Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

14

Share

Download to read offline

Circular Permutation

Download to read offline

Circular Permutation

  1. 1. CIRCULAR PERMUTATION
  2. 2. Hello folks this is Precious your scribe for today.  Today Mr. K introduced to us the Circular Permutation.  What is Circular  permutation? Circular Permutation is the number of ordered arrangements that can be  made of n objects in a circle is given by:                                                                                                 ( n ‐ 1 ) ! and in special problems like bracelets and  necklaces that can flip over we can use:                                              ( n ‐ 1 ) ! 2
  3. 3. Example number 1: How many distinguishable ways can 3 people be seated around a  circular table? hint: **person 3 is our point of reference Solution: ( n ­ 1 ) ! ( 3 ­ 1 ) !     2! person 3  2 x 1 person 2 person 1     2 person 3 person 1 person 2 therefore there are 2 ways to seat 3 people in a circular table.
  4. 4. Example number 2: How many distinguishable ways can 4 people be seated around a circular  table? hint: quot;Aquot; is our point of reference Solution: A A A ( n ­ 1)! B D D C C D ( 4 ­ 1)!     3! C B B 3 x 2 x 1 A A A      6 B D B C B C threrefore there are 6  ways to seat 4 people  C D D in a circular table
  5. 5. Example number 3: How many distinguishable ways can 4 beads be arranged on a circular bracelet? Solution: ( n ­ 1)! 2 bead 1 ( 4 ­ 1 )! bead 1 2 3! bead 4 bead 2 bead 3 2 bead 4 3 x 2 x 1 bead 3 bead 2 2 6 bead 1 2 3 bead 2 bead 3 hint: bead 1 is our point of  bead 4 reference
  6. 6. And then Mr. K decides to form us into groups to solve this problem: In how many ways can 4 married couples seat themselves around a  circular table if: a.) spouses sit opposite each other? Solution: ( n ­ 1 )! **here we have our formula then we  ( 4 ­ 1 )! know that there is 4 spouses subtract 1       3! and then factorial. 3 x 2 x 1 6
  7. 7. b.) men and women alternate? Solution: ladies         x         men ( 4 ­ 1 )!       x        4! 3!              x            4! lady 1 6              x            24 4 choices of men 1 choice of man 144 ways to seat a men and a  lady 2 lady 4 women alternate on a circular  table 2 choices of men 3 choices of men lady 3
  8. 8. The next scribe is Mary  Ann......
  • ChristyAsendiente1

    Jan. 27, 2020
  • HannahAbenoja

    Nov. 25, 2019
  • mariatheresacaraig

    Nov. 14, 2019
  • AlaizaLitong

    Nov. 13, 2019
  • PaguiaJohnPaul

    Oct. 20, 2019
  • AhmadAshraf29

    Dec. 19, 2017
  • suyashjain16

    May. 14, 2016
  • tamsyloate

    Mar. 25, 2016
  • kristine16

    Jan. 24, 2016
  • MarkAngeloBarlis

    Jan. 3, 2016
  • krubelyn

    Nov. 29, 2015
  • Amrsaad13

    Oct. 13, 2015
  • Pushpinder-Singh

    Nov. 21, 2014
  • ervinlipata

    Jan. 18, 2010

Views

Total views

62,661

On Slideshare

0

From embeds

0

Number of embeds

162

Actions

Downloads

682

Shares

0

Comments

0

Likes

14

×