SlideShare a Scribd company logo
1 of 92
George F. Vander Voort
Director, Research & Technology
Buehler Ltd
Lake Bluff, Illinois USA
Shapes must be space filling
Surfaces must exhibit minimum surface
area and minimum surface tension
(Plateau, 1873)
Tetrakaidecahedron (left) and Pentagonal
Dodecahedron (right)
Lord Kelvin (1887) showed that the
optimum grain shape meeting these
requirements was a polyhedron called
a tetrakaidecahedra
14 faces
24 Corners
36 Edges
with
But, the tetrakaidecahedron does
not exhibit 120 dihedral angles
between grain boundaries where 3
adjacent grains meet at an edge –
unless the faces exhibit curvature.
Equal interfacial energies produce
face angles of 109.5 and dihedral
angles of 120
In this case:
Avg. No. Edges/Face = 5.1043
Avg. No. Faces/Grain = 13.394
Avg. No. Edges/Grain = 34.195
Avg. No. Corners/Grain = 22.78
First to study actual grain shapes by LME
of ß-brass in liquid Hg. For isolated grains,
he found:
Avg. No. Faces/Grain = 14.5 (11 to 20)
Avg. No. Edges/Face = 5.14 (3 to 8)
5-sided grains were most frequent
Used stereomicroradiography
grains and found:
to study
Avg. No. Edges/Face = 5.06
Avg. No. Faces/Grain = 12.48
For spacing-filling aggregates of
polyhedral grains
+ C – E + F – B = 1
C – number of point corners
E – number of lineal edges
F – number of polygonal faces
B – number of polyhedral bodies
For a single polygon, B = 1 and
C – E + F = 2
The two-dimensional form of Euler’s Law
for an array of polygons is
C – E + F = 1
Separation of
grains by sieving
embrittlement of 3.3 mm -'
after liquid metal
3.3 mm Brass in Hg 14 Sieve
8 Sieve
5/16 Sieve
A
Ac
ct
tu
ua
al
l G
Gr
ra
ai
in
n S
Sh
ha
ap
pe
es
s 4 Sieve
3.3 mm
3.3 mm
Actual Grain Shapes
1.1 mm
1.1 mm
SEM secondary electron images of individual
grains separated by liquid metal embrittlement
Brass
with Hg.
Types of Grain Sizes
• Non-twinned(ferrite, BCC metals,Al)
• Twinned FCC Metals (austenite)
• Prior-Austenite
(Parent Phase in Q&T Steels)
• Number of Grains/inch2 at 100X: G
• Number of Grains/mm2 at 1X:
•Average GrainArea, µm2 :A
•Average Grain Diameter, µm:
NA
d
• Mean Lineal Intercept Length, µm: l
Comparison Chart Ratings
Shepherd Fracture Grain Size Ratings
Jeffries Planimetric Grain Size
Heyn/Hilliard/Abrams Intercept Grain Size
Snyder-Graff Intercept Grain Size
2D to 3D Grain Size Distribution Methods
G-1
n = 2
n = number of grains/in2 at 100X
G =ASTM Grain Size Number
Introduced when E 91 –ASTM Method
for Estimating theAverage Grain Size of
Non-Ferrous Metals, Other Than
Copper, and TheirAlloys – was
introduced in 1951. The equation was
developed by Timken Co.
G
1
2
3
4
5
n
1
2
4
8
16
G
6
7
8
9
10
n
32
64
128
256
512
CurrentASTM Standards for Grain Size
ASTM E 112: For equiaxed, single-
phase grain structures
ASTM E 930: For grain structures
with an occasional very large grain
ASTM E 1181: For characterizing
duplex grain structures
ASTM E 1382: For image analysis
measurements of grain size, any type
Other countries established grain size scales
using the metric system, based on the
number of grains per sq. mm at 1X, NA:
Sweden (SIS 11 11 01); Italy (UNI 3245);
Russia (GOST 5639); France (NFA04-102);
and ISO (ISO 643) according to:
M = 8 (2Gm)
where m = No. Grains/mm2 at 1X
Grain size numbers based on that
equation using the metric system
are ~4.5% higher than for the
ASTM equation, that is:
G = Gm – 0.045
This standard also uses the metric system but
yields the same numbers as theASTM
equation. The photomicrograph serial
number, K, is calculated based on the average
number of grains/cm2 at 100x, Z, by:
K = 3.7 + 3.33 log Z
These standards are also metric but
they produce numbers equal to the
ASTM numbers by:
2G+3
m =
where m is the number of grains/mm2
at 1X
Determine for any standard that generates
numerical data the precision and bias by use
of interlaboratory “round robins”.
Accuracy generally cannot be determined as
the true values being measured cannot be
determined by any referee method.
E 2 was the firstASTM E-4 standard and it
described the planimetric method of Jeffries
in depth, mentioning the Heyn intercept
method briefly in an appendix
Members claimed these were too tedious to
use and asked for a simpler method. The 1930
revision of E 2 added a comparison chart for
copper at 75X (grain contrast etch) with the
grain size expressed as d, the average
diameter in mm.
The 1930 E 2 Cu chart was criticized as
being poorly graded and was dropped (all
grain size methods were dropped) in the
1941 revision.
Anew chart with 12 micrographs was
incorporated intoASTM E 79 (Cu) when
was introduced in 1949.
E 79 was discontinued in 1963 when all
it
grain size methods were incorporated in E
112 (new Plate III with 14 images)
In 1933, E-4 issued E 19,ASTM
Classification ofAustenite Grain Size in
Steels, based upon the McQuaid-Ehn
carburizing technique. The chart had 8
images showing both the case and core. The
grain size was listed in terms of the number
of grains/in2 at 100x, but G numbers were
not used. This chart was heavily criticized
as being poorly graded.
The 1933 E 19 chart was replaced in 1938 by
a stylized chart (artist’s rendering).
E19 was discontinued in 1961 when E 112
was developed. Plate IV of E 112 now depicts
grains outlined by cementite as by the
McQuaid-Ehn method.
In 1950, E-4 introduced E 89,ASTM Method
for Estimating theAverage Ferrite Grain
Size of Low-Carbon Steels, with grains from
ASTM 1 to 8.
This chart was also heavily criticized
was discontinued in 1961 when E 112
introduced. E 112 does not have such a
and
was
chart
but an idealized non-twinned grain size
chart (Plate I) – which was still being
corrected up to the end of the 1980s!
E-4 started a study in 1947 for rating grain
size in nonferrous metals which resulted in
E 91 in 1951. E 91 had two charts, one for
twinned alloys (grain boundary etch) and
one for non-twinned alloys. Both charts
were dropped when E 112 was created.
E 112, Plate I is for non-twinned grains and
Plate II is for twinned grains – both depict
grain boundary attack.
Look at a properly etched microstructure,
using the same magnification as the chart, and
pick out the chart picture closest in size to the
test specimen. If the grain structure is very
fine, raise the magnification, pick out the
closest chart picture and correct for the
difference in magnification according to:
G = Chart G + Q
Q = 6.64Log10(M/Mb)
where M is the magnification used and
Mb is the chart magnification
Figure 1 O, Aé'T1': E112, Pla te II for ra ting the grain
size of ~ustenitic cwinned alloys, grain-boundary etch. r·iE;Ure5, 0'!'11
E112,
of copper
I-late III
and copper
í'or ra t í.ng the austenitic grain s í ze
alloys.
----~-·-~-----....a....... :
.,,ij
.'
."
.'
."
.."
....•
..•
.•
~'-
'""
''
,,
:.
,.~
,u
..'
."
.'
~.
.."
...'"~·",rs., [,eo,
SEP1510 contains a chart depicting non-
twinned grains that are equiaxed, or
elongated (2 to 1 and 4 to 1) by cold
working – very useful for cold worked
sheet steels.
r- -
1
so ®
· 100
5
wo
char t dcpicting
Figure 1
1.
The Stahl-F.isen
equiaxed (top),
})rufblatt 151
0
grain size
?:
1
(middle) and 4:1 (bottom) elongation.
6
®10
Figure 11. 2nd half of
chart)
( .
-,- -o Indice di' ¡p•in O ·¡ Indice
de 1raln O
¡ Indice de 1ra1n - 3 1 1 1 lnd•(",. d,- zraln
! pour un
pour "'" 'º 1
~''-º-"'-"_,m'·-'-'-'_•_n_· __ so__ 1 00 l_grou11~ml'nt de ¡:, ~''-º'-"-"'-"-"-"-''--"--'-º-
lOO
1-00
400 800 
pour un pour un 1ronisu:ment de l ~ 100 }00 <00
800
- lnd,u! d• 11•;un -,- -,-,,¡ ,o
Indice de 1ra<n
pour un ¡
pour un
1 irou1u,-men1 d,- 2 ~ to 1 00 oo 1,:io eoo se 1 00 2 1 400 100 200 -ce
i'.:_<>:.:"c::"c::'m:_c•:::_n<:.:d
_
.:...:__.
• _':.:_"_1 00 20_0_•_0_
--'0
1
nº IV
11
1
lmage-type
lmage-type nº
1 lmage-type nº 11
lmage-type nº
lOO ~
nº VIII
VII lmage-type
nº VI lmage-type nº
nº V lmage-type
lmage-type
Figure
8.
Frenc
h
NF A04-
102
grain size chart for
rating
Iv.cQuaid
-Ehn
carburized
samples.
PRODUITS SIDÉRURGIQUES
NORME FRAM<;AISE
EMREGISTR{E MESURE DE LA GROSSEUR DU GRAIN IMAGES-
lmage-type nº 1 lmage-type nº 11
lmage-type nº
NF
TYPES (Planche 1) A 04-102
In 1931, RagnarArpi of Sweden showed
that the prior-austenite grain size of high-
hardness tool steels could be rated by
comparing a fractured test specimen to
series of 5 graded fractures.
Benjamin Franklin Shepherd in 1934
expanded the series to 10 fractures,
