z
z
y
y
z
x
x
z
x
 








H

109
x
z
y
CG


r
 
dt
H
d
M CG

  
 
dt
dm
r
x
x
r
d 





 
 

 y
z
z
y
x
x V
V
V
m
F 


 
 

 z
x
x
z
y
y V
V
V
m
F 


 
 

 x
y
y
x
z
z V
V
V
m
F 


   
 
   
 
   
  






































dm
r
r
r
r
r
r
dm
r
r
r
r
r
r
dm
r
r
r
r
r
r
H
H
H
H
y
z
z
y
y
z
x
x
z
x
y
z
z
y
z
x
y
y
x
x
z
x
x
z
z
x
y
y
x
y
z
y
x













110
x
z
y
CG


r
 
dt
H
d
M CG

  
 
dt
dm
r
x
x
r
d 





 
 

 y
z
z
y
x
x V
V
V
m
F 


 
 

 z
x
x
z
y
y V
V
V
m
F 


 
 

 x
y
y
x
z
z V
V
V
m
F 


   
 
   
 
   
  






































dm
r
r
r
r
r
r
dm
r
r
r
r
r
r
dm
r
r
r
r
r
r
H
H
H
H
y
z
z
y
y
z
x
x
z
x
y
z
z
y
z
x
y
y
x
x
z
x
x
z
z
x
y
y
x
y
z
y
x













 
 
  






































dm
r
r
r
r
r
r
dm
r
r
r
r
r
r
dm
r
r
r
r
r
r
H
H
H
H
y
z
y
z
y
x
z
x
x
z
z
y
z
z
y
x
y
x
y
x
z
x
z
x
z
y
x
y
y
x
z
y
x
2
2
2
2
2
2













111
x
z
y
CG


r
 
dt
H
d
M CG

  
 
dt
dm
r
x
x
r
d 





 
 

 y
z
z
y
x
x V
V
V
m
F 


 
 

 z
x
x
z
y
y V
V
V
m
F 


 
 

 x
y
y
x
z
z V
V
V
m
F 


 
 
  









































dm
r
r
r
r
dm
r
r
dm
r
r
dm
r
r
dm
r
r
dm
r
r
dm
r
r
dm
r
r
H
H
H
H
y
x
z
y
z
y
x
z
x
z
y
z
z
x
y
x
y
x
z
x
z
y
x
y
z
y
x
z
y
x
2
2
2
2
2
2










 
 
  






































dm
r
r
r
r
r
r
dm
r
r
r
r
r
r
dm
r
r
r
r
r
r
H
H
H
H
y
z
y
z
y
x
z
x
x
z
z
y
z
z
y
x
y
x
y
x
z
x
z
x
z
y
x
y
y
x
z
y
x
2
2
2
2
2
2













 
 
  



















































z
y
x
y
x
y
z
x
z
z
y
z
x
x
y
z
x
y
x
z
y
z
y
x
dm
r
r
dm
r
r
dm
r
r
dm
r
r
dm
r
r
dm
r
r
dm
r
r
dm
r
r
dm
r
r
H
H
H
H



2
2
2
2
2
2

112
x
z
y
CG


r
 
dt
H
d
M CG

  
 
dt
dm
r
x
x
r
d 





 
 

 y
z
z
y
x
x V
V
V
m
F 


 
 

 z
x
x
z
y
y V
V
V
m
F 


 
 

 x
y
y
x
z
z V
V
V
m
F 


 
 
  









































dm
r
r
r
r
dm
r
r
dm
r
r
dm
r
r
dm
r
r
dm
r
r
dm
r
r
dm
r
r
H
H
H
H
y
x
z
y
z
y
x
z
x
z
y
z
z
x
y
x
y
x
z
x
z
y
x
y
z
y
x
z
y
x
2
2
2
2
2
2










 
 
  



















































z
y
x
y
x
y
z
x
z
z
y
z
x
x
y
z
x
y
x
z
y
z
y
x
dm
r
r
dm
r
r
dm
r
r
dm
r
r
dm
r
r
dm
r
r
dm
r
r
dm
r
r
dm
r
r
H
H
H
H



2
2
2
2
2
2

113
x
z
y
CG


r
 
dt
H
d
M CG

  
 
dt
dm
r
x
x
r
d 





 
 

 y
z
z
y
x
x V
V
V
m
F 


 
 

 z
x
x
z
y
y V
V
V
m
F 


 
 

 x
y
y
x
z
z V
V
V
m
F 


 
 
  



















































z
y
x
y
x
y
z
x
z
z
y
z
x
x
y
z
x
y
x
z
y
z
y
x
dm
r
r
dm
r
r
dm
r
r
dm
r
r
dm
r
r
dm
r
r
dm
r
r
dm
r
r
dm
r
r
H
H
H
H



2
2
2
2
2
2







































z
y
x
zz
zy
zx
yz
yy
yx
xy
xy
xx
z
y
x
I
I
I
I
I
I
I
I
I
H
H
H
H




114
x
z
y
CG


r
 
dt
H
d
M CG

  
 
dt
dm
r
x
x
r
d 





 
 

 y
z
z
y
x
x V
V
V
m
F 


 
 

 z
x
x
z
y
y V
V
V
m
F 


 
 

 x
y
y
x
z
z V
V
V
m
F 








































z
y
x
zz
zy
zx
yz
yy
yx
xy
xy
xx
z
y
x
I
I
I
I
I
I
I
I
I
H
H
H
H




H
x
k
H
j
H
i
H
dt
H
d
z
y
x














115
x
z
y
CG


r
 
dt
H
d
M CG

  
 
dt
dm
r
x
x
r
d 











































z
y
x
zz
zy
zx
yz
yy
yx
xy
xy
xx
z
y
x
I
I
I
I
I
I
I
I
I
H
H
H
H




H
x
k
H
j
H
i
H
dt
H
d
z
y
x














z
y
x
z
y
x
H
H
H
k
j
i






 i
H
H y
z
z
y


 

  j
H
H x
z
z
x


 

 k
H
H x
y
y
x


 


H
x



116
x
z
y
CG


r






































z
y
x
zz
zy
zx
yz
yy
yx
xy
xy
xx
z
y
x
I
I
I
I
I
I
I
I
I
H
H
H
H




H
x
k
H
j
H
i
H
dt
H
d
z
y
x














     k
H
H
j
H
H
i
H
H
H
x x
y
y
x
x
z
z
x
y
z
z
y











 





       
2
2
x
y
yz
z
y
yy
zz
y
x
z
xz
z
x
y
xy
x
xx
x I
I
I
I
I
I
M 









 








 


       
2
2
x
z
xz
z
x
zz
xx
y
x
z
yz
y
yy
z
y
x
xy
y I
I
I
I
I
I
M 









 








 


       
2
2
y
x
xy
y
x
xx
yy
z
zz
z
x
y
yz
z
y
x
xz
x I
I
I
I
I
I
M 









 








 


117
x
z
y
CG


r
 
 

 y
z
z
y
x
x V
V
V
m
F 


 
 

 z
x
x
z
y
y V
V
V
m
F 


 
 

 x
y
y
x
z
z V
V
V
m
F 


       
2
2
x
y
yz
z
y
yy
zz
y
x
z
xz
z
x
y
xy
x
xx
x I
I
I
I
I
I
M 









 








 


       
2
2
x
z
xz
z
x
zz
xx
y
x
z
yz
y
yy
z
y
x
xy
y I
I
I
I
I
I
M 









 








 


