深層学習による製造業の
スマート化と産業応⽤の将来展望
㈱ Preferred Networks
インダストリーソリューション担当VP
執⾏役員 ⽐⼾将平
2020/11/25 クオリティフォーラム
お客様事例(1/4)⼤⼿⾃動⾞メーカー様
– 概要
l アプリケーション︓⾃動⾞部品の外観検査
l 検査内容
̶ パーツの⽋け検知
̶ 「円周の⾚マーカーが⽋けずに所定の⻑さに収まっているか」
l 状況︓
̶ 2019年より品質管理部にてPVIを検証
̶ 実ラインを含めた評価結果が良好
かつ広範囲に適⽤可能という評価
̶ 特に現場への組み込みが⾮常に簡単であり
現場担当者だけでの運⽤も望める
̶ 広くライン導⼊を検討中
良品 不良
お客様事例(1/4)⼤⼿⾃動⾞メーカー様
– 検査画像例
元画像. ヒートマップ 元画像 ヒートマップ
良品
不良
不良
良品
不良
不良
お客様事例(3/4)⼤川精螺⼯業株式会社様
– アプリケーション︓メス⾦具 画像検査
– 検査内容︓
• 検査箇所︓シート部、頭部、ソケット部
• 不良モード︓異物、キズ、メッキ変⾊、サビ、バリ
– 状況︓
• 2020年2⽉よりPVIを導⼊
• 6ヶ⽉間の検証を実施して良好な結果が得られた
• 従来の画像処理からの置き換え
• 製造ラインに導⼊済
• 同製品のラインへの展開と、他部品の検査への適⽤検討も進⾏中
お客様事例(3/4)⼤川精螺⼯業株式会社様
- PVIの導⼊により得られたメリット
• 従来の画像処理⼿法ではロットによるメッキの⾊味のばらつきに対応できず過検出が発⽣していた
• PVIによるAI検査により、メッキの⾊味の変化に関わらず、異常のみの検出が可能となった
従来の画像処理では暗い部分を全て検出してしまっていた。
PVIによるAI検査では⾊味に関わらず異常のみを検出できる。
従来の画像処理(⼆値化)
ロットの違いによってメッキの⾊味にばらつきが存在する。
従来の画像処理⼿法ではロットAを基準とした場合、
ロットCのようにメッキの暗いものがほぼNGとなってしまう。
お客様事例(4/4)⼤⼿⻭⾞製造会社 C社様
l アプリケーション︓【製品名】平⾏軸の⻭⾞外観検査
l 検査内容:【不良モード】⼤きさ >φ3mm & 深さ >0.1mmキズの検出
l 状況︓
̶ 2020年1⽉よりPVIを導⼊
̶ NI LabVIEWをベースでの画像処理に、PVIを内製で組み込み実施
̶ ⼊念な検証を実施して良好な結果が得られた
̶ すでに製造ラインに導⼊済
̶ 全世界の⼯場に存在する40系統のラインへの展開を進⾏中
l PVIの導⼊により得られたメリット
̶ 既存のアプローチでは実現できなかった過検出の課題が解決された
̶ 従来21.1%発⽣していた過検出が1.2%に改善した
対象製品のイメージ図

【事例抜粋集】深層学習による製造業のスマート化と産業応用の将来展望(クオリティフォーラム2020講演資料)