SlideShare a Scribd company logo
1 of 56
THERMODYNAMICS &
ENERGY BALANCE
Lecture Note
Principles of Food Engineering
Dosen :
Dr. Eko Hari Purnomo
Dept of Food Science and Technology
Faculty of Agricultural Technology
Bogor Agricultural University
BOGOR
• Learning Objectives
– Understand the conceptual basis of the Law of
Thermodynamics
– Understand the fundamental energy balance concepts
– Be able to list and discuss important terms related to
energy transfer
– Be able to list and discuss energy balance applications
in food processing and handling operations
– Be able to conceptually describe how energy balance
determinations or calculations are obtained
THERMODYNAMICS AND ENERGY BALANCE
Thermodynamics is the branch of science which studies
the transformation of energy from one form to another
Thermodynamics - Science which is concerned with
changes in the forms or location of energy and may be
thought in terms of “energy dynamics”
Thermodynamics of process :
.............> looks at the energy transformations
which occur as a result of process
 How much heat is evolved during a process?
 What determines the spontaneous process?
 What determines the extent of process?
WHAT IS THERMODYNAMICS?
• Composed of a finite portion of matter and is
defined in terms of the boundaries which enclose it
• Boundaries may be real or imaginary
• Region surrounding boundaries may be referred to
as its environment
• May consider a plant or any portion thereof as a
boundary
DESCRIPTION OF THE SYSTEM.........1
System
Surrounding = environment
energy
mass
• Two (common) types of systems are:
– open system
– closed system
• Open system
- boundaries permit the crossing of matter
- energy may cross the boundaries of the open system
with the flow of mass or separately
DESCRIPTION OF THE SYSTEM.........2
System energy
mass
• Closed System
- boundaries do not permit the crossing of matter
- energy may cross the boundaries of closed systems
Steady state conditions:
> mass of the system remains unchanged
> rate of flow leaving system is constant
and equal to that entering the system
Transient (unsteady) state conditions:
> mass of the system may remain unchanged
> heat of the system changes with time
DESCRIPTION OF THE SYSTEM.........3
• Energy which crosses the boundary is classified as
either heat or work
DESCRIPTION OF THE SYSTEM .........4
System work
mass
• Heat is the form of energy that is transferred from the
environment external to the system by way of diffusion
due to a temperature gradient.
• Positive sign - refers to heat entering system
• Negative sign - heat leaving system
heat
• Property - Observable, measurable, or
calculable characteristic of a substance which
depends only upon the state of the substance
• State of a given system is its condition or its
position with respect to other systems
• Equation of state - relationship between
> pressure,
> specific volume, and
> temperature
PROPERTIES OF THE SYSTEM ........ 1
• Equation of state of a perfect/ideal gas
(Boyle, Charles, Guy-Lussac) :
PV = nRT; where:
P = absolute pressure, kPa/m2
V = volume, m3
n = number of molecules, kgmole
R = universal gas constant [=]????
T = absolute temperature, oK
PROPERTIES OF THE SYSTEM ........ 2
• Standard Condition?
At 273oK, 760 mm Hg (101.325 kPa),
1 gmole occupy 22,4 L
1 kgmole occupy 22.4 m3
• R = 0.08206 lit(atm)/(gmole.oK)
= 8315 Nm/kgmole.oK
= 1545 ft(lbf)/(lbmole.oR
PROPERTIES OF THE SYSTEM ........ 3
• Typical properties of a system for a given state are :
> pressure,
> volume,
> temperature,
> velocity, and
> the elevation of the system.
• Van der Waal’s Equation of state :
PROPERTIES OF THE SYSTEM ........ 4
( ) nRT
nb
V
V
a
n
P 2
2
=
-






