SlideShare a Scribd company logo
1 of 5
Innovative Resources Group
MetalsRemovalProcessCharleston,SouthCarolina
Removalof metalsfrom wastewater canbeaccomplishedeffectivelyby precipitatingthemetalsby
various chemicalmeansandremovingtheprecipitateswithclarificationmethods.IRG Systems offers
an improvedversion of the proven processby usingtubularmembranefilters(TMF).Thisresultsina
moreeffective andreliablesolidsseparationprocessandprovidesexceptionaleffluentquality.Use of
TMF alsoeliminatesthebulkyclarifierstypicallyusedin the processandmakesit possibleto provide
the entire system as a portablecontainerizedsolution.
Background
Industrial processescanoftenresult in wastewater contaminatedwithheavymetals(suchas Hg, Pb,
Zn, Ni, Cr, Cu, and Cd)that requiretreatmentpriorto dischargeorreuse.Basic treatmenttechnology
for metalsremovalis chemicalprecipitation.Byaddingspecific chemicalreagentstothe wastestream,
the chemicalsreactwithheavy metalsto form insolubleprecipitates.Theseprecipitatescanthenbe
separatedfrom the water with the appropriate solid/liquidseparationprocess.Conventionalseparation
equipmenttypicallyinvolves gravity separationmethods suchasan inclinedplateclarifier.Butgravity
settlinghas somedisadvantagesdueto the separationprinciple:
 A chemicalcoagulanthasto be fed into
the wastewaterto form largersuspended
particlesto enhancetheseparation
process.Coagulantsbringthreeproblems:
higheroperationcost,largersludge
volume,and the possiblepresenceof
impuritiesinthe coagulants.
 Separationperformanceislesseffective
dueto a lackof an absolutebarrier.
 Separationperformanceisaffectedby changesinflowand temperature.
Tubularmembranefilter(TMF)modulesincombinationwithchemical precipitationprovideexcellent
reductionofheavy metalsdueto their absolutefiltration(0.1 micron)capabilityandtheir abilityto resist
fouling. TMF productwater(referredto as filtrate) is readyfor eitherdisposalinto existing municipal
waste systems or further treatment for plantreuse. Treatedeffluentlevelsof lessthan 1 ppm
suspendedsolidsandless than0.1 ppm metalsare typical.
 Treatedfiltrateis readyfor reuse, not just for discharge.
 Removalefficiencyis excellentwithtreatmentlevels morethanadequateto meetstringent
dischargestandards.
 Less spaceisrequiredandsystem expansionisrelatively easy, often simplyby adding
membranemodules.
 Less coagulantisrequired.
 TheTMF filtrationprocessis muchmoreconduciveto automationasopposedtoclarification.
It canalso be started andstopped easilywithoutdegradationof treatedwater quality.
MetalsRemovalProcessCharleston,SouthCarolina
2
ProcessDescription
Themetalsremovalprocessiscomprisedofthe followingsteps:equalization,chemicaladditionand
reaction,solidsseparation,solidsdewatering,filtrateneutralization, andmembranecleaning.Eachis
explainedinmoredetail belowandon the attachedflowdiagram.Pleasenotethis is a general
descriptionaseachsystem mayvary dependinguponthenatureof the waste stream and the metalsto
be removed.
 Equalization-An equalizationtankis used to holdinfluentwastewater allowingfluctuationsin
water chemistryandflow to equalize. Volumeof this tank dependsuponinfluentwater
quantity, qualityandfluctuation.
 Chemical Addition and Reaction -Severalmethodsmaybe usedfor chemicaladditionto
the waste stream dependinguponthenatureof the wastestream andthe types of metalsto
be removed.It maybe doneelectrolyticallyby meansofan electrocoagulationstep.Orit may
be doneby injectionofthe necessarychemical IndividualTMF Module reagentsfollowedby
mixing.Typically,oneor two reactiontanks are requiredafterchemicaladditionforpH
adjustment,oxidation/reductionreactions(onlyfor certainmetals),coagulantfeeding,etc.
 SolidsSeparation -After sufficientchemical reactiontime,thewastestream enters a
recirculationtankwhich allowsthewastewaterwiththe precipitatedsolidstobe recirculated
throughthe TMF modules.Therecirculation tankisnormallydesignedtohave 2 to 5 minutes
of hydraulic retentiontime.Therecirculationpumpissized to provide enoughflowto maintain
a sufficientvelocityin the membranemoduletubestominimizemembranefouling. Therefore
the recirculationpumpcapacityismuchhigherthanactualsystem capacity.TheTMF modules
are connectedinserieswithmultipletrainsofmodulescomprisingthecompletesystem.The
numberof TMF modulesinseriesandthe quantity of separatetrains are determinedbywaste
stream conditions,flowrate, and selected membranefluxvalue.