a
numbered 1 to 10, which corresponded to G
values of 1 to 10
It was a remarkable coincidence that the 10
graded fractures, coded 1 to 10 by Shepherd,
correlated so well toASTM G of 1 to 10 –
especially as Shepherd created the fracture
grain size series 17 years before G numbers
were by E-4 with E 91!
Shepherd Fracture Grain Size Specimens
The literature has claimed that all 10
fractures in the series are intergranular. This
is not the case; only specimens 1 through 6
are intergranular. For specimens of 7 to 10,
the amount of intergranular fracture drops to
zero and the fractures are cleavage with finer
and finer facets.
Cannot rate P GS finer than 10 (eye cannot
distinguish differences in fracture appearance)
Aflat fracture face works best
Works for martensitic structures (retained
austenite is not a problem)
Highly tempered martensite biases results
(also presence of other constituents)
Fractures transverse to deformation axis
should be used
In 1894,Albert Sauveur published grain
sizes measured in terms of the number of
grains/mm2 but did not formally define the
measurement method.
Zay Jeffries, a graduate student of Sauveur’s
and a future E-4 member, published details of
performing the planimetric grain size
measurement method
incorporated this method
developed in
in 1916 and he
in E 2 when it was
1916.
n1 = number of grains completely inside the
test circle
n2 = number of grains intercepting
circle
the
NA = f[ n1 + (n2/2)]
f = Jeffries multiplier
f = magnification2/circle area
Average GrainArea =A= —1
—
NA
G = (-3.322LogA) – 2.955
n1 = 68 and n2 = 41
For the preceding micrograph,
n1 = 68 and
And
n2 = 41
M2
1002
f = —— =
A
——— =
20106.2
0.497
NA = f[n1 + (n2/2)]
NA = (0.497)[68 + (41/2)]
mm-2
NA = 44.02
1
—— = 0.0227 mm2
NA
A =
(A)1/2
d =
G = 2.5
1
The great Russian stereologist, SarkisA.
Saltykov, showed that as n1 decreases, bias
results. He recommended using a square or
rectangular test figure. Intercepted grains at the
corner are not counted (assumed to be 1). n2 is
the number of grains intersecting the four sides,
but not the corners. n1 is the number of grains
inside the test figure, as before.
NA = f[n1 + (n2/2) + 1]
This is an austenitic Mn steel, solution annealed and aged to
precipitate a pearlitic phase on the grain boundaries (at 100X).
There are 43 grains within the circle (n1) and there are 25 grains
intersecting the circle (n2). The test circle’s area is 0.5 mm2 at 1X.
NA = f[n1 + (n2/2)]
f = [(1002)/5000]
mm-2
NA = 2[43 + (25/2)] = 111
G = [3.22Log10(111)] – 2.954 = 3.8
(Of course, more than one field should be measured to get
good statistical results)
N = number of grains intercepted
P = number of grain boundary intersections
NL = —
N
—
LT
PL = —
P—
LT
where LT is the true test line length
Apply a test line over the microstructure
and count the number of grains intercepted
or the number of grain boundary
intersections (easier for a single-phase grain
structure).After you count N or P, divide
that number by the true line length to get
NL or PL.
Intercept Counts (N)
1/2 1 1 1/2
1 1 1
The test line intercepted 5 whole grains and the line ends fell
in two grains. These are weighted as ½ an interception. So the
total is 6 intercepts (N=6).
Intersection Counts (P)
1 1 1 1 1 1
The test line has intersected 6 grain boundaries. The ends
within the grains are not important in intercept counting.
So, P=6 for the intercept count.
—
1
—
1
1
—
PL
Mean Lineal Intercept, l = =
NL
G = [6.644Log10(NL or PL)] – 3.288
G = [-6.644Log10(l)] – 3.288
mm-1
Note: Units are in (for NL and PL) or mm (for l)
If the grain structure is not equiaxed, but
shows some
straight test
horizontal
distortion of the grain shape, use
lines at various angles, or simply
and vertical with respect to the
deformation axis of the specimen.
Alternatively, you can use test circles, such as
theASTM three-circle grid (three concentric
circles with a line length of 500 mm). This test
pattern averages the anisotropy.
Example of three concentric test circles
for point counting.
To illustrate intercept counting, note that there are 41, 25 and 20 grains
intercepted (N) by the three concentric circles.
LT = 11.4 mm
N = 41 + 25 + 20 = 86
—
8—
6
11.4
mm-1
NL = = 7.54
l = —1— = 0.133
7.54
mm
G = [-6.644Log10(0.133)] – 3.288 = 2.5
Intercept Grain Size Example – Single Phase
This is a 100X micrograph of 304 stainless steel etched electrolytically with
60% HNO3 (0.6 V dc, 120 s, Pt cathode) to suppress etching of the twin
boundaries. The three circles have a total circumference of 500 mm.Acount of
the grain boundary intersections yielded 75 (P=75).
Intercept Grain Size Example – Single Phase
75
mm-1
PL = ——— = 15
500/100
l = —1
— = 0.067
15
mm
G = [-6.644Log10(0.067)] – 3.288 = 4.5
Intercept Grain Size Example:
Single Phase Twinned Grain Structure
The 100X micrograph is that of a twinned FCC Ni-base superalloy, X-750, in
the solution annealed and aged condition after etching with Beraha’s reagent
which colored the grains. This is a much more difficult microstructure for
intercept counting. The three circles measure 500 mm and Pis 63
(intersections with twin boundaries are ignored).
Intercept Grain Size Example:
Single Phase Twinned Grain Structure
63
mm-1
PL = ——— = 12.6
500/100
l = —1— = 0.0794 mm
12.6
G = [-6.644Log10(0.0794)] – 3.288 = 4
N = Number of grains intercepted
LT
VV
= Test line length/Magnification
= Volume fraction of the phase
VV (LT)
l = ———
N
This 500X micrograph of Ti-6242 was alpha/beta forged and alpha/beta annealed,
then etched with Kroll’s reagent. The circumference of the three circles is 500 mm.
Point counting revealed an alpha phase volume fraction of 0.485 (48.5%). 76 alpha
grains were intercepted by the three circles.
(0.485)(500/500)
l = ———————— = 0.006382 mm
76
G = [-6.644Log10(0.006382)] – 3.288 = 11.3
Because the grain size of hardened high speed tool steels is generally around
G = 9 to 12, Snyder and Graff proposed an alternate intercept method. In
this range NA changes by a factor of 10 and the mean lineal intercept length,
l, varies from 14.1 to 5 µm.
To increase the sensitivity to these small variations, they suggested doing an
intercept count at 1000X using a 5-inch (127-mm) test line. The number of
grains intercepted by the line is counted. This is repeated for 10 random
placements of the test line. The average value of the number of intercepted
grains is the S-G intercept grain size number.
ASTM G can be calculated from the NIS-G value:
G = [6.635Log10(NIS-G)] + 2.66
The 1000X micrograph above of a high speed steel in the quenched and tempered
condition has been etched with 10% nital. Two 5-inch (127-mm) lines have been
drawn and the number of intercepted grains were counted. For each line there
were two tangent hits (each weighted as (1/2). One line had 12 intercepts and the
other 13. So, N was 13 and 14, with an average of 13.5 (NIS-G = 13.5) and G=10.2.
Anumber ofASTM E-4 members counted intercepts using the three-
circle grid and then counted the grains within a test circle, and
intersecting the test circle, on seven micrographs. Three were at
different magnifications for a ferritic stainless steel and four were at
different magnifications for another ferritic stainless steel.All images
were taken from the same region. The people did not calculate the grain
size; they only collected the raw data. Prior to that, they used a
comparison chart, plate I of E 112, to estimate the grain size of each
micrograph.
Afew people digitized the images and measured the grain size with
image analysis systems.
Examples of the micrographs are shown on the next slide. For the
counting, the micrographs were enlarged to 8 x 10 inches. Random grid
placement was used for the intercept method, but for the planimetric
method, the template contained five test circles, so the placement on the
micrograph was not completely random, but forced.
Examples of the micrographs used for the round robin. There were three
magnifications for the one at left and four for the one at right. Grain
boundary delineation was excellent.
Percent
Number
3 4 5 6 7 8 9 10 11 12 13
14
ASTM Grain Size Number, G
Distribution of grain size by number % and area % (preferred) for the left
image in the previous slide (image analysis results). There is a slight degree of
duplexity in the distribution.
Percent
Number 0/o o