+
where:
P = absolute pressure V = volume, m3
n = number of molecule R = gas constant
T = absolute temp. a, b = constant
a
Pa(m3/kgmole)2
b
m3/kgmole
Gas
Air 1.348 105 0.0366
Ammonia 4.246 105 0.0373
CO2 3.648 105 0.0428
Water vapor 5.553 105 0.0306
• Pure substance is a single substance which retains
an unvarying molecular structure
• Examples include:
> pure oxygen
> ammonia
> dry air (in the gaseous state) - largely composed
of oxygen and nitrogen with fixed percentages
of each
PURE SUBSTANCES...... 1
• A pure substance may exist in any of three
phases including solid, liquid, or gas
= f (P, V, T)
• Melting
- change of phase from solid to liquid
• Vaporization
- change of phase from liquid to gas
• Condensation
- change of phase from vapor to liquid
• Sublimation
- substance passing from the solid directly to a
gaseous phase (dry ice)
PURE SUBSTANCES...... 2
Temperature (K)
Pressure
(kPa)
solid
liquid
gas
Triple
point
(T)
PURE SUBSTANCES...... 3
H2O
T (4,6 Torr, 0.01oC)
CO2
T(5.4 Torr, - 57oC)
Temperature (K)
Pressure
(kPa)
solid
liquid
gas
• Melting
• Vaporization
Condensation .
• Sublimation
PURE SUBSTANCES...... 4
Temperature (K)
Pressure
(kPa)
solid
liquid
gas
Critical
Point
PURE SUBSTANCES...... 5
• The higher the pressure the higher the
saturation temperature
• Critical point :
– gas and liquid become indistinguishable
– density and other properties become identical
PURE SUBSTANCES...... 6
Gas or Vapor?
.........> = identical !!!
Vapor :
- gas which exists below its critical temperature
- condensable by compression at constant T
Gas :
- non condensable gas
- gas above the critical point
PURE SUBSTANCES ...... Vapor Pressure
...... Vapor-liquid Equilibrium
Vaporization and condensation at constant T and P are
equilibrium process
- equilibrium pressure = vapor pressure
- at a given T :
........ > there is only one P at which liquid and
vapor coexist (in equilibrium).
Temperature (K)
Pressure
(kPa)
Vapor and liquid
in equilibrium
190oF
P=500 mm Hg
Vapor
liquid
PURE SUBSTANCES...... Vapor Pressure
Temperature (K)
Pressure
(kPa)
190oF
P=900 mm Hg
190oF
P=250 mm Hg
All
vapor
All
liquid
H2O
H2O
Transformation of
liquid water into water
vapor at constant T
PURE SUBSTANCES...... Vapor Pressure
Temperature (K)
Pressure
(kPa)
213oF
P=14.7 psia
All
vapor
Transformation of
liquid water vapor into
water at constant P
212oF
P=14.7 psia
Vapor
H2O
liquid
211oF
P=14.7 psia
All
liquid
H2O
• System may be losing and gaining energy
• Total energy of the system?. ............> internal energy, E.
• Internal energy : total energy of system
(the sum of all the system's energy).
• Chemical, nuclear, heat, gravitational, etc
• It is impossible to measure the total internal energy of
our system ...........> intrinsic property
• So why define a quantity which we cannot measure?
• We can measure changes in the internal energy.
• Thermodynamics is all about changes in energy :
• The change in internal energy of a system a very useful
experimental quantity.
Internal Energy, E
E may change in 3 different ways :
 heat passes into or out of the system;
 work is done on or by the system;
 mass enters or leaves the system.
Again :
• Closed system :
no transfer of mass is possible :
E may only change due to heat and work.
• Isolated system :
heat, work and mass transfer are all impossible
no change in E
• Open system :
E may change due to transfer of heat, mass and work
between system and surroundings.
Change of Internal Energy, E
If dQ and dW are the increments of heat and work energy
crossing the system’s boundaries :
dE = dQ - dW
or
DE = Q - W
Closed system
• The First Law of Thermodynamics
= law of conservation of energy
ISOTHERMAL EXPANSION OF AN IDEAL GAS
AGAINST A FIXED ESTERNAL PRESSURE
Patm
h1
Patm
h2
Work ??
= force x distance
= pressure x area x distance
= Patm x A x (h2-h1)
=PatmDV
Remember!
• Positive sign - heat entering system
- work done on the system (compression)
• Negative sign - heat leaving system
- work done by the system (expansion)
W = - Patm. DV
• If ...........> P [=] Pa
...........> V [=] m3
then
...........> W [=] J
ISOTHERMAL EXPANSION OF AN IDEAL GAS
AGAINST A FIXED ESTERNAL PRESSURE
Enthalpy (H)
• Another intrinsic thermodynamic variable
H = E + PV
or, in differential form :
dH = dE + PdV + VdP
PdV = dW ..........> dH = dE + dW + VdP
dW + dE = dQ ..........> dH = dQ + VdP
for constant pressure process (dP=0)
dH = dQ or DH = Q
p
dT
dQ
Cp =
...........>
• Specific heat at constant P (Cp)
...........> DH = Q = CpdT
Enthalpy = Heat content < .....
Enthalpy (H)
• Back to Internal energy : dE = dQ - dW
• Constant Volume process :
dW =0 ..........> dE = dQ
DE = Q
V
dT
dQ
CV =
...........>
• Specific heat at constant V (Cv)
...........> DE = CVdT
...........> DH = Q= CpdT
...........> DH = mCp.av (T2 - T1)
• Enthalpy = Heat content
• DH : positive ......> heat is absorbed (endothermic)
• DH : negative ......> heat is envolved (exothermic)
Relationship between Cp and Cv
dE = dQ - PdV
taking the derivative with respect to T :
dT
dV
P
dT
dQ
dT
dE
P
-
=
Cp
CV
1 mole of Ideal gas
PV = RT
at constant pressure :
(dV/dT) = R/P
CV = CP - R
R
.............> CP/CV = g
.............> CP/R = g/(g-1)
STEAM TABLE
Gas ready to start to condense : saturated gas
.............> dew point
Liquid ready to start to vaporize : saturated liquid
.............> bubble/boiling point
Mixture of liquid and vapor at equilibrium (called a wet gas)
.............> both liquid and vapor are saturated
Temperature (K)
Pressure
(kPa)
STEAM TABLE .......... Degree of superheat
Temperature (K)
Pressure
(kPa)
Steam
500oF,
100 psia
100 psia
327.8oF
Degree of superheat
= 500-327.8 = 172.2oF
..and.. Steam quality
Wet vapor :
consists of saturated vapor + saturated liquid
Steam quality
= weight fraction of vapor
SAT- STEAM TABLE .......... Appendix A3 (Toledo, p. 572-3)
Temp
(OF)
Absolute
presure
lb/in2
Spec. Vol (ft3/lb)
Sat.
liquid
vf
Evap.
vfg
Sat.
vapor
vg
Ethalpy (BTU/lb)
Sat.
liquid
hf
Evap.
hfg
Sat.
vapor
hg
32 0.08859 0.016022 3304.7 3304.7 -0.0179 1075.5 1075.5
.
.
.
.
80 0.5068 0.016072 633.3 633.3 48.037 1048.4 1096.4
.
.
.
.
212 14.696 0.016719 26.782 26.799 180.17 970.3 1150.5
SAT-STEAM TABLE .......... Appendix A4 (Toledo, p. 574-5)
Temp
(OC)
Absolute
presure
kPa
0 0.6108 -0.00004 2.5016 2.5016
.
.
.
.
100 101.3250 0.41908 2.25692 2.67996
.
.
.
.
120 198.5414 0.50372 2.20225 2.70607
Ethalpy (MJ/kg)
Sat.
liquid
hf
Evap.
hfg
Sat.
vapor
hg
SAT-STEAM TABLE .......... Example (1)
At 290oF and 57.752 psia the specific volume of a wet steam
mixture is 4.05 ft3/lb. What is the quality of the steam?
Look at the Table (A.3)
vf = 0.017360 ft3/lb
vg = 7.4641 ft3/lb
basis : 1 lb of wet steam mixture
let x = vapor weight fraction
............ > (1-x) = liquid weight fraction
.....?
X =
4.05
x
7.4641
x
0.07360
0.017360 =
+
-
[ ] [ ] ft
4.05
vapor
lb
x
vapor
lb
1
ft
7.4641
liquid
lb
x)
(1
liquid
lb
1
ft
0.017360 3
3
3
=
+
-
Gas Mixture
Pt = Pa + Pb + Pc ... Pn
Pt = total presure
Pa, Pb, Pc and Pn = partial pressure
ni = f(Pi) ............> Pi V = niRT
.........> Dalton’s Law of Partial Pressures
Vt = Va + Vb + Vc ... Vn
Vt = total volume
Va, Vb, Vc and Vn = partial volume
ni = f(Vi) ............> P Vi = niRT
.........> Amagat’s Law of Partial Volumes
Example
Calculate the quantity of air in the
headspace of a can at 20oC when the
vacuum in the cans is 10 in.Hg.
Atmospheric pressure is 30 in.Hg. The
space has a volume of 16.4 cm3. It is
saturated with water vapor.
Toledo, p. 119
Gas Mixture/Sat-steam table ...example (Toledo, p. 119)
Head space of can at 20oC. Pressure : 10 in Hg vacuum.
Atmospheric pressure = 30 in Hg. Volume head space = 16.4 cm3
Calculate the quantity of air in head space!
Head space consists of air and water vapor.
Pt = Pair + Pwater = Absolute pressure inside the can
Pvaccum = 10 in Hg vacuum
Patmosfir = Pbar = 30 inHg
Pt = Pbar - Pgage
= (30 - 10)= 20 in Hg (3386.38 Pa/in Hg) = 67,728 Pa
Pwater = ?
From Steam Table (appendix A4) :
at 20oC, vapor pressure of water = Pwater = 2336.6 Pa
Pair = Pt - Pwater
Pair = 67,728 - 2336.6 = 65,392.4 Pa
Head space of can at 20oC. Pressure : 10 in Hg vacuum.
Atmospheric pressure = 30 in Hg. Volume head space = 16.4 cm3
Calculate the quantity of air in head space!
nair = (PairV)/RT
use SI unit T = 20 + 273 = 293 K
Pair = 65,392.4 Pa
V = 16.4 cm3 = 16.4 cm3(10-6)m3/cm3 = 2 x 10-5 m3
R = 8315 Nm/kgmole.K
kgmoles
x
nair
7
10
40
.
4 -
=
K
K
kgmoles
Nm
m
x
m
N
RT
V
P
n air
air
3
5
2
)
293
)(
.
8315
(
)
10
64
.
1
)(
4
.
392
,
63
( -
=
=
Gas Mixture/Sat-team table ...example (Toledo, p. 119)
Example
A canned food at the time of sealing is at
a temperature of 80oC, and the
atmospheric pressure is 758 mmHg.
Calculate the vacuum (in mmHg) formed
inside the can when the contents cool
down to 20oC.
Sealing condition for canning process :
Temperature : 80oC; P atmospheric = 758 mmHg
Calculate the vacuum (mm Hg) inside the can when the
content cool down to 20oC.
Answer :
Assume the headspace consists of air and H2O vapor.
Appendix A.4.
Vapor pressure of H2O at 80oC = 47.3601 kPa = 47.360.1 Pa
Vapor pressure of H2O at 20oC = 2.3366 kPa = 2,336.6 Pa
Water condensed during cooling down to 20oC
Pt = Pair + PH2O
Pair = Pt - PH2O
Condition 1 : T = 80oC and Pt = 758 mm Hg= 101,064 Pa.
Pair = (101,064 - 47,360.1) Pa
kgmole
0.018296V
K
80)
(273
kgmole.K
Nm
8315
m
V
x
47,360.1)Pa
(101,064
RT
PV
n
3
1
air =
+
-
=