       
2
2
y
x
xy
y
x
xx
yy
z
zz
z
x
y
yz
z
y
x
xz
x I
I
I
I
I
I
M 









 








 



More Related Content

Similar to 1234567890-Chapter 11b_Dynamic Force Analysis.pptx

dynamics chapt 1 .pptx
dynamics chapt 1 .pptxdynamics chapt 1 .pptx
dynamics chapt 1 .pptxJibrilJundi
 
Simulation of Double Pendulum
Simulation of Double PendulumSimulation of Double Pendulum
Simulation of Double PendulumQUESTJOURNAL
 
analyzing system of motion of a particles
analyzing system of motion of a particlesanalyzing system of motion of a particles
analyzing system of motion of a particlesvikasaucea
 
Damped and undamped motion differential equations.pptx
Damped and undamped motion differential equations.pptxDamped and undamped motion differential equations.pptx
Damped and undamped motion differential equations.pptxBrijeshMishra525980
 
Nonlinear Viscoelastic Analysis of Laminated Composite Plates – A Multi Scale...
Nonlinear Viscoelastic Analysis of Laminated Composite Plates – A Multi Scale...Nonlinear Viscoelastic Analysis of Laminated Composite Plates – A Multi Scale...
Nonlinear Viscoelastic Analysis of Laminated Composite Plates – A Multi Scale...rtme
 
Stereo 3D Simulation of Rigid Body Inertia Ellipsoid for The Purpose of Unman...
Stereo 3D Simulation of Rigid Body Inertia Ellipsoid for The Purpose of Unman...Stereo 3D Simulation of Rigid Body Inertia Ellipsoid for The Purpose of Unman...
Stereo 3D Simulation of Rigid Body Inertia Ellipsoid for The Purpose of Unman...inventionjournals
 
7. Springs In Series And Parallel K 1 K
7. Springs In Series And Parallel K 1 K7. Springs In Series And Parallel K 1 K
7. Springs In Series And Parallel K 1 KRichard Hogue
 
Feedback Control of Dynamic Systems 8th Edition Franklin Solutions Manual
Feedback Control of Dynamic Systems 8th Edition Franklin Solutions ManualFeedback Control of Dynamic Systems 8th Edition Franklin Solutions Manual
Feedback Control of Dynamic Systems 8th Edition Franklin Solutions ManualDakotaFredericks
 
Beams on Elastic Foundation2.pdf
Beams on Elastic Foundation2.pdfBeams on Elastic Foundation2.pdf
Beams on Elastic Foundation2.pdfShubhamShirgire1
 
Lec5 total potential_energy_method
Lec5 total potential_energy_methodLec5 total potential_energy_method
Lec5 total potential_energy_methodMahdi Damghani
 

Similar to 1234567890-Chapter 11b_Dynamic Force Analysis.pptx (20)

Angdist
AngdistAngdist
Angdist
 
Angdist
AngdistAngdist
Angdist
 
group 9 sec c3 .docx
group 9 sec  c3 .docxgroup 9 sec  c3 .docx
group 9 sec c3 .docx
 
dynamics chapt 1 .pptx
dynamics chapt 1 .pptxdynamics chapt 1 .pptx
dynamics chapt 1 .pptx
 
Chapter 12.pdf
Chapter 12.pdfChapter 12.pdf
Chapter 12.pdf
 
Simulation of Double Pendulum
Simulation of Double PendulumSimulation of Double Pendulum
Simulation of Double Pendulum
 
analyzing system of motion of a particles
analyzing system of motion of a particlesanalyzing system of motion of a particles
analyzing system of motion of a particles
 
Damped and undamped motion differential equations.pptx
Damped and undamped motion differential equations.pptxDamped and undamped motion differential equations.pptx
Damped and undamped motion differential equations.pptx
 
Nonlinear Viscoelastic Analysis of Laminated Composite Plates – A Multi Scale...
Nonlinear Viscoelastic Analysis of Laminated Composite Plates – A Multi Scale...Nonlinear Viscoelastic Analysis of Laminated Composite Plates – A Multi Scale...
Nonlinear Viscoelastic Analysis of Laminated Composite Plates – A Multi Scale...
 
Fir 05 dynamics
Fir 05 dynamicsFir 05 dynamics
Fir 05 dynamics
 
Ch1and2.pptx
Ch1and2.pptxCh1and2.pptx
Ch1and2.pptx
 
Stereo 3D Simulation of Rigid Body Inertia Ellipsoid for The Purpose of Unman...
Stereo 3D Simulation of Rigid Body Inertia Ellipsoid for The Purpose of Unman...Stereo 3D Simulation of Rigid Body Inertia Ellipsoid for The Purpose of Unman...
Stereo 3D Simulation of Rigid Body Inertia Ellipsoid for The Purpose of Unman...
 
7. Springs In Series And Parallel K 1 K
7. Springs In Series And Parallel K 1 K7. Springs In Series And Parallel K 1 K
7. Springs In Series And Parallel K 1 K
 
Bazzucchi-Campolmi-Zatti
Bazzucchi-Campolmi-ZattiBazzucchi-Campolmi-Zatti
Bazzucchi-Campolmi-Zatti
 
Feedback Control of Dynamic Systems 8th Edition Franklin Solutions Manual
Feedback Control of Dynamic Systems 8th Edition Franklin Solutions ManualFeedback Control of Dynamic Systems 8th Edition Franklin Solutions Manual
Feedback Control of Dynamic Systems 8th Edition Franklin Solutions Manual
 
Momentum
MomentumMomentum
Momentum
 
Beams on Elastic Foundation2.pdf
Beams on Elastic Foundation2.pdfBeams on Elastic Foundation2.pdf
Beams on Elastic Foundation2.pdf
 
O0703093097
O0703093097O0703093097
O0703093097
 
kuramoto
kuramotokuramoto
kuramoto
 
Lec5 total potential_energy_method
Lec5 total potential_energy_methodLec5 total potential_energy_method
Lec5 total potential_energy_method
 

Recently uploaded

(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 

Recently uploaded (20)

