SlideShare a Scribd company logo
1 of 6
Download to read offline
深層学習による製造業の
スマート化と産業応⽤の将来展望
㈱ Preferred Networks
インダストリーソリューション担当VP
執⾏役員 ⽐⼾将平
2020/11/25 クオリティフォーラム
お客様事例(1/4)⼤⼿⾃動⾞メーカー様
– 概要
l アプリケーション︓⾃動⾞部品の外観検査
l 検査内容
̶ パーツの⽋け検知
̶ 「円周の⾚マーカーが⽋けずに所定の⻑さに収まっているか」
l 状況︓
̶ 2019年より品質管理部にてPVIを検証
̶ 実ラインを含めた評価結果が良好
かつ広範囲に適⽤可能という評価
̶ 特に現場への組み込みが⾮常に簡単であり
現場担当者だけでの運⽤も望める
̶ 広くライン導⼊を検討中
良品 不良
お客様事例(1/4)⼤⼿⾃動⾞メーカー様
– 検査画像例
元画像. ヒートマップ 元画像 ヒートマップ
良品
不良
不良
良品
不良
不良
お客様事例(3/4)⼤川精螺⼯業株式会社様
– アプリケーション︓メス⾦具 画像検査
– 検査内容︓
• 検査箇所︓シート部、頭部、ソケット部
• 不良モード︓異物、キズ、メッキ変⾊、サビ、バリ
– 状況︓
• 2020年2⽉よりPVIを導⼊
• 6ヶ⽉間の検証を実施して良好な結果が得られた
• 従来の画像処理からの置き換え
• 製造ラインに導⼊済
• 同製品のラインへの展開と、他部品の検査への適⽤検討も進⾏中
お客様事例(3/4)⼤川精螺⼯業株式会社様
- PVIの導⼊により得られたメリット
• 従来の画像処理⼿法ではロットによるメッキの⾊味のばらつきに対応できず過検出が発⽣していた
• PVIによるAI検査により、メッキの⾊味の変化に関わらず、異常のみの検出が可能となった
従来の画像処理では暗い部分を全て検出してしまっていた。
PVIによるAI検査では⾊味に関わらず異常のみを検出できる。
従来の画像処理(⼆値化)
ロットの違いによってメッキの⾊味にばらつきが存在する。
従来の画像処理⼿法ではロットAを基準とした場合、
ロットCのようにメッキの暗いものがほぼNGとなってしまう。
お客様事例(4/4)⼤⼿⻭⾞製造会社 C社様
l アプリケーション︓【製品名】平⾏軸の⻭⾞外観検査
l 検査内容:【不良モード】⼤きさ >φ3mm & 深さ >0.1mmキズの検出
l 状況︓
̶ 2020年1⽉よりPVIを導⼊
̶ NI LabVIEWをベースでの画像処理に、PVIを内製で組み込み実施
̶ ⼊念な検証を実施して良好な結果が得られた
̶ すでに製造ラインに導⼊済
̶ 全世界の⼯場に存在する40系統のラインへの展開を進⾏中
l PVIの導⼊により得られたメリット
̶ 既存のアプローチでは実現できなかった過検出の課題が解決された
̶ 従来21.1%発⽣していた過検出が1.2%に改善した
対象製品のイメージ図

More Related Content

Similar to 【事例抜粋集】深層学習による製造業のスマート化と産業応用の将来展望(クオリティフォーラム2020講演資料)

パッケージ品質の向上と生産性向上 品質データから考えるアジャイルの考察
パッケージ品質の向上と生産性向上 品質データから考えるアジャイルの考察パッケージ品質の向上と生産性向上 品質データから考えるアジャイルの考察
パッケージ品質の向上と生産性向上 品質データから考えるアジャイルの考察HIDEKAZU MATSUURA
 
Quality assurance by quality stepwise refinement in agile development
Quality assurance by quality stepwise refinement in agile developmentQuality assurance by quality stepwise refinement in agile development
Quality assurance by quality stepwise refinement in agile developmentJumpeiIto2
 
SQuaRE に基づくソフトウェア品質評価枠組みと品質実態調査
SQuaRE に基づくソフトウェア品質評価枠組みと品質実態調査SQuaRE に基づくソフトウェア品質評価枠組みと品質実態調査
SQuaRE に基づくソフトウェア品質評価枠組みと品質実態調査Hironori Washizaki
 
SQuaREに基づくソフトウェア品質評価枠組みと品質実態調査
SQuaREに基づくソフトウェア品質評価枠組みと品質実態調査SQuaREに基づくソフトウェア品質評価枠組みと品質実態調査
SQuaREに基づくソフトウェア品質評価枠組みと品質実態調査Hironori Washizaki
 
