SlideShare a Scribd company logo
1 of 61
1

Chapter 1 – Introduction to Computers
and C++ Programming
Outline
1.1
Introduction
1.2
What is a Computer?
1.3
Computer Organization
1.4
Evolution of Operating Systems
1.5
Personal Computing, Distributed Computing and
Client/Server Computing
1.6
Machine Languages, Assembly Languages, and High-Level
Languages
1.7
History of C and C++
1.8
C++ Standard Library
1.9
Java
1.10
Visual Basic, Visual C++ and C#
1.11
Other High-Level Languages
1.12
Structured Programming
1.13
The Key Software Trend: Object Technology
1.14
Basics of a Typical C++ Environment
1.15
Hardware Trends
© 2003 Prentice Hall, Inc. All rights reserved.
2

Chapter 1 – Introduction to Computers
and C++ Programming
Outline
1.16
1.17
1.18
1.19
1.20
1.21
1.22
1.23
1.24
1.25
1.26

History of the Internet
History of the World Wide Web
World Wide Web Consortium (W3C)
General Notes About C++ and This Book
Introduction to C++ Programming
A Simple Program: Printing a Line of Text
Another Simple Program: Adding Two Integers
Memory Concepts
Arithmetic
Decision Making: Equality and Relational Operators
Thinking About Objects: Introduction to Object Technology
and the Unified Modeling Language

© 2003 Prentice Hall, Inc. All rights reserved.
1.1 Introduction

3

• Software
– Instructions to command computer to perform actions and
make decisions

• Hardware
• Standardized version of C++
– United States
• American National Standards Institute (ANSI)

– Worldwide
• International Organization for Standardization (ISO)

• Structured programming
• Object-oriented programming
© 2003 Prentice Hall, Inc. All rights reserved.
1.2

What is a Computer?

4

• Computer
– Device capable of performing computations and making
logical decisions

• Computer programs
– Sets of instructions that control computer’s processing of
data

• Hardware
– Various devices comprising computer
• Keyboard, screen, mouse, disks, memory, CD-ROM,
processing units, …

• Software
– Programs that run on computer
© 2003 Prentice Hall, Inc. All rights reserved.
1.3 Computer Organization
•

5

Six logical units of computer
1. Input unit
•
•

“Receiving” section
Obtains information from input devices
– Keyboard, mouse, microphone, scanner, networks, …

1. Output unit
•
•
•

“Shipping” section
Takes information processed by computer
Places information on output devices
– Screen, printer, networks, …
– Information used to control other devices

© 2003 Prentice Hall, Inc. All rights reserved.
1.3 Computer Organization
•

6

Six logical units of computer
3. Memory unit
•
•
•
•

Rapid access, relatively low capacity “warehouse” section
Retains information from input unit
– Immediately available for processing
Retains processed information
– Until placed on output devices
Memory, primary memory

4. Arithmetic and logic unit (ALU)
•
•

“Manufacturing” section
Performs arithmetic calculations and logic decisions

© 2003 Prentice Hall, Inc. All rights reserved.
1.3 Computer Organization
•

7

Six logical units of computer
5. Central processing unit (CPU)
•
•

“Administrative” section
Supervises and coordinates other sections of computer

5. Secondary storage unit
•
•
•
•
•

Long-term, high-capacity “warehouse” section
Storage
– Inactive programs or data
Secondary storage devices
– Disks
Longer to access than primary memory
Less expensive per unit than primary memory

© 2003 Prentice Hall, Inc. All rights reserved.
8

1.4 Evolution of Operating Systems
• Early computers
– Single-user batch processing
• Only one job or task at a time
• Process data in groups (batches)
• Decks of punched cards

• Operating systems
– Software systems
– Manage transitions between jobs
– Increased throughput
• Amount of work computers process

© 2003 Prentice Hall, Inc. All rights reserved.
9

1.4 Evolution of Operating Systems
• Multiprogramming
– Many jobs or tasks sharing computer’s resources
– “Simultaneous” operation of many jobs

• Timesharing
– 1960s
– Special case of multiprogramming
– Users access computer through terminals
• Devices with keyboards and screens
• Dozens, even hundreds of users

– Perform small portion of one user’s job, then moves on to
service next user
– Advantage:
• User receives almost immediate responses to requests
© 2003 Prentice Hall, Inc. All rights reserved.
10

1.5 Personal Computing, Distributed
Computing, and Client/Server Computing
• Personal computers
–
–
–
–

1977: Apple Computer
Economical enough for individual
1981: IBM Personal Computer
“Standalone” units

• Computer networks
– Over telephone lines
– Local area networks (LANs)

• Distributed computing
– Organization’s computing distributed over networks

© 2003 Prentice Hall, Inc. All rights reserved.
11

1.5 Personal Computing, Distributed
Computing, and Client/Server Computing
• Workstations
– Provide enormous capabilities
– Information shared across networks

• Client/server computing
– File servers
• Offer common store of programs and data

– Client computers
• Access file servers across network

• UNIX, Linux, Microsoft’s Window-based systems

© 2003 Prentice Hall, Inc. All rights reserved.
12

1.6 Machine Languages, Assembly
Languages, and High-level Languages
•

Three types of computer languages
1. Machine language
•
•
•
•
•
•
•

Only language computer directly understands
“Natural language” of computer
Defined by hardware design
– Machine-dependent
Generally consist of strings of numbers
– Ultimately 0s and 1s
Instruct computers to perform elementary operations
– One at a time
Cumbersome for humans
Example:
+1300042774
+1400593419
+1200274027

© 2003 Prentice Hall, Inc. All rights reserved.
13

1.6 Machine Languages, Assembly
Languages, and High-level Languages
•

Three types of computer languages
2. Assembly language
•
•
•

•

English-like abbreviations representing elementary computer
operations
Clearer to humans
Incomprehensible to computers
– Translator programs (assemblers)
• Convert to machine language
Example:
LOAD
BASEPAY
ADD
OVERPAY
STORE GROSSPAY

© 2003 Prentice Hall, Inc. All rights reserved.
14

1.6 Machine Languages, Assembly
Languages, and High-level Languages
•

Three types of computer languages
3. High-level languages
•
•

•
•
•

Similar to everyday English, use common mathematical
notations
Single statements accomplish substantial tasks
– Assembly language requires many instructions to
accomplish simple tasks
Translator programs (compilers)
– Convert to machine language
Interpreter programs
– Directly execute high-level language programs
Example:
grossPay = basePay + overTimePay

© 2003 Prentice Hall, Inc. All rights reserved.
1.7 History of C and C++
• History of C
– Evolved from two other programming languages
• BCPL and B
– “Typeless” languages

– Dennis Ritchie (Bell Laboratories)
• Added data typing, other features

– Development language of UNIX
– Hardware independent
• Portable programs

– 1989: ANSI standard
– 1990: ANSI and ISO standard published
• ANSI/ISO 9899: 1990
© 2003 Prentice Hall, Inc. All rights reserved.

15
1.7 History of C and C++

16

• History of C++
–
–
–
–

Extension of C
Early 1980s: Bjarne Stroustrup (Bell Laboratories)
“Spruces up” C
Provides capabilities for object-oriented programming
• Objects: reusable software components
– Model items in real world
• Object-oriented programs
– Easy to understand, correct and modify

– Hybrid language
• C-like style
• Object-oriented style
• Both
© 2003 Prentice Hall, Inc. All rights reserved.
1.8 C++ Standard Library

17

• C++ programs
– Built from pieces called classes and functions

• C++ standard library
– Rich collections of existing classes and functions

• “Building block approach” to creating programs
– “Software reuse”

© 2003 Prentice Hall, Inc. All rights reserved.
1.9 Java
• Java
– 1991: Sun Microsystems
• Green project

– 1995: Sun Microsystems
• Formally announced Java at trade show

–
–
–
–

Web pages with dynamic and interactive content
Develop large-scale enterprise applications
Enhance functionality of web servers
Provide applications for consumer devices
• Cell phones, pagers, personal digital assistants, …

© 2003 Prentice Hall, Inc. All rights reserved.