(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 

1234567890-Chapter 11b_Dynamic Force Analysis.pptx

  • 1. 1
  • 2. 2 If a moving links in a mechanism is running with considerable amount of linear and/or angular accelerations, inertia forces are generated and these inertia forces also must be overcome by the driving motor as an addition to the forces exerted by the external load or work the mechanism does. So, and are no longer applicable. The consideration that says all forces on components of machine systems are in balance (static and dynamic equilibrium ) is seldom in real machines (except when the machine is stopped) I and m are inertial (bodily) properties. At this stage we need to know the description of the inertial properties. 0  F  0  τ  a F   m   α τ   I   Governing rules will be:
  • 3. 3 Of course techniques for static force analysis are important, not only because stationary structures must be designed to withstand their imposed loads, but also because they introduce concepts and approaches that can be built upon and extended to non equilibrium conditions . Therefore the purpose of this chapter is to learn how much acceleration will result from a system of unbalanced forces and also learn how these dynamic forces can be assessed for systems that are not in equilibrium
  • 4. 4 Centroid is the point where the resultant of distributed force system is assumed to act and generate the same dynamic results. C entroid R esultant F orce
  • 5. 3 2 1 3 3 2 2 1 1 m m m m x m x m x x      5 If the distributed force is gravity force acting on each particle of mass, then concentrated force itself is called the “weight” and the centroid is called the “center of gravity” or “mass center”. Mass times distance, mr, is called as the first mass moment. This concept of first mass moment is normally used in deriving the center of mass of a system of particles or a rigid body. In figure a series of masses are located on a line. The center of mass or centroid is located at x3 x1 x2 x - m 1 m 2 m 3 G       n i i n i i i m m x x 1 1
  • 6. 6 The coordinates of the masses located on a plane can be obtained as: m 1 m 2 m 3 x - y - G 3 2 1 3 3 2 2 1 1 1 1 m m m m x m x m x m m x x n i i n i i i           3 2 1 3 3 2 2 1 1 1 1 m m m m y m y m y m m y y n i i n i i i          
  • 7.      n i i n i i i m m z z 1 1 7 This procedure can be extended to masses concentrated in a volume by simply writing an equation for the z axis. A more general form of mass center location for three dimensional body can be obtained by using integration instead of summation. The relations then become      n i i n i i i m m x x 1 1      n i i n i i i m m y y 1 1 m xdm x   m ydm y   m zdm z  
  • 8. 8 Mass moment of inertia is the name given to rotational inertia, the rotational inertia analog of mass for linear motion. It appears in the relationships for the dynamics of rotational motion. The Mass Moment of Inertia of a solid measures the solid's ability to resist changes in rotational speed about a specific axis. r o o m The moment of inertia for a point mass is just the mass times the square of perpendicular distance to the rotation axis. The mass moment of inertia for a single particle is given as: m r I 2 00 
  • 9. 9 When calculating the mass moment of inertia for a rigid body, one thinks of the body as a sum of particles, each having a mass of dm. Integration is used to sum the moment of inertia of each dm to get the mass moment of inertia of body. The equation for the mass moment of inertia of the rigid body is     dm r dm r I 2 2 00 r o o dm
  • 10. 10 The integration over mass can be replaced by integration over volume, area, or length. For a fully three dimensional body using the density r one can relate the element of mass to the element of volume. x y dm z  dm z y dm r I x xx      2 2 2  dm z x dm r I y yy      2 2 2  dm y x dm r I z zz      2 2 2 rz ry rx These three integrals are called the principle mass moment of inertia of the body. Another three similar integrals are     xydm I I yx xy     yzdm I I zy yz     xzdm I I zx xz }mass products of inertia of the body
  • 11. G IC G , m IC G , m O rigin a l B od y k M o de l 11 Sometime in place of the mass moment of inertia the radius of gyration k is provided. The mass moment of inertia can be calculated from k using the relation where m is the total mass of the body. One can interpret the radius of gyration as the distance from the axis that one could put a single particle of mass m equal to the mass of the rigid body and have this particle have the same mass moment of inertia as the original body. 2 mk I  k M o de l
  • 12. G ICG ,m ICG ,m o o d 12 The moment of inertia around any axis can be calculated from the moment of inertia around parallel axis which passes through the center of mass. The equation to calculate this is called the parallel axis theorem and is given as 2 md I I CG  
  • 13. 13 Solution: Mass moments of inertial of a point mass about an axis passing through itself What are the mass moments of inertial of a point mass about an axis passing through itself and about an axis r distance away from it ? o o m      0 0 2 dm dm r Ioo
  • 14. 14 Solution: Mass moments of inertial of a point mass about an axis passing through itself What are the mass moments of inertial of a point mass about an axis passing through itself and about an axis r distance away from it ? o o m      0 0 2 dm dm r Ioo o o r m x x m r m r m r I I xx oo 2 2 2 0      Mass moments of inertial of a point mass about an axis r distance away from it. Using parallel axis theorem
  • 15. 15 Solution: Find the mass moment of inertia of a slender rod of length L (slender rod means that it has a length, and the remaining dimensions are negligible small) about an axis perpendicular to the rod and passing through its mass center. L L/2 o o L L/2 o o dx x   2 / 0 2 * 2 L oo dm x I Let density of the material is r in kg/m. Then, infinitesimal mass dm=rdx. Substituting this into above equation,    2 / 0 2 * 2 L oo dx x I r 12 2 mL  2 / 3 | 3 2 L o x r 3 2 3 2        L r
  • 16. 16 An uniform steel bar shown in the figure is used as an oscillating cam follower. Drive the equation of mass moment of inertia of the follower about an axis through O. Use the density of steel r=7800 kg/m3. k=2kN /m 2 cm 25 cm 50 cm 25 cm 5 cm y x O
  • 18. x y z dx t w l 18 Solution: x y z dy t w l     dy l t y dx w t x Izz * * * * * * * * 2 2 r r     2 / 0 2 2 / 0 2 * * * * 2 * * * * 2 w l dy y l t dx x w t r r
  • 19. 19 Solution: r * * * t w l m  12 12 * 12 * 2 2 2 2 w l m w m l m Izz                                               3 2 * * * * 2 3 2 * * * * 2 3 3 w l t l w t Izz r r 12 * * * * 12 * * * * 2 2 w w l t l l w t Izz r r   mass moment of inertia about O can be found by parallel axis theorem 48 4 7 4 12 * 2 2 2 2 2 2 2 0 w l m l m w l m d m I I zz        m kg I . 139 . 1 48 05 . 0 * 4 1 * 7 8 . 7 2 2 0   
