SlideShare a Scribd company logo
1 of 47
Download to read offline
January 27, 2005 11:45           L24-CH07             Sheet number 1 Page number 290                          black



                                                                       CHAPTER 7
                         Applications of the Definite Integral in
                         Geometry, Science, and Engineering

             EXERCISE SET 7.1
                             2                                                           2
              1. A =             (x + 1 − x)dx = (x /3 + x − x /2)
                                   2                            3               2
                                                                                              = 9/2
                         −1                                                              −1

                                                                                    4
                             4    √
              2. A =             ( x + x/4)dx = (2x3/2 /3 + x2 /8)                      = 22/3
                         0                                                          0

                             2                                             2
              3. A =             (y − 1/y 2 )dy = (y 2 /2 + 1/y)               =1
                         1                                                 1

                             2                                                           2
              4. A =             (2 − y 2 + y)dy = (2y − y 3 /3 + y 2 /2)                    = 10/3
                         0                                                               0

                                        4                                                                         16
                                                                                                                        √
              5. (a) A =                    (4x − x2 )dx = 32/3                                 (b) A =                ( y − y/4)dy = 32/3
                                    0                                                                         0

                                                                                                          y

                                                                                                                               (4, 16)
                                                                                                                  y = 4x

                                                                                                                           y = x2
                                                                                                      5
                                                                                                                                         x
                                                                                                              1




              6. Eliminate x to get y 2 = 4(y + 4)/2, y 2 − 2y − 8 = 0,                                                              y
                 (y − 4)(y + 2) = 0; y = −2, 4 with corresponding                                                                                      (4, 4)
                                                                                                                                         y2 = 4x
                 values of x = 1, 4.
                                                                                                                                                   y = 2x – 4
                                        1     √       √                    4     √
                  (a) A =                   [2 x − (−2 x)]dx +                 [2 x − (2x − 4)]dx                                                               x
                                    0                                  1
                                        1    √             4     √                                                                           (1, –2)
                             =              4 xdx +            (2 x − 2x + 4)dx = 8/3 + 19/3 = 9
                                    0                  1

                                        4
                  (b) A =                   [(y/2 + 2) − y 2 /4]dy = 9
                                    −2




                                                                                        290
January 27, 2005 11:45                   L24-CH07                          Sheet number 2 Page number 291                  black



              Exercise Set 7.1                                                                                                                       291

                                         1        √                                                               2
               7. A =                            ( x − x2 )dx = 49/192                          8. A =                [0 − (x3 − 4x)]dx
                                     1/4                                                                      0
                                                                                                                  2
                                     y
                                                                                                         =            (4x − x3 )dx = 4
                                                                                                              0
                                                                                                         y
                                     y = √x                     (1, 1)
                                                                                                                                    x
                                                       y = x2                                                               2
                                                                         x
                                             1
                                             4
                                                                                                                           y = 2x3 – 4x




                                         π/2
               9. A =                             (0 − cos 2x)dx                               10. Equate sec2 x and 2 to get sec2 x = 2,
                                     π/4
                                                 π/2                                                                       y
                         =−                            cos 2x dx = 1/2                                                 2
                                             π/4                                                    (#, 2)                          (3, 2)
                          y
                                                                                                                       1        y = sec2 x
                     1               y = cos 2 x                                                                                                x
                                                        x
                                         3              6
                                                                                                             √
                                                                                                    sec x = ± 2, x = ±π/4
                    –1                                                                                            π/4
                                                                                                    A=                     (2 − sec2 x)dx = π − 2
                                                                                                              −π/4


                                         3π/4                            √                                        2
              11. A =                               sin y dy =               2                 12. A =                [(x + 2) − x2 ]dx = 9/2
                                     π/4                                                                      −1
                             y                                                                                              y

                                                 x = sin y                                                                              (2, 4)
                     9



                                                                                                                                    y = x2
                                                                                                     (–1, 1)
                      3                                                                                                                          x
                                                            x                                            x=y–2



                                         ln 2                                                                     e                         e
                                                                                                                      dy
              13. A =                               e2x − ex dx                                14. A =                   = ln y                 =1
                                     0                                                                        1        y                    1
                                                                    ln 2
                                     1 2x                                                                y
                         =             e − ex                                = 1/2
                                     2                                                               e
                                                                    0
                                 y

                                                    y = e2x                                         1
                         4
                                                                                                                                        x
                                                                                                             1/e                1
                         2
                                                   y = ex
                                                                   x
                                                        ln 2
January 27, 2005 11:45              L24-CH07                            Sheet number 3 Page number 292                          black



             292                                                                                                                                                   Chapter 7




                                    1
                                                                                                                     √
                                                2                                                     1                3
             15.   A=                               − |x|                 dx                 16.   √      = 2, x = ±     , so
                                −1           1 + x2                                                  1−x2             2
                                                                                                                        √
                                        1                                                                                3/2
                                                    2                                                                                           1
                      =2                                −x                dx                        A=               √               2− √                    dx
                                    0            1 + x2                                                             − 3/2                     1 − x2
                                                                1                                                                         √
                                            −1
                                                                                                                                           3/2
                                                                                                                                                         √
                      = 4 tan                    x−x        2
                                                                    =π−1                                 = 2 − sin−1 x                                = 2 3 − 2π
                                                                0                                                                          √                  3
                                                                                                                                          − 3/2
                                             y
                                                                                                                                y
                                    2                                                                                   2           y=2

                                                                                                                    1.5
                                    1
                                                                                                                        1 y=           1
                                                                                                                                     1 – x2
                                                                                                                    0.5
                                                                x
                                                                                                                                              x
                    –1                                1
                                                                                                            3                        3
                                                                                                        –   2                        2




                                                                3 − x, x ≤ 1
             17. y = 2 + |x − 1| =                                                      ,                                       y
                                                                1 + x,            x≥1               (–5, 8)
                                                                                                                                y = –1x + 7
                                                                                                                                     5
                                1
                                              1
                   A=                        − x + 7 − (3 − x) dx                                                                         (5, 6)
                            −5                5                                                    y = 3–x
                                                                                                                                     y = 1+x
                                        5
                                                  1
                         +                       − x + 7 − (1 + x) dx                                                                             x
                                    1             5
                                1                                             5
                                            4                                        6
                    =                         x + 4 dx +                          6 − x dx
                            −5              5                             1          5
                    = 72/5 + 48/5 = 24

                                2/5                                                                                 1
             18. A =                    (4x − x)dx                                           19. A =                    (x3 − 4x2 + 3x)dx
                            0                                                                                   0
                                        1                                                                                   3
                         +                  (−x + 2 − x)dx                                                  +                   [−(x3 − 4x2 + 3x)]dx
                                    2/5                                                                                 1
                                2/5                             1                                       = 5/12 + 32/12 = 37/12
                    =                       3x dx +                 (2 − 2x)dx = 3/5
                            0                               2/5                                                     4
                                    y
                                                 ( 2 , 8)
                                                   5 5                                             –1                                                    4
                                                 y = –x + 2

                   y = 4x                           (1, 1)


                                                                    x                                           –8
                   y=x
January 27, 2005 11:45           L24-CH07                Sheet number 4 Page number 293                                 black



              Exercise Set 7.1                                                                                                                               293




              20. Equate y = x3 − 2x2 and y = 2x2 − 3x                                                                             9
                  to get x3 − 4x2 + 3x = 0,
                  x(x − 1)(x − 3) = 0; x = 0, 1, 3
                  with corresponding values of y = 0, −1.9.
                                 1
                    A=               [(x3 − 2x2 ) − (2x2 − 3x)]dx                                                         –1                             3
                             0
                                         3                                                                                       –2
                             +               [(2x3 − 3x) − (x3 − 2x2 )]dx
                                     1
                                 1                                         3
                         =           (x3 − 4x2 + 3x)dx +                       (−x3 + 4x2 − 3x)dx
                             0                                         1
                              5  8  37
                         =      + =
                             12 3   12

              21. From the symmetry of the region                                          22. The region is symmetric about the origin so
                         5π/4                      √                                                            2
                  A=2         (sin x − cos x)dx = 4 2                                           A=2                 |x3 − 4x|dx = 8
                                 π/4                                                                        0

                        1                                                                                                  3.1




                    0                                             o                             –3                                       3




                    –1                                                                                                    –3.1


                                 0                           1                                              1
              23. A =                (y 3 − y)dy +               −(y 3 − y)dy              24. A =                  y 3 − 4y 2 + 3y − (y 2 − y) dy
                             −1                          0                                              0
                                                                                                                    4
                         = 1/2
                                                                                                       +                y 2 − y − (y 3 − 4y 2 + 3y) dy
                                                1                                                               1

                                                                                                     = 7/12 + 45/4 = 71/6
                                                                                                            4.1
                    –1                                             1




                                               –1

                                                                                                –2.2                                         12.1
                                                                                                            0
January 27, 2005 11:45                  L24-CH07                       Sheet number 5 Page number 294                              black



             294                                                                                                                                                             Chapter 7

                                                                            √                                                                      y
             25. The curves meet when x =                                        ln 2, so
                                    √                                                                     √                                  2.5
                                     ln 2                                                                  ln 2
                                                              2                         1 2                                    1
                   A=                       (2x − xex ) dx =                        x2 − ex                       = ln 2 −                    2
                                0                                                       2                 0                    2             1.5

                                                                                                                                              1

                                                                                                                                             0.5
                                                                                                                                                                             x
                                                                                                                                                           0.5       1


                                                                                √                √
             26. The curves meet for x = e−2                                     2/3
                                                                                          , e2    2/3
                                                                                                        thus                                       y
                                         √                                                                                                   20
                                        2 2/3
                                    e
                                                3      1
                   A=              √
                                                  −                                              dx                                          15
                                e−2 2/3         x x 1 − (ln x)2
                                                                            e2
                                                                                √
                                                                                    2/3                                   √                  10
                                                                                              √                          2 2
                        = 3 ln x − sin−1 (ln x)                                  √
                                                                                           = 4 2 − 2 sin−1                                    5
                                                                            e−2      2/3                                  3
                                                                                                                                                                             x
                                                                                                                                                       1         2       3


                                                                      k
             27. The area is given by                                     (1/       1 − x2 − x)dx = sin−1 k − k 2 /2 = 1; solve for k to get
                                                                  0
                   k = 0.997301.