Agile Quality アジャイル品質パターン (QA2AQ)
Agile Quality アジャイル品質パターン (QA2AQ)Agile Quality アジャイル品質パターン (QA2AQ)
Agile Quality アジャイル品質パターン (QA2AQ)Hironori Washizaki
 
車載の品質管理 Automobile Quaulity Control
車載の品質管理  Automobile Quaulity Control車載の品質管理  Automobile Quaulity Control
車載の品質管理 Automobile Quaulity Control博行 門眞
 
ワンクリックデプロイ101 #ocdeploy
ワンクリックデプロイ101 #ocdeployワンクリックデプロイ101 #ocdeploy
ワンクリックデプロイ101 #ocdeployRyutaro YOSHIBA
 
ソフトハウスの品質保証のウソホント
ソフトハウスの品質保証のウソホントソフトハウスの品質保証のウソホント
ソフトハウスの品質保証のウソホントYasuharu Nishi
 
Uber 社の自動運転車の安全保証のための Safety Case Framework と ANSI/UL 4600 との適合性ギャップ分析: 安全コンセ...
Uber 社の自動運転車の安全保証のための Safety Case Framework と ANSI/UL 4600 との適合性ギャップ分析: 安全コンセ...Uber 社の自動運転車の安全保証のための Safety Case Framework と ANSI/UL 4600 との適合性ギャップ分析: 安全コンセ...
Uber 社の自動運転車の安全保証のための Safety Case Framework と ANSI/UL 4600 との適合性ギャップ分析: 安全コンセ...Kenji Taguchi
 
ICLR2019参加報告前半@テキストアナリティクスシンポジウム
ICLR2019参加報告前半@テキストアナリティクスシンポジウムICLR2019参加報告前半@テキストアナリティクスシンポジウム
ICLR2019参加報告前半@テキストアナリティクスシンポジウムTomoya Mizumoto
 
テストプロセス改善モデルの最新動向
テストプロセス改善モデルの最新動向テストプロセス改善モデルの最新動向
テストプロセス改善モデルの最新動向崇 山﨑
 
「事実にもとづく管理」によるソフトウェア品質の改善 ー ヒンシツ大学 Evening Talk #04
「事実にもとづく管理」によるソフトウェア品質の改善 ー ヒンシツ大学 Evening Talk #04「事実にもとづく管理」によるソフトウェア品質の改善 ー ヒンシツ大学 Evening Talk #04
「事実にもとづく管理」によるソフトウェア品質の改善 ー ヒンシツ大学 Evening Talk #04Makoto Nonaka
 
Intelligent Enterprise Update S/4 HANA 導入と並行してすすめるイノベーション
Intelligent Enterprise Update S/4 HANA 導入と並行してすすめるイノベーションIntelligent Enterprise Update S/4 HANA 導入と並行してすすめるイノベーション
Intelligent Enterprise Update S/4 HANA 導入と並行してすすめるイノベーションYasuko Sekiguchi
 
ERPのデータをフロントシステムでどう活かすか
ERPのデータをフロントシステムでどう活かすかERPのデータをフロントシステムでどう活かすか
ERPのデータをフロントシステムでどう活かすかRyuji Enoki
 
GOの機械学習システムを支えるMLOps事例紹介
GOの機械学習システムを支えるMLOps事例紹介GOの機械学習システムを支えるMLOps事例紹介
GOの機械学習システムを支えるMLOps事例紹介Takashi Suzuki
 
JEITAソフトウェアエンジニアリング分科会: IPA RISE委託研究2015-16年度 測定評価と分析によるソフトウェア製品品 質の実態定量化および総...
JEITAソフトウェアエンジニアリング分科会: IPA RISE委託研究2015-16年度 測定評価と分析によるソフトウェア製品品 質の実態定量化および総...JEITAソフトウェアエンジニアリング分科会: IPA RISE委託研究2015-16年度 測定評価と分析によるソフトウェア製品品 質の実態定量化および総...
JEITAソフトウェアエンジニアリング分科会: IPA RISE委託研究2015-16年度 測定評価と分析によるソフトウェア製品品 質の実態定量化および総...Hironori Washizaki
 

Similar to 【事例抜粋集】深層学習による製造業のスマート化と産業応用の将来展望(クオリティフォーラム2020講演資料) (20)

パッケージ品質の向上と生産性向上 品質データから考えるアジャイルの考察
パッケージ品質の向上と生産性向上 品質データから考えるアジャイルの考察パッケージ品質の向上と生産性向上 品質データから考えるアジャイルの考察
パッケージ品質の向上と生産性向上 品質データから考えるアジャイルの考察
 