  • 20. 20
  • 21. 21 The slender bar of mass m is released form rest in the horizontal position as shown. At that instant, determine the force exerted on the bar by the support A. Freebody Diagram Equations Of Motion G a m F       I M  
  • 22. 22 The slender bar of mass m is released form rest in the horizontal position as shown. At that instant, determine the force exerted on the bar by the support A. Kinematics of the slender rod ? ?     y x G a a a    ?    Freebody Diagram Equations Of Motion G a m F        I M   x x ma F   y y ma F    A A I M  
  • 23. 23 The slender bar of mass m is released form rest in the horizontal position as shown. At that instant, determine the force exerted on the bar by the support A. Kinematics of the slender rod ? ?     y x G a a a    ?    ) x ( x r ax        r ay    x   r At the instant bar is released, its angular velocity 0    0  x a  j l i l k ay       2 1 2 1 x           0  x a  l ay 2 1  
  • 24. 24 Freebody Diagram Equations Of Motion  A A I M   0 0      x x x x A m A ma F                l m mg A ma mg A ma F y y y y y 2 1 4 mg Ay  2 2 2 2 12 2 3 A G ml l ml I I md m            l g ml l mg 2 3 3 2 1 2            0  x a  l ay 2 1  
  • 25. 25 D’Alembert’s principle permits the reduction of a problem in dynamics to one in statics. This is accomplished by introducing a fictitious force equal in magnitude to the product of the mass of the body and its acceleration, and directed opposite to the acceleration. The result is a condition of kinetic equilibrium. fictitious force and torque 0      a a a F     m m m 0      α α α τ     I I I The meaning of the equation; i.e. indication of a dynamic case still holds true, but equation, having zero on right hand side becomes very easy to solve, like that in a “static force analysis” problem. CG SF m, I a  CG SF m, I a  -ma I
  • 26. 26 1. Do an acceleration analysis and calculate the linear acceleration of the mass centers of each moving link. Also calculate the angular acceleration of each moving link. 2. Masses and centroidal inertias of each moving link must be known beforehand. 3. Add one fictitious force on each moving body equal to the mass of that body times the acceleration of its mass center, direction opposite to its acceleration, applied directly onto the center of gravity, apart from the already existing real forces. 4. Add fictitious torque on each moving body equal to the centroidal inertia of that body times its angular acceleration, direction or sense opposite to that of acceleration apart from the already existing real torques. 5. Solve statically.
  • 27. 4 B 2 A 3 G 3 x  27 AB=10 cm, AG3=BG3=5 cm, =60o m2=m4=0.5 kg, m3=0.8 kg, I3=0.01 kg.m2 In the figure, a double- slider mechanism working in horizontal plane is shown. The slider at B is moving rightward with a constant velocity of 1 m/sec. Calculate the amount of force on this mechanism in the given kinematic state. B A B A V V V       ?  A V   s m VB / 1 AB to V B A   ? B V A V B A V   s m VA / 5774 . 0 s m V B A / 1547 . 1 
  • 28. 4 B 2 A 3 G 3 x  28 In the figure, a double- slider mechanism working in horizontal plane is shown. The slider at B is moving rightward with a constant velocity of 1 m/sec. Calculate the amount of force on this mechanism in the given kinematic state. B A B A V V V      B to A from s m AB V a B A n B A 2 2 2 / 33 . 13 1 . 0 1547 . 1     ?  A a B A B A a a a      0 B A A a a    t B A n B A a a     AB to at B A   ?
  • 29. 4 B 2 A 3 G 3 x  29 B to A from s m AB V a B A n B A 2 2 2 / 33 . 13 1 . 0 1547 . 1     ?  A a B A A a a    t B A n B A a a     AB to at B A   ? 2 / 698 , 7 s m at B A  t B A a A a 2 / 396 . 15 s m aA  G3 3 G a n B A a 2 / 698 . 7 2 / 3 s m a a A G   3  AB at B A  CCW s rad AB at B A 2 3 / 98 . 78 1 . 0 698 . 7    
  • 30. 4 B 2 A 3 G 3 x  30 t B A a A a 2 / 396 . 15 s m aA  G3 3 G a n B A a 2 / 698 . 7 2 / 3 s m a a A G   CCW s rad AB at B A 2 3 / 98 . 78 1 . 0 698 . 7     3 G ma  A ma  3  I  D’Alembert forces and moments 0 90 698 . 7 396 . 15 * 5 . 0     N maA 0 90 1584 . 6 698 . 7 * 8 . 0 3     N maG CW Nm I 7689 . 0 98 . 76 * 01 . 0 3    
  • 32. 32 4 B 2 A 3 G 3 N 698 . 7 N 1584 . 6 Nm 7689 . 0 B F 12 F 14 F       12 12 0 ; 0 F F F F F B B x N F F Fy 86 . 13 0 1584 . 6 698 . 7 ; 0 14 14        N F F MB 11 . 15 0867 . 0 3087 . 1 0 60 sin * 1 . 0 * 60 cos * 05 . 0 * 1584 . 6 60 cos * 1 . 0 * 698 . 7 7698 . 0 ; 0 12 12            N FB 11 . 15 + x y
  • 33. 4 B 2 A 3 G 3 x  33 3 G ma  A ma  3  I  0 90 698 . 7 396 . 15 * 5 . 0     N maA 0 90 1584 . 6 698 . 7 * 8 . 0 3     N maG CW Nm I 7689 . 0 98 . 76 * 01 . 0 3     3 G ma  3  I  3 G ma  3 G ma  h h ma I G * 3 3     3 3 G ma I h   m h 125 . 0 1589 . 6 7689 . 0   h 3 G ma  3 G ma 
  • 35. 35 4 B 2 A 3 G 3 N 698 . 7 B F 12 F 14 F h N 1584 . 6       12 12 0 ; 0 F F F F F B B x N F F Fy 86 . 13 0 1584 . 6 698 . 7 ; 0 14 14        N F F MB 11 . 15 0867 . 0 3087 . 1 0 60 sin * 1 . 0 * 60 cos * 1 . 0 * 698 . 7 60 cos * ) 125 . 0 05 . 0 ( * 1584 . 6 ; 0 12 12            N FB 11 . 15 + x y
  • 36. At the crank angle shown and asuming that gravity and friction effects are negligible, find all the constraint forces and the driving torque required to produce the velocity and acceleration conditions specified. 36
  • 37. Gaziantep University Example 15.4: ˆ RAO= 60 mm, RO 2 ˆ m4 = 5 kg, IG = 0.025 kg · m2, IG = 0.012 kg · m2, IG = 0.054 kg · m2, α 2 = 0, α 3 = -119k rad/s2, α 4 = -625k rad/s2, AG = 162∠- 2 3 4 3 73.2° m/s2, AG = 104∠233° m/s2, FC = -0.8 j kN. 4 Figure 15.9 Calculate the inertia forces and inertia torques −m A =0 2 G2 −m A =−(1.5)(46.8 i−155j)=−70.2i+233j(N) 3 G3 −m A =−(5.0)(−62.6i −83.1j)=−313i+415j(N) 4 G4 −I α =0 G2 2 −I α =−(0.012)( −119k) =1.43k(N ⋅m) G3 3 −I α =−(0.054)(−625k)=33.8k(N ⋅m) G4 4 15-12
  • 38. Gaziantep University Considering the free-body diagram of link 4 and 3 respectively, M = R ×(−m A ) +(−I α ) + R ×F + R ×F = 0 ∑ O4 G4O4 4 G4 G4 4 CO4 c BO4 34 M = R ×(−m A ) +(−I α ) + R ×F = 0 ∑ A G3A 3 G3 G3 3 BA 43 x y M = 25.2k +33.8k −96k + (−125F +83F )k = 0 ∑ O4 34 34 x y M =18.6k +1.43k + (70.5F − 208F )k = 0 ∑ A 34 34 F =− 300i −39j 34 F = F +F +F +(−m A ) = 0 ∑ i4 14 34 C 4 G 4 Summing forces on the link 2,3,4, F =− 13i +390j(N) 14 F = F +F +(−m A ) = 0 ∑ i3 23 43 3 G3 F =− 230i −238j(N) 23 F = F +F +(−m A ) = 0 ∑ i2 12 32 2 G2 F = F =− F 12 23 32 M = R ×F +M +(−I α ) = 0 ∑ O AO 32 12 G 2 2 2 2 M =− R ×F =18.6k(N ⋅m) 12 AO2 32 15-13