             28. The curves intersect at x = a = 0 and x = b = 0.838422 so the area is
                        b
                            (sin 2x − sin−1 x)dx ≈ 0.174192.
                    a


             29. Solve 3−2x = x6 +2x5 −3x4 +x2 to find the real roots x = −3, 1; from a plot it is seen that the line
                                                                                                                     1
                   is above the polynomial when −3 < x < 1, so A =                                                       (3−2x−(x6 +2x5 −3x4 +x2 )) dx = 9152/105
                                                                                                                    −3


                                                                     1        √
             30. Solve x5 − 2x3 − 3x = x3 to find the roots x = 0, ±     6 + 2 21. Thus, by symmetry,
                          √     √                                    2
                            (6+2 21)/2
                                                                   27 7 √
                 A=2                   (x3 − (x5 − 2x3 − 3x)) dx =    +    21
                        0                                          4    4

                        k
                             √                      9
                                                         √                                                                   y
             31.            2 ydy =                     2 ydy
                    0                           k
                                                                                                                                     y=9
                        k                           9
                                1/2                         1/2
                            y           dy =            y         dy
                    0                           k                                                                                  y=k

                             2 3/2  2
                               k   = (27 − k 3/2 )
                             3      3
                                                                                                                                         x
                                 k 3/2 = 27/2
                                                           √
                                         k = (27/2)2/3 = 9/ 3 4
January 27, 2005 11:45             L24-CH07                           Sheet number 6 Page number 295                    black



              Exercise Set 7.1                                                                                                                                        295

                         k                        2
              32.            x2 dx =                  x2 dx                                  y
                     0                        k                                                            x = √y
                              1 3  1
                                k = (8 − k 3 )
                              3    3
                                k3 = 4
                                     √                                                                              x
                                 k= 34
                                                                                                       2
                                                                                                 x=k

                                              2
              33. (a) A =                         (2x − x2 )dx = 4/3
                                          0
                    (b) y = mx intersects y = 2x − x2 where mx = 2x − x2 , x2 + (m − 2)x = 0, x(x + m − 2) = 0 so
                        x = 0 or x = 2 − m. The area below the curve and above the line is
                                   2−m                                               2−m                                                          2−m
                                                                                     1            1                                                            1
                                          (2x − x2 − mx)dx =                           (2 − m)x2 − x3
                                                                                            [(2 − m)x − x2 ]dx =                                          =      (2 − m)3
                                0                          0                         2            3                                               0            6
                                                                                        √
                               so (2 − m)3 /6 = (1/2)(4/3) = 2/3, (2 − m)3 = 4, m = 2 − 4.
                                                                                         3




                                                                                                        3
              34. The line through (0, 0) and (5π/6, 1/2) is y =                                          x;                    y
                                                                                                       5π                            y = sin x

                                   5π/6
                                                                                √
                                                                                                                            1
                                                                                                                                                 ( 56c , 1 )
                                                                                                                                                         2
                                                       3         3   5
                    A=                        sin x −    x dx =    − π+1                                                                                   x
                               0                      5π        2   24
                                                                                                                                                      c


              35. The curves intersect at x = 0 and, by Newton’s Method, at x ≈ 2.595739080 = b, so
                                   b                                                              b
                    A≈                 (sin x − 0.2x)dx = − cos x + 0.1x2                             ≈ 1.180898334
                               0                                                                  0


              36. By Newton’s Method, the points of intersection are at x ≈ ±0.824132312, so with
                                                                                     b                                          b
                    b = 0.824132312 we have A ≈ 2                                        (cos x − x2 )dx = 2(sin x − x3 /3)         ≈ 1.094753609
                                                                                 0                                              0


              37. By Newton’s Method the points of intersection are x = x1 ≈ 0.4814008713 and
                                                  x2
                                                       ln x
                  x = x2 ≈ 2.363938870, and A ≈             − (x − 2) dx ≈ 1.189708441.
                                                 x1     x

              38. By Newton’s Method the points of intersection are x = ±x1 where x1 ≈ 0.6492556537, thus
                          x1
                                2
                  A≈2               − 3 + 2 cos x dx ≈ 0.826247888
                        0    1 + x2

              39. The x-coordinates of the points of intersection are a ≈ −0.423028 and b ≈ 1.725171; the area is
                         b
                             (2 sin x − x2 + 1)dx ≈ 2.542696.
                     a


              40. Let (a, k), where π/2 < a < π, be the coordinates of the point of intersection of y = k with
                  y = sin x. Thus k = sin a and if the shaded areas are equal,
                         a                                        a
                             (k − sin x)dx =                          (sin a − sin x) dx = a sin a + cos a − 1 = 0
                     0                                        0
                    Solve for a to get a ≈ 2.331122, so k = sin a ≈ 0.724611.
January 27, 2005 11:45              L24-CH07               Sheet number 7 Page number 296                       black



             296                                                                                                                            Chapter 7

                     60
             41.          (v2 (t) − v1 (t)) dt = s2 (60) − s2 (0) − (s1 (60) − s1 (0)), but they are even at time t = 60, so
                    0
                   s2 (60)
                         = s1 (60). Consequently the integral gives the difference s1 (0)−s2 (0) of their starting points
                   in meters.
                                                                     T
             42. Since a1 (0) = a2 (0) = 0, A =                          (a2 (t)−a1 (t)) dt = v2 (T )−v1 (T ) is the difference in the velocities
                                                                 0
                   of the two cars at time T .

             43. (a) It gives the area of the region that is between f and g when f (x) > g(x) minus the area of
                     the region between f and g when f (x) < g(x), for a ≤ x ≤ b.
                   (b) It gives the area of the region that is between f and g for a ≤ x ≤ b.

                                              1                                                            1
                                                                                   n             x2                              n   1
             44. (b)           lim                 1/n
                                                  (x     − x) dx = lim                x(n+1)/n −               = lim               −     = 1/2
                           n→+∞           0                      n→+∞             n+1            2         0
                                                                                                                  n→+∞          n+1 2


             45. Solve x1/2 + y 1/2 = a1/2 for y to get                                                y
                                                                                                   a

                   y = (a1/2 − x1/2 )2 = a − 2a1/2 x1/2 + x
                               a
                   A=               (a − 2a1/2 x1/2 + x)dx = a2 /6                                                          x
                           0                                                                                            a
                                              √
             46. Solve for y to get y = (b/a) a2 − x2 for the upper half                           of the ellipse; make use of symmetry to
                              a
                                b               4b a                 4b                            1 2
                 get A = 4         a2 − x2 dx =         a2 − x2 dx =    ·                            πa = πab.
                             0 a                a 0                  a                             4

             47. Let A be the area between the curve and the x-axis and AR the area of the rectangle, then
                        b                      b
                                     k             kbm+1
                 A=       kxm dx =       xm+1 =           , AR = b(kbm ) = kbm+1 , so A/AR = 1/(m + 1).
                      0            m+1         0   m+1


             EXERCISE SET 7.2
                                    3                                                                      1
              1. V = π                  (3 − x)dx = 8π                                    2. V = π             [(2 − x2 )2 − x2 ]dx
                                −1                                                                     0
                                                                                                           1
                                                                                               =π              (4 − 5x2 + x4 )dx
                                                                                                       0

                                                                                               = 38π/15

                                    2                                                                      2
                                        1
              3. V = π                    (3 − y)2 dy = 13π/6                             4. V = π             (4 − 1/y 2 )dy = 9π/2
                                0       4                                                              1/2

                                2
              5. V =                x4 dx = 32/5                         y
                            0
                                                                         y = x2


                                                                                      x
                                                                                  2
January 27, 2005 11:45             L24-CH07                          Sheet number 8 Page number 297                                black



              Exercise Set 7.2                                                                                                                                     297

                                   π/3                               √
               6. V =                      sec2 x dx =                   3−1                y
                               π/4                                                              y = sec x
                                                                                        2
                                                                                        1
                                                                                                                x
                                                                                                   3        4
                                                                                       -1
                                                                                       -2



                                       π/2                                 √                                                   1
               7. V = π                            cos x dx = (1 −             2/2)π                8. V = π                       [(x2 )2 − (x3 )2 ]dx
                                   π/4                                                                                     0
                          y                                                                                                    1
                     1                     y = √cos x                                                               =π             (x4 − x6 )dx = 2π/35
                                                                                                                           0
                                                             x
                                                                                                                y
                               3                     6

                    –1                                                                                      1                      (1, 1)
                                                                                                                 y = x2
                                                                                                                           y = x3
                                                                                                                                            x
                                                                                                                            1




                                       4                                                                                       3
               9. V = π                    [(25 − x2 ) − 9]dx                                     10. V = π                        (9 − x2 )2 dx
                                   −4                                                                                      −3
                                           4                                                                                   3
                         = 2π                  (16 − x2 )dx = 256π/3                                                =π             (81 − 18x2 + x4 )dx = 1296π/5
                                       0                                                                                   −3
                                               y                                                                                       y
                                       5             y = √25 – x2                                                              9
                                                             y=3                                                                                y = 9 – x2

                                                                 x                                                                                    x
                                                                                                            –3                                    3




                                       4                                                                                       π/4
              11. V = π                    [(4x)2 − (x2 )2 ]dx                                    12. V = π                            (cos2 x − sin2 x)dx
                                   0                                                                                       0
                                       4                                                                                       π/4
                         =π                (16x2 − x4 )dx = 2048π/15                                                =π                 cos 2x dx = π/2
                                   0                                                                                       0
                          y                                                                                         y
                     16                (4, 16)                                                                          y = cos x
                                                                                                                1
                              y = 4x
                                                   y = x2                                                                   y = sin x x
                                                             x                                                                     3
                                                         4
                                                                                                            –1
January 27, 2005 11:45            L24-CH07                 Sheet number 9 Page number 298                                  black



             298                                                                                                                                             Chapter 7

                                  ln 3                          ln 3                                                 1
                                                         π 2x                                                                             π
             13. V = π                     e2x dx =        e           = 4π                14. V = π                     e−4x dx =          (1 − e−4 )
                              0                          2      0                                                0                        4

                                                                                                        y
                                                                                                  1


                                                                                                                                      x
                                                                                                                             1


                                                                                                 –1


                              2                                                2
                                        1       π
             15. V =              π       2
                                            dx = tan−1 (x/2)                        = π 2 /4
                          −2           4+x      2                              −2

                              1                                                1
                                       e6x        π                                    π
             16. V =              π        6x
                                              dx = ln(1 + e6x )                    =     (ln(1 + e6 ) − ln 2)
                          0           1+e         6                            0       6

                              1               2                                                                 1
                                                           3                                                                                    2 1   8
             17. V =                  y 1/3       dy =                                     18. V =                  (1 − y 2 )2 dy = 1 −         + =
                          0                                5                                                0                                   3 5  15




                    y                                                                             y


                   0.75                                                                          0.75
                                                                           x                                                                             x

                                                                    0.75                                                                         0.75
                          0.25                                                                              0.25
                                                  0.25                                                                                0.25




                                  3                                                                                  3
             19. V = π                (1 + y)dy = 8π                                       20. V = π                     [22 − (y + 1)]dy
                              −1                                                                                 0
                                       y                                                                             3
                                                                                                      =π                 (3 − y)dy = 9π/2
                                  3                                                                              0

                                                                                                                             x = √y + 1
                                                                                                                    y        y = x2 – 1
                                              x = √1 + y
                                                      x                                                      3           (2, 3)
                                                2


