, , ,
1
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
2
RQ1: ( )
RQ2:
1.
3
[3]
[3] , , , Vol. 33,
No.2, 2018 3 , pp, 124-131.
2. (1/4):
[2] I.Goodfellow, et al., Deep Lerning, MIT Press, 2016
4
[2]
( )
2. (2/4):
[5, 6]
…
…
…
[5] J. Li, et al., Feature Selection: A Data Perspective,
ACM Computing Surveys, Vol. 50, No. 6, Dec. 2017, 45 pages.
[6] S. Ozdemir, et al., Feature Engineering Made Easy, Packt, 2018.
5
6
2. (3/4):
[6]
[6] S. Ozdemir, et al., Feature Engineering Made Easy, Packt, 2018.
2. (4/4): VGG16
[8] K. Simonyan, et al., Very Deep Convolutional Networks for Large-Scale Image
Recognition, Apr. 2015, http://arxiv.org/pdf/1409.1556.pdf.
VGG16
7
5
100
1000
VGG16 [8]
3.
8
[1]
[2] [3] [4]
[7]
[9] [5]
[6]
[11]
[8]
[10]
4. (1/5):
[1]
[2]
[3]
[6]
[4]
[11]
[5]
[8][9]
[10]
[7]
9
VGG16
4. (2/5):
10
[3]
[4]
VGG16
VGG16
1 1
11
4. (3/5):
1:
2:
3:
…
( )
,
S ∝ ∝"#
F ∝
S ∝"# ∝"#
F
4. (4/5):
12
S F
$ = &
'(#,*'+*',#
-
*' − *'"#
/ = 0
1
-
{3 ' − 4 ' }
6 7 :
9 7 :
:;: 7
n:
<=: < >=: >
:
:
4. (5/5):
13
1
2
3
...
y y
n n
S< "# $ < $#
5.
3
( ) LOC
Python(39) Python(138)
Python(137) Python(Chainer [7])(110)
(ChainerUI)
Python(33) Python(Chainer)
(ChainerUI)
(1)
(2)
(3)
[7] Preferred Networks, Chainer, https://chainer.org/. 14
6.
15
(3 4,000 )
2
(
! " = $. &"
1
1:600-699
2:700-799
3:800-899
94%
3
2
1:600-699
2:700-799
3:800-899
6
41:'(=30,)(=1.5
3:'(=10,)(=0.5
2:'(=20,)(=1.0
1:'(=30,)(=1.5
*$(,- − , + &)
1&$,
600-899
100
,
,
7.
16
94%
2
900(6 )
5.4%
8. (1/4)
750 1050 1410 750 1050 1410
0.019 0.005 0.012 0.041 0.037 0.028 17
1
0.020
150 300 450 600 750 900
0.839 0.891 0.940 0.954 0.952 0.981
0.895 0.897 0.928 0.945 0.941 0.964
8. (2/4)
18
1
2
3
4
1
2
3
4
< "/$ > "/&
2
=
( )** +,()**)
( "$* +,("$*)
M(n):
m(n):
n:
M(150)
m(150)
M(900)
m(900)
M(150)
m(150)
M(900)
m(900)
19
8. (3/4)
2 S
S
S S
! = #
$
%
{' ( − * ( }
, - :
/ - :
n:
750,900
150,300,450,600
150,300,450,600
750,900
20
8. (4/4)
2 S
=
" #$$ %&(#$$)
" )*$ %&()*$)
M(n):
m(n):
n:
1
2
3
4
1
2
3
4
< )/- > )//
S
M(150)
m(150)
M(900)
m(900)
M(150)
m(150)
M(900)
m(900)
RQ1:
RQ2:
21
9.
⇒
⇒
( )
10.
22
RNN
23
11.
RQ1:
RQ2:
S
24
, , ,
END

Sigse presentation