 SolidsDewatering -Thewastestream isrecirculatedthroughtheTMF modulesuntilthe
solidsconcentration reaches3%to5%. A portion of the concentratedwastestream isthen
transferred to a sludgethickenerequipped withafilter pressor centrifugeto separatethe
dewateredsolids.Supernatantfrom the dewateringprocessis transferred backto the
recirculationtank.
 EffluentNeutralization -Manymetalsremovalapplicationsrequiretheadditionofchemical
reagentsthat raisethe pH of the waste stream. In those cases,the filtrate mustbe pH
adjustedby addingcarbondioxideorotheracid.
 MembraneCleaning -As is the casewithany membrane treatmentprocess,themembrane
doesneed to be cleaned periodically.Thesystem is thereforeequippedwithanintegral
membranecleaninplace(CIP)system. TheCIP system is comprisedofcleaningtanks,a
cleaningpump,andrelatedpipingandvalves.
MetalsRemovalProcessCharleston,SouthCarolina
3
ProcessOperation
TheTMF system hasthree operationmodes:service,backpulse,andchemicalcleaning.Asimple
descriptionofeachoperationmodeisdescribedbelow.Again,pleasenote this is a generaldescription
as eachsystem mayvary dependinguponthenatureof the waste stream andthe metalsto be
removed.
ServiceMode -Thewastestream flowsby
gravity or is pumpedfrom theequalizationtank
into the reaction tankswith relevant chemical
dosing andnecessarypH/ORP monitoring.
Gravity flow into the recirculation tankthen
takes place.Thewaterwith precipitatedmetals
is drawnout of the tank by the process
(recirculation)pump.Themembranefiltration
processseparatesthe suspended solidsfrom
the liquid.Thesuspended solidsareretainedby
the membranes,concentratedinthere-
circulating stream,andreturnedto the recirculationtank.Filtratethat has passedthru the membranes
goesto addedprocessing(suchasneutralization)ordischarge.Sludgeintherecirculationtankissent
to a sludgethickenerandthen to a filter press or centrifugebypneumatic diaphragmpump.
BackpulseMode -After the system runs undernormalconditionsfora set periodof time, usually5-30
minutes,the recirculationpumpisshutdownandan automatic valve on the filtrate pipingisclosed.A
solenoidvalve opens,allowing7-15psiof air to pushfiltrate from the backpulsecolumn,installedon
filtrate piping,into the moduletrain for approximately10seconds.Becausethetrainis flooded,the air
pressureinto the pipingforcesfilteredwater throughthe membranetubesintheoppositedirectionof
the normalfiltrationflow, dislodgingsuspendedsolidsthat mayhave collectedonthemembrane
surface.
Chemical Cleaning -After the system hasbeen runfor several days or weeks,filtrate flowrate will
decreasedueto normalmembranefoulingthatis not removedby the backpulsemode.When
degradationofperformancehas MultipleTMF Trainsreachedaspecifiedlimit,chemicalcleaningis
executedmanuallyor automaticallyto regainpropermembrane performance.DuringCIP,chemical
solutionsare circulatedthroughthemembranemodulesviathe cleaningpump. Cleaningchemicals
includingsodiumhypochlorite,acids,andsodium hydroxidearetypicallyused to dissolve contaminants
from the membranesurface.
MetalsRemovalProcessCharleston,SouthCarolina
4
EffectivenessofTreatmentMethod
Thetablebelowlistsactualtest resultsfrom four separatewaste streams.Pleasenote that actual
results willvary with eachapplication.
WasteStream 1 WasteStream 2 WasteStream 3 WasteStream 4
Influent
pH: 2.63
Cu: 36.6 mg/l
Ni: 0.993 mg/l
Cr: 0.464 mg/l
Fe: 0.418 mg/l
Conductivity:
2590 μs/cm
pH: 8.34
Cu: 0.075 mg/l
Ni: 87.1 mg/l
Conductivity:
454 μs/cm
pH: 2.99
Cu: 0.821 mg/l
Ni: 0.18 mg/l
Cr: 221.6 mg/l
Fe: 1.054 mg/l
Conductivity:
846 μs/cm
pH: 3.16
Cu: 12.2 mg/l
Ni: 81.5 mg/l
Cr: 293.1 mg/l
Fe: 0.692 mg/l
Conductivity:
2940 μs/cm
Filtratepriorto
Neutralization
pH: 11.07
Cu: not detected
Ni: not detected
Cr: not detected
Fe: not detected
Conductivity:
1303 μs/cm
pH: 9.12
Cu: not detected
Ni: 0.107 mg/l
Conductivity:
512 μs/cm
pH: 11.78
Cu: 0.01 mg/l
Ni: not detected
Cr: not detected
Fe: not detected
Conductivity:
2610 μs/cm
pH: 9.99
Cu: not detected
Ni: 0.088 mg/l
Cr: 0.211 mg/l
Fe: not detected
Conductivity:
3770 μs/cm
SystemCapacity
Dueto the availableTMF modulesizes,the maximumcapacityof one individualtrainis limitedto
approximately250,000gallonsperday. However, multipletrainscancompriseasinglesystem.
Therefore virtuallyanysize system is possibleupwardsofseveral milliongallonsperday.
MetalsRemovalProcessCharleston,SouthCarolina
5