                                                                                                                                  x
January 27, 2005 11:45          L24-CH07                             Sheet number 10 Page number 299                            black



              Exercise Set 7.2                                                                                                                                 299

                                    3π/4                                                                                1
              21. V = π                          csc2 y dy = 2π                              22. V = π                      (y − y 4 )dy = 3π/10
                                π/4                                                                                 0

                                             y                                                                          y
                                    9                                                                                   x = y2
                                                                                                                1
                                                                                                                                   (1, 1)
                                        6               x = csc y                                                               x = √y
                                                                                                                                            x
                                                                                                     –1                             1

                                        3
                                                                 x                                         –1
                    –2     –1                       1        2


                                    2                                                                                   1
              23. V = π                 [(y + 2)2 − y 4 ]dy = 72π/5                          24. V = π                          (2 + y 2 )2 − (1 − y 2 )2 dy
                                −1                                                                                  −1
                                        y                                                                               1
                                                                                                          =π                (3 + 6y 2 )dy = 10π
                                                                                                                    −1
                                            x = y2        (4, 2)                                                                y     x = 2 + y2
                                                     x= y+2                                                                     x = 1 – y2
                                                        x                                                                       1


                                                (1, –1)                                                                                         x
                                                                                                                                 1          2

                                                                                                                                –1


                                1                                                                                   2
                                                           π 2                                                            π
              25. V =               πe2y dy =                e −1                            26. V =                           dy = π tan−1 2
                            0                              2                                                    0       1 + y2

                                    a                                                                                   2
                                            b2 2                                                                            1
              27. V = π                        (a − x2 )dx = 4πab2 /3                        28. V = π                         dx = π(1/b − 1/2);
                                −a          a2                                                                      b       x2
                                                y                                                    π(1/b − 1/2) = 3, b = 2π/(π + 6)
                                        b        y = √a2 – x 2
                                                     b
                                                     a

                                                                     x
                      –a                                    a




                                    0
              29. V = π                 (x + 1)dx                                                    y
                                −1                                                                    (1, √2)
                                                                                                 1
                                            1                                       y = √x + 1
                                                                                                      y = √2x
                           +π                   [(x + 1) − 2x]dx                                                            x
                                        0                                               –1                 1
                         = π/2 + π/2 = π
January 27, 2005 11:45     L24-CH07                      Sheet number 11 Page number 300                         black



             300                                                                                                                                 Chapter 7

                               4                    6
             30. V = π             x dx + π             (6 − x)2 dx                     y
                           0                    4

                     = 8π + 8π/3 = 32π/3                                                    y = √x         y=6–x

                                                                                                                  x
                                                                                                       4     6




             31. Partition the interval [a, b] with a = x0 < x1 < x2 < . . . < xn−1 < xn = b. Let x∗ be an arbitrary
                                                                                                     k
                 point of [xk−1 , xk ]. The disk in question is obtained by revolving about the line y = k the rectan-
                 gle for which xk−1 < x < xk , and y lies between y = k and y = f (x); the volume of this disk is
                                                                                                                          b
                   ∆Vk = π(f (x∗ ) − k)2 ∆xk , and the total volume is given by V = π
                               k                                                                                              (f (x) − k)2 dx.
                                                                                                                      a


             32. Assume for c < y < d that k ≤ v(y) ≤ w(y) (A similar proof holds for k ≥ v(y) ≥ w(y)). Partition
                 the interval [c, d] with
                                                                  ∗
                 c = y0 < y1 < y2 < . . . < yn−1 < yn = d. Let yk be an arbitrary point of [yk−1 , yk ]. The washer
                                                                              ∗            ∗
                 in question is the region obtained by revolving the strip v(yk ) < x < w(yk ), yk−1 < y < yk about
                                                                              ∗               ∗
                 the line x = k. The volume of this washer is ∆V = π[(v(yk ) − k) − (w(yk ) − k)2 ]∆yk , and the
                                                                                     2

                 volume of the solid obtained by rotating R is
                               d
                   V =π            [(v(y) − k)2 − (w(y) − k)2 ] dy
                           c

             33. (a) Intuitively, it seems that a line segment revolved about a line which is perpendicular to the
                     line segment will generate a larger area, the farther it is from the line. This is because the
                     average point on the line segment will be revolved through a circle with a greater radius, and
                     thus sweeps out a larger circle.                                                 √
                     Consider the line segment which connects a point (x, y) on the curve y = 3 − x to the point
                     (x, 0) beneath it. If this line segment is revolved around the x-axis we generate an area πy 2 .
                     If on the other hand the segment is revolved around the line y = 2 then the area of the
                     resulting (infinitely thin) washer is π[22 − (2 − y)2 ]. So the question can be reduced to√   asking
                     whether y 2 ≥ [22 − (2 − y)2 ], y 2 ≥ 4y − y 2 , or y ≥ 2. In the present case the curve y = 3 − x
                     always satisfies y ≤ 2, so V2 has the larger volume.
                   (b) The volume of the solid generated by revolving the area around the x-axis is
                                        3
                         V1 = π             (3 − x) dx = 8π, and the volume generated by revolving the area around the line
                                       −1
                                                         3                √                     40
                         y = 2 is V2 = π                     [22 − (2 −       3 − x)2 ] dx =       π
                                                        −1                                       3

             34. (a) In general, points in the region R are farther from the y-axis than they are from the line
                     x = 2.5, so by the reasoning in Exercise 33(a) the former should generate a larger volume
                     than the latter, i.e. the volume mentioned in Exercise 4 will be greater than that gotten by
                     revolving about the line x = 2.5.
                   (b) The original volume V1 of Exercise 4 is given by
                                        2
                         V1 = π              (4 − 1/y 2 ) dy = 9π/2, and the other volume
                                       1/2
                                        2                        2
                                                1                                                    21
                         V2 = π                   − 2.5              − (2 − 2.5)2 dy =                  − 10 ln 2 π ≈ 3.568528194π,
                                       1/2      y                                                     2
                         and thus V1 is the larger volume.
January 27, 2005 11:45            L24-CH07                      Sheet number 12 Page number 301                black



              Exercise Set 7.2                                                                                                                       301

                                      3                                                                  9                             √
              35. V = π                   (9 − y 2 )2 dy                            36. V = π                [32 − (3 −                    x)2 ]dx
                                  0                                                                  0
                                      3                                                                  9     √
                        =π                (81 − 18y 2 + y 4 )dy                           =π                 (6 x − x)dx
                                  0                                                                  0

                        = 648π/5                                                          = 135π/2
                        y                                                                        y
                    3       x = y2

                                                                                          y=3
                                                            x                           y = √x
                                          9                                                                                                 x
                                                                                                                               9


                                      1     √                                                             y
              37. V = π                   [( x + 1)2 − (x + 1)2 ]dx                                                     x=y
                                  0                                                                  1                             x = y2
                                      1     √                                                                                               x
                        =π                (2 x − x − x2 )dx = π/2                                                      1
                                  0
                                                                                                                               y = –1




                                      1                                                                                    y
              38. V = π                   [(y + 1)2 − (y 2 + 1)2 ]dy                                                           x=y
                                  0
                                      1
                                                                                                                    1
                        =π                (2y − y 2 − y 4 )dy = 7π/15
                                  0
                                                                                                                                            x
                                                                                                                                   1
                                                                                                                               x = y2
                                                                                                     x = –1


                                                                                                         1
              39. A(x) = π(x2 /4)2 = πx4 /16,                                       40. V = π                (x − x4 )dx = 3π/10
                                                                                                     0
                                  20
                    V =                (πx4 /16)dx = 40, 000π ft3
                              0


                                                                                                                   1√
                                  1                                                                                                2
                                                                                                         1                                  1
              41. V =                 (x − x2 )2 dx                                 42. A(x) =             π          x                =      πx,
                              0                                                                          2         2                        8
                                  1                                                                  4
                                                                                                         1
                        =             (x2 − 2x3 + x4 )dx = 1/30                         V =                πx dx = π
                              0                                                                  0       8
                                  Square                                                                       y
                                                       y
                                                      y = x (1, 1)                                                         y = √x
                                                       y = x2
                                              1   x                                                                4
                                                                                                                               x
January 27, 2005 11:45        L24-CH07                Sheet number 13 Page number 302                         black



             302                                                                                                                            Chapter 7

                                                                    √
             43. On the upper half of the circle, y =                   1 − x2 , so:
                   (a) A(x) is the area of a semicircle of radius y, so
                                                                                  1                               1
                                                                             π
                         A(x) = πy 2 /2 = π(1 − x2 )/2; V =                           (1 − x2 ) dx = π                (1 − x2 ) dx = 2π/3
                                                                             2   −1                           0

                                                                                                      y
                         –1                                 y


                                                      1 x
                                       y = √1 – x2


                   (b) A(x) is the area of a square of side 2y, so
                                                                         1                            1
                         A(x) = 4y 2 = 4(1 − x2 ); V = 4                     (1 − x2 ) dx = 8             (1 − x2 ) dx = 16/3
                                                                      −1                          0




                         –1                                     y
                                                                                             2y

                                                      1 x
                                       y = √1 – x 2


                   (c) A(x) is the area of an equilateral triangle with sides 2y, so
                               √
                                 3         √        √
                       A(x) =      (2y)2 = 3y 2 = 3(1 − x2 );
                                4
                              1 √                  √     1                 √
                       V =        3(1 − x2 ) dx = 2 3      (1 − x2 ) dx = 4 3/3
                                       −1                            0



                                                                                        2y            2y
                         –1                                 y

                                                                                             2y
                                                      1 x
                                        y = √1 – x2


             44. The base of the dome is a hexagon of side r. An equation of the circle of radius r that lies in a
                 vertical x-y plane and passes through two opposite vertices of the base hexagon is x2 + y 2 = r2 .
                 A horizontal, hexagonal cross section at height y above the base has area
                           √         √                                           √
                          3 3 2     3 3 2                                     r
                                                                                3 3 2             √
                 A(y) =       x =      (r − y ), hence the volume is V =
                                               2
                                                                                   (r − y 2 ) dy = 3r3 .
                           2         2                                      0    2

             45. The two curves cross at x = b ≈ 1.403288534, so
                                  b                                      π/2
                   V =π               ((2x/π)2 − sin16 x) dx + π               (sin16 x − (2x/π)2 ) dx ≈ 0.710172176.
                              0                                      b

             46. Note that π 2 sin x cos3 x = 4x2 for x = π/4. From the graph it is apparent that this is the first
                 positive solution, thus the curves don’t cross on (0, π/4) and
                                  π/4
                                                                                  1 5     17 6
                   V =π                 [(π 2 sin x cos3 x)2 − (4x2 )2 ] dx =        π +      π
                              0                                                   48     2560
January 27, 2005 11:45         L24-CH07                      Sheet number 14 Page number 303                  black