18
19

1.10 Visual Basic, Visual C++ and C#
• BASIC
– Beginner’s All-Purpose Symbolic Instruction Code
– Mid-1960s: Prof. John Kemeny and Thomas Kurtz
(Dartmouth College)

• Visual Basic
– 1991
• Result of Microsoft Windows graphical user interface (GUI)
– Developed late 1980s, early 1990s

– Powerful features
• GUI, event handling, access to Win32 API, object-oriented
programming, error handling

– Visual Basic .NET
© 2003 Prentice Hall, Inc. All rights reserved.
20

1.10 Visual Basic, Visual C++ and C#
• Visual C++
– Microsoft’s implementation of C++
• Includes extensions
• Microsoft Foundation Classes (MFC)
• Common library
– GUI, graphics, networking, multithreading, …
– Shared among Visual Basic, Visual C++, C#

• .NET platform
– Web-based applications
• Distributed to great variety of devices
– Cell phones, desktop computers

– Applications in disparate languages can communicate
© 2003 Prentice Hall, Inc. All rights reserved.
21

1.10 Visual Basic, Visual C++ and C#
• C#
– Anders Hejlsberg and Scott Wiltamuth (Microsoft)
– Designed specifically for .NET platform
– Roots in C, C++ and Java
• Easy migration to .NET

– Event-driven, fully object-oriented, visual programming
language
– Integrated Development Environment (IDE)
• Create, run, test and debug C# programs
• Rapid Application Development (RAD)

– Language interoperability

© 2003 Prentice Hall, Inc. All rights reserved.
22

1.11 Other High-level Languages
• FORTRAN
– FORmula TRANslator
– 1954-1957: IBM
– Complex mathematical computations
• Scientific and engineering applications

• COBOL
– COmmon Business Oriented Language
– 1959: computer manufacturers, government and industrial
computer users
– Precise and efficient manipulation of large amounts of data
• Commercial applications

© 2003 Prentice Hall, Inc. All rights reserved.
23

1.11 Other High-level Languages
• Pascal
– Prof. Niklaus Wirth
– Academic use

© 2003 Prentice Hall, Inc. All rights reserved.
1.12 Structured Programming

24

• Structured programming (1960s)
– Disciplined approach to writing programs
– Clear, easy to test and debug, and easy to modify

• Pascal
– 1971: Niklaus Wirth

• Ada
– 1970s - early 1980s: US Department of Defense (DoD)
– Multitasking
• Programmer can specify many activities to run in parallel

© 2003 Prentice Hall, Inc. All rights reserved.
25

1.13 The Key Software Trend: Object
Technology
• Objects
– Reusable software components that model real world items
– Meaningful software units
• Date objects, time objects, paycheck objects, invoice objects,
audio objects, video objects, file objects, record objects, etc.
• Any noun can be represented as an object

– More understandable, better organized and easier to maintain
than procedural programming
– Favor modularity
• Software reuse
– Libraries
• MFC (Microsoft Foundation Classes)
• Rogue Wave
© 2003 Prentice Hall, Inc. All rights reserved.
26

1.14 Basics of a Typical C++ Environment
• C++ systems
– Program-development environment
– Language
– C++ Standard Library

© 2003 Prentice Hall, Inc. All rights reserved.
27

1.14 Basics of a Typical C++ Environment
Phases of C++ Programs:
1. Edit
2. Preprocess
3. Compile

Editor

Disk

Preprocessor program
processes the code.

Compiler

Disk

Compiler creates
object code and stores
it on disk.

Linker

Disk

Preprocessor

4. Link

Loader

5. Load

Disk

6. Execute

Program is created in
the editor and stored
on disk.

Disk

Primary
Memory

Loader puts program
in memory.
.
.
.
.
.
.

Primary
Memory

CPU

.
.
.
.
.
.

© 2003 Prentice Hall, Inc. All rights reserved.

Linker links the object
code with the libraries,
creates a.out and
stores it on disk

CPU takes each
instruction and
executes it, possibly
storing new data
values as the program
executes.
28

1.14 Basics of a Typical C++ Environment
• Input/output
– cin
• Standard input stream
• Normally keyboard

– cout
• Standard output stream
• Normally computer screen

– cerr
• Standard error stream
• Display error messages

© 2003 Prentice Hall, Inc. All rights reserved.
1.15 Hardware Trends
• Capacities of computers
– Approximately double every year or two
– Memory used to execute programs
– Amount of secondary storage
• Disk storage
• Hold programs and data over long term

– Processor speeds
• Speed at which computers execute programs

© 2003 Prentice Hall, Inc. All rights reserved.

29
1.16 History of the Internet

30

• Late 1960s: ARPA
– Advanced Research Projects Agency
• Department of Defense

– ARPAnet
– Electronic mail (e-mail)

• Packet switching
– Transfer digital data via small packets
– Allow multiple users to send/receive data simultaneously
over same communication paths

• No centralized control
– If one part of network fails, other parts can still operate

© 2003 Prentice Hall, Inc. All rights reserved.
1.16 History of the Internet

31

• TCP/IP
– Transmission Control Protocol (TCP)
• Messages routed properly
• Messages arrived intact

– Internet Protocol (IP)
• Communication among variety of networking hardware and
software
• Current architecture of Internet

• Bandwidth
– Carrying capacity of communications lines

© 2003 Prentice Hall, Inc. All rights reserved.
32

1.17 History of the World Wide Web
• World Wide Web
–
–
–
–

1990: Tim Berners-Lee (CERN)
Locate and view multimedia-based documents
Information instantly and conveniently accessible worldwide
Possible worldwide exposure
• Individuals and small businesses

– Changing way business done

© 2003 Prentice Hall, Inc. All rights reserved.
33

1.18 World Wide Web Consortium (W3C)
• World Wide Web Consortium (W3C)
–
–
–
–

1994: Tim Berners-Lee
Develop nonproprietary, interoperable technologies
Standardization organization
Three hosts
• Massachusetts Institute of Technology (MIT)
• France’s INRIA (Institut National de Recherche en
Informatique et Automatique)
• Keio University of Japan

– Over 400 members
• Primary financing
• Strategic direction

© 2003 Prentice Hall, Inc. All rights reserved.
34

1.18 World Wide Web Consortium (W3C)
• Recommendations
– 3 phases
• Working Draft
– Specifies evolving draft
• Candidate Recommendation
– Stable version that industry can begin to implement
• Proposed Recommendation
– Considerably mature Candidate Recommendation

© 2003 Prentice Hall, Inc. All rights reserved.
1.19 General Notes About C++
and This Book

35

• Book geared toward novice programmers
– Stress programming clarity
– C and C++ are portable languages

• Portability
– C and C++ programs can run on many different computers

• Compatibility
– Many features of current versions of C++ not compatible
with older implementations

© 2003 Prentice Hall, Inc. All rights reserved.
36

1.20 Introduction to C++ Programming
• C++ language
– Facilitates structured and disciplined approach to computer
program design

• Following several examples
– Illustrate many important features of C++
– Each analyzed one statement at a time

• Structured programming
• Object-oriented programming

© 2003 Prentice Hall, Inc. All rights reserved.
1.21 A Simple Program:
Printing a Line of Text
• Comments
–
–
–
–

Document programs
Improve program readability
Ignored by compiler
Single-line comment
• Begin with //

• Preprocessor directives
– Processed by preprocessor before compiling
– Begin with #

© 2003 Prentice Hall, Inc. All rights reserved.

37
1
2
3
4
5
6
7
8
9
10
11
12

// Fig. 1.2: fig01_02.cpp
// A first program in C++.
Function main
#include <iostream>

Single-line comments.

Outline

returns an
integer value. begins Preprocessor directive to
Left brace {
function
include input/output Statements end with afig01_02.cpp
stream
begins program execution appears
body.
Function main
(1 of 1)
header file <iostream>.
exactly once in every C++ semicolon ;.
program..
fig01_02.cpp

// function main
int main()
{
std::cout << "Welcome to C++!n";
return 0;

//

} // end function

Welcome to C++!