=
Gas Mixture/Sat-steam table ...example (Toledo, p. 128)
Sealing condition for canning process :
Temperature : 80oC; P atmospheric = 758 mmHg
Calculate the vacuum (mm Hg) inside the can when the
content cool down to 20oC.
Answer :
K
20)
(273
kgmole.K
Nm
8315
Px V
RT
PV
n
1
air =0.018296V kgmole
+
=






=
4.1014 10-7PV = 0.018296V
4.1014 10-7P = 0.018296
P = 44,575 Pa absolute
P = 332 mm Hg absolute
Vacuum = 758 - 332 = 426 mm Hg
Condition 2 : T = 20oC and Pt = ?.
nair = 0.018296V kgmole
Gas Mixture/Sat-steam table ...example (Toledo, p. 128)
SUPERHEATED STEAM TABLE... Appendix A.2 (Toledo, p. 571)
Temp
(oF)
Abs. Pressure (psi)
1 psi
Ts=101.74oF
v h
5 psi
Ts=162.24oF
v h
200 392.5 1150.2 78.14 1148.6
250 422.4 1172.9 84.21 1171.7
300 452.3 1195.7 90.24 1194.8
.
.
.
600 631.1 1336.1 126.15 1335.9
Superheated steam : steam (water vapor) at T higher than
boiling point.
Ts : saturation Temp at designated pressure
v : spec volume (ft3/lb)
h : enthalpy (BTU/lb)
Sat-steam table ...example (Toledo, p. 148)
How much heat is required to convert 1 lb H2O (70oF) to steam at
14.696 psia (250oF)
- steam at 14.696 psia .............. > boiling point=212oF (Sat. steam Table)
.............. > at 250oF > 212oF : superheated!
- heat required = hg (250oF, 14.696 psia) - hf (70oF)
= 1168 BTU/lb - 38.05 BTU/lb
= 1130.75 BTU/lb
How much heat would be given off by cooling superheated steam at
14.696 psia (500oF) to 250oF at the same pressure?
- basis 1 lb of steam
- heat given off = hg (14.696 psia, 500oF) - hg (14.696 psia, 250oF)
= 1287.4 - 1168.8
= 118.6 BTU/lb
- superheated steam is not very efficient heating medium!
................> Konservasi Energi
................> Kesetimbangan Energi
Masukan Keluaran
Energimasuk = Energikeluar + Akumulasi
Kondisi Steady State = tidak terjadi akumulasi :
.........> Energimasuk = Energikeluar
ENERGI
.........> PANAS= uap, air, padatan, dll
.........> MEKANIK
.........> ELEKTRIK
.........> ELEKTROMAGNETIK
.........> HIDROLIK
.........> DLL
sistem
HUKUM THERMODINAMIKA I :
• Draw a sketch or diagram describing process
– Identify information available
• Identify boundaries of system with dotted lines
– Identify all input (inflows) and output (outflows)
• Use symbols or letters to identify unknown
items/quantities
• Write energy balance equation :
– choose appropriate basis of calculation
– do total and/or component energy balance
• Solve resulting algebraic equation(s)
Steps in Energy Balance Preparation
= Steps in Mass Balance Preparation
KESETIMBANGAN PANAS……………contoh 1
Hitung air yang diperlukan untuk mensuplai alat pindah panas
yang digunakan untuk mendinginkan pasta tomat (100 kg/jam)
dari 90oC ke 20oC. Pasta tomat: 40% padatan.
Naiknya suhu air pendingin = 10oC
air dingin (T1), W Kg
q3
q2
Pasta tomat
20oC
q4
Air “hangat”
Pasta
Tomat
q1
100 kg/jam
90oC
40% padatan
T2 (T2 > T1 ; T2 - T1 = 10oC)
T2 = T1 + 10oC
Misal:
T1 = 20oC Tref : 20oC
T2 = 30oC
Cp. air = 4187
K
.
Kg
J
Cp. Pasta tomat = 3349 M + 837.36
= 3349(0.6) + 837.36 = 2846.76 J/Kg.K
Formula Siebel
Kandungan panas masuk:
( ) MJ
.
K
Kg.K
J
2846.76
Kg
q
o
1 927
19
20
90
100 =
-








=
Kandungan panas keluar:
( ) K
Kg.K
J
2846.76
Kg
q
o
2 0
20
20
100 =
-








=
KESETIMBANGAN PANAS……………contoh 1
Air masuk, W kg
( ) 0
3
=








= K
20
-
20
Kg.K
J
4187
Wkg
q o
( ) ( )J
w
,
K
20
-
30
Kg.K
J
4187
Wkg
q o
870
41
4
=








=
Kesetimbangan Panas
q1 + q3 = q2 + q4
air dingin (T1), WKg
q3
q2
Pasta tomat
20oC
q4
Air “hangat”
Pasta
Tomat
q1
100 kg/jam
90oC
40% padatan
T2 (T2 > T1 ; T2 - T1 = 10oC)
T2 = T1 + 10oC
KESETIMBANGAN PANAS……………contoh 1
q1 + q3 = q2 + q4
q2 = q4
19.927 MJ = q4
19.927 1033 J = 41,870 (w) J
w = 475.9 Kg
Atau:  Panas yang hilang dari pasta tomat =
 Panas yang diserap oleh air pendingin
( ) ( ) K
T
-
10
T
Kg.K
J
4187
W
K
20
-
90
Kg.K
J
2846.76
kg o
1
1
+








