Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Upcoming SlideShare
×

# Tam 2nd

695 views

Published on

Published in: Technology
• Full Name
Comment goes here.

Are you sure you want to Yes No
Your message goes here
• Be the first to comment

• Be the first to like this

### Tam 2nd

1. 1. Derivative Application <ul><li>Group Members: </li></ul><ul><li>Baba Qazi; Joey Lee; Tam Dong </li></ul>
2. 2. Tangent line equation <ul><li>y=m(x-x 1 )+y 1 </li></ul>What do you need to find a tangent line equation? m= Slope of the tangent line (x,y): coordinate of a point (x 1 ,y 1 ): coordinate of another point The slope and a point
3. 3. <ul><li>Ex: If f(x)=x 2 +2. Determine the slope of the tangent line to f(x) at x=5. </li></ul><ul><li>1. f(x)=x 2 +2 =>f’(x)=2x => f’(5)=10 </li></ul><ul><li>2. f(5)=25+2=27 </li></ul><ul><li>3. y=m(x-x 1 )+y 1 </li></ul><ul><li>4. y=10(x-5)+10 </li></ul>Derivative Applications of tangent line
4. 4. Derivative Applications of tangent line (cont) <ul><li>Ex: If f(x)=sin(x)cos(x). Determine the slope of the tangent line to f(x) at x=π/4. </li></ul><ul><li>1.f(x)=sin(x)cos(x) => product rule </li></ul><ul><li>2.f(x)=sin(x);f’(x)=cos(x) | g(x)=cos(x);g’(x)=-sin(x) </li></ul><ul><li>3.f’(x)= -sin(x)sin(x)+2cos(x) = 2cos(x)-2sin(x) </li></ul><ul><li>4.f(π/4)=sin(π/4)cos(π/4)=(√2/2)(√2/2)=1 </li></ul><ul><li>5.f’(π/4)=2cos(π/4)-2sin(π/4)=2(√2/2) - 2(√2/2)=0 </li></ul><ul><li>6.y=m(x-x 1 )+y 1 => y=0[x-(π/4)]+1 </li></ul>
5. 5. Slope at a point <ul><li>The derivative of the function at a point is the slope of the line tangent to the curve at the point, and is thus equal to the rate of change of the function at that point. </li></ul>
6. 6. Slope at a point <ul><li>Ex: Find the instantaneous rate of change of y=6x 2 when x=3 </li></ul><ul><li>d/dx=12x => f’(3) = 12.3= 36 </li></ul>
7. 7. Approximation <ul><li>Approximation is used to determine the slope of the equation by (∆y/∆x) </li></ul><ul><li>Examples </li></ul><ul><li>Forward quotient: (8-6)(3-2)= 2 </li></ul><ul><li>Backward quotient: (6-4)(2-1)= 2 </li></ul><ul><li>Symmetric quotient: (8-4)(3-1)= 2 </li></ul>x 1 2 3 y 4 6 8
8. 8. Implicit Differentiation <ul><li>The purpose of using implicit differentiation is when it is very difficult to express y as a function respect to x </li></ul>Derive: y 3 + y 2 - 5y -x 2 = -4 1. y 3 + y 2 - 5y -x 2 = -4 2. (d/dx) [y 3 + y 2 - 5y -x 2 ] = (d/dx) -4 3. 3y 2 (dy/dx) + 2y(dy/dx) - 5(dy/dx) - 2x = 0 4. (dy/dx)(3y 2 + 2y -5) = 2x 5. (dy/dx) = 2x/(3y 2 + 2y -5)
9. 9. Guidelines for Implicit Differentiation <ul><li>1. Differentiate both sides of the equation with respect to x. </li></ul><ul><li>2. Collect all terms involving dy/dx on the left side of the equation and move all other terms to the right side of the equation. </li></ul><ul><li>3. Factor dy/dx out of the left side of the equation </li></ul><ul><li>4. Solve for dy/dx </li></ul>