Corresponding right brace }
indicate that program ended successfully
ends function body.
Stream insertion
Name cout belongs to operator.
main namespace std.
Keyword return is one of
several means to exit
function; value 0 indicates
program terminated
successfully.

output (1 of 1)

© 2003 Prentice Hall, Inc.
All rights reserved.

38
1.21 A Simple Program:
Printing a Line of Text

39

• Standard output stream object
– std::cout
– “Connected” to screen
– <<
• Stream insertion operator
• Value to right (right operand) inserted into output stream

• Namespace
– std:: specifies using name that belongs to “namespace”
std
– std:: removed through use of using statements

• Escape characters
– 
– Indicates “special” character output
© 2003 Prentice Hall, Inc. All rights reserved.
1.21 A Simple Program:
Printing a Line of Text

40

Escape Sequence

Description

n

Newline. Position the screen cursor to the
beginning of the next line.

t

Horizontal tab. Move the screen cursor to the next
tab stop.

r

Carriage return. Position the screen cursor to the
beginning of the current line; do not advance to the
next line.

a

Alert. Sound the system bell.



Backslash. Used to print a backslash character.

"

Double quote. Used to print a double quote
character.

© 2003 Prentice Hall, Inc. All rights reserved.
1
2
3
4
5
6
7
8
9
10
11
12
13

Outline

// Fig. 1.4: fig01_04.cpp
// Printing a line with multiple statements.
#include <iostream>
// function main begins program execution
int main()
{
std::cout << "Welcome ";
std::cout << "to C++!n";
return 0;

fig01_04.cpp
Multiple stream insertion
(1 of 1)
statements produce one line of
output.
fig01_04.cpp
output (1 of 1)

// indicate that program ended successfully

} // end function main

Welcome to C++!

© 2003 Prentice Hall, Inc.
All rights reserved.

41
1
2
3
4
5
6
7
8
9
10
11
12

Outline

// Fig. 1.5: fig01_05.cpp
// Printing multiple lines with a single statement
#include <iostream>
// function main begins program execution Using newline characters
print on multiple lines.
int main()
{
std::cout << "WelcomentonnC++!n";
return 0;

to

fig01_05.cpp
(1 of 1)
fig01_05.cpp
output (1 of 1)

// indicate that program ended successfully

} // end function main

Welcome
to
C++!

© 2003 Prentice Hall, Inc.
All rights reserved.

42
1.22 Another Simple Program:
Adding Two Integers

43

• Variables
– Location in memory where value can be stored
– Common data types
• int - integer numbers
• char - characters
• double - floating point numbers

– Declare variables with name and data type before use
int integer1;
int integer2;
int sum;

– Can declare several variables of same type in one declaration
• Comma-separated list
int integer1, integer2, sum;
© 2003 Prentice Hall, Inc. All rights reserved.
1.22 Another Simple Program:
Adding Two Integers
• Variables
– Variable names
• Valid identifier
– Series of characters (letters, digits, underscores)
– Cannot begin with digit
– Case sensitive

© 2003 Prentice Hall, Inc. All rights reserved.

44
1.22 Another Simple Program:
Adding Two Integers

45

• Input stream object
– >> (stream extraction operator)
• Used with std::cin
• Waits for user to input value, then press Enter (Return) key
• Stores value in variable to right of operator
– Converts value to variable data type

• = (assignment operator)
– Assigns value to variable
– Binary operator (two operands)
– Example:
sum = variable1 + variable2;

© 2003 Prentice Hall, Inc. All rights reserved.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Outline

// Fig. 1.6: fig01_06.cpp
// Addition program.
#include <iostream>
// function main begins program execution
int main()
Declare integer variables.
{
int integer1; // first number to be input by user
int integer2; // second number to be input by user
Use stream extraction
int sum;
// variable in which sum will be stored
std::cout << "Enter first
std::cin >> integer1;

fig01_06.cpp
(1 of 1)

operator with standard input
stream to obtain user input.
integern"; // prompt

// read an integer

std::cout << "Enter second integern"; // prompt
std::cin >> integer2;
Calculations // read an integer output
can be performed in

statements:
Stream manipulatoralternative for
lines 18 and 20:
std::endl outputs a
sum = integer1 + integer2; // assign result to sum
newline, then “flushes output
std::cout << "Sum is " << integer1 + integer2 << std::endl;
std::cout << "Sum is " << sum << std::endl; // print sum buffer.”
return 0;

// indicate that program ended successfully

} // end function main

Concatenating, chaining or
cascading stream insertion
operations.
© 2003 Prentice Hall, Inc.
All rights reserved.

46
Enter first integer
45
Enter second integer
72
Sum is 117

Outline
fig01_06.cpp
output (1 of 1)

© 2003 Prentice Hall, Inc.
All rights reserved.

47
1.23 Memory Concepts

48

• Variable names
– Correspond to actual locations in computer's memory
– Every variable has name, type, size and value
– When new value placed into variable, overwrites previous
value
– Reading variables from memory nondestructive

© 2003 Prentice Hall, Inc. All rights reserved.
49

1.23 Memory Concepts
std::cin >> integer1;

integer1

45

std::cin >> integer2;

integer1

45

– Assume user entered 72

integer2

72

integer1

45

integer2

72

– Assume user entered 45

sum = integer1 + integer2;

sum

© 2003 Prentice Hall, Inc. All rights reserved.

117
1.24

Arithmetic

• Arithmetic calculations
– *
• Multiplication

– /
• Division
• Integer division truncates remainder
– 7 / 5 evaluates to 1

– %
• Modulus operator returns remainder
– 7 % 5 evaluates to 2

© 2003 Prentice Hall, Inc. All rights reserved.

50
1.24

Arithmetic

51

• Rules of operator precedence
– Operators in parentheses evaluated first
• Nested/embedded parentheses
– Operators in innermost pair first

– Multiplication, division, modulus applied next
• Operators applied from left to right

– Addition, subtraction applied last
Operator(s)

Operation(s)
Order to right
• Operators applied from leftof evaluation (precedence)

()

Parentheses

*, /, or %

Multiplication Division Evaluated second. If there are several, they re
Modulus
evaluated left to right.

+ or -

Addition
Subtraction

© 2003 Prentice Hall, Inc. All rights reserved.

Evaluated first. If the parentheses are nested, the
expression in the innermost pair is evaluated first. If
there are several pairs of parentheses “on the same level”
(i.e., not nested), they are evaluated left to right.

Evaluated last. If there are several, they are
evaluated left to right.
52

1.25 Decision Making: Equality and
Relational Operators
• if structure
– Make decision based on truth or falsity of condition
• If condition met, body executed
• Else, body not executed

• Equality and relational operators
– Equality operators
• Same level of precedence

– Relational operators
• Same level of precedence

– Associate left to right

© 2003 Prentice Hall, Inc. All rights reserved.
53

1.25 Decision Making: Equality and
Relational Operators
Standard algebraic
equality operator or
relational operator

C++ equality
or relational
operator

Example
of C++
condition

Meaning of
C++ condition

>

>

x > y

x is greater than y

<

<

x < y

x is less than y

≥

>=

x >= y

x is greater than or equal to y

≤

<=

x <= y

x is less than or equal to y

=

==

x == y

x is equal to y

≠

!=

x != y

x is not equal to y

Relational operators

Equality operators

© 2003 Prentice Hall, Inc. All rights reserved.
54

1.25 Decision Making: Equality and
Relational Operators
• using statements
– Eliminate use of std:: prefix
– Write cout instead of std::cout

© 2003 Prentice Hall, Inc. All rights reserved.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Outline

// Fig. 1.14: fig01_14.cpp
// Using if statements, relational
// operators, and equality operators.
#include <iostream>
using std::cout;
using std::cin;
using std::endl;

// program uses cout
// program uses cin
// program uses endl

fig01_14.cpp
(1 of 2)
using statements eliminate
need for std:: prefix.