              Exercise Set 7.2                                                                                                                                        303

                                   e
              47. V = π                (1 − (ln y)2 ) dy = π
                               1

                               tan 1
                                                                                π
              48. V =                   π[x2 − x2 tan−1 x] dx =                   [tan2 1 − ln(1 + tan2 1)]
                           0                                                    6
                                             r
                                                                                              1 2
              49. (a) V = π                        (r2 − y 2 ) dy = π(rh2 − h3 /3) =            πh (3r − h)
                                             r−h                                              3
                                                                                                                                             y
                    (b) By the Pythagorean Theorem,
                                                                                                                              h
                          r2 = (r − h)2 + ρ2 , 2hr = h2 + ρ2 ; from Part (a),                                                                          x2 + y2 = r2
                                                                                                                                                 r            x
                                 πh               πh                       3 2                                                                   r
                          V =       (3hr − h2 ) =                            (h + ρ2 ) − h2 )
                                  3                3                       2
                                 1
                                = πh(h2 + 3ρ2 )
                                 6


              50. Find the volume generated by revolving                                                                                         y
                  the shaded region about the y-axis.
                                                                                                                                  h – 10                  10   x
                                   −10+h
                                                              π
                    V =π                      (100 − y 2 )dy = h2 (30 − h)
                               −10                            3                                                           h
                                                                                                                                                     x = √100 – y 2
                                                                                                                                       –10
                    Find dh/dt when h = 5 given that dV /dt = 1/2.
                       π               dV   π            dh
                    V =  (30h2 − h3 ),    = (60h − 3h2 ) ,
                       3               dt   3            dt
                    1  π           dh dh
                      = (300 − 75) ,       = 1/(150π) ft/min
                    2  3            dt dt


                                         5
              51. (b) ∆x =                  = 0.5; {y0 , y1 , · · · , y10 } = {0, 2.00, 2.45, 2.45, 2.00, 1.46, 1.26, 1.25, 1.25, 1.25, 1.25};
                                         10
                                              9              2
                                                       yi
                          left = π                               ∆x ≈ 11.157;
                                             i=0
                                                       2
                                                  10             2
                                                        yi
                          right = π                                  ∆x ≈ 11.771; V ≈ average = 11.464 cm3
                                                 i=1
                                                        2

                                                                 √
              52. If x = r/2 then from y 2 = r2 − x2 we get y = ± 3r/2                                                            y
                                                 √       √                                                                            √3r
                  as limits of integration; for − 3 ≤ y ≤ 3,                                                                           2
                                                                                                                                            x = √r 2 – y 2
                    A(y) = π[(r − y ) − r /4] = π(3r /4 − y ), thus
                                         2        2          2              2         2                                                               x
                                   √
                                    3r/2                                                                                                    r
                                                                                                                                            2
                    V =π        √             (3r2 /4 − y 2 )dy
                               − 3r/2                                                                                 – √3r
                                √                                                                                        2
                                  3r/2                                      √
                       = 2π                      (3r2 /4 − y 2 )dy =            3πr3 /2
                                   0
January 27, 2005 11:45       L24-CH07                              Sheet number 15 Page number 304                       black



             304                                                                                                                                              Chapter 7

                                                     y                                                                          y
             53. (a)                                                                                      (b)
                                                                                                                        h –4
                                                                            x                                                                   x


                                    h–4                                                                                    –2
                                                                                                                                         h
                                                                     h
                                              –4                                                                           –4
                                              0≤h<2                                                                      2≤h≤4


                   If the cherry is partially submerged then 0 ≤ h < 2 as shown in Figure (a); if it is totally sub-
                   merged then 2 ≤ h ≤ 4 as shown in Figure (b). The radius of the glass is 4 cm and that of the
                   cherry is 1 cm so points on the sections shown in the figures satisfy the equations x2 + y 2 = 16
                   and x2 + (y + 3)2 = 1. We will find the volumes of the solids that are generated when the shaded
                   regions are revolved about the y-axis.
                   For 0 ≤ h < 2,
                                                               h−4                                                      h−4
                                          V =π                       [(16 − y 2 ) − (1 − (y + 3)2 )]dy = 6π                   (y + 4)dy = 3πh2 ;
                                                              −4                                                      −4

                   for 2 ≤ h ≤ 4,
                                                           −2                                                     h−4
                                      V =π                      [(16 − y 2 ) − (1 − (y + 3)2 )]dy + π                   (16 − y 2 )dy
                                                          −4                                                     −2
                                                              −2                      h−4
                                                                                                                  1
                                              = 6π                 (y + 4)dy + π             (16 − y 2 )dy = 12π + π(12h2 − h3 − 40)
                                                           −4                         −2                          3
                                               1
                                              = π(12h2 − h3 − 4)
                                               3
                   so                                                        
                                                                              3πh
                                                                                   2
                                                                                                                if 0 ≤ h < 2
                                                                         V =
                                                                              1 π(12h2 − h3 − 4)               if 2 ≤ h ≤ 4
                                                                               3

             54.   x=h±               r2 − y2 ,
                                                                                                                                        y
                                r
                                                                                                                                        (x – h 2) + y 2 = r 2
                   V =π               (h +               r2 −      y 2 )2   − (h −   r2 −   y 2 )2   dy
                             −r
                                      r                                                                                                                   x
                        = 4πh                      r2 − y 2 dy
                                    −r

                                      1 2
                        = 4πh           πr               = 2π 2 r2 h
                                      2

             55. tan θ = h/x so h = x tan θ,
                             1     1          1
                   A(y) =      hx = x2 tan θ = (r2 − y 2 ) tan θ
                             2     2          2                                                                                             h
                   because x = r − y ,
                                  2            2          2
                                                                                                                                u
                                               r
                      1                                                                                                             x
                   V = tan θ                       (r − y )dy
                                                     2         2
                      2                       −r
                                          r
                                                                         2 3
                        = tan θ               (r2 − y 2 )dy =              r tan θ
                                      0                                  3
January 27, 2005 11:45               L24-CH07                        Sheet number 16 Page number 305                                                  black



              Exercise Set 7.3                                                                                                                                                   305


              56. A(x) = (x tan θ)(2 r2 − x2 )                                                                     57. Each cross section perpendicular to the
                                                                                                                       y-axis is a square so
                               = 2(tan θ)x r2 − x2 ,
                                                           r
                                                                                                                           A(y) = x2 = r2 − y 2 ,
                         V = 2 tan θ                           x r2 − x2 dx                                                 1                     r
                                                       0                                                                      V =                     (r2 − y 2 )dy
                                                                                                                            8                 0
                                         2 3
                               =           r tan θ
                                         3                                                                                      V = 8(2r3 /3) = 16r3 /3
                             x tan u                                                                                                                   y
                         y
                                                                 x
                                                                                                                                                            x = √r 2 – y 2
                    √r 2 – x 2



                                                                                                                                                            r
                                                                                                                                                                     x

              58. The regular cylinder of radius r and height h has the same circular cross sections as do those of
                  the oblique clinder, so by Cavalieri’s Principle, they have the same volume: πr2 h.



              EXERCISE SET 7.3
                                     2                                      2
               1. V =                    2πx(x2 )dx = 2π                        x3 dx = 15π/2
                                 1                                      1
                                     √                                                                    √
                                      2                                                                    2
                                                                                                                                                       8π     √
               2. V =                        2πx( 4 −            x2   − x)dx = 2π                              (x 4 − x2 − x2 )dx =                       (2 − 2)
                                 0                                                                    0                                                 3
                                     1                                                    1
               3. V =                    2πy(2y − 2y 2 )dy = 4π                               (y 2 − y 3 )dy = π/3
                                 0                                                    0

                                     2                                                            2
               4. V =                    2πy[y − (y 2 − 2)]dy = 2π                                    (y 2 − y 3 + 2y)dy = 16π/3
                                 0                                                            0

                                     1                                                                                                    9       √
               5. V =                    2π(x)(x3 )dx                                                               6. V =                    2πx( x)dx
                                 0                                                                                                    4
                                             1                                                                                                    9
                         = 2π                    x4 dx = 2π/5                                                                   = 2π                  x3/2 dx = 844π/5
                                         0                                                                                                    4
                                         y                                                                                                             y
                                                                                                                                                  3        y = √x
                                             y=   x3
                                                                                                                                                  2
                                 1
                                                                                                                                                  1
                                                       x
                                                                                                                                                                             x
                    –1                            1
                                                                                                                           –9     –4                         4           9
                               –1


                                     3                                          3
               7. V =                    2πx(1/x)dx = 2π                            dx = 4π                                                   y
                                 1                                          1                                                                                    1
                                                                                                                                                            y=   x

                                                                                                                                                                     x
                                                                                                                      –3         –1               1              3
January 27, 2005 11:45             L24-CH07                         Sheet number 17 Page number 306                            black



             306                                                                                                                                                        Chapter 7

                               √
                                π/2                            √
              8. V =                        2πx cos(x2 )dx = π/ 2                                     y
                           0                                                                              y = cos (x2)



                                                                                                                       x
                                                                                                                  √p
                                                                                                                   2



                               2                                                                                  2
              9. V =               2πx[(2x − 1) − (−2x + 3)]dx                           10. V =                      2πx(2x − x2 )dx
                           1                                                                                  0
                                       2                                                                                  2
                                                                                                                                                          8
                       = 8π                (x2 − x)dx = 20π/3                                         = 2π                    (2x2 − x3 )dx =               π
                                   1                                                                                  0                                   3
                                    y                                                                                  y
                                                    (2, 3)                                                                y = 2x – x 2

                                    (1, 1)
                                                                                                                                            x
                                                         x                                                                              2



                                                    (2, –1)

                                                                                                                  √                                           √
                                       1                                                                           3                                           3
                                             x                                                                                     x2                x2
             11. V = 2π                     2+1
                                                dx                                       12. V =                          2πxe              dx = πe                = π(e3 − e)
                                   0       x                                                                  1                                               1
                                                         1                                                                    y
                       = π ln(x2 + 1)                        = π ln 2
                                                         0                                                            20                    2
                                            y                                                                                     y = ex
                                       1            y=     1
                                                         x2 + 1
                                                                                                                      10


                                                                    x
                                                                                                                                                 x
                   –1                                         1
                                                                                              -√3 -1                                1       √3


                               1                                                                                  3                                       3
             13. V =               2πy 3 dy = π/2                                        14. V =                      2πy(2y)dy = 4π                          y 2 dy = 76π/3
                           0                                                                                  2                                       2
                       y                                                                              y
                                                                                              3
                   1               x = y2                                                     2                                         x = 2y
                                                                                                                                                 x
                                                x