  • 39. Gaziantep University 15.5 The Principle of Superposition Linear System: the response or output of a system is directly proportional to the drive or input to the system. In the absence of Coulomb or dry friction, most mechanisms are linear for force analysis purpose. The principle of superposition: for linear systems the individual responses to several disturbances or driving functions can be superposed on each other to obtain the total response of the system. Example: nonlinear factor: static or Coulomb friction, systems with clearances or backlash systems with springs that change stiffness as they are deflected Complete dynamic force analysis of a planar motion mechanism: (1) make a kinematic analysis of the mechanism. (2) make a complete static force analysis of the mechanism. (3) calculate the inertia forces and inertia torques for each link or element of the mechanism. make another complete force analysis of the mechanism. (4) add the results of steps 2 and 3 to obtain the resultant forces and torques on each link. 15-14
  • 40. 40 Crank AB of the mechanism shown is balanced such that the mass center is at A. Mass center of the link CD is at its mid point. At the given instant, link 4 is translating rightward with constant velocity of 5 m/sec. Calculate the amount of motor torque required on crank AB to keep at the given kinematics state. 1 4 2 3 A C B D =45 F AC=10 cm, CB=BD=4 cm, AF=2 cm CG3=4 cm, m2=m3=m4=5 kg, I2=I3=I4=0.05 kg-m2
  • 41. 41 Crank AB of the mechanism shown is balanced such that the mass center is at A. Mass center of the link CD is at its mid point. At the given instant, link 4 is translating rightward with constant velocity of 5 m/sec. Calculate the amount of motor torque required on crank AB to keep at the given kinematics state. 1 4 2 3 A C B D =45 F AC=10 cm, CB=BD=4 cm, AF=2 cm CG3=4 cm, m2=m3=m4=5 kg, I2=I3=I4=0.05 kg-m2 C B C B V V V      AB to VB   ?   sec / 5 m VC BC to V C B   ? s m VC / 5  5 m/s s m V C B / 05 . 5  s m VB / 85 . 3 
  • 42. 42 Crank AB of the mechanism shown is balanced such that the mass center is at A. Mass center of the link CD is at its mid point. At the given instant, link 4 is translating rightward with constant velocity of 5 m/sec. Calculate the amount of motor torque required on crank AB to keep at the given kinematics state. 1 4 2 3 A C B D =45 F AC=10 cm, CB=BD=4 cm, AF=2 cm CG3=5 cm, m2=m3=m4=5 kg, I2=I3=I4=0.05 kg-m2 C B C B a a a      0  C a n C B n C B t B n B a a a a      A to B from s m AB V a B n B 2 2 2 / 5 . 192 077 . 0 85 . 3    BC to at C B   ? C to B from s m BC V a C B n C B 2 2 2 / 6 . 637 04 . 0 05 . 5    AB to at B   ? 2 / 5 . 192 s m an B  2 / 6 . 637 s m an C B  2 / 483 s m at C B  2 / 776 s m at B 
  • 43. 43 Crank AB of the mechanism shown is balanced such that the mass center is at A. Mass center of the link CD is at its mid point. At the given instant, link 4 is translating rightward with constant velocity of 5 m/sec. Calculate the amount of motor torque required on crank AB to keep at the given kinematics state. 1 4 2 3 A C B D =45 F AC=10 cm, CB=BD=4 cm, AF=2 cm CG3=5 cm, m2=m3=m4=5 kg, I2=I3=I4=0.05 kg-m2 ? ?, ?, 3 2    B a   2 / 5 . 192 s m an B  2 / 6 . 637 s m an C B  2 / 483 s m at C B  2 / 776 s m at B  CCW s rad AB at B 2 2 2 / 10078 077 . 0 776 *       CW s rad BC at C B 2 3 3 / 20000 04 . 0 800 *       B a  262 / 800 2   s m aB B 3 2
  • 44. 44 D’Alembert forces and moments 1 4 2 3 A C B D =45 F 2 / 5 . 192 s m an B  2 / 6 . 637 s m an C B  2 / 483 s m at C B  2 / 776 s m at B  CCW s rad 2 2 / 10078   CW s rad 2 3 / 20000   B a  262 / 800 2   s m aB B I33 I22  82 4000 800 5 3     N * a m B CW Nm * . I 504 10078 05 0 2 2     CCW Nm * . I 1000 20000 05 0 3 3     m2=m3=m4=5 kg, I2=I3=I4=0.05 kg-m2 -m3aB 
  • 46. 46 4 2 3 A C B D = 45 F C B A 2 2 ° 504 Nm  4000 N 1000 Nm Cy F Cx F Bx F By F By F Bx F Cy F Cx F Ax F Ay F 4 A F A4       Bx Ax Bx Ax x F F F F ; F 0 0        By Ay By Ay y F F F F ; F 0 0 0 0714 0 02828 0 504 0 22 22 504 0            By Bx By Bx A F * . F * . cos * AB * F sin * AB F T ; M
  • 47. 47 4 2 3 A C B D = 45 F C B A 2 2 ° 504 Nm  4000 N 1000 Nm Cy F Cx F Bx F By F By F Bx F Cy F Cx F Ax F Ay F 4 A F A4 0 69 . 556 ; 0 82 cos * 4000 ; 0         Bx Cx Bx Cx x F F F F F 0 07 . 3961 ; 0 82 sin * 4000 ; 0         By Cy By Cy y F F F F F 0 * 02828 . 0 * 02828 . 0 1000 ; 0 45 cos * * 45 sin * 1000 ; 0         Cy Cx Cy Cx B F F BC F BC F M
  • 48. 48 4 2 3 A C B D = 45 F C B A 2 2 ° 504 Nm  4000 N 1000 Nm Cy F Cx F Bx F By F By F Bx F Cy F Cx F Ax F Ay F 4 A F A4     0 0 Cx x F ; F      0 0 4 Ay Cy y F F ; F     0 0 4 CA * F T ; M Cy A A
  • 49. 49 4 2 3 A C B D = 45 F C B A 2 2 ° 504 Nm  4000 N 1000 Nm Cy F Cx F Bx F By F By F Bx F Cy F Cx F Ax F Ay F 4 A F A 4       Bx Ax Bx Ax x F F F F ; F 0 0        By Ay By Ay y F F F F ; F 0 0 0 * 0714 . 0 * 02828 . 0 504 0 22 cos * * 22 sin * 504 ; 0             By Bx By Bx A F F T AB F AB F T M 0 69 . 556 ; 0 82 cos * 4000 ; 0         Bx Cx Bx Cx x F F F F F 0 07 . 3961 ; 0 82 sin * 4000 ; 0         By Cy By Cy y F F F F F 0 * 02828 . 0 * 02828 . 0 1000 ; 0 45 cos * * 45 sin * 1000 ; 0         Cy Cx Cy Cx B F F BC F BC F M     0 ; 0 Cx x F F      0 0 4 Ay Cy y F F ; F     0 0 4 CA * F T ; M Cy A A N . FBx 69 556   N . . FCy 34 35355 02828 0 1000   N . . . FBy 41 39316 07 3961 34 35355    CCW Nm . T . * . ) . ( * . 93 3326 0 41 39316 0714 0 69 556 02828 0 504      
  • 50. 50
  • 51. 51 If the boundaries (surfaces) of the volume is well defined mathemetically, we calculate Mass Moment of Inertia by integration. if this is not possible and a specimen exist, we move it and measure the motion. Motion is related to the mass moment of inertia. O G  G
  • 52.      o o I M 52 Differential equation of motion of the compound pendulum. This is a second order nonlinear differential equation. To ease the solution this equation must be linearized which can be linearized by using Taylor series expansion then O G  mg mgsin mgcos  sin mg r M G o        o G o I mg r M     sin rG 0 sin     mg r I G o      sin 0     mg r I G o  
  • 53. 53 Where A&B are arbitrary coefficient related with the initial values of the motion t is time n is natural circular frequency O G  mg mgsin mgcos rG o o G o I I mg r I 0      0     mg r I G o   0     o G I mg r   2 n ) sin( ) cos( t B t A n n     
  • 54. 54 When O G  mg mgsin mgcos rG ) sin( ) cos( t B t A n n      o G n I mg r   . sec . rad 0 ; 0 ; 0 0         t t ) 0 sin( ) 0 cos( 0 n n B A      0 1 A  0  ) cos( ) sin( t B t A n n n n          ) 0 cos( ) 0 sin( 0 n n n n B A        1 0 0  B
  • 55. 55 ) sin( ) cos( t B t A n n      0   A 0  B ) cos( 0 t n     t n  0  0   1 cycle Elapsed time for one cycle is called period  n    2   2  4
  • 56. 56 n    2  o G n I mg r   Procedure Measure time; say 20 cycles by a stopwach. Calculate one period by dividing this time into 20, which minimize the personal mistakes. 0 2 2 I mg rG          With only unknown I0
  • 57. 57 Differential equation of motion of the Torsional pendulum.   k        o I k   0     k Io   o o o o I I k I I 0       k  0 2 2 I k          With only unknown I0
  • 58. 58  sin 5 . 0 2 * 2 mg b MG    mg   mg/2 mg/2  0.5mgcos 0.5mgsin 0.5mgsin 0.5mgsin G G   0 I MG   0 sin 2     mbg IG   b l
  • 59. 59 mg   mg/2 mg/2 G G 0 sin 2     mbg IG   b l  l  2 b   l b  2   l b 2     sin 0 2     mbg IG   0 4 2     l g mb IG  