Declare variables.
// function main begins program execution
int main()
{
Can to be read from user
int num1; // first number write cout and cin
without std:: prefix.
int num2; // second number to be read from user
cout << "Enter two integers, and I will tell youn"
if structure compares values
<< "the relationships they satisfy: ";
of num1 and num2 to test for
If
cin >> num1 >> num2;
// read two integerscondition is true
if ( num1 == num2 )
cout << num1 << " is

(i.e.,
equality.
values are equal), execute this
if structure compares values
statement.
If << endl;
of to " and num2 to test is
equal num1<< num2 condition fortrue (i.e.,
values are not equal), execute
inequality.
this statement.

if ( num1 != num2 )
cout << num1 << " is not equal to " << num2 << endl;

© 2003 Prentice Hall, Inc.
All rights reserved.

55
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

if ( num1 < num2 )
cout << num1 << " is less than " << num2 << endl;
if ( num1 > num2 )
cout << num1 << " is greater than " << num2 << endl;
if ( num1 <= num2 )
cout << num1 << " is less than or equal to "
<< num2 << endl;

Outline
fig01_14.cpp
Statements of 2) be split over
(2 may
several lines.
fig01_14.cpp
output (1 of 2)

if ( num1 >= num2 )
cout << num1 << " is greater than or equal to "
<< num2 << endl;
return 0;

// indicate that program ended successfully

} // end function main

Enter two integers, and I will tell you
the relationships they satisfy: 22 12
22 is not equal to 12
22 is greater than 12
22 is greater than or equal to 12

© 2003 Prentice Hall, Inc.
All rights reserved.

56
Enter two integers, and I will tell you
the relationships they satisfy: 7 7
7 is equal to 7
7 is less than or equal to 7
7 is greater than or equal to 7

Outline
fig01_14.cpp
output (2 of 2)

© 2003 Prentice Hall, Inc.
All rights reserved.

57
58
1.26 Thinking About Objects: Introduction to
Object Technology and the Unified
Modeling Language

• Object oriented programming (OOP)
– Model real-world objects with software counterparts
– Attributes (state) - properties of objects
• Size, shape, color, weight, etc.

– Behaviors (operations) - actions
• A ball rolls, bounces, inflates and deflates
• Objects can perform actions as well

– Inheritance
• New classes of objects absorb characteristics from existing classes

– Objects
• Encapsulate data and functions
• Information hiding
– Communicate across well-defined interfaces
© 2003 Prentice Hall, Inc. All rights reserved.
59
1.26 Thinking About Objects: Introduction to
Object Technology and the Unified
Modeling Language
• User-defined types (classes, components)
– Data members
• Data components of class

– Member functions
• Function components of class

– Association
– Reuse classes

© 2003 Prentice Hall, Inc. All rights reserved.
60
1.26 Thinking About Objects: Introduction to
Object Technology and the Unified
Modeling Language
• Object-oriented analysis and design (OOAD)
process
– Analysis of project’s requirements
– Design for satisfying requirements
– Pseudocode
• Informal means of expressing program
• Outline to guide code

© 2003 Prentice Hall, Inc. All rights reserved.
61
1.26 Thinking About Objects: Introduction to
Object Technology and the Unified
Modeling Language
• Unified Modeling Language (UML)
– 2001: Object Management Group (OMG)
• Released UML version 1.4

– Model object-oriented systems and aid design
– Flexible
• Extendable
• Independent of many OOAD processes
• One standard set of notations

– Complex, feature-rich graphical language

© 2003 Prentice Hall, Inc. All rights reserved.

More Related Content

What's hot (8)

geography chapter 4.pdf
geography chapter 4.pdfgeography chapter 4.pdf
geography chapter 4.pdf
 
Machine language
Machine languageMachine language
Machine language
 
Екілік арифметика
Екілік арифметикаЕкілік арифметика
Екілік арифметика
 
DCA (English) Chapter 1.pptx
DCA (English) Chapter 1.pptxDCA (English) Chapter 1.pptx
DCA (English) Chapter 1.pptx
 
Octal to Hexadecimal and Hexadecimal to Octal
Octal to Hexadecimal  and Hexadecimal to OctalOctal to Hexadecimal  and Hexadecimal to Octal
Octal to Hexadecimal and Hexadecimal to Octal
 
Electric Charge || Coulomb's Law ||
Electric Charge || Coulomb's Law ||Electric Charge || Coulomb's Law ||
Electric Charge || Coulomb's Law ||
 
Number System & Data Representation
Number System & Data RepresentationNumber System & Data Representation
Number System & Data Representation
 
Atomic structure.ppt 1
Atomic structure.ppt 1Atomic structure.ppt 1
Atomic structure.ppt 1
 

Viewers also liked

ГОУ в повышении квалификации вэбинар
ГОУ в повышении квалификации  вэбинарГОУ в повышении квалификации  вэбинар
ГОУ в повышении квалификации вэбинарЕкатерина Шепелева
 
Olimpiyskie 22 igry_sochi_2014
Olimpiyskie 22 igry_sochi_2014Olimpiyskie 22 igry_sochi_2014
Olimpiyskie 22 igry_sochi_2014Antshil
 
NEBOSH INTERNATIONAL DIPLOMA IN OCCUPATIONAL SAFETY AND HEALTH
NEBOSH INTERNATIONAL DIPLOMA IN OCCUPATIONAL SAFETY AND HEALTHNEBOSH INTERNATIONAL DIPLOMA IN OCCUPATIONAL SAFETY AND HEALTH
NEBOSH INTERNATIONAL DIPLOMA IN OCCUPATIONAL SAFETY AND HEALTHZain Shah
 
How to pick a segmentation agency
How to pick a segmentation agencyHow to pick a segmentation agency
How to pick a segmentation agencyClusters Ltd
 
The Fair Labor Standards Act for Public Employers
The Fair Labor Standards Act for Public EmployersThe Fair Labor Standards Act for Public Employers
The Fair Labor Standards Act for Public EmployersQuarles & Brady
 
131223サイエンスキャッスル講演
131223サイエンスキャッスル講演131223サイエンスキャッスル講演
131223サイエンスキャッスル講演裕士 福田
 
брось природе спасательной круг
брось природе спасательной кругбрось природе спасательной круг
брось природе спасательной кругAntshil
 
Regele Mihai - Album de familie
Regele Mihai - Album de familieRegele Mihai - Album de familie
Regele Mihai - Album de familiepetragodeanu
 
OCR A2 Media Studies - Unit G324 - Textual Analysis
OCR A2 Media Studies - Unit G324 - Textual Analysis OCR A2 Media Studies - Unit G324 - Textual Analysis
OCR A2 Media Studies - Unit G324 - Textual Analysis JosephAloud
 
Social media-plan-final
Social media-plan-finalSocial media-plan-final
Social media-plan-finalClark Pest
 
Come cambia la sicurezza sul lavoro dopo il Jobs Act
Come cambia la sicurezza sul lavoro dopo il Jobs ActCome cambia la sicurezza sul lavoro dopo il Jobs Act
Come cambia la sicurezza sul lavoro dopo il Jobs ActAvv. Roberto Colantonio
 
Pkn status warga negara(rahman wahyu)
Pkn status warga negara(rahman wahyu)Pkn status warga negara(rahman wahyu)
Pkn status warga negara(rahman wahyu)rahmanwahyu1998
 
Energies renovables
Energies renovablesEnergies renovables
Energies renovableshelenconesa
 

Viewers also liked (20)

My malinois
My malinoisMy malinois
My malinois
 
ГОУ в повышении квалификации вэбинар
ГОУ в повышении квалификации  вэбинарГОУ в повышении квалификации  вэбинар
ГОУ в повышении квалификации вэбинар
 
Operations mgt
Operations mgtOperations mgt
Operations mgt
 
Olimpiyskie 22 igry_sochi_2014
Olimpiyskie 22 igry_sochi_2014Olimpiyskie 22 igry_sochi_2014
Olimpiyskie 22 igry_sochi_2014
 
NEBOSH INTERNATIONAL DIPLOMA IN OCCUPATIONAL SAFETY AND HEALTH
NEBOSH INTERNATIONAL DIPLOMA IN OCCUPATIONAL SAFETY AND HEALTHNEBOSH INTERNATIONAL DIPLOMA IN OCCUPATIONAL SAFETY AND HEALTH
NEBOSH INTERNATIONAL DIPLOMA IN OCCUPATIONAL SAFETY AND HEALTH
 