                               1
                                                       √
             15. V =               2πy(1 −                   y)dy                    y
                           0                                                         y = √x
                                       1                                                          x
                       = 2π                (y − y 3/2 )dy = π/5                               1
                                   0
Chapter 07
Chapter 07
Chapter 07
Chapter 07
Chapter 07
Chapter 07
Chapter 07
Chapter 07
Chapter 07
Chapter 07
Chapter 07
Chapter 07
Chapter 07
Chapter 07
Chapter 07
Chapter 07
Chapter 07
Chapter 07
Chapter 07
Chapter 07
Chapter 07
Chapter 07
Chapter 07
Chapter 07
Chapter 07
Chapter 07
Chapter 07
Chapter 07
Chapter 07
Chapter 07

More Related Content

What's hot

Jacob's and Vlad's D.E.V. Project - 2012
Jacob's and Vlad's D.E.V. Project - 2012Jacob's and Vlad's D.E.V. Project - 2012
Jacob's and Vlad's D.E.V. Project - 2012Jacob_Evenson
 
09 Trial Penang S1
09 Trial Penang S109 Trial Penang S1
09 Trial Penang S1guest9442c5
 
009 solid geometry
009 solid geometry009 solid geometry
009 solid geometryphysics101
 
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553Destiny Nooppynuchy
 
09 sistema de equação do primeiro grau
09 sistema de equação do primeiro grau09 sistema de equação do primeiro grau
09 sistema de equação do primeiro grauWollker Colares
 
Actividad 4 calculo diferencial
Actividad 4 calculo diferencialActividad 4 calculo diferencial
Actividad 4 calculo diferencialSIGIFREDO12222
 
Mth 4108-1 a (ans)
Mth 4108-1 a (ans)Mth 4108-1 a (ans)
Mth 4108-1 a (ans)outdoorjohn
 
001 basic concepts
001 basic concepts001 basic concepts
001 basic conceptsphysics101
 
Day 2 graphing linear equations
Day 2 graphing linear equationsDay 2 graphing linear equations
Day 2 graphing linear equationsErik Tjersland
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Matthew Leingang
 
Form 4 formulae and note
Form 4 formulae and noteForm 4 formulae and note
Form 4 formulae and notesmktsj2
 
Applications of derivatives
Applications of derivativesApplications of derivatives
Applications of derivativesTarun Gehlot
 
Chapter 1 functions
Chapter 1  functionsChapter 1  functions
Chapter 1 functionsUmair Pearl
 
M A T H E M A T I C A L M E T H O D S J N T U M O D E L P A P E R{Www
M A T H E M A T I C A L  M E T H O D S  J N T U  M O D E L  P A P E R{WwwM A T H E M A T I C A L  M E T H O D S  J N T U  M O D E L  P A P E R{Www
M A T H E M A T I C A L M E T H O D S J N T U M O D E L P A P E R{Wwwguest3f9c6b
 

What's hot (20)

Jacob's and Vlad's D.E.V. Project - 2012
Jacob's and Vlad's D.E.V. Project - 2012Jacob's and Vlad's D.E.V. Project - 2012
Jacob's and Vlad's D.E.V. Project - 2012
 
09 Trial Penang S1
09 Trial Penang S109 Trial Penang S1
09 Trial Penang S1
 
009 solid geometry
009 solid geometry009 solid geometry
009 solid geometry
 
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
 
09 sistema de equação do primeiro grau
09 sistema de equação do primeiro grau09 sistema de equação do primeiro grau
09 sistema de equação do primeiro grau
 
Actividad 4 calculo diferencial
Actividad 4 calculo diferencialActividad 4 calculo diferencial
Actividad 4 calculo diferencial
 
Mth 4108-1 a (ans)
Mth 4108-1 a (ans)Mth 4108-1 a (ans)
Mth 4108-1 a (ans)
 
001 basic concepts
001 basic concepts001 basic concepts
001 basic concepts
 
Sect1 5
Sect1 5Sect1 5
Sect1 5
 
Lesson 54
Lesson 54Lesson 54
Lesson 54
 
Day 2 graphing linear equations
Day 2 graphing linear equationsDay 2 graphing linear equations
Day 2 graphing linear equations
 
Lesson 22: Graphing
Lesson 22: GraphingLesson 22: Graphing
Lesson 22: Graphing
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Form 4 formulae and note
Form 4 formulae and noteForm 4 formulae and note
Form 4 formulae and note
 
Applications of derivatives
Applications of derivativesApplications of derivatives
Applications of derivatives
 
Chapter 1 functions
Chapter 1  functionsChapter 1  functions
Chapter 1 functions
 
M A T H E M A T I C A L M E T H O D S J N T U M O D E L P A P E R{Www
M A T H E M A T I C A L  M E T H O D S  J N T U  M O D E L  P A P E R{WwwM A T H E M A T I C A L  M E T H O D S  J N T U  M O D E L  P A P E R{Www
M A T H E M A T I C A L M E T H O D S J N T U M O D E L P A P E R{Www
 
Lesson 22: Graphing
Lesson 22: GraphingLesson 22: Graphing
Lesson 22: Graphing
 
1. functions
1. functions1. functions
1. functions
 
calculo vectorial
calculo vectorialcalculo vectorial
calculo vectorial
 

Viewers also liked

Appendix a page_524
Appendix a page_524Appendix a page_524
Appendix a page_524ramiz100111
 
A autoanálise na procura das causas das aflições-Marcelo do N. Rodrigues-CEM
A autoanálise na procura das causas das aflições-Marcelo do N. Rodrigues-CEMA autoanálise na procura das causas das aflições-Marcelo do N. Rodrigues-CEM
A autoanálise na procura das causas das aflições-Marcelo do N. Rodrigues-CEMMarcelo do Nascimento Rodrigues
 
Marketo web hook guide
Marketo web hook guideMarketo web hook guide
Marketo web hook guideRajesh Talele
 
Causas das aflições slideshare
Causas das aflições slideshareCausas das aflições slideshare
Causas das aflições slideshareAlmir Silva
 
Causas anteriores das aflições - palestra espírita - Danilo Galvão SAJ
Causas anteriores das aflições - palestra espírita - Danilo Galvão SAJ Causas anteriores das aflições - palestra espírita - Danilo Galvão SAJ
Causas anteriores das aflições - palestra espírita - Danilo Galvão SAJ Danilo Galvão
 
Bem aventurados os aflitos
Bem aventurados os aflitos Bem aventurados os aflitos
Bem aventurados os aflitos Maria Moraes
 
Emirates Strategy and Implementation
Emirates Strategy and ImplementationEmirates Strategy and Implementation
Emirates Strategy and ImplementationAnushka Kassim
 
Capítulo 5 Bem aventurados os aflitos
Capítulo 5 Bem aventurados os aflitosCapítulo 5 Bem aventurados os aflitos
Capítulo 5 Bem aventurados os aflitosRoberta Andrade
 

Viewers also liked (20)

Chapter 09
Chapter 09Chapter 09
Chapter 09
 
Appendix a page_524
Appendix a page_524Appendix a page_524
Appendix a page_524
 
Chapter 12
Chapter 12Chapter 12
Chapter 12
 
Chapter 01
Chapter 01Chapter 01
Chapter 01
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
 
Chapter 04
Chapter 04Chapter 04
Chapter 04
 
Chapter 14
Chapter 14Chapter 14
Chapter 14
 
A autoanálise na procura das causas das aflições-Marcelo do N. Rodrigues-CEM
A autoanálise na procura das causas das aflições-Marcelo do N. Rodrigues-CEMA autoanálise na procura das causas das aflições-Marcelo do N. Rodrigues-CEM
A autoanálise na procura das causas das aflições-Marcelo do N. Rodrigues-CEM
 
Marketo web hook guide
Marketo web hook guideMarketo web hook guide
Marketo web hook guide
 
Chapter 16
Chapter 16Chapter 16
Chapter 16
 
Causas das aflições slideshare
Causas das aflições slideshareCausas das aflições slideshare
Causas das aflições slideshare
 
Justica das aflicoes
Justica das aflicoesJustica das aflicoes
Justica das aflicoes
 
Causas anteriores das aflições - palestra espírita - Danilo Galvão SAJ
Causas anteriores das aflições - palestra espírita - Danilo Galvão SAJ Causas anteriores das aflições - palestra espírita - Danilo Galvão SAJ
Causas anteriores das aflições - palestra espírita - Danilo Galvão SAJ
 
Bem aventurados os aflitos
Bem aventurados os aflitos Bem aventurados os aflitos
Bem aventurados os aflitos
 
Causas anteriores das aflições
Causas anteriores das afliçõesCausas anteriores das aflições
Causas anteriores das aflições
 
Emirates Strategy and Implementation
Emirates Strategy and ImplementationEmirates Strategy and Implementation
Emirates Strategy and Implementation
 
A importância da dor pra a doutrina espírita
A importância da dor pra a doutrina espíritaA importância da dor pra a doutrina espírita
A importância da dor pra a doutrina espírita
 
Bem aventurados os aflitos
Bem aventurados os aflitosBem aventurados os aflitos
Bem aventurados os aflitos
 
Capítulo 5 Bem aventurados os aflitos
Capítulo 5 Bem aventurados os aflitosCapítulo 5 Bem aventurados os aflitos
Capítulo 5 Bem aventurados os aflitos
 
O CARÁTER EDUCATIVO DA DOR
O CARÁTER EDUCATIVO DA DORO CARÁTER EDUCATIVO DA DOR
O CARÁTER EDUCATIVO DA DOR
 

Similar to Chapter 07

ฟังก์ชัน(function)
ฟังก์ชัน(function)ฟังก์ชัน(function)
ฟังก์ชัน(function)Yodhathai Reesrikom
 
Math refresher
Math refresherMath refresher
Math refresherdelilahnan
 
Elementos finitos
Elementos finitosElementos finitos
Elementos finitosjd
 
Yr.12 Transition Workshop 2012-2013
Yr.12 Transition Workshop 2012-2013Yr.12 Transition Workshop 2012-2013
Yr.12 Transition Workshop 2012-2013rdk.rdk
 
First Quarter - Chapter 2 - Quadratic Equation
First Quarter - Chapter 2 - Quadratic EquationFirst Quarter - Chapter 2 - Quadratic Equation
First Quarter - Chapter 2 - Quadratic EquationVer Louie Gautani
 
Implicit differentiation
Implicit differentiationImplicit differentiation
Implicit differentiationSporsho
 
Remedial mtk
Remedial mtkRemedial mtk
Remedial mtkAzizaty
 
Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009akabaka12
 
Solving quadratic equations by completing a square
Solving quadratic equations by completing a squareSolving quadratic equations by completing a square
Solving quadratic equations by completing a squarezwanenkosinathi
 

Similar to Chapter 07 (20)

Ism et chapter_6
Ism et chapter_6Ism et chapter_6
Ism et chapter_6
 
Ism et chapter_6
Ism et chapter_6Ism et chapter_6
Ism et chapter_6
 
Simultaneous eqn2
Simultaneous eqn2Simultaneous eqn2
Simultaneous eqn2
 
ฟังก์ชัน(function)
ฟังก์ชัน(function)ฟังก์ชัน(function)
ฟังก์ชัน(function)
 