=








100
100 (2846.76) (70) = 41,870 W
W = 475.9 Kg
KESETIMBANGAN PANAS……………contoh 1
Pemblansiran hancuran tomat dengan uap
1. Hancuran tomat: 94.9% H2O
5.1% padatan
70oF
2. Uap yang digunakan: uap jenuh pada 1 atm (212oF)
3. Kondensat uap akan mengencerkan hancuran tomat dan suhu
hancuran tomat keluar = 190oF
Hitung:
Konsentrasi total padatan hancuran tomat yang dihasilkan
F
.
lb
BTU
o
4. Cpadatan tomat = 0.5
KESETIMBANGAN PANAS……………contoh 2
Basis: 100 lb
Hancuran tomat masuk
94.9 lb air, 70oF  h1 = 38.052 (daftar uap)
lb
BTU
5.1 lb padatan, 70oF h2 = Cp(T - To) = 0.5 (70 - 0) = 35 lb
BTU
T0 =Tref=0oF
Hancuran tomat
panas 190oF
212oF
uap
Hancuran tomat
70oF
94.9% H2O
5.1% padatan
H2O
KESETIMBANGAN PANAS……………contoh 2
Uap masuk
X lb, h3 = 1150.5 (Tabel Uap)
lb
BTU
Produk
(94.9 + x) lb air, 190oF  h4 = 158 (Tabel Uap)
lb
BTU
5.1 lb padatan, 190oF h5 = Cp (190 - 0) = 85 lb
BTU
Total keseimbangan entalpi: h1 + h2 + h3 = h4 + h5
Hancuran tomat
panas 190oF
212oF
uap
Hancuran tomat
70oF
94.9% H2O
5.1% padatan
H2O
KESETIMBANGAN PANAS……………contoh 2
Notasi: q1 : entalpi air dalam udara masuk (uap pada 121.1oC)
q2 : entalpi udara kering pada 21.1oC
q3 : entalpi air dalam apel masuk (air pada 21.1oC)
q4 : entalpi padatan dalam buah apel masuk pada 21.1oC
q : masukan panas
q5 : entalpi air dalam udara keluar (uap pada 43.3oC)
q6 : entalpi udara kering keluar (43.3oC)
q7 : entalpi air pada apel keluar (37.7oC)
q8 : entalpi padatan dalam apel keluar (37.7oC)
Apel 21.1oC
80% H2O
45.4 Kg/jam
Udara 43.3oC
0.04 H2O/ud
(w/w)
H2O
PEMANAS
Uap jenuh
121.1oC
Udara, 21.1oC, 0.002 H2O/udara kering (w/w)
76.7oC
daur ulang
Apel kering
10% H2O
37.7oC
KESETIMBANGAN PANAS……………contoh 3
Kesetimbangan Entalpi :
q + q1 + q2 + q3 + q4 = q5 + q6 + q7 + q8
Kesetimbangan massa untuk padatan apel :
(0.2) (45.4) = x (0.9) x= berat apel kering
x = 10.09 Kg/hr
Kesetimbangan air:
Air hilang dari apel = air diterima oleh udara pengering
45.4 - 10.09 = 35.51 Kg/jam
Per kilogram udara kering  (0.04 - 0.002) = 0.038
kering
udara
Kg
air
Kg
Mis. W = massa udara yang kering (Kg)
 Total air yang diterima = 0.038 (w) kg
35.31 = 0.038 w
w = 929.21 Kg udara kering/jam
KESETIMBANGAN PANAS……………contoh 3
q1 = entalpi air dalam udara masuk (uap pada 21.1oC)
Tabel uap  hq = 2.54017 MJ/kg (interpolasi)
( ) 













=
Kg
mJ
.
kering
ud.
Kg.
air
Kg
.
kering
ud.
kg
929.21
q1 54017
2
002
0
q2 = entalpi udara kering pada 21.1oC
q2 = m.Cp.dT - m.Cp. (T2 - Tref)
Dari tabel 25oC: Cpm = 1008 J/Kg.K
50oC: Cpm = 1007 J/Kg.K
Asumsi: Cpm pada 21.1oC = 1008 J/Kg.K
( ) ( )K
0
-
21.1
Kg.K
J
1008
kering
ud.
kg
929.21
q 2 







=
q2 = 19.7632
q1 = 4.7207
Kg
mJ
KESETIMBANGAN PANAS……………contoh 3
q3 = entalpi air dalam apel masuk (air pada 21.1oC)
Tabel uap  hf = 0.08999 MJ/kg (interpolasi)
q3 = 45.4 (0.8) (0.08999) = 3.2684 mJ
q4 = entalpi padat dalam apel (21.1oC)
q4 = (45.4) (0.2) (837.36) (21.1 - 0) = 0.16043 mJ
Cp padatan = 837.36
K
.
Kg
J
q5 = entalpi air dalam udara kering (43.3oC)
q5 = (929.21 kg ud. Kering) (0.04 ) (h9 pada 43.3oC)
kering
ud.
Kg
air
Kg
Tabel uap
h9 = 2.5802 mJ/Kg
KESETIMBANGAN PANAS……………contoh 3
Puree buah, 100 Kg/jam
40oC
40% padatan
Puree buah,
20oC
12% padatan
Uap jenuh 140oC
Kondensat 110oC
evaporator
KONDENSOR Kondensat, 37oC
uap, 40oC Air dingin, 20oC
Air hangat, 30oC
a. hitung laju aliran masing-masing produk (kondensat).
b. hitung konsumsi uap (uap jenuh yang dipakai, 140oC, akan
berkondensasi pada 110oC)
Ctotal padatan = 2.10 kJ/Kg.K
Cair = 4.19 kJ/Kg.K
C. pada kondensor: hitung laju aliran air dingin (gunakan Tabel Uap
KESETIMBANGAN PANAS
……………contoh 4

More Related Content

Similar to 01-Thermo+EnergyBalance ppt bahan ajar.ppt

Comrac thermodynamics and heat transfer.pdf
Comrac thermodynamics and heat transfer.pdfComrac thermodynamics and heat transfer.pdf
Comrac thermodynamics and heat transfer.pdfJerlizjoyCasaba
 
btd module 1.pptx basic thermodynamics ..
btd module 1.pptx basic thermodynamics ..btd module 1.pptx basic thermodynamics ..
btd module 1.pptx basic thermodynamics ..PradeepKumarb24
 
Thermodynamics revision
Thermodynamics revisionThermodynamics revision
Thermodynamics revisiondr walid
 
The first law of thermodynamics.ppt
The first law of thermodynamics.pptThe first law of thermodynamics.ppt
The first law of thermodynamics.pptDave376110
 
Notes for Unit 17 of AP Chemistry (Thermodynamics)
Notes for Unit 17 of AP Chemistry (Thermodynamics)Notes for Unit 17 of AP Chemistry (Thermodynamics)
Notes for Unit 17 of AP Chemistry (Thermodynamics)noahawad
 
Entropy A Measure of Disorder.ppt
Entropy A Measure of Disorder.pptEntropy A Measure of Disorder.ppt
Entropy A Measure of Disorder.pptMichaelTegegn
 
Heat and thermodynamics - Preliminary / Dr. Mathivanan Velumani
Heat and thermodynamics -  Preliminary / Dr. Mathivanan VelumaniHeat and thermodynamics -  Preliminary / Dr. Mathivanan Velumani
Heat and thermodynamics - Preliminary / Dr. Mathivanan VelumaniMathivanan Velumani
 
Che Module-1.pptx
Che Module-1.pptxChe Module-1.pptx
Che Module-1.pptxBrowny5
 
Thermodynamics course notes
Thermodynamics course notesThermodynamics course notes
Thermodynamics course notesssuser022dab
 
Thermo-chemistry of Fuel Air Mixtures
Thermo-chemistry of Fuel Air MixturesThermo-chemistry of Fuel Air Mixtures
Thermo-chemistry of Fuel Air MixturesHassan Raza
 
CH1201-Thermodynamics.pptx
CH1201-Thermodynamics.pptxCH1201-Thermodynamics.pptx
CH1201-Thermodynamics.pptxAnupHalder8
 
Ch. 5 thermochemistry
Ch. 5 thermochemistryCh. 5 thermochemistry
Ch. 5 thermochemistryewalenta
 
Ch6 Thermochemistry (updated)
Ch6 Thermochemistry (updated)Ch6 Thermochemistry (updated)
Ch6 Thermochemistry (updated)Sa'ib J. Khouri
 
First Law of Thermodynamics
First Law of ThermodynamicsFirst Law of Thermodynamics
First Law of ThermodynamicsYujung Dong
 

Similar to 01-Thermo+EnergyBalance ppt bahan ajar.ppt (20)

Comrac thermodynamics and heat transfer.pdf
Comrac thermodynamics and heat transfer.pdfComrac thermodynamics and heat transfer.pdf
Comrac thermodynamics and heat transfer.pdf
 
Thermodynamic, part 1
Thermodynamic, part 1Thermodynamic, part 1
Thermodynamic, part 1
 
btd module 1.pptx basic thermodynamics ..
btd module 1.pptx basic thermodynamics ..btd module 1.pptx basic thermodynamics ..
btd module 1.pptx basic thermodynamics ..
 