Quality assurance by quality stepwise refinement in agile development
Quality assurance by quality stepwise refinement in agile developmentQuality assurance by quality stepwise refinement in agile development
Quality assurance by quality stepwise refinement in agile development
 
SQuaRE に基づくソフトウェア品質評価枠組みと品質実態調査
SQuaRE に基づくソフトウェア品質評価枠組みと品質実態調査SQuaRE に基づくソフトウェア品質評価枠組みと品質実態調査
SQuaRE に基づくソフトウェア品質評価枠組みと品質実態調査
 
SQuaREに基づくソフトウェア品質評価枠組みと品質実態調査
SQuaREに基づくソフトウェア品質評価枠組みと品質実態調査SQuaREに基づくソフトウェア品質評価枠組みと品質実態調査
SQuaREに基づくソフトウェア品質評価枠組みと品質実態調査
 
Agile Quality アジャイル品質パターン (QA2AQ)
Agile Quality アジャイル品質パターン (QA2AQ)Agile Quality アジャイル品質パターン (QA2AQ)
Agile Quality アジャイル品質パターン (QA2AQ)
 
保守運用コストの適正化事例 20120725
保守運用コストの適正化事例 20120725保守運用コストの適正化事例 20120725
保守運用コストの適正化事例 20120725
 
車載の品質管理 Automobile Quaulity Control
車載の品質管理  Automobile Quaulity Control車載の品質管理  Automobile Quaulity Control
車載の品質管理 Automobile Quaulity Control
 
ワンクリックデプロイ101 #ocdeploy
ワンクリックデプロイ101 #ocdeployワンクリックデプロイ101 #ocdeploy
ワンクリックデプロイ101 #ocdeploy
 
研究発表用
研究発表用研究発表用
研究発表用
 
ソフトハウスの品質保証のウソホント
ソフトハウスの品質保証のウソホントソフトハウスの品質保証のウソホント
ソフトハウスの品質保証のウソホント
 
Uber 社の自動運転車の安全保証のための Safety Case Framework と ANSI/UL 4600 との適合性ギャップ分析: 安全コンセ...
Uber 社の自動運転車の安全保証のための Safety Case Framework と ANSI/UL 4600 との適合性ギャップ分析: 安全コンセ...Uber 社の自動運転車の安全保証のための Safety Case Framework と ANSI/UL 4600 との適合性ギャップ分析: 安全コンセ...
Uber 社の自動運転車の安全保証のための Safety Case Framework と ANSI/UL 4600 との適合性ギャップ分析: 安全コンセ...
 
ICLR2019参加報告前半@テキストアナリティクスシンポジウム
ICLR2019参加報告前半@テキストアナリティクスシンポジウムICLR2019参加報告前半@テキストアナリティクスシンポジウム
ICLR2019参加報告前半@テキストアナリティクスシンポジウム
 
テストプロセス改善モデルの最新動向
テストプロセス改善モデルの最新動向テストプロセス改善モデルの最新動向
テストプロセス改善モデルの最新動向
 
「事実にもとづく管理」によるソフトウェア品質の改善 ー ヒンシツ大学 Evening Talk #04
「事実にもとづく管理」によるソフトウェア品質の改善 ー ヒンシツ大学 Evening Talk #04「事実にもとづく管理」によるソフトウェア品質の改善 ー ヒンシツ大学 Evening Talk #04
「事実にもとづく管理」によるソフトウェア品質の改善 ー ヒンシツ大学 Evening Talk #04
 
I suc発表用v2.8
I suc発表用v2.8I suc発表用v2.8
I suc発表用v2.8
 
20130304-DEIM2013
20130304-DEIM201320130304-DEIM2013
20130304-DEIM2013
 
Intelligent Enterprise Update S/4 HANA 導入と並行してすすめるイノベーション
Intelligent Enterprise Update S/4 HANA 導入と並行してすすめるイノベーションIntelligent Enterprise Update S/4 HANA 導入と並行してすすめるイノベーション
Intelligent Enterprise Update S/4 HANA 導入と並行してすすめるイノベーション
 
ERPのデータをフロントシステムでどう活かすか
ERPのデータをフロントシステムでどう活かすかERPのデータをフロントシステムでどう活かすか
ERPのデータをフロントシステムでどう活かすか
 
GOの機械学習システムを支えるMLOps事例紹介
GOの機械学習システムを支えるMLOps事例紹介GOの機械学習システムを支えるMLOps事例紹介
GOの機械学習システムを支えるMLOps事例紹介
 
JEITAソフトウェアエンジニアリング分科会: IPA RISE委託研究2015-16年度 測定評価と分析によるソフトウェア製品品 質の実態定量化および総...
JEITAソフトウェアエンジニアリング分科会: IPA RISE委託研究2015-16年度 測定評価と分析によるソフトウェア製品品 質の実態定量化および総...JEITAソフトウェアエンジニアリング分科会: IPA RISE委託研究2015-16年度 測定評価と分析によるソフトウェア製品品 質の実態定量化および総...
JEITAソフトウェアエンジニアリング分科会: IPA RISE委託研究2015-16年度 測定評価と分析によるソフトウェア製品品 質の実態定量化および総...
 