30
······················································-·····-
························
.
--- Area 0/o
20
10 -
3 4 5 6 7 8 9 10 11 12 13
14
ASTM Grain Size Number, G
Distribution of grain size by number % and area % (preferred) for the right
image in the earlier slide (image analysis results). There is less duplexity in the
distribution than for the other specimen.
Results for the first specimen at three magnifications.
Results for the specimen with four magnifications.
“wild” value
Aplot of the planimetric grain size measurement vs. the intercept grain size
measurements for all specimens reveals a normal scatter around the one-to-
one trend line (except for one point) indicating no bias between the methods.
If the true magnification is not used, but all images are assumed to be at 100X, the
different magnifications and give a wider spread of apparent grain sizes. Note that
the comparison chart ratings are consistently lower than the measured values by
0.5 to 1 G value indicating bias in the comparison chart ratings.
Naturally, when the intercept measurements are plotted vs. the comparison chart
estimates of G (similarly to the last slide where the planimetric data was used), the
same bias in the comparison chart data is observed.
Plot of the relative accuracy for the planimetric measurements indicating that
about 1000 grains must be counted to get <10% RA.
For the intercept method, <10% RAcan be obtained by counting about 400
intercepts or intersections. Counting with the planimetric method is more tedious
as the grains must be marked off to get an accurate count.
Plot of the %RAas a function of the average count per grid placement
(per field). Counting errors start to results when the count exceeds about
50-60 per field.
80 '
"
4
70
I95% Confidence level
1
6
0
E
- 5
:i
~
1.S
-
50
a.
Ql Ql
~
6
N
s
e 40
·¡¡;