Math integration-homework help
Math integration-homework helpMath integration-homework help
Math integration-homework help
 
Math refresher
Math refresherMath refresher
Math refresher
 
整卷
整卷整卷
整卷
 
Lesson 15: The Chain Rule
Lesson 15: The Chain RuleLesson 15: The Chain Rule
Lesson 15: The Chain Rule
 
125 5.2
125 5.2125 5.2
125 5.2
 
Calculus Final Exam
Calculus Final ExamCalculus Final Exam
Calculus Final Exam
 
Elementos finitos
Elementos finitosElementos finitos
Elementos finitos
 
Yr.12 Transition Workshop 2012- 2013
Yr.12 Transition Workshop 2012- 2013Yr.12 Transition Workshop 2012- 2013
Yr.12 Transition Workshop 2012- 2013
 
Yr.12 Transition Workshop 2012-2013
Yr.12 Transition Workshop 2012-2013Yr.12 Transition Workshop 2012-2013
Yr.12 Transition Workshop 2012-2013
 
Tam 2nd
Tam 2ndTam 2nd
Tam 2nd
 
First Quarter - Chapter 2 - Quadratic Equation
First Quarter - Chapter 2 - Quadratic EquationFirst Quarter - Chapter 2 - Quadratic Equation
First Quarter - Chapter 2 - Quadratic Equation
 
Implicit differentiation
Implicit differentiationImplicit differentiation
Implicit differentiation
 
Remedial mtk
Remedial mtkRemedial mtk
Remedial mtk
 
Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009
 
F.Komposisi
F.KomposisiF.Komposisi
F.Komposisi
 
Solving quadratic equations by completing a square
Solving quadratic equations by completing a squareSolving quadratic equations by completing a square
Solving quadratic equations by completing a square
 

Recently uploaded

Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxJiesonDelaCerna
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...jaredbarbolino94
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitolTechU
 
MICROBIOLOGY biochemical test detailed.pptx
MICROBIOLOGY biochemical test detailed.pptxMICROBIOLOGY biochemical test detailed.pptx
MICROBIOLOGY biochemical test detailed.pptxabhijeetpadhi001
 

Recently uploaded (20)

Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptx
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptx
 
MICROBIOLOGY biochemical test detailed.pptx
MICROBIOLOGY biochemical test detailed.pptxMICROBIOLOGY biochemical test detailed.pptx
MICROBIOLOGY biochemical test detailed.pptx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 