More from Preferred Networks

PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57Preferred Networks
 
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3Preferred Networks
 
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...Preferred Networks
 
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...Preferred Networks
 
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55Preferred Networks
 
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2Preferred Networks
 
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2Preferred Networks
 
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2Preferred Networks
 
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演Preferred Networks
 
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)Preferred Networks
 
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)Preferred Networks
 
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)Preferred Networks
 
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語るKubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語るPreferred Networks
 
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張Preferred Networks
 
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会Preferred Networks
 
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2Preferred Networks
 
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...Preferred Networks
 
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...Preferred Networks
 
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...Preferred Networks
 
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50Preferred Networks
 

More from Preferred Networks (20)

PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
 
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
 
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
 
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
 
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
 
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
 
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
 
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
 
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
 
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
 
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
 
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
 
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語るKubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
 
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
 
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
 
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
 
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
 
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
 
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
 
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
 

Recently uploaded

Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。
Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。
Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。iPride Co., Ltd.
 
OWASP Hardning Privacy セッション 「セキュリティの守るべきものとは情報とプライバシーへ」
OWASP Hardning Privacy セッション 「セキュリティの守るべきものとは情報とプライバシーへ」OWASP Hardning Privacy セッション 「セキュリティの守るべきものとは情報とプライバシーへ」
OWASP Hardning Privacy セッション 「セキュリティの守るべきものとは情報とプライバシーへ」Tetsuya Nihonmatsu
 
プレイマットのパターン生成支援ツールの評価
プレイマットのパターン生成支援ツールの評価プレイマットのパターン生成支援ツールの評価
プレイマットのパターン生成支援ツールの評価sugiuralab
 
新人研修のまとめ 2024/04/12の勉強会で発表されたものです。
新人研修のまとめ       2024/04/12の勉強会で発表されたものです。新人研修のまとめ       2024/04/12の勉強会で発表されたものです。
新人研修のまとめ 2024/04/12の勉強会で発表されたものです。iPride Co., Ltd.
 
20240412_HCCJP での Windows Server 2025 Active Directory
20240412_HCCJP での Windows Server 2025 Active Directory20240412_HCCJP での Windows Server 2025 Active Directory
20240412_HCCJP での Windows Server 2025 Active Directoryosamut
 
プレイマットのパターン生成支援ツール
プレイマットのパターン生成支援ツールプレイマットのパターン生成支援ツール
プレイマットのパターン生成支援ツールsugiuralab
 

Recently uploaded (7)

Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。
Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。
Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。
 
U-22プログラミング・コンテスト2024 作品説明動画を制作するポイントを紹介
U-22プログラミング・コンテスト2024 作品説明動画を制作するポイントを紹介U-22プログラミング・コンテスト2024 作品説明動画を制作するポイントを紹介
U-22プログラミング・コンテスト2024 作品説明動画を制作するポイントを紹介
 
OWASP Hardning Privacy セッション 「セキュリティの守るべきものとは情報とプライバシーへ」
OWASP Hardning Privacy セッション 「セキュリティの守るべきものとは情報とプライバシーへ」OWASP Hardning Privacy セッション 「セキュリティの守るべきものとは情報とプライバシーへ」
OWASP Hardning Privacy セッション 「セキュリティの守るべきものとは情報とプライバシーへ」
 
プレイマットのパターン生成支援ツールの評価
プレイマットのパターン生成支援ツールの評価プレイマットのパターン生成支援ツールの評価
プレイマットのパターン生成支援ツールの評価
 
新人研修のまとめ 2024/04/12の勉強会で発表されたものです。
新人研修のまとめ       2024/04/12の勉強会で発表されたものです。新人研修のまとめ       2024/04/12の勉強会で発表されたものです。
新人研修のまとめ 2024/04/12の勉強会で発表されたものです。
 
20240412_HCCJP での Windows Server 2025 Active Directory
20240412_HCCJP での Windows Server 2025 Active Directory20240412_HCCJP での Windows Server 2025 Active Directory
20240412_HCCJP での Windows Server 2025 Active Directory
 
プレイマットのパターン生成支援ツール
プレイマットのパターン生成支援ツールプレイマットのパターン生成支援ツール
プレイマットのパターン生成支援ツール
 

【事例抜粋集】深層学習による製造業のスマート化と産業応用の将来展望(クオリティフォーラム2020講演資料)