  • 60. 60 mg   mg/2 mg/2 G G b l  l  2 b 0 4 2     l g mb IG   G G G G I lI g mb I I 0 4 2      0 4 2     G lI g mb   G lI g mb 4 2 2 2         
  • 62.  Coordinate Transformation › Reference coordinate frame OXYZ › Body-attached frame O’uvw w v u k j i w v u uvw p p p P     62 z y x k j i z y x xyz p p p P     x y z P u v w O, Point represented in OXYZ: z w y v x u p p p p p p    T z y x xyz p p p P ] , , [  Point represented in O’uvw: Two frames coincide ==> O’
  • 63.  Mutually perpendicular  Unit vectors 63 Properties of orthonormal coordinate frame 0 0 0       j k k i j i       1 | | 1 | | 1 | |    k j i    Properties: Dot Product Let and be arbitrary vectors in and be the angle from to , then 3 R   cos y x y x   x y x y x y 
  • 64.  Coordinate Transformation › Rotation only w v u k j i w v u uvw p p p P     64 x y z P z y x k j i z y x xyz p p p P     uvw xyz RP P  u v w How to relate the coordinate in these two frames?
  • 65.  Basic Rotation › , , and represent the projections of onto OX, OY, OZ axes, respectively › Since 65 y p x p x p P y p z p w v u x p p p P p w x v x u x x k i j i i i i         w v u y p p p P p w y v y u y y k j j j i j j         w v u z p p p P p w z v z u z z k k j k i k k         w v u k j i w v u p p p P    x y z P u v w z p
  • 66.  Basic Rotation Matrix › Rotation about x-axis with 66                                         w v u z y x p p p p p p w z v z u z w y v y u y w x v x u x k k j k i k k j j j i j k i j i i i x z y v w P u                   C S S C ) , x ( Rot 0 0 0 0 1 
  • 67.  Is it True? › Rotation about x axis with 67         cos p sin p p sin p cos p p p p p p p cos sin sin cos p p p w v z w v y u x w v u z y x                                      0 0 0 0 1 x z y v w P u  
  • 68. › Rotation about x-axis with › Rotation about y-axis with › Rotation about z-axis with 68 uvw xyz RP P                   C S S C ) , x ( Rot 0 0 0 0 1 C S S C ) , y ( Rot                  0 0 1 0 0             1 0 0 0 0 ) , (      C S S C z Rot   
  • 69.  Basic Rotation Matrix › Obtain the coordinate of from the coordinate of                                         z y x w v u p p p p p p z w y w x w z v y v x v z u y u x u k k j k i k k j j j i j k i j i i i 69 uvw xyz RP P                      w z v z u z w y v y u y w x v x u x k k j k i k k j j j i j k i j i i i R xyz uvw QP P  T R R Q   1 3 1 I R R R R QR T     uvw P xyz P <== 3X3 identity matrix Dot products are commutative!
  • 70.  A point is attached to a rotating frame, the frame rotates 60 degree about the OZ axis of the reference frame. Find the coordinates of the point relative to the reference frame after the rotation. 70 ) 2 , 3 , 4 (  uvw a                                   2 964 . 4 598 . 0 2 3 4 1 0 0 0 5 . 0 866 . 0 0 866 . 0 5 . 0 ) 60 , ( uvw xyz a z Rot a
  • 71.  A point is the coordinate w.r.t. the reference coordinate system, find the corresponding point w.r.t. the rotated OU-V-W coordinate system if it has been rotated 60 degree about OZ axis. ) 2 , 3 , 4 (  xyz a uvw a 71                                    2 964 . 1 598 . 4 2 3 4 1 0 0 0 5 . 0 866 . 0 0 866 . 0 5 . 0 ) 60 , ( xyz T uvw a z Rot a
  • 72. 72 • position vector of P in {B} is transformed to position vector of P in {A} • description of {B} as seen from an observer in {A} Rotation of {B} with respect to {A} Translation of the origin of {B} with respect to origin of {A}
  • 73.  Two Special Cases 1. Translation only › Axes of {B} and {A} are parallel 2. Rotation only › Origins of {B} and {A} are coincident 73 1  B A R ' o A P B B A P A r r R r   0 '  o A r
  • 74. 74 • Coordinate transformation from {B} to {A} • Homogeneous transformation matrix ' o A P B B A P A r r R r                       1 1 0 1 3 1 ' P B o A B A P A r r R r                  1 0 1 0 1 3 3 3 3 1 ' P R r R T o A B A B A Position vector Rotation matrix Scaling
  • 75.  Special cases 1. Translation 2. Rotation 75          1 0 0 3 1 1 3 B A B A R T          1 0 3 1 ' 3 3 o A B A r I T
  • 76.  Translation along Z-axis with h: 76 x y z P u v w O, O’              1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ) , ( h h z Trans                                                    1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 h p p p p p p h z y x w v u w v u x y z P u v w O, O’ h
  • 77.  Rotation about the X-axis by                                       1 1 0 0 0 0 0 0 0 0 0 0 1 1 w v u p p p C S S C z y x     77               1 0 0 0 0 0 0 0 0 0 0 1 ) , (      C S S C x Rot x z y v w P u
  • 78.  Composite Homogeneous Transformation Matrix  Rules: › Transformation (rotation/translation) w.r.t (X,Y,Z) (OLD FRAME), using pre- multiplication › Transformation (rotation/translation) w.r.t (U,V,W) (NEW FRAME), using post- multiplication 78
  • 79.  Find the homogeneous transformation matrix (T) for the following operation: 4 4 , , , ,   I T T T T T x a x d z z   79 : axis OZ about of Rotation axis OZ along d of n Translatio axis OX along a of n Translatio axis OX about Rotation Answer                                                      1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0         C S S C a d C S S C
  • 80.  A frame in space (Geometric Interpretation) 80 x y z ) , , ( z y x p p p P              1 0 0 0 z z z z y y y y x x x x p a s n p a s n p a s n F n s a          1 0 1 3 3 3 P R F Principal axis n w.r.t. the reference coordinate system
  • 82. 82
  • 83. 83 X Z Y P x z y O O’ Inertial Frame Body coordinate system it rotates at the same angular velocity as the body Arbitrary point in the body   Rigid body angular velocity wrt inertial frame
  • 84. r R R o      84 o R  x Z Y P x z y O O’ r  R  Position of P   k p j p i p r z y x        The position of P wrt inertial coordinate frame The absolute velocity of P is dt r d dt R d dt R d V o       
  • 85. r R R o      85 o R  X Z Y P x z y O O ’ r  R    dt k d p dt j d p dt i d p k dt dp j dt dp i dt dp dt r d z y x z y x              The absolute velocity of P is dt r d dt R d dt R d V o        dt k d p k dt dp dt j d p j dt dp dt i d p i dt dp dt r d z z y y x x              Becomes zero because body is rigid r x    r x dt r d     
  • 86. r R R o      86 The absolute velocity of P is dt r d dt R d dt R d V o        o o V dt R d    r x dt r d      r x V V o        o R  X Z Y P x z y O O ’ r  R   
  • 87. r R R o      87 The absolute velocity of P is r x V V o        Acceleration of P wrt inertial coordinate system is dt r x d dt V d dt V d a o ) (          dt r d x r x dt d a a o             r x x r x a a o              o R  X Z Y P x z y O O ’ r  R   
  • 88. 88
  • 89. 89