Thermodynamics revision
Thermodynamics revisionThermodynamics revision
Thermodynamics revision
 
CHE 101 Thermochem.ppt
CHE 101 Thermochem.pptCHE 101 Thermochem.ppt
CHE 101 Thermochem.ppt
 
The first law of thermodynamics.ppt
The first law of thermodynamics.pptThe first law of thermodynamics.ppt
The first law of thermodynamics.ppt
 
Notes for Unit 17 of AP Chemistry (Thermodynamics)
Notes for Unit 17 of AP Chemistry (Thermodynamics)Notes for Unit 17 of AP Chemistry (Thermodynamics)
Notes for Unit 17 of AP Chemistry (Thermodynamics)
 
Chemical thermodynamics
Chemical thermodynamicsChemical thermodynamics
Chemical thermodynamics
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
Thermodynamics, part 8
Thermodynamics, part 8Thermodynamics, part 8
Thermodynamics, part 8
 
Entropy A Measure of Disorder.ppt
Entropy A Measure of Disorder.pptEntropy A Measure of Disorder.ppt
Entropy A Measure of Disorder.ppt
 
Heat and thermodynamics - Preliminary / Dr. Mathivanan Velumani
Heat and thermodynamics -  Preliminary / Dr. Mathivanan VelumaniHeat and thermodynamics -  Preliminary / Dr. Mathivanan Velumani
Heat and thermodynamics - Preliminary / Dr. Mathivanan Velumani
 
Che Module-1.pptx
Che Module-1.pptxChe Module-1.pptx
Che Module-1.pptx
 
Pure substances
Pure substances Pure substances
Pure substances
 
Thermodynamics course notes
Thermodynamics course notesThermodynamics course notes
Thermodynamics course notes
 
Thermo-chemistry of Fuel Air Mixtures
Thermo-chemistry of Fuel Air MixturesThermo-chemistry of Fuel Air Mixtures
Thermo-chemistry of Fuel Air Mixtures
 
CH1201-Thermodynamics.pptx
CH1201-Thermodynamics.pptxCH1201-Thermodynamics.pptx
CH1201-Thermodynamics.pptx
 
Ch. 5 thermochemistry
Ch. 5 thermochemistryCh. 5 thermochemistry
Ch. 5 thermochemistry
 
Ch6 Thermochemistry (updated)
Ch6 Thermochemistry (updated)Ch6 Thermochemistry (updated)
Ch6 Thermochemistry (updated)
 
First Law of Thermodynamics
First Law of ThermodynamicsFirst Law of Thermodynamics
First Law of Thermodynamics
 

Recently uploaded

Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxFarihaAbdulRasheed
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...chandars293
 
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...ssuser79fe74
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfSumit Kumar yadav
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxRizalinePalanog2
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)Areesha Ahmad
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)Areesha Ahmad
 
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICEayushi9330
 
Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptxAlMamun560346
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and ClassificationsAreesha Ahmad
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfSumit Kumar yadav
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bSérgio Sacani
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPirithiRaju
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPirithiRaju
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.Nitya salvi
 

Recently uploaded (20)

Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
 
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
 
Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptx
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdf
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
 