e
ro
Ql
e
30 !'I
-
e
ro
Ql
í.t,.
~
20
¡
8
- 9
10
10
o
o 10 20
30 '
Nital etch time, s
It is possible to make measurements of the
diameter, lineal intercept lengths, or areas of
grains and plot these data in histogram
fashion. Many procedures have been
developed to translate these measurements
on the two-dimensional sectioning plane to
develop three-dimensional grain size
information. Nearly all models utilize some
simplifying assumptions about shape, such as
spherical grain shapes.
Grain structure of 304 austenitic stainless steel etched with 60% HNO3 at 0.6
V dc, Pt cathode, 120 s (this does not bring up twin boundaries) used for the
following grain size distribution study.
Alog plot of the intercept length vs. the number percent per class yields a good
representation of the distribution. Note the slight skew of the data ( 1) while the
kurtosis, 2, is close to the ideal value of 3 for a Gaussian distribution.
Alinear plot of the data does not reveal a good distribution as it is skewed more
to the right and the kurtosis is higher.
Three specimens of an experimental 5% Cr hot-work die steel were
analyzed for their grain size distribution.This one was austenitized at 1950
°F (1066 °C). The others were austenitized at 1925 and 1975 °F (1051 and
1079 °C). The specimens were quenched to 1300 °F (704 °C), held 1 h to
precipitate a pearlitic like constituent at the grain boundaries and air
cooled. They were etched with glyceregia.
Grain_Size_Measurement.pptx
Grain_Size_Measurement.pptx
Grain_Size_Measurement.pptx
Grain_Size_Measurement.pptx
Grain_Size_Measurement.pptx