More Related Content

What's hot

CORROSION MANAGEMENT DOWNHOLE AT FLUID ENTRY POINT
CORROSION MANAGEMENT DOWNHOLE AT FLUID ENTRY POINTCORROSION MANAGEMENT DOWNHOLE AT FLUID ENTRY POINT
CORROSION MANAGEMENT DOWNHOLE AT FLUID ENTRY POINT
Charles Dietz
 
Cursaru d.pdf 12 10
Cursaru d.pdf 12 10Cursaru d.pdf 12 10
Cursaru d.pdf 12 10
Bogdan Sava
 
An insight into spray pulsed reactor through mathematical modeling of catalyt...
An insight into spray pulsed reactor through mathematical modeling of catalyt...An insight into spray pulsed reactor through mathematical modeling of catalyt...
An insight into spray pulsed reactor through mathematical modeling of catalyt...
Siluvai Antony Praveen
 
Fermentation technology-chapter-viiviii-ix-x
Fermentation technology-chapter-viiviii-ix-xFermentation technology-chapter-viiviii-ix-x
Fermentation technology-chapter-viiviii-ix-x
satheeshkbiotech
 

What's hot (15)

CORROSION MANAGEMENT DOWNHOLE AT FLUID ENTRY POINT
CORROSION MANAGEMENT DOWNHOLE AT FLUID ENTRY POINTCORROSION MANAGEMENT DOWNHOLE AT FLUID ENTRY POINT
CORROSION MANAGEMENT DOWNHOLE AT FLUID ENTRY POINT
 
Mass transferhshsh
Mass transferhshsh Mass transferhshsh
Mass transferhshsh
 
SOLVENT EXTRACTION
SOLVENT EXTRACTIONSOLVENT EXTRACTION
SOLVENT EXTRACTION
 
Membranes for Pervaporation
Membranes for PervaporationMembranes for Pervaporation
Membranes for Pervaporation
 
Continuous Flow Chemistry And The Manufacture Of Active Pharmaceutical Ingr...
Continuous Flow Chemistry  And  The Manufacture Of Active Pharmaceutical Ingr...Continuous Flow Chemistry  And  The Manufacture Of Active Pharmaceutical Ingr...
Continuous Flow Chemistry And The Manufacture Of Active Pharmaceutical Ingr...
 
Cursaru d.pdf 12 10
Cursaru d.pdf 12 10Cursaru d.pdf 12 10
Cursaru d.pdf 12 10
 
Super critical fluid
Super critical fluidSuper critical fluid
Super critical fluid
 
Supercritical Fluid extraction
Supercritical Fluid extraction Supercritical Fluid extraction
Supercritical Fluid extraction
 
Batch Reactor
Batch ReactorBatch Reactor
Batch Reactor
 
Chemical reaction engineering
Chemical reaction engineeringChemical reaction engineering
Chemical reaction engineering
 
Group 2
Group 2Group 2
Group 2
 
An insight into spray pulsed reactor through mathematical modeling of catalyt...
An insight into spray pulsed reactor through mathematical modeling of catalyt...An insight into spray pulsed reactor through mathematical modeling of catalyt...
An insight into spray pulsed reactor through mathematical modeling of catalyt...
 