01-Thermo+EnergyBalance ppt bahan ajar.ppt

  • 1. THERMODYNAMICS & ENERGY BALANCE Lecture Note Principles of Food Engineering Dosen : Dr. Eko Hari Purnomo Dept of Food Science and Technology Faculty of Agricultural Technology Bogor Agricultural University BOGOR
  • 2. • Learning Objectives – Understand the conceptual basis of the Law of Thermodynamics – Understand the fundamental energy balance concepts – Be able to list and discuss important terms related to energy transfer – Be able to list and discuss energy balance applications in food processing and handling operations – Be able to conceptually describe how energy balance determinations or calculations are obtained THERMODYNAMICS AND ENERGY BALANCE
  • 3. Thermodynamics is the branch of science which studies the transformation of energy from one form to another Thermodynamics - Science which is concerned with changes in the forms or location of energy and may be thought in terms of “energy dynamics” Thermodynamics of process : .............> looks at the energy transformations which occur as a result of process  How much heat is evolved during a process?  What determines the spontaneous process?  What determines the extent of process? WHAT IS THERMODYNAMICS?
  • 4. • Composed of a finite portion of matter and is defined in terms of the boundaries which enclose it • Boundaries may be real or imaginary • Region surrounding boundaries may be referred to as its environment • May consider a plant or any portion thereof as a boundary DESCRIPTION OF THE SYSTEM.........1 System Surrounding = environment energy mass
  • 5. • Two (common) types of systems are: – open system – closed system • Open system - boundaries permit the crossing of matter - energy may cross the boundaries of the open system with the flow of mass or separately DESCRIPTION OF THE SYSTEM.........2 System energy mass • Closed System - boundaries do not permit the crossing of matter - energy may cross the boundaries of closed systems
  • 6. Steady state conditions: > mass of the system remains unchanged > rate of flow leaving system is constant and equal to that entering the system Transient (unsteady) state conditions: > mass of the system may remain unchanged > heat of the system changes with time DESCRIPTION OF THE SYSTEM.........3
  • 7. • Energy which crosses the boundary is classified as either heat or work DESCRIPTION OF THE SYSTEM .........4 System work mass • Heat is the form of energy that is transferred from the environment external to the system by way of diffusion due to a temperature gradient. • Positive sign - refers to heat entering system • Negative sign - heat leaving system heat
  • 8. • Property - Observable, measurable, or calculable characteristic of a substance which depends only upon the state of the substance • State of a given system is its condition or its position with respect to other systems • Equation of state - relationship between > pressure, > specific volume, and > temperature PROPERTIES OF THE SYSTEM ........ 1
  • 9. • Equation of state of a perfect/ideal gas (Boyle, Charles, Guy-Lussac) : PV = nRT; where: P = absolute pressure, kPa/m2 V = volume, m3 n = number of molecules, kgmole R = universal gas constant [=]???? T = absolute temperature, oK PROPERTIES OF THE SYSTEM ........ 2 • Standard Condition? At 273oK, 760 mm Hg (101.325 kPa), 1 gmole occupy 22,4 L 1 kgmole occupy 22.4 m3
  • 10. • R = 0.08206 lit(atm)/(gmole.oK) = 8315 Nm/kgmole.oK = 1545 ft(lbf)/(lbmole.oR PROPERTIES OF THE SYSTEM ........ 3 • Typical properties of a system for a given state are : > pressure, > volume, > temperature, > velocity, and > the elevation of the system.
  • 11. • Van der Waal’s Equation of state : PROPERTIES OF THE SYSTEM ........ 4 ( ) nRT nb V V a n P 2 2 = -       + where: P = absolute pressure V = volume, m3 n = number of molecule R = gas constant T = absolute temp. a, b = constant a Pa(m3/kgmole)2 b m3/kgmole Gas Air 1.348 105 0.0366 Ammonia 4.246 105 0.0373 CO2 3.648 105 0.0428 Water vapor 5.553 105 0.0306
  • 12. • Pure substance is a single substance which retains an unvarying molecular structure • Examples include: > pure oxygen > ammonia > dry air (in the gaseous state) - largely composed of oxygen and nitrogen with fixed percentages of each PURE SUBSTANCES...... 1
  • 13. • A pure substance may exist in any of three phases including solid, liquid, or gas = f (P, V, T) • Melting - change of phase from solid to liquid • Vaporization - change of phase from liquid to gas • Condensation - change of phase from vapor to liquid • Sublimation - substance passing from the solid directly to a gaseous phase (dry ice) PURE SUBSTANCES...... 2
  • 15. Temperature (K) Pressure (kPa) solid liquid gas • Melting • Vaporization Condensation . • Sublimation PURE SUBSTANCES...... 4
  • 16. Temperature (K) Pressure (kPa) solid liquid gas Critical Point PURE SUBSTANCES...... 5 • The higher the pressure the higher the saturation temperature • Critical point : – gas and liquid become indistinguishable – density and other properties become identical
  • 17. PURE SUBSTANCES...... 6 Gas or Vapor? .........> = identical !!! Vapor : - gas which exists below its critical temperature - condensable by compression at constant T Gas : - non condensable gas - gas above the critical point
  • 18. PURE SUBSTANCES ...... Vapor Pressure ...... Vapor-liquid Equilibrium Vaporization and condensation at constant T and P are equilibrium process - equilibrium pressure = vapor pressure - at a given T : ........ > there is only one P at which liquid and vapor coexist (in equilibrium). Temperature (K) Pressure (kPa) Vapor and liquid in equilibrium
  • 19. 190oF P=500 mm Hg Vapor liquid PURE SUBSTANCES...... Vapor Pressure Temperature (K) Pressure (kPa) 190oF P=900 mm Hg 190oF P=250 mm Hg All vapor All liquid H2O H2O Transformation of liquid water into water vapor at constant T
  • 20. PURE SUBSTANCES...... Vapor Pressure Temperature (K) Pressure (kPa) 213oF P=14.7 psia All vapor Transformation of liquid water vapor into water at constant P 212oF P=14.7 psia Vapor H2O liquid 211oF P=14.7 psia All liquid H2O
  • 21. • System may be losing and gaining energy • Total energy of the system?. ............> internal energy, E. • Internal energy : total energy of system (the sum of all the system's energy). • Chemical, nuclear, heat, gravitational, etc • It is impossible to measure the total internal energy of our system ...........> intrinsic property • So why define a quantity which we cannot measure? • We can measure changes in the internal energy. • Thermodynamics is all about changes in energy : • The change in internal energy of a system a very useful experimental quantity. Internal Energy, E
  • 22. E may change in 3 different ways :  heat passes into or out of the system;  work is done on or by the system;  mass enters or leaves the system. Again : • Closed system : no transfer of mass is possible : E may only change due to heat and work. • Isolated system : heat, work and mass transfer are all impossible no change in E • Open system : E may change due to transfer of heat, mass and work between system and surroundings. Change of Internal Energy, E