  • 90. 90 The 0.8 m arm OA for a remote-control mechanism is pivoted about the horizontal x-axis of the clevis, and the entire assembly rotates about the z-axis with a constant speed N=60rev/min. Simultaneously the arm is being raised at the constant rate . For the position where b=60o determine (a) angular velocity of OA, (b) the angular acceleration of OA, (c) the velocity of point A, and (d) the acceleration of point A. s rad / 4  b  s rad N z / 283 . 6 60 / ) 60 ( 2 60 / 2       s rad k i z x / 283 . 6 4             x x            k   283 . 6   2 / 13 . 25 4 283 . 6 s rad j i x k        z   x       k j r    4 . 0 693 . 0   s m k j i k j i r x V / 77 . 2 60 . 1 35 . 4 4 . 0 693 . 0 0 283 . 6 0 4                 s rad x / 4   b  
  • 91. 91 The 0.8 m arm OA for a remote-control mechanism is pivoted about the horizontal x-axis of the clevis, and the entire assembly rotates about the z-axis with a constant speed N=60rev/min. Simultaneously the arm is being raised at the constant rate . For the position where b=60o determine (a) angular velocity of OA, (b) the angular acceleration of OA, (c) the velocity of point A, and (d) the acceleration of point A. s rad / 4  b  s rad k i z x / 283 . 6 4             2 / 13 . 25 4 283 . 6 s rad j i x k        z   x       k j r    4 . 0 693 . 0   V x r x r x x r x a                     ) ( 2 / 40 . 6 44 . 38 11 . 20 77 . 2 60 . 1 35 . 4 283 . 6 0 4 4 . 0 693 . 0 0 0 13 . 25 0 s m k j i k j i k j i a                 
  • 92. 92 The electric motor with an attached disk is running at a constant low speed of 120 rey/mm in the direction shown. Its housing and mounting base are initially at rest. The entire assembly is next set in rotation about the vertical Z-axis at the constant rate N=60 rev/min with a fixed angle g of 300. Determine (a) the angular velocity and angular acceleration of the disk, (b) the space and body cones, and (c) the velocity and acceleration of point A at the top of the disk for the instant shown. s rad / 4  b  ) sin (cos k j    g g     s rad o / 4 60 / ) 2 ( 120      s rad / 2 60 / ) 60 ( 2      K k o o               s rad k j k j k j k j k o o o o / ) 0 . 5 3 ( ) 30 sin 2 4 ( ) 30 cos 2 ( ) sin ( ) cos ( ) sin (cos                             g  g g g  
  • 93. 93 The electric motor with an attached disk is running at a constant low speed of 120 rey/mm in the direction shown. Its housing and mounting base are initially at rest. The entire assembly is next set in rotation about the vertical Z-axis at the constant rate N=60 rev/min with a fixed angle g of 300. Determine (a) the angular velocity and angular acceleration of the disk, (b) the space and body cones, and (c) the velocity and acceleration of point A at the top of the disk for the instant shown. s rad o / 4 60 / ) 2 ( 120      s rad / 2 60 / ) 60 ( 2      s rad k j / ) 0 . 5 3 (       
  • 94. 94 The electric motor with an attached disk is running at a constant low speed of 120 rey/mm in the direction shown. Its housing and mounting base are initially at rest. The entire assembly is next set in rotation about the vertical Z-axis at the constant rate N=60 rev/min with a fixed angle g of 300. Determine (a) the angular velocity and angular acceleration of the disk, (b) the space and body cones, and (c) the velocity and acceleration of point A at the top of the disk for the instant shown. s rad o / 4 60 / ) 2 ( 120      s rad / 2 60 / ) 60 ( 2              x    s rad i i i i i o o o / 4 . 68 30 cos ) 4 )( 2 ( ) cos ( ) cos sin ( ) cos sin cos ( 2                  g  g g g g g    k j x k j o      ) sin ( ) cos ( ) sin (cos g  g g g        
  • 95. 95 The electric motor with an attached disk is running at a constant low speed of 120 rey/mm in the direction shown. Its housing and mounting base are initially at rest. The entire assembly is next set in rotation about the vertical Z-axis at the constant rate N=60 rev/min with a fixed angle g of 300. Determine (a) the angular velocity and angular acceleration of the disk, (b) the space and body cones, and (c) the velocity and acceleration of point A at the top of the disk for the instant shown. s rad o / 4 60 / ) 2 ( 120      s rad / 2 60 / ) 60 ( 2      s rad k j / ) 0 . 5 3 (       
  • 96. 96 The electric motor with an attached disk is running at a constant low speed of 120 rey/mm in the direction shown. Its housing and mounting base are initially at rest. The entire assembly is next set in rotation about the vertical Z-axis at the constant rate N=60 rev/min with a fixed angle g of 300. Determine (a) the angular velocity and angular acceleration of the disk, (b) the space and body cones, and (c) the velocity and acceleration of point A at the top of the disk for the instant shown. s rad / 4  b  k j r    250 . 0 125 . 0   s m i k j i r x V / 1920 . 0 250 . 0 125 . 0 0 5 3 0                V x r x r x x r x a                     ) ( 2 / 83 . 11 6 . 26 ) 192 . 0 ( ) 5 3 ( ) 250 . 0 125 . 0 ( 4 . 68 s m k j i x k j k j x i a                   
  • 97. 97 B r  X Z Y A x z y O B B A r  A r    coordinate system rotates with this angular velocirty   Body coordinate frame rotates with this angular velocirty B F   Letting r x r V V B A           Denote the angular velocity of the reference wrt the body frame, the angular velocity of the body is related to that of the coordinate system B F         The velocity of a point of the body may be represented by r x V V r x r x V V rel B B F B A                   
  • 98. 98 B r  X Z Y A x z y O B B A r  A r    coordinate system rotates with this angular velocirty   Body coordinate frame rotates with this angular velocirty               B A B A B A B A B A r x x r x r x r a a               2 Acceleration of a point of the body is obtained as: The velocity of a point of the body may be represented by         B A B F B F B A B F rel r x x r x a           rel B A B F V x r x x               2 2                                           B A B A B A F B B A F B F B B A F B B A B A B A rel rel B A r x x r x r x x r x x r x a a r x x r x V x a a a                                 2 2 r x r V V B A          
  • 99. 99 The motor housing and its bracket rotate about the Z axis at the constant rate The motor shaft and disk have a constant angular velocity of spin with respect to the motor housing in the direction shown. If g constant at 30o, determine the velocity and acceleration of point A at the top of the disk and angular acceleration  of the disk. s rad / 3   K   3   J rB   350 . 0  k j r B A    120 . 0 300 . 0   s m i I J x K r x V B B / 05 . 1 05 . 1 350 . 0 3               rel B A V r x V V          s m i i i k j x K r x B A / 599 . 0 ) 30 sin 36 . 0 ( ) 30 cos 9 . 0 ( ) 120 . 0 300 . 0 ( 3                   s m i k j x j r x p V B A rel / 960 . 0 ) 120 . 0 300 . 0 ( 8           s m i i i i VA / 689 . 0 960 . 0 599 . 0 05 . 1            s rad p / 8 