Chapter 07

  • 1. January 27, 2005 11:45 L24-CH07 Sheet number 1 Page number 290 black CHAPTER 7 Applications of the Definite Integral in Geometry, Science, and Engineering EXERCISE SET 7.1 2 2 1. A = (x + 1 − x)dx = (x /3 + x − x /2) 2 3 2 = 9/2 −1 −1 4 4 √ 2. A = ( x + x/4)dx = (2x3/2 /3 + x2 /8) = 22/3 0 0 2 2 3. A = (y − 1/y 2 )dy = (y 2 /2 + 1/y) =1 1 1 2 2 4. A = (2 − y 2 + y)dy = (2y − y 3 /3 + y 2 /2) = 10/3 0 0 4 16 √ 5. (a) A = (4x − x2 )dx = 32/3 (b) A = ( y − y/4)dy = 32/3 0 0 y (4, 16) y = 4x y = x2 5 x 1 6. Eliminate x to get y 2 = 4(y + 4)/2, y 2 − 2y − 8 = 0, y (y − 4)(y + 2) = 0; y = −2, 4 with corresponding (4, 4) y2 = 4x values of x = 1, 4. y = 2x – 4 1 √ √ 4 √ (a) A = [2 x − (−2 x)]dx + [2 x − (2x − 4)]dx x 0 1 1 √ 4 √ (1, –2) = 4 xdx + (2 x − 2x + 4)dx = 8/3 + 19/3 = 9 0 1 4 (b) A = [(y/2 + 2) − y 2 /4]dy = 9 −2 290
  • 2. January 27, 2005 11:45 L24-CH07 Sheet number 2 Page number 291 black Exercise Set 7.1 291 1 √ 2 7. A = ( x − x2 )dx = 49/192 8. A = [0 − (x3 − 4x)]dx 1/4 0 2 y = (4x − x3 )dx = 4 0 y y = √x (1, 1) x y = x2 2 x 1 4 y = 2x3 – 4x π/2 9. A = (0 − cos 2x)dx 10. Equate sec2 x and 2 to get sec2 x = 2, π/4 π/2 y =− cos 2x dx = 1/2 2 π/4 (#, 2) (3, 2) y 1 y = sec2 x 1 y = cos 2 x x x 3 6 √ sec x = ± 2, x = ±π/4 –1 π/4 A= (2 − sec2 x)dx = π − 2 −π/4 3π/4 √ 2 11. A = sin y dy = 2 12. A = [(x + 2) − x2 ]dx = 9/2 π/4 −1 y y x = sin y (2, 4) 9 y = x2 (–1, 1) 3 x x x=y–2 ln 2 e e dy 13. A = e2x − ex dx 14. A = = ln y =1 0 1 y 1 ln 2 1 2x y = e − ex = 1/2 2 e 0 y y = e2x 1 4 x 1/e 1 2 y = ex x ln 2
  • 3. January 27, 2005 11:45 L24-CH07 Sheet number 3 Page number 292 black 292 Chapter 7 1 √ 2 1 3 15. A= − |x| dx 16. √ = 2, x = ± , so −1 1 + x2 1−x2 2 √ 1 3/2 2 1 =2 −x dx A= √ 2− √ dx 0 1 + x2 − 3/2 1 − x2 1 √ −1 3/2 √ = 4 tan x−x 2 =π−1 = 2 − sin−1 x = 2 3 − 2π 0 √ 3 − 3/2 y y 2 2 y=2 1.5 1 1 y= 1 1 – x2 0.5 x x –1 1 3 3 – 2 2 3 − x, x ≤ 1 17. y = 2 + |x − 1| = , y 1 + x, x≥1 (–5, 8) y = –1x + 7 5 1 1 A= − x + 7 − (3 − x) dx (5, 6) −5 5 y = 3–x y = 1+x 5 1 + − x + 7 − (1 + x) dx x 1 5 1 5 4 6 = x + 4 dx + 6 − x dx −5 5 1 5 = 72/5 + 48/5 = 24 2/5 1 18. A = (4x − x)dx 19. A = (x3 − 4x2 + 3x)dx 0 0 1 3 + (−x + 2 − x)dx + [−(x3 − 4x2 + 3x)]dx 2/5 1 2/5 1 = 5/12 + 32/12 = 37/12 = 3x dx + (2 − 2x)dx = 3/5 0 2/5 4 y ( 2 , 8) 5 5 –1 4 y = –x + 2 y = 4x (1, 1) x –8 y=x
  • 4. January 27, 2005 11:45 L24-CH07 Sheet number 4 Page number 293 black Exercise Set 7.1 293 20. Equate y = x3 − 2x2 and y = 2x2 − 3x 9 to get x3 − 4x2 + 3x = 0, x(x − 1)(x − 3) = 0; x = 0, 1, 3 with corresponding values of y = 0, −1.9. 1 A= [(x3 − 2x2 ) − (2x2 − 3x)]dx –1 3 0 3 –2 + [(2x3 − 3x) − (x3 − 2x2 )]dx 1 1 3 = (x3 − 4x2 + 3x)dx + (−x3 + 4x2 − 3x)dx 0 1 5 8 37 = + = 12 3 12 21. From the symmetry of the region 22. The region is symmetric about the origin so 5π/4 √ 2 A=2 (sin x − cos x)dx = 4 2 A=2 |x3 − 4x|dx = 8 π/4 0 1 3.1 0 o –3 3 –1 –3.1 0 1 1 23. A = (y 3 − y)dy + −(y 3 − y)dy 24. A = y 3 − 4y 2 + 3y − (y 2 − y) dy −1 0 0 4 = 1/2 + y 2 − y − (y 3 − 4y 2 + 3y) dy 1 1 = 7/12 + 45/4 = 71/6 4.1 –1 1 –1 –2.2 12.1 0
  • 5. January 27, 2005 11:45 L24-CH07 Sheet number 5 Page number 294 black 294 Chapter 7 √ y 25. The curves meet when x = ln 2, so √ √ 2.5 ln 2 ln 2 2 1 2 1 A= (2x − xex ) dx = x2 − ex = ln 2 − 2 0 2 0 2 1.5 1 0.5 x 0.5 1 √ √ 26. The curves meet for x = e−2 2/3 , e2 2/3 thus y √ 20 2 2/3 e 3 1 A= √ − dx 15 e−2 2/3 x x 1 − (ln x)2 e2 √ 2/3 √ 10 √ 2 2 = 3 ln x − sin−1 (ln x) √ = 4 2 − 2 sin−1 5 e−2 2/3 3 x 1 2 3 k 27. The area is given by (1/ 1 − x2 − x)dx = sin−1 k − k 2 /2 = 1; solve for k to get 0 k = 0.997301. 28. The curves intersect at x = a = 0 and x = b = 0.838422 so the area is b (sin 2x − sin−1 x)dx ≈ 0.174192. a 29. Solve 3−2x = x6 +2x5 −3x4 +x2 to find the real roots x = −3, 1; from a plot it is seen that the line 1 is above the polynomial when −3 < x < 1, so A = (3−2x−(x6 +2x5 −3x4 +x2 )) dx = 9152/105 −3 1 √ 30. Solve x5 − 2x3 − 3x = x3 to find the roots x = 0, ± 6 + 2 21. Thus, by symmetry, √ √ 2 (6+2 21)/2 27 7 √ A=2 (x3 − (x5 − 2x3 − 3x)) dx = + 21 0 4 4 k √ 9 √ y 31. 2 ydy = 2 ydy 0 k y=9 k 9 1/2 1/2 y dy = y dy 0 k y=k 2 3/2 2 k = (27 − k 3/2 ) 3 3 x k 3/2 = 27/2 √ k = (27/2)2/3 = 9/ 3 4
  • 6. January 27, 2005 11:45 L24-CH07 Sheet number 6 Page number 295 black Exercise Set 7.1 295 k 2 32. x2 dx = x2 dx y 0 k x = √y 1 3 1 k = (8 − k 3 ) 3 3 k3 = 4 √ x k= 34 2 x=k 2 33. (a) A = (2x − x2 )dx = 4/3 0 (b) y = mx intersects y = 2x − x2 where mx = 2x − x2 , x2 + (m − 2)x = 0, x(x + m − 2) = 0 so x = 0 or x = 2 − m. The area below the curve and above the line is 2−m 2−m 2−m 1 1 1 (2x − x2 − mx)dx = (2 − m)x2 − x3 [(2 − m)x − x2 ]dx = = (2 − m)3 0 0 2 3 0 6 √ so (2 − m)3 /6 = (1/2)(4/3) = 2/3, (2 − m)3 = 4, m = 2 − 4. 3 3 34. The line through (0, 0) and (5π/6, 1/2) is y = x; y 5π y = sin x 5π/6 √ 1 ( 56c , 1 ) 2 3 3 5 A= sin x − x dx = − π+1 x 0 5π 2 24 c 35. The curves intersect at x = 0 and, by Newton’s Method, at x ≈ 2.595739080 = b, so b b A≈ (sin x − 0.2x)dx = − cos x + 0.1x2 ≈ 1.180898334 0 0 36. By Newton’s Method, the points of intersection are at x ≈ ±0.824132312, so with b b b = 0.824132312 we have A ≈ 2 (cos x − x2 )dx = 2(sin x − x3 /3) ≈ 1.094753609 0 0 37. By Newton’s Method the points of intersection are x = x1 ≈ 0.4814008713 and x2 ln x x = x2 ≈ 2.363938870, and A ≈ − (x − 2) dx ≈ 1.189708441. x1 x 38. By Newton’s Method the points of intersection are x = ±x1 where x1 ≈ 0.6492556537, thus x1 2 A≈2 − 3 + 2 cos x dx ≈ 0.826247888 0 1 + x2 39. The x-coordinates of the points of intersection are a ≈ −0.423028 and b ≈ 1.725171; the area is b (2 sin x − x2 + 1)dx ≈ 2.542696. a 40. Let (a, k), where π/2 < a < π, be the coordinates of the point of intersection of y = k with y = sin x. Thus k = sin a and if the shaded areas are equal, a a (k − sin x)dx = (sin a − sin x) dx = a sin a + cos a − 1 = 0 0 0 Solve for a to get a ≈ 2.331122, so k = sin a ≈ 0.724611.
  • 7. January 27, 2005 11:45 L24-CH07 Sheet number 7 Page number 296 black 296 Chapter 7 60 41. (v2 (t) − v1 (t)) dt = s2 (60) − s2 (0) − (s1 (60) − s1 (0)), but they are even at time t = 60, so 0 s2 (60) = s1 (60). Consequently the integral gives the difference s1 (0)−s2 (0) of their starting points in meters. T 42. Since a1 (0) = a2 (0) = 0, A = (a2 (t)−a1 (t)) dt = v2 (T )−v1 (T ) is the difference in the velocities 0 of the two cars at time T . 43. (a) It gives the area of the region that is between f and g when f (x) > g(x) minus the area of the region between f and g when f (x) < g(x), for a ≤ x ≤ b. (b) It gives the area of the region that is between f and g for a ≤ x ≤ b. 1 1 n x2 n 1 44. (b) lim 1/n (x − x) dx = lim x(n+1)/n − = lim − = 1/2 n→+∞ 0 n→+∞ n+1 2 0 n→+∞ n+1 2 45. Solve x1/2 + y 1/2 = a1/2 for y to get y a y = (a1/2 − x1/2 )2 = a − 2a1/2 x1/2 + x a A= (a − 2a1/2 x1/2 + x)dx = a2 /6 x 0 a √ 46. Solve for y to get y = (b/a) a2 − x2 for the upper half of the ellipse; make use of symmetry to a b 4b a 4b 1 2 get A = 4 a2 − x2 dx = a2 − x2 dx = · πa = πab. 0 a a 0 a 4 47. Let A be the area between the curve and the x-axis and AR the area of the rectangle, then b b k kbm+1 A= kxm dx = xm+1 = , AR = b(kbm ) = kbm+1 , so A/AR = 1/(m + 1). 0 m+1 0 m+1 EXERCISE SET 7.2 3 1 1. V = π (3 − x)dx = 8π 2. V = π [(2 − x2 )2 − x2 ]dx −1 0 1 =π (4 − 5x2 + x4 )dx 0 = 38π/15 2 2 1 3. V = π (3 − y)2 dy = 13π/6 4. V = π (4 − 1/y 2 )dy = 9π/2 0 4 1/2 2 5. V = x4 dx = 32/5 y 0 y = x2 x 2
  • 8. January 27, 2005 11:45 L24-CH07 Sheet number 8 Page number 297 black Exercise Set 7.2 297 π/3 √ 6. V = sec2 x dx = 3−1 y π/4 y = sec x 2 1 x 3 4 -1 -2 π/2 √ 1 7. V = π cos x dx = (1 − 2/2)π 8. V = π [(x2 )2 − (x3 )2 ]dx π/4 0 y 1 1 y = √cos x =π (x4 − x6 )dx = 2π/35 0 x y 3 6 –1 1 (1, 1) y = x2 y = x3 x 1 4 3 9. V = π [(25 − x2 ) − 9]dx 10. V = π (9 − x2 )2 dx −4 −3 4 3 = 2π (16 − x2 )dx = 256π/3 =π (81 − 18x2 + x4 )dx = 1296π/5 0 −3 y y 5 y = √25 – x2 9 y=3 y = 9 – x2 x x –3 3 4 π/4 11. V = π [(4x)2 − (x2 )2 ]dx 12. V = π (cos2 x − sin2 x)dx 0 0 4 π/4 =π (16x2 − x4 )dx = 2048π/15 =π cos 2x dx = π/2 0 0 y y 16 (4, 16) y = cos x 1 y = 4x y = x2 y = sin x x x 3 4 –1
  • 9. January 27, 2005 11:45 L24-CH07 Sheet number 9 Page number 298 black 298 Chapter 7 ln 3 ln 3 1 π 2x π 13. V = π e2x dx = e = 4π 14. V = π e−4x dx = (1 − e−4 ) 0 2 0 0 4 y 1 x 1 –1 2 2 1 π 15. V = π 2 dx = tan−1 (x/2) = π 2 /4 −2 4+x 2 −2 1 1 e6x π π 16. V = π 6x dx = ln(1 + e6x ) = (ln(1 + e6 ) − ln 2) 0 1+e 6 0 6 1 2 1 3 2 1 8 17. V = y 1/3 dy = 18. V = (1 − y 2 )2 dy = 1 − + = 0 5 0 3 5 15 y y 0.75 0.75 x x 0.75 0.75 0.25 0.25 0.25 0.25 3 3 19. V = π (1 + y)dy = 8π 20. V = π [22 − (y + 1)]dy −1 0 y 3 =π (3 − y)dy = 9π/2 3 0 x = √y + 1 y y = x2 – 1 x = √1 + y x 3 (2, 3) 2 x
  • 10. January 27, 2005 11:45 L24-CH07 Sheet number 10 Page number 299 black Exercise Set 7.2 299 3π/4 1 21. V = π csc2 y dy = 2π 22. V = π (y − y 4 )dy = 3π/10 π/4 0 y y 9 x = y2 1 (1, 1) 6 x = csc y x = √y x –1 1 3 x –1 –2 –1 1 2 2 1 23. V = π [(y + 2)2 − y 4 ]dy = 72π/5 24. V = π (2 + y 2 )2 − (1 − y 2 )2 dy −1 −1 y 1 =π (3 + 6y 2 )dy = 10π −1 x = y2 (4, 2) y x = 2 + y2 x= y+2 x = 1 – y2 x 1 (1, –1) x 1 2 –1 1 2 π 2 π 25. V = πe2y dy = e −1 26. V = dy = π tan−1 2 0 2 0 1 + y2 a 2 b2 2 1 27. V = π (a − x2 )dx = 4πab2 /3 28. V = π dx = π(1/b − 1/2); −a a2 b x2 y π(1/b − 1/2) = 3, b = 2π/(π + 6) b y = √a2 – x 2 b a x –a a 0 29. V = π (x + 1)dx y −1 (1, √2) 1 1 y = √x + 1 y = √2x +π [(x + 1) − 2x]dx x 0 –1 1 = π/2 + π/2 = π