  • 23. If dQ and dW are the increments of heat and work energy crossing the system’s boundaries : dE = dQ - dW or DE = Q - W Closed system • The First Law of Thermodynamics = law of conservation of energy
  • 24. ISOTHERMAL EXPANSION OF AN IDEAL GAS AGAINST A FIXED ESTERNAL PRESSURE Patm h1 Patm h2 Work ?? = force x distance = pressure x area x distance = Patm x A x (h2-h1) =PatmDV
  • 25. Remember! • Positive sign - heat entering system - work done on the system (compression) • Negative sign - heat leaving system - work done by the system (expansion) W = - Patm. DV • If ...........> P [=] Pa ...........> V [=] m3 then ...........> W [=] J ISOTHERMAL EXPANSION OF AN IDEAL GAS AGAINST A FIXED ESTERNAL PRESSURE
  • 26. Enthalpy (H) • Another intrinsic thermodynamic variable H = E + PV or, in differential form : dH = dE + PdV + VdP PdV = dW ..........> dH = dE + dW + VdP dW + dE = dQ ..........> dH = dQ + VdP for constant pressure process (dP=0) dH = dQ or DH = Q p dT dQ Cp = ...........> • Specific heat at constant P (Cp) ...........> DH = Q = CpdT Enthalpy = Heat content < .....
  • 27. Enthalpy (H) • Back to Internal energy : dE = dQ - dW • Constant Volume process : dW =0 ..........> dE = dQ DE = Q V dT dQ CV = ...........> • Specific heat at constant V (Cv) ...........> DE = CVdT ...........> DH = Q= CpdT ...........> DH = mCp.av (T2 - T1) • Enthalpy = Heat content • DH : positive ......> heat is absorbed (endothermic) • DH : negative ......> heat is envolved (exothermic)
  • 28. Relationship between Cp and Cv dE = dQ - PdV taking the derivative with respect to T : dT dV P dT dQ dT dE P - = Cp CV 1 mole of Ideal gas PV = RT at constant pressure : (dV/dT) = R/P CV = CP - R R .............> CP/CV = g .............> CP/R = g/(g-1)
  • 29. STEAM TABLE Gas ready to start to condense : saturated gas .............> dew point Liquid ready to start to vaporize : saturated liquid .............> bubble/boiling point Mixture of liquid and vapor at equilibrium (called a wet gas) .............> both liquid and vapor are saturated Temperature (K) Pressure (kPa)
  • 30. STEAM TABLE .......... Degree of superheat Temperature (K) Pressure (kPa) Steam 500oF, 100 psia 100 psia 327.8oF Degree of superheat = 500-327.8 = 172.2oF ..and.. Steam quality Wet vapor : consists of saturated vapor + saturated liquid Steam quality = weight fraction of vapor
  • 31. SAT- STEAM TABLE .......... Appendix A3 (Toledo, p. 572-3) Temp (OF) Absolute presure lb/in2 Spec. Vol (ft3/lb) Sat. liquid vf Evap. vfg Sat. vapor vg Ethalpy (BTU/lb) Sat. liquid hf Evap. hfg Sat. vapor hg 32 0.08859 0.016022 3304.7 3304.7 -0.0179 1075.5 1075.5 . . . . 80 0.5068 0.016072 633.3 633.3 48.037 1048.4 1096.4 . . . . 212 14.696 0.016719 26.782 26.799 180.17 970.3 1150.5
  • 32. SAT-STEAM TABLE .......... Appendix A4 (Toledo, p. 574-5) Temp (OC) Absolute presure kPa 0 0.6108 -0.00004 2.5016 2.5016 . . . . 100 101.3250 0.41908 2.25692 2.67996 . . . . 120 198.5414 0.50372 2.20225 2.70607 Ethalpy (MJ/kg) Sat. liquid hf Evap. hfg Sat. vapor hg
  • 33. SAT-STEAM TABLE .......... Example (1) At 290oF and 57.752 psia the specific volume of a wet steam mixture is 4.05 ft3/lb. What is the quality of the steam? Look at the Table (A.3) vf = 0.017360 ft3/lb vg = 7.4641 ft3/lb basis : 1 lb of wet steam mixture let x = vapor weight fraction ............ > (1-x) = liquid weight fraction .....? X = 4.05 x 7.4641 x 0.07360 0.017360 = + - [ ] [ ] ft 4.05 vapor lb x vapor lb 1 ft 7.4641 liquid lb x) (1 liquid lb 1 ft 0.017360 3 3 3 = + -
  • 34. Gas Mixture Pt = Pa + Pb + Pc ... Pn Pt = total presure Pa, Pb, Pc and Pn = partial pressure ni = f(Pi) ............> Pi V = niRT .........> Dalton’s Law of Partial Pressures Vt = Va + Vb + Vc ... Vn Vt = total volume Va, Vb, Vc and Vn = partial volume ni = f(Vi) ............> P Vi = niRT .........> Amagat’s Law of Partial Volumes
  • 35. Example Calculate the quantity of air in the headspace of a can at 20oC when the vacuum in the cans is 10 in.Hg. Atmospheric pressure is 30 in.Hg. The space has a volume of 16.4 cm3. It is saturated with water vapor. Toledo, p. 119
  • 36. Gas Mixture/Sat-steam table ...example (Toledo, p. 119) Head space of can at 20oC. Pressure : 10 in Hg vacuum. Atmospheric pressure = 30 in Hg. Volume head space = 16.4 cm3 Calculate the quantity of air in head space! Head space consists of air and water vapor. Pt = Pair + Pwater = Absolute pressure inside the can Pvaccum = 10 in Hg vacuum Patmosfir = Pbar = 30 inHg Pt = Pbar - Pgage = (30 - 10)= 20 in Hg (3386.38 Pa/in Hg) = 67,728 Pa Pwater = ? From Steam Table (appendix A4) : at 20oC, vapor pressure of water = Pwater = 2336.6 Pa Pair = Pt - Pwater Pair = 67,728 - 2336.6 = 65,392.4 Pa
  • 37. Head space of can at 20oC. Pressure : 10 in Hg vacuum. Atmospheric pressure = 30 in Hg. Volume head space = 16.4 cm3 Calculate the quantity of air in head space! nair = (PairV)/RT use SI unit T = 20 + 273 = 293 K Pair = 65,392.4 Pa V = 16.4 cm3 = 16.4 cm3(10-6)m3/cm3 = 2 x 10-5 m3 R = 8315 Nm/kgmole.K kgmoles x nair 7 10 40 . 4 - = K K kgmoles Nm m x m N RT V P n air air 3 5 2 ) 293 )( . 8315 ( ) 10 64 . 1 )( 4 . 392 , 63 ( - = = Gas Mixture/Sat-team table ...example (Toledo, p. 119)
  • 38. Example A canned food at the time of sealing is at a temperature of 80oC, and the atmospheric pressure is 758 mmHg. Calculate the vacuum (in mmHg) formed inside the can when the contents cool down to 20oC.
  • 39. Sealing condition for canning process : Temperature : 80oC; P atmospheric = 758 mmHg Calculate the vacuum (mm Hg) inside the can when the content cool down to 20oC. Answer : Assume the headspace consists of air and H2O vapor. Appendix A.4. Vapor pressure of H2O at 80oC = 47.3601 kPa = 47.360.1 Pa Vapor pressure of H2O at 20oC = 2.3366 kPa = 2,336.6 Pa Water condensed during cooling down to 20oC Pt = Pair + PH2O Pair = Pt - PH2O Condition 1 : T = 80oC and Pt = 758 mm Hg= 101,064 Pa. Pair = (101,064 - 47,360.1) Pa kgmole 0.018296V K 80) (273 kgmole.K Nm 8315 m V x 47,360.1)Pa (101,064 RT PV n 3 1 air = + - =       = Gas Mixture/Sat-steam table ...example (Toledo, p. 128)
  • 40. Sealing condition for canning process : Temperature : 80oC; P atmospheric = 758 mmHg Calculate the vacuum (mm Hg) inside the can when the content cool down to 20oC. Answer : K 20) (273 kgmole.K Nm 8315 Px V RT PV n 1 air =0.018296V kgmole + =       = 4.1014 10-7PV = 0.018296V 4.1014 10-7P = 0.018296 P = 44,575 Pa absolute P = 332 mm Hg absolute Vacuum = 758 - 332 = 426 mm Hg Condition 2 : T = 20oC and Pt = ?. nair = 0.018296V kgmole Gas Mixture/Sat-steam table ...example (Toledo, p. 128)