More Related Content

What's hot

Fracture mechanics CTOD Crack Tip Opening Displacement
Fracture mechanics CTOD Crack Tip Opening DisplacementFracture mechanics CTOD Crack Tip Opening Displacement
Fracture mechanics CTOD Crack Tip Opening DisplacementDavalsab M.L
 
Maraging steel
Maraging steelMaraging steel
Maraging steelRaja P
 
Dr.R.Narayanasamy - Effect of Microstructure on formability of steels - Modif...
Dr.R.Narayanasamy - Effect of Microstructure on formability of steels - Modif...Dr.R.Narayanasamy - Effect of Microstructure on formability of steels - Modif...
Dr.R.Narayanasamy - Effect of Microstructure on formability of steels - Modif...Dr.Ramaswamy Narayanasamy
 
Aluminium technologies week 12
Aluminium technologies week 12Aluminium technologies week 12
Aluminium technologies week 12rizuwan96
 
6.1 brass a copper alloy
6.1 brass a copper alloy6.1 brass a copper alloy
6.1 brass a copper alloyHarshal Varade
 
6 Commonly Found Flat-Rolled Steel Defects
6 Commonly Found Flat-Rolled Steel Defects6 Commonly Found Flat-Rolled Steel Defects
6 Commonly Found Flat-Rolled Steel DefectsTeam Pacesetter
 
Właściwości materiałów ceramicznych
Właściwości materiałów ceramicznychWłaściwości materiałów ceramicznych
Właściwości materiałów ceramicznychmagda23lbn
 
A STUDY ON MECHANICAL PROPERTIES OF ALUMINUM 6063 BASED HYBRID COMPOSITES
A STUDY ON MECHANICAL PROPERTIES OF ALUMINUM 6063 BASED HYBRID COMPOSITESA STUDY ON MECHANICAL PROPERTIES OF ALUMINUM 6063 BASED HYBRID COMPOSITES
A STUDY ON MECHANICAL PROPERTIES OF ALUMINUM 6063 BASED HYBRID COMPOSITESSuryamech5
 
Weldability of ni &amp; ti alloys
Weldability of ni &amp; ti alloysWeldability of ni &amp; ti alloys
Weldability of ni &amp; ti alloysArchunan Ponnukhan
 
Solidification and microstructure of metals
Solidification and microstructure of metals Solidification and microstructure of metals
Solidification and microstructure of metals Bibin Bhaskaran
 

What's hot (20)

Microstructures
MicrostructuresMicrostructures
Microstructures
 
4 r.s.s
4 r.s.s4 r.s.s
4 r.s.s
 
Slip casting
Slip casting Slip casting
Slip casting
 
Fracture mechanics CTOD Crack Tip Opening Displacement
Fracture mechanics CTOD Crack Tip Opening DisplacementFracture mechanics CTOD Crack Tip Opening Displacement
Fracture mechanics CTOD Crack Tip Opening Displacement
 
Maraging steel
Maraging steelMaraging steel
Maraging steel
 
Dr.R.Narayanasamy - Effect of Microstructure on formability of steels - Modif...
Dr.R.Narayanasamy - Effect of Microstructure on formability of steels - Modif...Dr.R.Narayanasamy - Effect of Microstructure on formability of steels - Modif...
Dr.R.Narayanasamy - Effect of Microstructure on formability of steels - Modif...
 