  • 11. January 27, 2005 11:45 L24-CH07 Sheet number 11 Page number 300 black 300 Chapter 7 4 6 30. V = π x dx + π (6 − x)2 dx y 0 4 = 8π + 8π/3 = 32π/3 y = √x y=6–x x 4 6 31. Partition the interval [a, b] with a = x0 < x1 < x2 < . . . < xn−1 < xn = b. Let x∗ be an arbitrary k point of [xk−1 , xk ]. The disk in question is obtained by revolving about the line y = k the rectan- gle for which xk−1 < x < xk , and y lies between y = k and y = f (x); the volume of this disk is b ∆Vk = π(f (x∗ ) − k)2 ∆xk , and the total volume is given by V = π k (f (x) − k)2 dx. a 32. Assume for c < y < d that k ≤ v(y) ≤ w(y) (A similar proof holds for k ≥ v(y) ≥ w(y)). Partition the interval [c, d] with ∗ c = y0 < y1 < y2 < . . . < yn−1 < yn = d. Let yk be an arbitrary point of [yk−1 , yk ]. The washer ∗ ∗ in question is the region obtained by revolving the strip v(yk ) < x < w(yk ), yk−1 < y < yk about ∗ ∗ the line x = k. The volume of this washer is ∆V = π[(v(yk ) − k) − (w(yk ) − k)2 ]∆yk , and the 2 volume of the solid obtained by rotating R is d V =π [(v(y) − k)2 − (w(y) − k)2 ] dy c 33. (a) Intuitively, it seems that a line segment revolved about a line which is perpendicular to the line segment will generate a larger area, the farther it is from the line. This is because the average point on the line segment will be revolved through a circle with a greater radius, and thus sweeps out a larger circle. √ Consider the line segment which connects a point (x, y) on the curve y = 3 − x to the point (x, 0) beneath it. If this line segment is revolved around the x-axis we generate an area πy 2 . If on the other hand the segment is revolved around the line y = 2 then the area of the resulting (infinitely thin) washer is π[22 − (2 − y)2 ]. So the question can be reduced to√ asking whether y 2 ≥ [22 − (2 − y)2 ], y 2 ≥ 4y − y 2 , or y ≥ 2. In the present case the curve y = 3 − x always satisfies y ≤ 2, so V2 has the larger volume. (b) The volume of the solid generated by revolving the area around the x-axis is 3 V1 = π (3 − x) dx = 8π, and the volume generated by revolving the area around the line −1 3 √ 40 y = 2 is V2 = π [22 − (2 − 3 − x)2 ] dx = π −1 3 34. (a) In general, points in the region R are farther from the y-axis than they are from the line x = 2.5, so by the reasoning in Exercise 33(a) the former should generate a larger volume than the latter, i.e. the volume mentioned in Exercise 4 will be greater than that gotten by revolving about the line x = 2.5. (b) The original volume V1 of Exercise 4 is given by 2 V1 = π (4 − 1/y 2 ) dy = 9π/2, and the other volume 1/2 2 2 1 21 V2 = π − 2.5 − (2 − 2.5)2 dy = − 10 ln 2 π ≈ 3.568528194π, 1/2 y 2 and thus V1 is the larger volume.
  • 12. January 27, 2005 11:45 L24-CH07 Sheet number 12 Page number 301 black Exercise Set 7.2 301 3 9 √ 35. V = π (9 − y 2 )2 dy 36. V = π [32 − (3 − x)2 ]dx 0 0 3 9 √ =π (81 − 18y 2 + y 4 )dy =π (6 x − x)dx 0 0 = 648π/5 = 135π/2 y y 3 x = y2 y=3 x y = √x 9 x 9 1 √ y 37. V = π [( x + 1)2 − (x + 1)2 ]dx x=y 0 1 x = y2 1 √ x =π (2 x − x − x2 )dx = π/2 1 0 y = –1 1 y 38. V = π [(y + 1)2 − (y 2 + 1)2 ]dy x=y 0 1 1 =π (2y − y 2 − y 4 )dy = 7π/15 0 x 1 x = y2 x = –1 1 39. A(x) = π(x2 /4)2 = πx4 /16, 40. V = π (x − x4 )dx = 3π/10 0 20 V = (πx4 /16)dx = 40, 000π ft3 0 1√ 1 2 1 1 41. V = (x − x2 )2 dx 42. A(x) = π x = πx, 0 2 2 8 1 4 1 = (x2 − 2x3 + x4 )dx = 1/30 V = πx dx = π 0 0 8 Square y y y = x (1, 1) y = √x y = x2 1 x 4 x
  • 13. January 27, 2005 11:45 L24-CH07 Sheet number 13 Page number 302 black 302 Chapter 7 √ 43. On the upper half of the circle, y = 1 − x2 , so: (a) A(x) is the area of a semicircle of radius y, so 1 1 π A(x) = πy 2 /2 = π(1 − x2 )/2; V = (1 − x2 ) dx = π (1 − x2 ) dx = 2π/3 2 −1 0 y –1 y 1 x y = √1 – x2 (b) A(x) is the area of a square of side 2y, so 1 1 A(x) = 4y 2 = 4(1 − x2 ); V = 4 (1 − x2 ) dx = 8 (1 − x2 ) dx = 16/3 −1 0 –1 y 2y 1 x y = √1 – x 2 (c) A(x) is the area of an equilateral triangle with sides 2y, so √ 3 √ √ A(x) = (2y)2 = 3y 2 = 3(1 − x2 ); 4 1 √ √ 1 √ V = 3(1 − x2 ) dx = 2 3 (1 − x2 ) dx = 4 3/3 −1 0 2y 2y –1 y 2y 1 x y = √1 – x2 44. The base of the dome is a hexagon of side r. An equation of the circle of radius r that lies in a vertical x-y plane and passes through two opposite vertices of the base hexagon is x2 + y 2 = r2 . A horizontal, hexagonal cross section at height y above the base has area √ √ √ 3 3 2 3 3 2 r 3 3 2 √ A(y) = x = (r − y ), hence the volume is V = 2 (r − y 2 ) dy = 3r3 . 2 2 0 2 45. The two curves cross at x = b ≈ 1.403288534, so b π/2 V =π ((2x/π)2 − sin16 x) dx + π (sin16 x − (2x/π)2 ) dx ≈ 0.710172176. 0 b 46. Note that π 2 sin x cos3 x = 4x2 for x = π/4. From the graph it is apparent that this is the first positive solution, thus the curves don’t cross on (0, π/4) and π/4 1 5 17 6 V =π [(π 2 sin x cos3 x)2 − (4x2 )2 ] dx = π + π 0 48 2560
  • 14. January 27, 2005 11:45 L24-CH07 Sheet number 14 Page number 303 black Exercise Set 7.2 303 e 47. V = π (1 − (ln y)2 ) dy = π 1 tan 1 π 48. V = π[x2 − x2 tan−1 x] dx = [tan2 1 − ln(1 + tan2 1)] 0 6 r 1 2 49. (a) V = π (r2 − y 2 ) dy = π(rh2 − h3 /3) = πh (3r − h) r−h 3 y (b) By the Pythagorean Theorem, h r2 = (r − h)2 + ρ2 , 2hr = h2 + ρ2 ; from Part (a), x2 + y2 = r2 r x πh πh 3 2 r V = (3hr − h2 ) = (h + ρ2 ) − h2 ) 3 3 2 1 = πh(h2 + 3ρ2 ) 6 50. Find the volume generated by revolving y the shaded region about the y-axis. h – 10 10 x −10+h π V =π (100 − y 2 )dy = h2 (30 − h) −10 3 h x = √100 – y 2 –10 Find dh/dt when h = 5 given that dV /dt = 1/2. π dV π dh V = (30h2 − h3 ), = (60h − 3h2 ) , 3 dt 3 dt 1 π dh dh = (300 − 75) , = 1/(150π) ft/min 2 3 dt dt 5 51. (b) ∆x = = 0.5; {y0 , y1 , · · · , y10 } = {0, 2.00, 2.45, 2.45, 2.00, 1.46, 1.26, 1.25, 1.25, 1.25, 1.25}; 10 9 2 yi left = π ∆x ≈ 11.157; i=0 2 10 2 yi right = π ∆x ≈ 11.771; V ≈ average = 11.464 cm3 i=1 2 √ 52. If x = r/2 then from y 2 = r2 − x2 we get y = ± 3r/2 y √ √ √3r as limits of integration; for − 3 ≤ y ≤ 3, 2 x = √r 2 – y 2 A(y) = π[(r − y ) − r /4] = π(3r /4 − y ), thus 2 2 2 2 2 x √ 3r/2 r 2 V =π √ (3r2 /4 − y 2 )dy − 3r/2 – √3r √ 2 3r/2 √ = 2π (3r2 /4 − y 2 )dy = 3πr3 /2 0
  • 15. January 27, 2005 11:45 L24-CH07 Sheet number 15 Page number 304 black 304 Chapter 7 y y 53. (a) (b) h –4 x x h–4 –2 h h –4 –4 0≤h<2 2≤h≤4 If the cherry is partially submerged then 0 ≤ h < 2 as shown in Figure (a); if it is totally sub- merged then 2 ≤ h ≤ 4 as shown in Figure (b). The radius of the glass is 4 cm and that of the cherry is 1 cm so points on the sections shown in the figures satisfy the equations x2 + y 2 = 16 and x2 + (y + 3)2 = 1. We will find the volumes of the solids that are generated when the shaded regions are revolved about the y-axis. For 0 ≤ h < 2, h−4 h−4 V =π [(16 − y 2 ) − (1 − (y + 3)2 )]dy = 6π (y + 4)dy = 3πh2 ; −4 −4 for 2 ≤ h ≤ 4, −2 h−4 V =π [(16 − y 2 ) − (1 − (y + 3)2 )]dy + π (16 − y 2 )dy −4 −2 −2 h−4 1 = 6π (y + 4)dy + π (16 − y 2 )dy = 12π + π(12h2 − h3 − 40) −4 −2 3 1 = π(12h2 − h3 − 4) 3 so   3πh 2 if 0 ≤ h < 2 V =  1 π(12h2 − h3 − 4) if 2 ≤ h ≤ 4 3 54. x=h± r2 − y2 , y r (x – h 2) + y 2 = r 2 V =π (h + r2 − y 2 )2 − (h − r2 − y 2 )2 dy −r r x = 4πh r2 − y 2 dy −r 1 2 = 4πh πr = 2π 2 r2 h 2 55. tan θ = h/x so h = x tan θ, 1 1 1 A(y) = hx = x2 tan θ = (r2 − y 2 ) tan θ 2 2 2 h because x = r − y , 2 2 2 u r 1 x V = tan θ (r − y )dy 2 2 2 −r r 2 3 = tan θ (r2 − y 2 )dy = r tan θ 0 3
  • 16. January 27, 2005 11:45 L24-CH07 Sheet number 16 Page number 305 black Exercise Set 7.3 305 56. A(x) = (x tan θ)(2 r2 − x2 ) 57. Each cross section perpendicular to the y-axis is a square so = 2(tan θ)x r2 − x2 , r A(y) = x2 = r2 − y 2 , V = 2 tan θ x r2 − x2 dx 1 r 0 V = (r2 − y 2 )dy 8 0 2 3 = r tan θ 3 V = 8(2r3 /3) = 16r3 /3 x tan u y y x x = √r 2 – y 2 √r 2 – x 2 r x 58. The regular cylinder of radius r and height h has the same circular cross sections as do those of the oblique clinder, so by Cavalieri’s Principle, they have the same volume: πr2 h. EXERCISE SET 7.3 2 2 1. V = 2πx(x2 )dx = 2π x3 dx = 15π/2 1 1 √ √ 2 2 8π √ 2. V = 2πx( 4 − x2 − x)dx = 2π (x 4 − x2 − x2 )dx = (2 − 2) 0 0 3 1 1 3. V = 2πy(2y − 2y 2 )dy = 4π (y 2 − y 3 )dy = π/3 0 0 2 2 4. V = 2πy[y − (y 2 − 2)]dy = 2π (y 2 − y 3 + 2y)dy = 16π/3 0 0 1 9 √ 5. V = 2π(x)(x3 )dx 6. V = 2πx( x)dx 0 4 1 9 = 2π x4 dx = 2π/5 = 2π x3/2 dx = 844π/5 0 4 y y 3 y = √x y= x3 2 1 1 x x –1 1 –9 –4 4 9 –1 3 3 7. V = 2πx(1/x)dx = 2π dx = 4π y 1 1 1 y= x x –3 –1 1 3
  • 17. January 27, 2005 11:45 L24-CH07 Sheet number 17 Page number 306 black 306 Chapter 7 √ π/2 √ 8. V = 2πx cos(x2 )dx = π/ 2 y 0 y = cos (x2) x √p 2 2 2 9. V = 2πx[(2x − 1) − (−2x + 3)]dx 10. V = 2πx(2x − x2 )dx 1 0 2 2 8 = 8π (x2 − x)dx = 20π/3 = 2π (2x2 − x3 )dx = π 1 0 3 y y (2, 3) y = 2x – x 2 (1, 1) x x 2 (2, –1) √ √ 1 3 3 x x2 x2 11. V = 2π 2+1 dx 12. V = 2πxe dx = πe = π(e3 − e) 0 x 1 1 1 y = π ln(x2 + 1) = π ln 2 0 20 2 y y = ex 1 y= 1 x2 + 1 10 x x –1 1 -√3 -1 1 √3 1 3 3 13. V = 2πy 3 dy = π/2 14. V = 2πy(2y)dy = 4π y 2 dy = 76π/3 0 2 2 y y 3 1 x = y2 2 x = 2y x x 1 √ 15. V = 2πy(1 − y)dy y 0 y = √x 1 x = 2π (y − y 3/2 )dy = π/5 1 0