  • 41. SUPERHEATED STEAM TABLE... Appendix A.2 (Toledo, p. 571) Temp (oF) Abs. Pressure (psi) 1 psi Ts=101.74oF v h 5 psi Ts=162.24oF v h 200 392.5 1150.2 78.14 1148.6 250 422.4 1172.9 84.21 1171.7 300 452.3 1195.7 90.24 1194.8 . . . 600 631.1 1336.1 126.15 1335.9 Superheated steam : steam (water vapor) at T higher than boiling point. Ts : saturation Temp at designated pressure v : spec volume (ft3/lb) h : enthalpy (BTU/lb)
  • 42. Sat-steam table ...example (Toledo, p. 148) How much heat is required to convert 1 lb H2O (70oF) to steam at 14.696 psia (250oF) - steam at 14.696 psia .............. > boiling point=212oF (Sat. steam Table) .............. > at 250oF > 212oF : superheated! - heat required = hg (250oF, 14.696 psia) - hf (70oF) = 1168 BTU/lb - 38.05 BTU/lb = 1130.75 BTU/lb How much heat would be given off by cooling superheated steam at 14.696 psia (500oF) to 250oF at the same pressure? - basis 1 lb of steam - heat given off = hg (14.696 psia, 500oF) - hg (14.696 psia, 250oF) = 1287.4 - 1168.8 = 118.6 BTU/lb - superheated steam is not very efficient heating medium!
  • 43. ................> Konservasi Energi ................> Kesetimbangan Energi Masukan Keluaran Energimasuk = Energikeluar + Akumulasi Kondisi Steady State = tidak terjadi akumulasi : .........> Energimasuk = Energikeluar ENERGI .........> PANAS= uap, air, padatan, dll .........> MEKANIK .........> ELEKTRIK .........> ELEKTROMAGNETIK .........> HIDROLIK .........> DLL sistem HUKUM THERMODINAMIKA I :
  • 44. • Draw a sketch or diagram describing process – Identify information available • Identify boundaries of system with dotted lines – Identify all input (inflows) and output (outflows) • Use symbols or letters to identify unknown items/quantities • Write energy balance equation : – choose appropriate basis of calculation – do total and/or component energy balance • Solve resulting algebraic equation(s) Steps in Energy Balance Preparation = Steps in Mass Balance Preparation
  • 45. KESETIMBANGAN PANAS……………contoh 1 Hitung air yang diperlukan untuk mensuplai alat pindah panas yang digunakan untuk mendinginkan pasta tomat (100 kg/jam) dari 90oC ke 20oC. Pasta tomat: 40% padatan. Naiknya suhu air pendingin = 10oC air dingin (T1), W Kg q3 q2 Pasta tomat 20oC q4 Air “hangat” Pasta Tomat q1 100 kg/jam 90oC 40% padatan T2 (T2 > T1 ; T2 - T1 = 10oC) T2 = T1 + 10oC
  • 46. Misal: T1 = 20oC Tref : 20oC T2 = 30oC Cp. air = 4187 K . Kg J Cp. Pasta tomat = 3349 M + 837.36 = 3349(0.6) + 837.36 = 2846.76 J/Kg.K Formula Siebel Kandungan panas masuk: ( ) MJ . K Kg.K J 2846.76 Kg q o 1 927 19 20 90 100 = -         = Kandungan panas keluar: ( ) K Kg.K J 2846.76 Kg q o 2 0 20 20 100 = -         = KESETIMBANGAN PANAS……………contoh 1
  • 47. Air masuk, W kg ( ) 0 3 =         = K 20 - 20 Kg.K J 4187 Wkg q o ( ) ( )J w , K 20 - 30 Kg.K J 4187 Wkg q o 870 41 4 =         = Kesetimbangan Panas q1 + q3 = q2 + q4 air dingin (T1), WKg q3 q2 Pasta tomat 20oC q4 Air “hangat” Pasta Tomat q1 100 kg/jam 90oC 40% padatan T2 (T2 > T1 ; T2 - T1 = 10oC) T2 = T1 + 10oC KESETIMBANGAN PANAS……………contoh 1
  • 48. q1 + q3 = q2 + q4 q2 = q4 19.927 MJ = q4 19.927 1033 J = 41,870 (w) J w = 475.9 Kg Atau:  Panas yang hilang dari pasta tomat =  Panas yang diserap oleh air pendingin ( ) ( ) K T - 10 T Kg.K J 4187 W K 20 - 90 Kg.K J 2846.76 kg o 1 1 +         =         100 100 (2846.76) (70) = 41,870 W W = 475.9 Kg KESETIMBANGAN PANAS……………contoh 1
  • 49. Pemblansiran hancuran tomat dengan uap 1. Hancuran tomat: 94.9% H2O 5.1% padatan 70oF 2. Uap yang digunakan: uap jenuh pada 1 atm (212oF) 3. Kondensat uap akan mengencerkan hancuran tomat dan suhu hancuran tomat keluar = 190oF Hitung: Konsentrasi total padatan hancuran tomat yang dihasilkan F . lb BTU o 4. Cpadatan tomat = 0.5 KESETIMBANGAN PANAS……………contoh 2
  • 50. Basis: 100 lb Hancuran tomat masuk 94.9 lb air, 70oF  h1 = 38.052 (daftar uap) lb BTU 5.1 lb padatan, 70oF h2 = Cp(T - To) = 0.5 (70 - 0) = 35 lb BTU T0 =Tref=0oF Hancuran tomat panas 190oF 212oF uap Hancuran tomat 70oF 94.9% H2O 5.1% padatan H2O KESETIMBANGAN PANAS……………contoh 2
  • 51. Uap masuk X lb, h3 = 1150.5 (Tabel Uap) lb BTU Produk (94.9 + x) lb air, 190oF  h4 = 158 (Tabel Uap) lb BTU 5.1 lb padatan, 190oF h5 = Cp (190 - 0) = 85 lb BTU Total keseimbangan entalpi: h1 + h2 + h3 = h4 + h5 Hancuran tomat panas 190oF 212oF uap Hancuran tomat 70oF 94.9% H2O 5.1% padatan H2O KESETIMBANGAN PANAS……………contoh 2
  • 52. Notasi: q1 : entalpi air dalam udara masuk (uap pada 121.1oC) q2 : entalpi udara kering pada 21.1oC q3 : entalpi air dalam apel masuk (air pada 21.1oC) q4 : entalpi padatan dalam buah apel masuk pada 21.1oC q : masukan panas q5 : entalpi air dalam udara keluar (uap pada 43.3oC) q6 : entalpi udara kering keluar (43.3oC) q7 : entalpi air pada apel keluar (37.7oC) q8 : entalpi padatan dalam apel keluar (37.7oC) Apel 21.1oC 80% H2O 45.4 Kg/jam Udara 43.3oC 0.04 H2O/ud (w/w) H2O PEMANAS Uap jenuh 121.1oC Udara, 21.1oC, 0.002 H2O/udara kering (w/w) 76.7oC daur ulang Apel kering 10% H2O 37.7oC KESETIMBANGAN PANAS……………contoh 3
  • 53. Kesetimbangan Entalpi : q + q1 + q2 + q3 + q4 = q5 + q6 + q7 + q8 Kesetimbangan massa untuk padatan apel : (0.2) (45.4) = x (0.9) x= berat apel kering x = 10.09 Kg/hr Kesetimbangan air: Air hilang dari apel = air diterima oleh udara pengering 45.4 - 10.09 = 35.51 Kg/jam Per kilogram udara kering  (0.04 - 0.002) = 0.038 kering udara Kg air Kg Mis. W = massa udara yang kering (Kg)  Total air yang diterima = 0.038 (w) kg 35.31 = 0.038 w w = 929.21 Kg udara kering/jam KESETIMBANGAN PANAS……………contoh 3
  • 54. q1 = entalpi air dalam udara masuk (uap pada 21.1oC) Tabel uap  hq = 2.54017 MJ/kg (interpolasi) ( )               = Kg mJ . kering ud. Kg. air Kg . kering ud. kg 929.21 q1 54017 2 002 0 q2 = entalpi udara kering pada 21.1oC q2 = m.Cp.dT - m.Cp. (T2 - Tref) Dari tabel 25oC: Cpm = 1008 J/Kg.K 50oC: Cpm = 1007 J/Kg.K Asumsi: Cpm pada 21.1oC = 1008 J/Kg.K ( ) ( )K 0 - 21.1 Kg.K J 1008 kering ud. kg 929.21 q 2         = q2 = 19.7632 q1 = 4.7207 Kg mJ KESETIMBANGAN PANAS……………contoh 3
  • 55. q3 = entalpi air dalam apel masuk (air pada 21.1oC) Tabel uap  hf = 0.08999 MJ/kg (interpolasi) q3 = 45.4 (0.8) (0.08999) = 3.2684 mJ q4 = entalpi padat dalam apel (21.1oC) q4 = (45.4) (0.2) (837.36) (21.1 - 0) = 0.16043 mJ Cp padatan = 837.36 K . Kg J q5 = entalpi air dalam udara kering (43.3oC) q5 = (929.21 kg ud. Kering) (0.04 ) (h9 pada 43.3oC) kering ud. Kg air Kg Tabel uap h9 = 2.5802 mJ/Kg KESETIMBANGAN PANAS……………contoh 3
  • 56. Puree buah, 100 Kg/jam 40oC 40% padatan Puree buah, 20oC 12% padatan Uap jenuh 140oC Kondensat 110oC evaporator KONDENSOR Kondensat, 37oC uap, 40oC Air dingin, 20oC Air hangat, 30oC a. hitung laju aliran masing-masing produk (kondensat). b. hitung konsumsi uap (uap jenuh yang dipakai, 140oC, akan berkondensasi pada 110oC) Ctotal padatan = 2.10 kJ/Kg.K Cair = 4.19 kJ/Kg.K C. pada kondensor: hitung laju aliran air dingin (gunakan Tabel Uap KESETIMBANGAN PANAS ……………contoh 4

Editor's Notes

  1. 4/22/2024
  2. 4/22/2024
  3. 4/22/2024
  4. 4/22/2024
  5. 4/22/2024
  6. 4/22/2024
  7. 4/22/2024
  8. 4/22/2024
  9. 4/22/2024
  10. 4/22/2024
  11. 4/22/2024
  12. 4/22/2024
  13. 4/22/2024