  • 100. 100 The motor housing and its bracket rotate about the Z axis at the constant rate The motor shaft and disk have a constant angular velocity of spin with respect to the motor housing in the direction shown. If g constant at 30o, determine the velocity and acceleration of point A at the top of the disk and angular acceleration  of the disk. s rad / 3   2 / 899 . 0 73 . 2 ) 30 sin 30 cos ( 15 . 3 15 . 3 ) 350 . 0 3 ( 3 ) ( s m k j k j J J x K x K r x x V B B                              2 / 899 . 0 557 . 1 ) 599 . 0 ( 3 ) 120 . 0 300 . 0 ( 3 3 ) ( s m k j i x K k j x K x K r x x B A                     2 / 88 . 2 99 . 4 ) 30 sin 30 cos ( 76 . 5 76 . 5 960 . 0 ) 3 ( 2 2 s m k j k j J i x K V x rel                   s rad p / 8                B A B A rel rel B A r x x r x V x a a a            2 0     2 / 68 . 7 )) 120 . 0 300 . 0 ( 8 ( 8 ) ( s m k k j x j x j r x p x p a B A rel              2 / 086 . 8 703 . 0 s m k j aA      2 2 2 / 12 . 8 086 . 8 703 . 0 s m aA    2 / 8 . 20 ) 30 cos 24 ( 0 s rad i i           ) 8 3 ( 3 j K x K x                
  • 101. 101
  • 102. 102 x z y CG   r   dt L d F   dt V m d CG ) (   dt V d m CG     dt H d M CG       dt dm r x x r d      
  • 103. 103 x z y CG   r   dt L d F   dt V m d CG ) (   dt V d m CG   C z y x CG V x k V j V i V dt V d               z y x z y x V V V k j i        i V V y z z y        j V V x z z x       k V V x y y x     
  • 104. 104 x z y CG   r   dt L d F   dt V m d CG ) (   dt V d m CG   C z y x CG V x k V j V i V dt V d               z y x z y x V V V k j i        i V V y z z y        j V V x z z x       k V V x y y x            y z z y x x V V V m F          z x x z y y V V V m F          x y y x z z V V V m F   
  • 105. 105 x z y CG   r   dt H d M CG       dt dm r x x r d             y z z y x x V V V m F          z x x z y y V V V m F          x y y x z z V V V m F    z y x z y x r r r k j i        i r r y z z y        j r r x z z x       k r r x y y x       r x   
  • 106. 106 x z y CG   r   dt H d M CG       dt dm r x x r d             y z z y x x V V V m F          z x x z y y V V V m F          x y y x z z V V V m F    x y y x z x x z y z z y z y x r r r r r r r r r k j i               r x x r     i r r y z z y        j r r x z z x       k r r x y y x       r x   
  • 107. 107 x z y CG   r   dt H d M CG       dt dm r x x r d             y z z y x x V V V m F          z x x z y y V V V m F          x y y x z z V V V m F    x y y x z x x z y z z y z y x r r r r r r r r r k j i               r x x r          i r r r r r r z x x z z x y y x y                j r r r r r r y z z y z x y y x x               k r r r r r r y z z y y z x x z x         
  • 108. 108 x z y CG   r   dt H d M CG       dt dm r x x r d             y z z y x x V V V m F          z x x z y y V V V m F          x y y x z z V V V m F        dm r x x r           dm i r r r r r r z x x z z x y y x y                 dm j r r r r r r y z z y z x y y x x                 dm k r r r r r r y z z y y z x x z x           H 
  • 109. 109 x z y CG   r   dt H d M CG       dt dm r x x r d             y z z y x x V V V m F          z x x z y y V V V m F          x y y x z z V V V m F                                                             dm r r r r r r dm r r r r r r dm r r r r r r H H H H y z z y y z x x z x y z z y z x y y x x z x x z z x y y x y z y x             
  • 110. 110 x z y CG   r   dt H d M CG       dt dm r x x r d             y z z y x x V V V m F          z x x z y y V V V m F          x y y x z z V V V m F                                                             dm r r r r r r dm r r r r r r dm r r r r r r H H H H y z z y y z x x z x y z z y z x y y x x z x x z z x y y x y z y x                                                           dm r r r r r r dm r r r r r r dm r r r r r r H H H H y z y z y x z x x z z y z z y x y x y x z x z x z y x y y x z y x 2 2 2 2 2 2             
  • 111. 111 x z y CG   r   dt H d M CG       dt dm r x x r d             y z z y x x V V V m F          z x x z y y V V V m F          x y y x z z V V V m F                                                    dm r r r r dm r r dm r r dm r r dm r r dm r r dm r r dm r r H H H H y x z y z y x z x z y z z x y x y x z x z y x y z y x z y x 2 2 2 2 2 2                                                        dm r r r r r r dm r r r r r r dm r r r r r r H H H H y z y z y x z x x z z y z z y x y x y x z x z x z y x y y x z y x 2 2 2 2 2 2                                                                        z y x y x y z x z z y z x x y z x y x z y z y x dm r r dm r r dm r r dm r r dm r r dm r r dm r r dm r r dm r r H H H H    2 2 2 2 2 2 
  • 112. 112 x z y CG   r   dt H d M CG       dt dm r x x r d             y z z y x x V V V m F          z x x z y y V V V m F          x y y x z z V V V m F                                                    dm r r r r dm r r dm r r dm r r dm r r dm r r dm r r dm r r H H H H y x z y z y x z x z y z z x y x y x z x z y x y z y x z y x 2 2 2 2 2 2                                                                     z y x y x y z x z z y z x x y z x y x z y z y x dm r r dm r r dm r r dm r r dm r r dm r r dm r r dm r r dm r r H H H H    2 2 2 2 2 2 
  • 113. 113 x z y CG   r   dt H d M CG       dt dm r x x r d             y z z y x x V V V m F          z x x z y y V V V m F          x y y x z z V V V m F                                                              z y x y x y z x z z y z x x y z x y x z y z y x dm r r dm r r dm r r dm r r dm r r dm r r dm r r dm r r dm r r H H H H    2 2 2 2 2 2                                        z y x zz zy zx yz yy yx xy xy xx z y x I I I I I I I I I H H H H    
  • 114. 114 x z y CG   r   dt H d M CG       dt dm r x x r d             y z z y x x V V V m F          z x x z y y V V V m F          x y y x z z V V V m F                                          z y x zz zy zx yz yy yx xy xy xx z y x I I I I I I I I I H H H H     H x k H j H i H dt H d z y x              
  • 115. 115 x z y CG   r   dt H d M CG       dt dm r x x r d                                             z y x zz zy zx yz yy yx xy xy xx z y x I I I I I I I I I H H H H     H x k H j H i H dt H d z y x               z y x z y x H H H k j i        i H H y z z y        j H H x z z x       k H H x y y x       H x   
  • 116. 116 x z y CG   r                                       z y x zz zy zx yz yy yx xy xy xx z y x I I I I I I I I I H H H H     H x k H j H i H dt H d z y x                    k H H j H H i H H H x x y y x x z z x y z z y                           2 2 x y yz z y yy zz y x z xz z x y xy x xx x I I I I I I M                                 2 2 x z xz z x zz xx y x z yz y yy z y x xy y I I I I I I M                                 2 2 y x xy y x xx yy z zz z x y yz z y x xz x I I I I I I M                        
  • 117. 117 x z y CG   r       y z z y x x V V V m F          z x x z y y V V V m F          x y y x z z V V V m F            2 2 x y yz z y yy zz y x z xz z x y xy x xx x I I I I I I M                                 2 2 x z xz z x zz xx y x z yz y yy z y x xy y I I I I I I M                                 2 2 y x xy y x xx yy z zz z x y yz z y x xz x I I I I I I M                        