Aluminium technologies week 12
Aluminium technologies week 12Aluminium technologies week 12
Aluminium technologies week 12
 
annealing
annealingannealing
annealing
 
Glass in Materials Science
Glass in Materials ScienceGlass in Materials Science
Glass in Materials Science
 
6.1 brass a copper alloy
6.1 brass a copper alloy6.1 brass a copper alloy
6.1 brass a copper alloy
 
Special moulding processes
Special moulding processesSpecial moulding processes
Special moulding processes
 
Metallic glasses
Metallic glassesMetallic glasses
Metallic glasses
 
6 Commonly Found Flat-Rolled Steel Defects
6 Commonly Found Flat-Rolled Steel Defects6 Commonly Found Flat-Rolled Steel Defects
6 Commonly Found Flat-Rolled Steel Defects
 
Właściwości materiałów ceramicznych
Właściwości materiałów ceramicznychWłaściwości materiałów ceramicznych
Właściwości materiałów ceramicznych
 
A STUDY ON MECHANICAL PROPERTIES OF ALUMINUM 6063 BASED HYBRID COMPOSITES
A STUDY ON MECHANICAL PROPERTIES OF ALUMINUM 6063 BASED HYBRID COMPOSITESA STUDY ON MECHANICAL PROPERTIES OF ALUMINUM 6063 BASED HYBRID COMPOSITES
A STUDY ON MECHANICAL PROPERTIES OF ALUMINUM 6063 BASED HYBRID COMPOSITES
 
Vicker hardness test
Vicker hardness testVicker hardness test
Vicker hardness test
 
Seminar on inconel718
Seminar on inconel718Seminar on inconel718
Seminar on inconel718
 
Weldability of ni &amp; ti alloys
Weldability of ni &amp; ti alloysWeldability of ni &amp; ti alloys
Weldability of ni &amp; ti alloys
 
Module gear data
Module gear dataModule gear data
Module gear data
 
Solidification and microstructure of metals
Solidification and microstructure of metals Solidification and microstructure of metals
Solidification and microstructure of metals
 

Similar to Grain_Size_Measurement.pptx

Similar to Grain_Size_Measurement.pptx (6)

IntroToStereology-B-long.ppt
IntroToStereology-B-long.pptIntroToStereology-B-long.ppt
IntroToStereology-B-long.ppt
 
formability limit diagram
formability limit diagramformability limit diagram
formability limit diagram
 
Boardman
BoardmanBoardman
Boardman
 
S.bugat 2001 dbnrrfnthmm dfnrtfn
S.bugat 2001 dbnrrfnthmm dfnrtfnS.bugat 2001 dbnrrfnthmm dfnrtfn
S.bugat 2001 dbnrrfnthmm dfnrtfn
 
Proof of ss 430 paper revised
Proof of ss 430 paper   revisedProof of ss 430 paper   revised
Proof of ss 430 paper revised
 
Apps support tech-notes-vol1_issue5
Apps support tech-notes-vol1_issue5Apps support tech-notes-vol1_issue5
Apps support tech-notes-vol1_issue5
 

More from Oswaldo Gonzales (20)

3741856.ppt
3741856.ppt3741856.ppt
3741856.ppt
 
3774086.ppt
3774086.ppt3774086.ppt
3774086.ppt
 
17398462.ppt
17398462.ppt17398462.ppt
17398462.ppt
 
12983606.ppt
12983606.ppt12983606.ppt
12983606.ppt
 
14213505.ppt
14213505.ppt14213505.ppt
14213505.ppt
 
11120233.ppt
11120233.ppt11120233.ppt
11120233.ppt
 
11782009.ppt
11782009.ppt11782009.ppt
11782009.ppt
 
5406390.ppt
5406390.ppt5406390.ppt
5406390.ppt
 
3758342.ppt
3758342.ppt3758342.ppt
3758342.ppt
 
8300412.ppt
8300412.ppt8300412.ppt
8300412.ppt
 
3855045.ppt
3855045.ppt3855045.ppt
3855045.ppt
 
5508128.ppt
5508128.ppt5508128.ppt
5508128.ppt
 
8614976.ppt
8614976.ppt8614976.ppt
8614976.ppt
 
140440.ppt
140440.ppt140440.ppt
140440.ppt
 
7389216.ppt
7389216.ppt7389216.ppt
7389216.ppt
 
7355242.ppt
7355242.ppt7355242.ppt
7355242.ppt
 
3916160.ppt
3916160.ppt3916160.ppt
3916160.ppt
 
160174.ppt
160174.ppt160174.ppt
160174.ppt
 
18169117.ppt
18169117.ppt18169117.ppt
18169117.ppt
 
17261435.ppt
17261435.ppt17261435.ppt
17261435.ppt
 

Recently uploaded

Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...Call Girls in Nagpur High Profile
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfRagavanV2
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01KreezheaRecto
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueBhangaleSonal
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptMsecMca
 
Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Christo Ananth
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdfKamal Acharya
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxfenichawla
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...SUHANI PANDEY
 

Recently uploaded (20)

Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 

Grain_Size_Measurement.pptx

  • 1. George F. Vander Voort Director, Research & Technology Buehler Ltd Lake Bluff, Illinois USA
  • 2. Shapes must be space filling Surfaces must exhibit minimum surface area and minimum surface tension (Plateau, 1873)
  • 3. Tetrakaidecahedron (left) and Pentagonal Dodecahedron (right)
  • 4. Lord Kelvin (1887) showed that the optimum grain shape meeting these requirements was a polyhedron called a tetrakaidecahedra 14 faces 24 Corners 36 Edges with
  • 5. But, the tetrakaidecahedron does not exhibit 120 dihedral angles between grain boundaries where 3 adjacent grains meet at an edge – unless the faces exhibit curvature.
  • 6. Equal interfacial energies produce face angles of 109.5 and dihedral angles of 120 In this case: Avg. No. Edges/Face = 5.1043 Avg. No. Faces/Grain = 13.394 Avg. No. Edges/Grain = 34.195 Avg. No. Corners/Grain = 22.78
  • 7. First to study actual grain shapes by LME of ß-brass in liquid Hg. For isolated grains, he found: Avg. No. Faces/Grain = 14.5 (11 to 20) Avg. No. Edges/Face = 5.14 (3 to 8) 5-sided grains were most frequent
  • 8. Used stereomicroradiography grains and found: to study Avg. No. Edges/Face = 5.06 Avg. No. Faces/Grain = 12.48
  • 9. For spacing-filling aggregates of polyhedral grains + C – E + F – B = 1 C – number of point corners E – number of lineal edges F – number of polygonal faces B – number of polyhedral bodies
  • 10. For a single polygon, B = 1 and C – E + F = 2 The two-dimensional form of Euler’s Law for an array of polygons is C – E + F = 1
  • 11. Separation of grains by sieving embrittlement of 3.3 mm -' after liquid metal 3.3 mm Brass in Hg 14 Sieve 8 Sieve 5/16 Sieve A Ac ct tu ua al l G Gr ra ai in n S Sh ha ap pe es s 4 Sieve 3.3 mm 3.3 mm
  • 12. Actual Grain Shapes 1.1 mm 1.1 mm SEM secondary electron images of individual grains separated by liquid metal embrittlement Brass with Hg.
  • 13. Types of Grain Sizes • Non-twinned(ferrite, BCC metals,Al) • Twinned FCC Metals (austenite) • Prior-Austenite (Parent Phase in Q&T Steels)
  • 14. • Number of Grains/inch2 at 100X: G • Number of Grains/mm2 at 1X: •Average GrainArea, µm2 :A •Average Grain Diameter, µm: NA d • Mean Lineal Intercept Length, µm: l
  • 15. Comparison Chart Ratings Shepherd Fracture Grain Size Ratings Jeffries Planimetric Grain Size Heyn/Hilliard/Abrams Intercept Grain Size Snyder-Graff Intercept Grain Size 2D to 3D Grain Size Distribution Methods
  • 16. G-1 n = 2 n = number of grains/in2 at 100X G =ASTM Grain Size Number
  • 17. Introduced when E 91 –ASTM Method for Estimating theAverage Grain Size of Non-Ferrous Metals, Other Than Copper, and TheirAlloys – was introduced in 1951. The equation was developed by Timken Co.
  • 19. CurrentASTM Standards for Grain Size ASTM E 112: For equiaxed, single- phase grain structures ASTM E 930: For grain structures with an occasional very large grain ASTM E 1181: For characterizing duplex grain structures ASTM E 1382: For image analysis measurements of grain size, any type
  • 20. Other countries established grain size scales using the metric system, based on the number of grains per sq. mm at 1X, NA: Sweden (SIS 11 11 01); Italy (UNI 3245); Russia (GOST 5639); France (NFA04-102); and ISO (ISO 643) according to: M = 8 (2Gm) where m = No. Grains/mm2 at 1X
  • 21. Grain size numbers based on that equation using the metric system are ~4.5% higher than for the ASTM equation, that is: G = Gm – 0.045
  • 22. This standard also uses the metric system but yields the same numbers as theASTM equation. The photomicrograph serial number, K, is calculated based on the average number of grains/cm2 at 100x, Z, by: K = 3.7 + 3.33 log Z
  • 23. These standards are also metric but they produce numbers equal to the ASTM numbers by: 2G+3 m = where m is the number of grains/mm2 at 1X
  • 24. Determine for any standard that generates numerical data the precision and bias by use of interlaboratory “round robins”. Accuracy generally cannot be determined as the true values being measured cannot be determined by any referee method.
  • 25. E 2 was the firstASTM E-4 standard and it described the planimetric method of Jeffries in depth, mentioning the Heyn intercept method briefly in an appendix Members claimed these were too tedious to use and asked for a simpler method. The 1930 revision of E 2 added a comparison chart for copper at 75X (grain contrast etch) with the grain size expressed as d, the average diameter in mm.
  • 26. The 1930 E 2 Cu chart was criticized as being poorly graded and was dropped (all grain size methods were dropped) in the 1941 revision. Anew chart with 12 micrographs was incorporated intoASTM E 79 (Cu) when was introduced in 1949. E 79 was discontinued in 1963 when all it grain size methods were incorporated in E 112 (new Plate III with 14 images)
  • 27. In 1933, E-4 issued E 19,ASTM Classification ofAustenite Grain Size in Steels, based upon the McQuaid-Ehn carburizing technique. The chart had 8 images showing both the case and core. The grain size was listed in terms of the number of grains/in2 at 100x, but G numbers were not used. This chart was heavily criticized as being poorly graded.
  • 28. The 1933 E 19 chart was replaced in 1938 by a stylized chart (artist’s rendering). E19 was discontinued in 1961 when E 112 was developed. Plate IV of E 112 now depicts grains outlined by cementite as by the McQuaid-Ehn method.
  • 29. In 1950, E-4 introduced E 89,ASTM Method for Estimating theAverage Ferrite Grain Size of Low-Carbon Steels, with grains from ASTM 1 to 8. This chart was also heavily criticized was discontinued in 1961 when E 112 introduced. E 112 does not have such a and was chart but an idealized non-twinned grain size chart (Plate I) – which was still being corrected up to the end of the 1980s!
  • 30. E-4 started a study in 1947 for rating grain size in nonferrous metals which resulted in E 91 in 1951. E 91 had two charts, one for twinned alloys (grain boundary etch) and one for non-twinned alloys. Both charts were dropped when E 112 was created. E 112, Plate I is for non-twinned grains and Plate II is for twinned grains – both depict grain boundary attack.
  • 31. Look at a properly etched microstructure, using the same magnification as the chart, and pick out the chart picture closest in size to the test specimen. If the grain structure is very fine, raise the magnification, pick out the closest chart picture and correct for the difference in magnification according to: G = Chart G + Q Q = 6.64Log10(M/Mb) where M is the magnification used and Mb is the chart magnification
  • 32. Figure 1 O, Aé'T1': E112, Pla te II for ra ting the grain size of ~ustenitic cwinned alloys, grain-boundary etch. r·iE;Ure5, 0'!'11 E112, of copper I-late III and copper í'or ra t í.ng the austenitic grain s í ze alloys. ----~-·-~-----....a....... : .,,ij .' ." .' ." .." ....• ..• .• ~'- '"" '' ,, :. ,.~ ,u ..' ." .' ~. .." ...'"~·",rs., [,eo,
  • 33. SEP1510 contains a chart depicting non- twinned grains that are equiaxed, or elongated (2 to 1 and 4 to 1) by cold working – very useful for cold worked sheet steels.
  • 34. r- - 1 so ® · 100 5 wo char t dcpicting Figure 1 1. The Stahl-F.isen equiaxed (top), })rufblatt 151 0 grain size ?: 1 (middle) and 4:1 (bottom) elongation.
  • 35. 6 ®10 Figure 11. 2nd half of chart) ( .
  • 36. -,- -o Indice di' ¡p•in O ·¡ Indice de 1raln O ¡ Indice de 1ra1n - 3 1 1 1 lnd•(",. d,- zraln ! pour un pour "'" 'º 1 ~''-º-"'-"_,m'·-'-'-'_•_n_· __ so__ 1 00 l_grou11~ml'nt de ¡:, ~''-º'-"-"'-"-"-"-''--"--'-º- lOO 1-00 400 800 pour un pour un 1ronisu:ment de l ~ 100 }00 <00 800 - lnd,u! d• 11•;un -,- -,-,,¡ ,o Indice de 1ra<n pour un ¡ pour un 1 irou1u,-men1 d,- 2 ~ to 1 00 oo 1,:io eoo se 1 00 2 1 400 100 200 -ce i'.:_<>:.:"c::"c::'m:_c•:::_n<:.:d _ .:...:__. • _':.:_"_1 00 20_0_•_0_ --'0 1 nº IV 11 1 lmage-type lmage-type nº 1 lmage-type nº 11 lmage-type nº lOO ~ nº VIII VII lmage-type nº VI lmage-type nº nº V lmage-type lmage-type Figure 8. Frenc h NF A04- 102 grain size chart for rating Iv.cQuaid -Ehn carburized samples. PRODUITS SIDÉRURGIQUES NORME FRAM<;AISE EMREGISTR{E MESURE DE LA GROSSEUR DU GRAIN IMAGES- lmage-type nº 1 lmage-type nº 11 lmage-type nº NF TYPES (Planche 1) A 04-102
  • 37. In 1931, RagnarArpi of Sweden showed that the prior-austenite grain size of high- hardness tool steels could be rated by comparing a fractured test specimen to series of 5 graded fractures. Benjamin Franklin Shepherd in 1934 expanded the series to 10 fractures, a numbered 1 to 10, which corresponded to G values of 1 to 10
  • 38. It was a remarkable coincidence that the 10 graded fractures, coded 1 to 10 by Shepherd, correlated so well toASTM G of 1 to 10 – especially as Shepherd created the fracture grain size series 17 years before G numbers were by E-4 with E 91!
  • 39. Shepherd Fracture Grain Size Specimens
  • 40. The literature has claimed that all 10 fractures in the series are intergranular. This is not the case; only specimens 1 through 6 are intergranular. For specimens of 7 to 10, the amount of intergranular fracture drops to zero and the fractures are cleavage with finer and finer facets.
  • 41. Cannot rate P GS finer than 10 (eye cannot distinguish differences in fracture appearance) Aflat fracture face works best Works for martensitic structures (retained austenite is not a problem) Highly tempered martensite biases results (also presence of other constituents) Fractures transverse to deformation axis should be used
  • 42. In 1894,Albert Sauveur published grain sizes measured in terms of the number of grains/mm2 but did not formally define the measurement method. Zay Jeffries, a graduate student of Sauveur’s and a future E-4 member, published details of performing the planimetric grain size measurement method incorporated this method developed in in 1916 and he in E 2 when it was 1916.
  • 43. n1 = number of grains completely inside the test circle n2 = number of grains intercepting circle the NA = f[ n1 + (n2/2)] f = Jeffries multiplier f = magnification2/circle area
  • 44. Average GrainArea =A= —1 — NA G = (-3.322LogA) – 2.955
  • 45. n1 = 68 and n2 = 41
  • 46. For the preceding micrograph, n1 = 68 and And n2 = 41 M2 1002 f = —— = A ——— = 20106.2 0.497