Настройка Push уведомлений
Настройка Push уведомленийНастройка Push уведомлений
Настройка Push уведомлений
 
How to pick a segmentation agency
How to pick a segmentation agencyHow to pick a segmentation agency
How to pick a segmentation agency
 
The Fair Labor Standards Act for Public Employers
The Fair Labor Standards Act for Public EmployersThe Fair Labor Standards Act for Public Employers
The Fair Labor Standards Act for Public Employers
 
131223サイエンスキャッスル講演
131223サイエンスキャッスル講演131223サイエンスキャッスル講演
131223サイエンスキャッスル講演
 
брось природе спасательной круг
брось природе спасательной кругбрось природе спасательной круг
брось природе спасательной круг
 
Memories of 2013
Memories of 2013Memories of 2013
Memories of 2013
 
Regele Mihai - Album de familie
Regele Mihai - Album de familieRegele Mihai - Album de familie
Regele Mihai - Album de familie
 
OCR A2 Media Studies - Unit G324 - Textual Analysis
OCR A2 Media Studies - Unit G324 - Textual Analysis OCR A2 Media Studies - Unit G324 - Textual Analysis
OCR A2 Media Studies - Unit G324 - Textual Analysis
 
Right of Publicity
Right of PublicityRight of Publicity
Right of Publicity
 
Social media-plan-final
Social media-plan-finalSocial media-plan-final
Social media-plan-final
 
Come cambia la sicurezza sul lavoro dopo il Jobs Act
Come cambia la sicurezza sul lavoro dopo il Jobs ActCome cambia la sicurezza sul lavoro dopo il Jobs Act
Come cambia la sicurezza sul lavoro dopo il Jobs Act
 
Vaiana
VaianaVaiana
Vaiana
 
Pkn status warga negara(rahman wahyu)
Pkn status warga negara(rahman wahyu)Pkn status warga negara(rahman wahyu)
Pkn status warga negara(rahman wahyu)
 
KT-Gurumurthy
KT-GurumurthyKT-Gurumurthy
KT-Gurumurthy
 
Energies renovables
Energies renovablesEnergies renovables
Energies renovables
 

Similar to 1. intro to comp & c++ programming

Similar to 1. intro to comp & c++ programming (20)

cpphtp4_PPT_01.ppt
cpphtp4_PPT_01.pptcpphtp4_PPT_01.ppt
cpphtp4_PPT_01.ppt
 
Chapter 04 C++ Programmings Fundamental.
Chapter 04 C++ Programmings Fundamental.Chapter 04 C++ Programmings Fundamental.
Chapter 04 C++ Programmings Fundamental.
 
Cpp htp5e 01
Cpp htp5e 01Cpp htp5e 01
Cpp htp5e 01
 
chapter01.ppt
chapter01.pptchapter01.ppt
chapter01.ppt
 
chapter01 (1).ppt
chapter01 (1).pptchapter01 (1).ppt
chapter01 (1).ppt
 
chapter01.ppt
chapter01.pptchapter01.ppt
chapter01.ppt
 
01 intro to vb-net
01 intro to vb-net01 intro to vb-net
01 intro to vb-net
 
Cpphtp4 ppt 01
Cpphtp4 ppt 01Cpphtp4 ppt 01
Cpphtp4 ppt 01
 
Csphtp1 01
Csphtp1 01Csphtp1 01
Csphtp1 01
 
computer programming C++
computer  programming C++computer  programming C++
computer programming C++
 
C 1
C 1C 1
C 1
 
Introduction to Computers, the Internet and the Web
Introduction to Computers, the Internet and the WebIntroduction to Computers, the Internet and the Web
Introduction to Computers, the Internet and the Web
 
C programming Introduction
C programming IntroductionC programming Introduction
C programming Introduction
 
Chtp4 01
Chtp4 01Chtp4 01
Chtp4 01
 
Chapter1.ppt
Chapter1.pptChapter1.ppt
Chapter1.ppt
 
iw3htp4_01-FINAL.ppt
iw3htp4_01-FINAL.pptiw3htp4_01-FINAL.ppt
iw3htp4_01-FINAL.ppt
 
C++ Training - Lecture 01
C++ Training - Lecture 01C++ Training - Lecture 01
C++ Training - Lecture 01
 
Lecture 1.ppt
Lecture 1.pptLecture 1.ppt
Lecture 1.ppt
 
Platform-Technology.pdf
Platform-Technology.pdfPlatform-Technology.pdf
Platform-Technology.pdf
 
Chapter1- Introduction to Computers and the Internet
Chapter1- Introduction to Computers and the InternetChapter1- Introduction to Computers and the Internet
Chapter1- Introduction to Computers and the Internet
 

More from रमन सनौरिया (8)

Constructor,destructors cpp
Constructor,destructors cppConstructor,destructors cpp
Constructor,destructors cpp
 
Marketing book for po and clerk
Marketing book for po and clerkMarketing book for po and clerk
Marketing book for po and clerk
 
Adolf hitler ebook
Adolf hitler ebookAdolf hitler ebook
Adolf hitler ebook
 
Acoustic guitar book
Acoustic guitar bookAcoustic guitar book
Acoustic guitar book
 
Mobile sniffer project
Mobile sniffer projectMobile sniffer project
Mobile sniffer project
 
Jawalamuki project
Jawalamuki projectJawalamuki project
Jawalamuki project
 
product = people
product = peopleproduct = people
product = people
 
THE PR
THE PRTHE PR
THE PR
 

Recently uploaded

Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksSoftradix Technologies
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024BookNet Canada
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions
 
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxMaking_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxnull - The Open Security Community
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024BookNet Canada
 
APIForce Zurich 5 April Automation LPDG
APIForce Zurich 5 April  Automation LPDGAPIForce Zurich 5 April  Automation LPDG
APIForce Zurich 5 April Automation LPDGMarianaLemus7
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhisoniya singh
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphNeo4j
 

Recently uploaded (20)

Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other Frameworks
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food Manufacturing
 
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxMaking_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
 
APIForce Zurich 5 April Automation LPDG
APIForce Zurich 5 April  Automation LPDGAPIForce Zurich 5 April  Automation LPDG
APIForce Zurich 5 April Automation LPDG
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping Elbows
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
 
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptxVulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
 