  • 47. NA = f[n1 + (n2/2)] NA = (0.497)[68 + (41/2)] mm-2 NA = 44.02
  • 48. 1 —— = 0.0227 mm2 NA A = (A)1/2 d = G = 2.5
  • 49. 1 The great Russian stereologist, SarkisA. Saltykov, showed that as n1 decreases, bias results. He recommended using a square or rectangular test figure. Intercepted grains at the corner are not counted (assumed to be 1). n2 is the number of grains intersecting the four sides, but not the corners. n1 is the number of grains inside the test figure, as before. NA = f[n1 + (n2/2) + 1]
  • 50. This is an austenitic Mn steel, solution annealed and aged to precipitate a pearlitic phase on the grain boundaries (at 100X). There are 43 grains within the circle (n1) and there are 25 grains intersecting the circle (n2). The test circle’s area is 0.5 mm2 at 1X.
  • 51. NA = f[n1 + (n2/2)] f = [(1002)/5000] mm-2 NA = 2[43 + (25/2)] = 111 G = [3.22Log10(111)] – 2.954 = 3.8 (Of course, more than one field should be measured to get good statistical results)
  • 52. N = number of grains intercepted P = number of grain boundary intersections NL = — N — LT PL = — P— LT where LT is the true test line length
  • 53. Apply a test line over the microstructure and count the number of grains intercepted or the number of grain boundary intersections (easier for a single-phase grain structure).After you count N or P, divide that number by the true line length to get NL or PL.
  • 54. Intercept Counts (N) 1/2 1 1 1/2 1 1 1 The test line intercepted 5 whole grains and the line ends fell in two grains. These are weighted as ½ an interception. So the total is 6 intercepts (N=6).
  • 55. Intersection Counts (P) 1 1 1 1 1 1 The test line has intersected 6 grain boundaries. The ends within the grains are not important in intercept counting. So, P=6 for the intercept count.
  • 56. — 1 — 1 1 — PL Mean Lineal Intercept, l = = NL G = [6.644Log10(NL or PL)] – 3.288 G = [-6.644Log10(l)] – 3.288 mm-1 Note: Units are in (for NL and PL) or mm (for l)
  • 57. If the grain structure is not equiaxed, but shows some straight test horizontal distortion of the grain shape, use lines at various angles, or simply and vertical with respect to the deformation axis of the specimen. Alternatively, you can use test circles, such as theASTM three-circle grid (three concentric circles with a line length of 500 mm). This test pattern averages the anisotropy.
  • 58. Example of three concentric test circles for point counting.
  • 59. To illustrate intercept counting, note that there are 41, 25 and 20 grains intercepted (N) by the three concentric circles.
  • 60. LT = 11.4 mm N = 41 + 25 + 20 = 86 — 8— 6 11.4 mm-1 NL = = 7.54 l = —1— = 0.133 7.54 mm G = [-6.644Log10(0.133)] – 3.288 = 2.5
  • 61. Intercept Grain Size Example – Single Phase This is a 100X micrograph of 304 stainless steel etched electrolytically with 60% HNO3 (0.6 V dc, 120 s, Pt cathode) to suppress etching of the twin boundaries. The three circles have a total circumference of 500 mm.Acount of the grain boundary intersections yielded 75 (P=75).
  • 62. Intercept Grain Size Example – Single Phase 75 mm-1 PL = ——— = 15 500/100 l = —1 — = 0.067 15 mm G = [-6.644Log10(0.067)] – 3.288 = 4.5
  • 63. Intercept Grain Size Example: Single Phase Twinned Grain Structure The 100X micrograph is that of a twinned FCC Ni-base superalloy, X-750, in the solution annealed and aged condition after etching with Beraha’s reagent which colored the grains. This is a much more difficult microstructure for intercept counting. The three circles measure 500 mm and Pis 63 (intersections with twin boundaries are ignored).
  • 64. Intercept Grain Size Example: Single Phase Twinned Grain Structure 63 mm-1 PL = ——— = 12.6 500/100 l = —1— = 0.0794 mm 12.6 G = [-6.644Log10(0.0794)] – 3.288 = 4
  • 65. N = Number of grains intercepted LT VV = Test line length/Magnification = Volume fraction of the phase VV (LT) l = ——— N
  • 66. This 500X micrograph of Ti-6242 was alpha/beta forged and alpha/beta annealed, then etched with Kroll’s reagent. The circumference of the three circles is 500 mm. Point counting revealed an alpha phase volume fraction of 0.485 (48.5%). 76 alpha grains were intercepted by the three circles.
  • 67. (0.485)(500/500) l = ———————— = 0.006382 mm 76 G = [-6.644Log10(0.006382)] – 3.288 = 11.3
  • 68. Because the grain size of hardened high speed tool steels is generally around G = 9 to 12, Snyder and Graff proposed an alternate intercept method. In this range NA changes by a factor of 10 and the mean lineal intercept length, l, varies from 14.1 to 5 µm. To increase the sensitivity to these small variations, they suggested doing an intercept count at 1000X using a 5-inch (127-mm) test line. The number of grains intercepted by the line is counted. This is repeated for 10 random placements of the test line. The average value of the number of intercepted grains is the S-G intercept grain size number. ASTM G can be calculated from the NIS-G value: G = [6.635Log10(NIS-G)] + 2.66
  • 69. The 1000X micrograph above of a high speed steel in the quenched and tempered condition has been etched with 10% nital. Two 5-inch (127-mm) lines have been drawn and the number of intercepted grains were counted. For each line there were two tangent hits (each weighted as (1/2). One line had 12 intercepts and the other 13. So, N was 13 and 14, with an average of 13.5 (NIS-G = 13.5) and G=10.2.
  • 70. Anumber ofASTM E-4 members counted intercepts using the three- circle grid and then counted the grains within a test circle, and intersecting the test circle, on seven micrographs. Three were at different magnifications for a ferritic stainless steel and four were at different magnifications for another ferritic stainless steel.All images were taken from the same region. The people did not calculate the grain size; they only collected the raw data. Prior to that, they used a comparison chart, plate I of E 112, to estimate the grain size of each micrograph. Afew people digitized the images and measured the grain size with image analysis systems. Examples of the micrographs are shown on the next slide. For the counting, the micrographs were enlarged to 8 x 10 inches. Random grid placement was used for the intercept method, but for the planimetric method, the template contained five test circles, so the placement on the micrograph was not completely random, but forced.
  • 71. Examples of the micrographs used for the round robin. There were three magnifications for the one at left and four for the one at right. Grain boundary delineation was excellent.
  • 72. Percent Number 3 4 5 6 7 8 9 10 11 12 13 14 ASTM Grain Size Number, G Distribution of grain size by number % and area % (preferred) for the left image in the previous slide (image analysis results). There is a slight degree of duplexity in the distribution.
  • 73. Percent Number 0/o o 30 ······················································-·····- ························ . --- Area 0/o 20 10 - 3 4 5 6 7 8 9 10 11 12 13 14 ASTM Grain Size Number, G Distribution of grain size by number % and area % (preferred) for the right image in the earlier slide (image analysis results). There is less duplexity in the distribution than for the other specimen.
  • 74. Results for the first specimen at three magnifications.
  • 75. Results for the specimen with four magnifications.
  • 76. “wild” value Aplot of the planimetric grain size measurement vs. the intercept grain size measurements for all specimens reveals a normal scatter around the one-to- one trend line (except for one point) indicating no bias between the methods.
  • 77. If the true magnification is not used, but all images are assumed to be at 100X, the different magnifications and give a wider spread of apparent grain sizes. Note that the comparison chart ratings are consistently lower than the measured values by 0.5 to 1 G value indicating bias in the comparison chart ratings.
  • 78. Naturally, when the intercept measurements are plotted vs. the comparison chart estimates of G (similarly to the last slide where the planimetric data was used), the same bias in the comparison chart data is observed.
  • 79. Plot of the relative accuracy for the planimetric measurements indicating that about 1000 grains must be counted to get <10% RA.
  • 80. For the intercept method, <10% RAcan be obtained by counting about 400 intercepts or intersections. Counting with the planimetric method is more tedious as the grains must be marked off to get an accurate count.
  • 81. Plot of the %RAas a function of the average count per grid placement (per field). Counting errors start to results when the count exceeds about 50-60 per field.
  • 82. 80 ' " 4 70 I95% Confidence level 1 6 0 E - 5 :i ~ 1.S - 50 a. Ql Ql ~ 6 N s e 40 ·¡¡; e ro Ql e 30 !'I - e ro Ql í.t,. ~ 20 ¡ 8 - 9 10 10 o o 10 20 30 ' Nital etch time, s
  • 83. It is possible to make measurements of the diameter, lineal intercept lengths, or areas of grains and plot these data in histogram fashion. Many procedures have been developed to translate these measurements on the two-dimensional sectioning plane to develop three-dimensional grain size information. Nearly all models utilize some simplifying assumptions about shape, such as spherical grain shapes.
  • 84. Grain structure of 304 austenitic stainless steel etched with 60% HNO3 at 0.6 V dc, Pt cathode, 120 s (this does not bring up twin boundaries) used for the following grain size distribution study.
  • 85. Alog plot of the intercept length vs. the number percent per class yields a good representation of the distribution. Note the slight skew of the data ( 1) while the kurtosis, 2, is close to the ideal value of 3 for a Gaussian distribution.
  • 86. Alinear plot of the data does not reveal a good distribution as it is skewed more to the right and the kurtosis is higher.
  • 87. Three specimens of an experimental 5% Cr hot-work die steel were analyzed for their grain size distribution.This one was austenitized at 1950 °F (1066 °C). The others were austenitized at 1925 and 1975 °F (1051 and 1079 °C). The specimens were quenched to 1300 °F (704 °C), held 1 h to precipitate a pearlitic like constituent at the grain boundaries and air cooled. They were etched with glyceregia.