1. intro to comp & c++ programming

  • 1. 1 Chapter 1 – Introduction to Computers and C++ Programming Outline 1.1 Introduction 1.2 What is a Computer? 1.3 Computer Organization 1.4 Evolution of Operating Systems 1.5 Personal Computing, Distributed Computing and Client/Server Computing 1.6 Machine Languages, Assembly Languages, and High-Level Languages 1.7 History of C and C++ 1.8 C++ Standard Library 1.9 Java 1.10 Visual Basic, Visual C++ and C# 1.11 Other High-Level Languages 1.12 Structured Programming 1.13 The Key Software Trend: Object Technology 1.14 Basics of a Typical C++ Environment 1.15 Hardware Trends © 2003 Prentice Hall, Inc. All rights reserved.
  • 2. 2 Chapter 1 – Introduction to Computers and C++ Programming Outline 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24 1.25 1.26 History of the Internet History of the World Wide Web World Wide Web Consortium (W3C) General Notes About C++ and This Book Introduction to C++ Programming A Simple Program: Printing a Line of Text Another Simple Program: Adding Two Integers Memory Concepts Arithmetic Decision Making: Equality and Relational Operators Thinking About Objects: Introduction to Object Technology and the Unified Modeling Language © 2003 Prentice Hall, Inc. All rights reserved.
  • 3. 1.1 Introduction 3 • Software – Instructions to command computer to perform actions and make decisions • Hardware • Standardized version of C++ – United States • American National Standards Institute (ANSI) – Worldwide • International Organization for Standardization (ISO) • Structured programming • Object-oriented programming © 2003 Prentice Hall, Inc. All rights reserved.
  • 4. 1.2 What is a Computer? 4 • Computer – Device capable of performing computations and making logical decisions • Computer programs – Sets of instructions that control computer’s processing of data • Hardware – Various devices comprising computer • Keyboard, screen, mouse, disks, memory, CD-ROM, processing units, … • Software – Programs that run on computer © 2003 Prentice Hall, Inc. All rights reserved.
  • 5. 1.3 Computer Organization • 5 Six logical units of computer 1. Input unit • • “Receiving” section Obtains information from input devices – Keyboard, mouse, microphone, scanner, networks, … 1. Output unit • • • “Shipping” section Takes information processed by computer Places information on output devices – Screen, printer, networks, … – Information used to control other devices © 2003 Prentice Hall, Inc. All rights reserved.
  • 6. 1.3 Computer Organization • 6 Six logical units of computer 3. Memory unit • • • • Rapid access, relatively low capacity “warehouse” section Retains information from input unit – Immediately available for processing Retains processed information – Until placed on output devices Memory, primary memory 4. Arithmetic and logic unit (ALU) • • “Manufacturing” section Performs arithmetic calculations and logic decisions © 2003 Prentice Hall, Inc. All rights reserved.
  • 7. 1.3 Computer Organization • 7 Six logical units of computer 5. Central processing unit (CPU) • • “Administrative” section Supervises and coordinates other sections of computer 5. Secondary storage unit • • • • • Long-term, high-capacity “warehouse” section Storage – Inactive programs or data Secondary storage devices – Disks Longer to access than primary memory Less expensive per unit than primary memory © 2003 Prentice Hall, Inc. All rights reserved.
  • 8. 8 1.4 Evolution of Operating Systems • Early computers – Single-user batch processing • Only one job or task at a time • Process data in groups (batches) • Decks of punched cards • Operating systems – Software systems – Manage transitions between jobs – Increased throughput • Amount of work computers process © 2003 Prentice Hall, Inc. All rights reserved.
  • 9. 9 1.4 Evolution of Operating Systems • Multiprogramming – Many jobs or tasks sharing computer’s resources – “Simultaneous” operation of many jobs • Timesharing – 1960s – Special case of multiprogramming – Users access computer through terminals • Devices with keyboards and screens • Dozens, even hundreds of users – Perform small portion of one user’s job, then moves on to service next user – Advantage: • User receives almost immediate responses to requests © 2003 Prentice Hall, Inc. All rights reserved.
  • 10. 10 1.5 Personal Computing, Distributed Computing, and Client/Server Computing • Personal computers – – – – 1977: Apple Computer Economical enough for individual 1981: IBM Personal Computer “Standalone” units • Computer networks – Over telephone lines – Local area networks (LANs) • Distributed computing – Organization’s computing distributed over networks © 2003 Prentice Hall, Inc. All rights reserved.
  • 11. 11 1.5 Personal Computing, Distributed Computing, and Client/Server Computing • Workstations – Provide enormous capabilities – Information shared across networks • Client/server computing – File servers • Offer common store of programs and data – Client computers • Access file servers across network • UNIX, Linux, Microsoft’s Window-based systems © 2003 Prentice Hall, Inc. All rights reserved.
  • 12. 12 1.6 Machine Languages, Assembly Languages, and High-level Languages • Three types of computer languages 1. Machine language • • • • • • • Only language computer directly understands “Natural language” of computer Defined by hardware design – Machine-dependent Generally consist of strings of numbers – Ultimately 0s and 1s Instruct computers to perform elementary operations – One at a time Cumbersome for humans Example: +1300042774 +1400593419 +1200274027 © 2003 Prentice Hall, Inc. All rights reserved.
  • 13. 13 1.6 Machine Languages, Assembly Languages, and High-level Languages • Three types of computer languages 2. Assembly language • • • • English-like abbreviations representing elementary computer operations Clearer to humans Incomprehensible to computers – Translator programs (assemblers) • Convert to machine language Example: LOAD BASEPAY ADD OVERPAY STORE GROSSPAY © 2003 Prentice Hall, Inc. All rights reserved.
  • 14. 14 1.6 Machine Languages, Assembly Languages, and High-level Languages • Three types of computer languages 3. High-level languages • • • • • Similar to everyday English, use common mathematical notations Single statements accomplish substantial tasks – Assembly language requires many instructions to accomplish simple tasks Translator programs (compilers) – Convert to machine language Interpreter programs – Directly execute high-level language programs Example: grossPay = basePay + overTimePay © 2003 Prentice Hall, Inc. All rights reserved.
  • 15. 1.7 History of C and C++ • History of C – Evolved from two other programming languages • BCPL and B – “Typeless” languages – Dennis Ritchie (Bell Laboratories) • Added data typing, other features – Development language of UNIX – Hardware independent • Portable programs – 1989: ANSI standard – 1990: ANSI and ISO standard published • ANSI/ISO 9899: 1990 © 2003 Prentice Hall, Inc. All rights reserved. 15
  • 16. 1.7 History of C and C++ 16 • History of C++ – – – – Extension of C Early 1980s: Bjarne Stroustrup (Bell Laboratories) “Spruces up” C Provides capabilities for object-oriented programming • Objects: reusable software components – Model items in real world • Object-oriented programs – Easy to understand, correct and modify – Hybrid language • C-like style • Object-oriented style • Both © 2003 Prentice Hall, Inc. All rights reserved.
  • 17. 1.8 C++ Standard Library 17 • C++ programs – Built from pieces called classes and functions • C++ standard library – Rich collections of existing classes and functions • “Building block approach” to creating programs – “Software reuse” © 2003 Prentice Hall, Inc. All rights reserved.
  • 18. 1.9 Java • Java – 1991: Sun Microsystems • Green project – 1995: Sun Microsystems • Formally announced Java at trade show – – – – Web pages with dynamic and interactive content Develop large-scale enterprise applications Enhance functionality of web servers Provide applications for consumer devices • Cell phones, pagers, personal digital assistants, … © 2003 Prentice Hall, Inc. All rights reserved. 18
  • 19. 19 1.10 Visual Basic, Visual C++ and C# • BASIC – Beginner’s All-Purpose Symbolic Instruction Code – Mid-1960s: Prof. John Kemeny and Thomas Kurtz (Dartmouth College) • Visual Basic – 1991 • Result of Microsoft Windows graphical user interface (GUI) – Developed late 1980s, early 1990s – Powerful features • GUI, event handling, access to Win32 API, object-oriented programming, error handling – Visual Basic .NET © 2003 Prentice Hall, Inc. All rights reserved.
  • 20. 20 1.10 Visual Basic, Visual C++ and C# • Visual C++ – Microsoft’s implementation of C++ • Includes extensions • Microsoft Foundation Classes (MFC) • Common library – GUI, graphics, networking, multithreading, … – Shared among Visual Basic, Visual C++, C# • .NET platform – Web-based applications • Distributed to great variety of devices – Cell phones, desktop computers – Applications in disparate languages can communicate © 2003 Prentice Hall, Inc. All rights reserved.
  • 21. 21 1.10 Visual Basic, Visual C++ and C# • C# – Anders Hejlsberg and Scott Wiltamuth (Microsoft) – Designed specifically for .NET platform – Roots in C, C++ and Java • Easy migration to .NET – Event-driven, fully object-oriented, visual programming language – Integrated Development Environment (IDE) • Create, run, test and debug C# programs • Rapid Application Development (RAD) – Language interoperability © 2003 Prentice Hall, Inc. All rights reserved.
  • 22. 22 1.11 Other High-level Languages • FORTRAN – FORmula TRANslator – 1954-1957: IBM – Complex mathematical computations • Scientific and engineering applications • COBOL – COmmon Business Oriented Language – 1959: computer manufacturers, government and industrial computer users – Precise and efficient manipulation of large amounts of data • Commercial applications © 2003 Prentice Hall, Inc. All rights reserved.
  • 23. 23 1.11 Other High-level Languages • Pascal – Prof. Niklaus Wirth – Academic use © 2003 Prentice Hall, Inc. All rights reserved.
  • 24. 1.12 Structured Programming 24 • Structured programming (1960s) – Disciplined approach to writing programs – Clear, easy to test and debug, and easy to modify • Pascal – 1971: Niklaus Wirth • Ada – 1970s - early 1980s: US Department of Defense (DoD) – Multitasking • Programmer can specify many activities to run in parallel © 2003 Prentice Hall, Inc. All rights reserved.
  • 25. 25 1.13 The Key Software Trend: Object Technology • Objects – Reusable software components that model real world items – Meaningful software units • Date objects, time objects, paycheck objects, invoice objects, audio objects, video objects, file objects, record objects, etc. • Any noun can be represented as an object – More understandable, better organized and easier to maintain than procedural programming – Favor modularity • Software reuse – Libraries • MFC (Microsoft Foundation Classes) • Rogue Wave © 2003 Prentice Hall, Inc. All rights reserved.
  • 26. 26 1.14 Basics of a Typical C++ Environment • C++ systems – Program-development environment – Language – C++ Standard Library © 2003 Prentice Hall, Inc. All rights reserved.
  • 27. 27 1.14 Basics of a Typical C++ Environment Phases of C++ Programs: 1. Edit 2. Preprocess 3. Compile Editor Disk Preprocessor program processes the code. Compiler Disk Compiler creates object code and stores it on disk. Linker Disk Preprocessor 4. Link Loader 5. Load Disk 6. Execute Program is created in the editor and stored on disk. Disk Primary Memory Loader puts program in memory. . . . . . . Primary Memory CPU . . . . . . © 2003 Prentice Hall, Inc. All rights reserved. Linker links the object code with the libraries, creates a.out and stores it on disk CPU takes each instruction and executes it, possibly storing new data values as the program executes.
  • 28. 28 1.14 Basics of a Typical C++ Environment • Input/output – cin • Standard input stream • Normally keyboard – cout • Standard output stream • Normally computer screen – cerr • Standard error stream • Display error messages © 2003 Prentice Hall, Inc. All rights reserved.
  • 29. 1.15 Hardware Trends • Capacities of computers – Approximately double every year or two – Memory used to execute programs – Amount of secondary storage • Disk storage • Hold programs and data over long term – Processor speeds • Speed at which computers execute programs © 2003 Prentice Hall, Inc. All rights reserved. 29
  • 30. 1.16 History of the Internet 30 • Late 1960s: ARPA – Advanced Research Projects Agency • Department of Defense – ARPAnet – Electronic mail (e-mail) • Packet switching – Transfer digital data via small packets – Allow multiple users to send/receive data simultaneously over same communication paths • No centralized control – If one part of network fails, other parts can still operate © 2003 Prentice Hall, Inc. All rights reserved.
  • 31. 1.16 History of the Internet 31 • TCP/IP – Transmission Control Protocol (TCP) • Messages routed properly • Messages arrived intact – Internet Protocol (IP) • Communication among variety of networking hardware and software • Current architecture of Internet • Bandwidth – Carrying capacity of communications lines © 2003 Prentice Hall, Inc. All rights reserved.
  • 32. 32 1.17 History of the World Wide Web • World Wide Web – – – – 1990: Tim Berners-Lee (CERN) Locate and view multimedia-based documents Information instantly and conveniently accessible worldwide Possible worldwide exposure • Individuals and small businesses – Changing way business done © 2003 Prentice Hall, Inc. All rights reserved.
  • 33. 33 1.18 World Wide Web Consortium (W3C) • World Wide Web Consortium (W3C) – – – – 1994: Tim Berners-Lee Develop nonproprietary, interoperable technologies Standardization organization Three hosts • Massachusetts Institute of Technology (MIT) • France’s INRIA (Institut National de Recherche en Informatique et Automatique) • Keio University of Japan – Over 400 members • Primary financing • Strategic direction © 2003 Prentice Hall, Inc. All rights reserved.
  • 34. 34 1.18 World Wide Web Consortium (W3C) • Recommendations – 3 phases • Working Draft – Specifies evolving draft • Candidate Recommendation – Stable version that industry can begin to implement • Proposed Recommendation – Considerably mature Candidate Recommendation © 2003 Prentice Hall, Inc. All rights reserved.
  • 35. 1.19 General Notes About C++ and This Book 35 • Book geared toward novice programmers – Stress programming clarity – C and C++ are portable languages • Portability – C and C++ programs can run on many different computers • Compatibility – Many features of current versions of C++ not compatible with older implementations © 2003 Prentice Hall, Inc. All rights reserved.
  • 36. 36 1.20 Introduction to C++ Programming • C++ language – Facilitates structured and disciplined approach to computer program design • Following several examples – Illustrate many important features of C++ – Each analyzed one statement at a time • Structured programming • Object-oriented programming © 2003 Prentice Hall, Inc. All rights reserved.
  • 37. 1.21 A Simple Program: Printing a Line of Text • Comments – – – – Document programs Improve program readability Ignored by compiler Single-line comment • Begin with // • Preprocessor directives – Processed by preprocessor before compiling – Begin with # © 2003 Prentice Hall, Inc. All rights reserved. 37
  • 38. 1 2 3 4 5 6 7 8 9 10 11 12 // Fig. 1.2: fig01_02.cpp // A first program in C++. Function main #include <iostream> Single-line comments. Outline returns an integer value. begins Preprocessor directive to Left brace { function include input/output Statements end with afig01_02.cpp stream begins program execution appears body. Function main (1 of 1) header file <iostream>. exactly once in every C++ semicolon ;. program.. fig01_02.cpp // function main int main() { std::cout << "Welcome to C++!n"; return 0; // } // end function Welcome to C++! Corresponding right brace } indicate that program ended successfully ends function body. Stream insertion Name cout belongs to operator. main namespace std. Keyword return is one of several means to exit function; value 0 indicates program terminated successfully. output (1 of 1) © 2003 Prentice Hall, Inc. All rights reserved. 38
  • 39. 1.21 A Simple Program: Printing a Line of Text 39 • Standard output stream object – std::cout – “Connected” to screen – << • Stream insertion operator • Value to right (right operand) inserted into output stream • Namespace – std:: specifies using name that belongs to “namespace” std – std:: removed through use of using statements • Escape characters – – Indicates “special” character output © 2003 Prentice Hall, Inc. All rights reserved.
  • 40. 1.21 A Simple Program: Printing a Line of Text 40 Escape Sequence Description n Newline. Position the screen cursor to the beginning of the next line. t Horizontal tab. Move the screen cursor to the next tab stop. r Carriage return. Position the screen cursor to the beginning of the current line; do not advance to the next line. a Alert. Sound the system bell. Backslash. Used to print a backslash character. " Double quote. Used to print a double quote character. © 2003 Prentice Hall, Inc. All rights reserved.
  • 41. 1 2 3 4 5 6 7 8 9 10 11 12 13 Outline // Fig. 1.4: fig01_04.cpp // Printing a line with multiple statements. #include <iostream> // function main begins program execution int main() { std::cout << "Welcome "; std::cout << "to C++!n"; return 0; fig01_04.cpp Multiple stream insertion (1 of 1) statements produce one line of output. fig01_04.cpp output (1 of 1) // indicate that program ended successfully } // end function main Welcome to C++! © 2003 Prentice Hall, Inc. All rights reserved. 41
  • 42. 1 2 3 4 5 6 7 8 9 10 11 12 Outline // Fig. 1.5: fig01_05.cpp // Printing multiple lines with a single statement #include <iostream> // function main begins program execution Using newline characters print on multiple lines. int main() { std::cout << "WelcomentonnC++!n"; return 0; to fig01_05.cpp (1 of 1) fig01_05.cpp output (1 of 1) // indicate that program ended successfully } // end function main Welcome to C++! © 2003 Prentice Hall, Inc. All rights reserved. 42
  • 43. 1.22 Another Simple Program: Adding Two Integers 43 • Variables – Location in memory where value can be stored – Common data types • int - integer numbers • char - characters • double - floating point numbers – Declare variables with name and data type before use int integer1; int integer2; int sum; – Can declare several variables of same type in one declaration • Comma-separated list int integer1, integer2, sum; © 2003 Prentice Hall, Inc. All rights reserved.
  • 44. 1.22 Another Simple Program: Adding Two Integers • Variables – Variable names • Valid identifier – Series of characters (letters, digits, underscores) – Cannot begin with digit – Case sensitive © 2003 Prentice Hall, Inc. All rights reserved. 44
  • 45. 1.22 Another Simple Program: Adding Two Integers 45 • Input stream object – >> (stream extraction operator) • Used with std::cin • Waits for user to input value, then press Enter (Return) key • Stores value in variable to right of operator – Converts value to variable data type • = (assignment operator) – Assigns value to variable – Binary operator (two operands) – Example: sum = variable1 + variable2; © 2003 Prentice Hall, Inc. All rights reserved.
  • 46. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Outline // Fig. 1.6: fig01_06.cpp // Addition program. #include <iostream> // function main begins program execution int main() Declare integer variables. { int integer1; // first number to be input by user int integer2; // second number to be input by user Use stream extraction int sum; // variable in which sum will be stored std::cout << "Enter first std::cin >> integer1; fig01_06.cpp (1 of 1) operator with standard input stream to obtain user input. integern"; // prompt // read an integer std::cout << "Enter second integern"; // prompt std::cin >> integer2; Calculations // read an integer output can be performed in statements: Stream manipulatoralternative for lines 18 and 20: std::endl outputs a sum = integer1 + integer2; // assign result to sum newline, then “flushes output std::cout << "Sum is " << integer1 + integer2 << std::endl; std::cout << "Sum is " << sum << std::endl; // print sum buffer.” return 0; // indicate that program ended successfully } // end function main Concatenating, chaining or cascading stream insertion operations. © 2003 Prentice Hall, Inc. All rights reserved. 46
  • 47. Enter first integer 45 Enter second integer 72 Sum is 117 Outline fig01_06.cpp output (1 of 1) © 2003 Prentice Hall, Inc. All rights reserved. 47
  • 48. 1.23 Memory Concepts 48 • Variable names – Correspond to actual locations in computer's memory – Every variable has name, type, size and value – When new value placed into variable, overwrites previous value – Reading variables from memory nondestructive © 2003 Prentice Hall, Inc. All rights reserved.
  • 49. 49 1.23 Memory Concepts std::cin >> integer1; integer1 45 std::cin >> integer2; integer1 45 – Assume user entered 72 integer2 72 integer1 45 integer2 72 – Assume user entered 45 sum = integer1 + integer2; sum © 2003 Prentice Hall, Inc. All rights reserved. 117
  • 50. 1.24 Arithmetic • Arithmetic calculations – * • Multiplication – / • Division • Integer division truncates remainder – 7 / 5 evaluates to 1 – % • Modulus operator returns remainder – 7 % 5 evaluates to 2 © 2003 Prentice Hall, Inc. All rights reserved. 50
  • 51. 1.24 Arithmetic 51 • Rules of operator precedence – Operators in parentheses evaluated first • Nested/embedded parentheses – Operators in innermost pair first – Multiplication, division, modulus applied next • Operators applied from left to right – Addition, subtraction applied last Operator(s) Operation(s) Order to right • Operators applied from leftof evaluation (precedence) () Parentheses *, /, or % Multiplication Division Evaluated second. If there are several, they re Modulus evaluated left to right. + or - Addition Subtraction © 2003 Prentice Hall, Inc. All rights reserved. Evaluated first. If the parentheses are nested, the expression in the innermost pair is evaluated first. If there are several pairs of parentheses “on the same level” (i.e., not nested), they are evaluated left to right. Evaluated last. If there are several, they are evaluated left to right.
  • 52. 52 1.25 Decision Making: Equality and Relational Operators • if structure – Make decision based on truth or falsity of condition • If condition met, body executed • Else, body not executed • Equality and relational operators – Equality operators • Same level of precedence – Relational operators • Same level of precedence – Associate left to right © 2003 Prentice Hall, Inc. All rights reserved.
  • 53. 53 1.25 Decision Making: Equality and Relational Operators Standard algebraic equality operator or relational operator C++ equality or relational operator Example of C++ condition Meaning of C++ condition > > x > y x is greater than y < < x < y x is less than y ≥ >= x >= y x is greater than or equal to y ≤ <= x <= y x is less than or equal to y = == x == y x is equal to y ≠ != x != y x is not equal to y Relational operators Equality operators © 2003 Prentice Hall, Inc. All rights reserved.
  • 54. 54 1.25 Decision Making: Equality and Relational Operators • using statements – Eliminate use of std:: prefix – Write cout instead of std::cout © 2003 Prentice Hall, Inc. All rights reserved.
  • 55. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Outline // Fig. 1.14: fig01_14.cpp // Using if statements, relational // operators, and equality operators. #include <iostream> using std::cout; using std::cin; using std::endl; // program uses cout // program uses cin // program uses endl fig01_14.cpp (1 of 2) using statements eliminate need for std:: prefix. Declare variables. // function main begins program execution int main() { Can to be read from user int num1; // first number write cout and cin without std:: prefix. int num2; // second number to be read from user cout << "Enter two integers, and I will tell youn" if structure compares values << "the relationships they satisfy: "; of num1 and num2 to test for If cin >> num1 >> num2; // read two integerscondition is true if ( num1 == num2 ) cout << num1 << " is (i.e., equality. values are equal), execute this if structure compares values statement. If << endl; of to " and num2 to test is equal num1<< num2 condition fortrue (i.e., values are not equal), execute inequality. this statement. if ( num1 != num2 ) cout << num1 << " is not equal to " << num2 << endl; © 2003 Prentice Hall, Inc. All rights reserved. 55
  • 56. 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 if ( num1 < num2 ) cout << num1 << " is less than " << num2 << endl; if ( num1 > num2 ) cout << num1 << " is greater than " << num2 << endl; if ( num1 <= num2 ) cout << num1 << " is less than or equal to " << num2 << endl; Outline fig01_14.cpp Statements of 2) be split over (2 may several lines. fig01_14.cpp output (1 of 2) if ( num1 >= num2 ) cout << num1 << " is greater than or equal to " << num2 << endl; return 0; // indicate that program ended successfully } // end function main Enter two integers, and I will tell you the relationships they satisfy: 22 12 22 is not equal to 12 22 is greater than 12 22 is greater than or equal to 12 © 2003 Prentice Hall, Inc. All rights reserved. 56
  • 57. Enter two integers, and I will tell you the relationships they satisfy: 7 7 7 is equal to 7 7 is less than or equal to 7 7 is greater than or equal to 7 Outline fig01_14.cpp output (2 of 2) © 2003 Prentice Hall, Inc. All rights reserved. 57
  • 58. 58 1.26 Thinking About Objects: Introduction to Object Technology and the Unified Modeling Language • Object oriented programming (OOP) – Model real-world objects with software counterparts – Attributes (state) - properties of objects • Size, shape, color, weight, etc. – Behaviors (operations) - actions • A ball rolls, bounces, inflates and deflates • Objects can perform actions as well – Inheritance • New classes of objects absorb characteristics from existing classes – Objects • Encapsulate data and functions • Information hiding – Communicate across well-defined interfaces © 2003 Prentice Hall, Inc. All rights reserved.
  • 59. 59 1.26 Thinking About Objects: Introduction to Object Technology and the Unified Modeling Language • User-defined types (classes, components) – Data members • Data components of class – Member functions • Function components of class – Association – Reuse classes © 2003 Prentice Hall, Inc. All rights reserved.
  • 60. 60 1.26 Thinking About Objects: Introduction to Object Technology and the Unified Modeling Language • Object-oriented analysis and design (OOAD) process – Analysis of project’s requirements – Design for satisfying requirements – Pseudocode • Informal means of expressing program • Outline to guide code © 2003 Prentice Hall, Inc. All rights reserved.
  • 61. 61 1.26 Thinking About Objects: Introduction to Object Technology and the Unified Modeling Language • Unified Modeling Language (UML) – 2001: Object Management Group (OMG) • Released UML version 1.4 – Model object-oriented systems and aid design – Flexible • Extendable • Independent of many OOAD processes • One standard set of notations – Complex, feature-rich graphical language © 2003 Prentice Hall, Inc. All rights reserved.