Solvent extraction
Solvent extractionSolvent extraction
Solvent extraction
 
3 d trasar case
3 d trasar case3 d trasar case
3 d trasar case
 
Fermentation technology-chapter-viiviii-ix-x
Fermentation technology-chapter-viiviii-ix-xFermentation technology-chapter-viiviii-ix-x
Fermentation technology-chapter-viiviii-ix-x
 

Similar to Removal of metals white paper

Membrane Bioreactor Technology - An Overview
Membrane Bioreactor Technology - An OverviewMembrane Bioreactor Technology - An Overview
Membrane Bioreactor Technology - An Overview
Vaibhav Nautiyal
 
New technology for desalination
New technology for desalinationNew technology for desalination
New technology for desalination
Dainik Patel
 
Brochure pas
Brochure pasBrochure pas
Brochure pas
tecompk
 
9 synthesis of reaction separation system lec 9 heterogenous separation
9 synthesis of reaction separation system lec 9 heterogenous separation9 synthesis of reaction separation system lec 9 heterogenous separation
9 synthesis of reaction separation system lec 9 heterogenous separation
ayimsevenfold
 

Similar to Removal of metals white paper (20)

Wastewater treatment using membrane bioreactors
Wastewater treatment using membrane bioreactorsWastewater treatment using membrane bioreactors
Wastewater treatment using membrane bioreactors
 
Water recycling & membrane technology
Water recycling & membrane technologyWater recycling & membrane technology
Water recycling & membrane technology
 
Membrane bio-reactor (2).pptx
Membrane bio-reactor (2).pptxMembrane bio-reactor (2).pptx
Membrane bio-reactor (2).pptx
 
Microfiltration
MicrofiltrationMicrofiltration
Microfiltration
 
water treatment plant
water treatment plantwater treatment plant
water treatment plant
 
Super Critical Fluid Separation Process
Super Critical Fluid Separation ProcessSuper Critical Fluid Separation Process
Super Critical Fluid Separation Process
 
Indus recycling stp
Indus recycling stpIndus recycling stp
Indus recycling stp
 
GC-MS.-principle, instrumentation,working,Application .
GC-MS.-principle, instrumentation,working,Application .GC-MS.-principle, instrumentation,working,Application .
GC-MS.-principle, instrumentation,working,Application .
 
Commissioning of a 10 mld wwtp with flat sheet mbr technology the arenales de...
Commissioning of a 10 mld wwtp with flat sheet mbr technology the arenales de...Commissioning of a 10 mld wwtp with flat sheet mbr technology the arenales de...
Commissioning of a 10 mld wwtp with flat sheet mbr technology the arenales de...
 
Membrane Bioreactor Technology - An Overview
Membrane Bioreactor Technology - An OverviewMembrane Bioreactor Technology - An Overview
Membrane Bioreactor Technology - An Overview
 
Group 4
Group 4Group 4
Group 4
 
High performance liquid chromatography (HPLC)
High performance liquid chromatography (HPLC)High performance liquid chromatography (HPLC)
High performance liquid chromatography (HPLC)
 
Mfed technology linked in 6-17-15
Mfed technology   linked in  6-17-15Mfed technology   linked in  6-17-15
Mfed technology linked in 6-17-15
 
New technology for desalination
New technology for desalinationNew technology for desalination
New technology for desalination
 
Brochure pas
Brochure pasBrochure pas
Brochure pas
 
IRJET - Design of Wastewater Treatment Plant in Nagpur City: By Adopting ...
IRJET -  	  Design of Wastewater Treatment Plant in Nagpur City: By Adopting ...IRJET -  	  Design of Wastewater Treatment Plant in Nagpur City: By Adopting ...
IRJET - Design of Wastewater Treatment Plant in Nagpur City: By Adopting ...
 
Water Qube Spec Sheet.
Water Qube Spec Sheet. Water Qube Spec Sheet.
Water Qube Spec Sheet.
 
9 synthesis of reaction separation system lec 9 heterogenous separation
9 synthesis of reaction separation system lec 9 heterogenous separation9 synthesis of reaction separation system lec 9 heterogenous separation
9 synthesis of reaction separation system lec 9 heterogenous separation
 
Sttp ppt msp_overview_09-10-2009_zvpm
Sttp ppt msp_overview_09-10-2009_zvpmSttp ppt msp_overview_09-10-2009_zvpm
Sttp ppt msp_overview_09-10-2009_zvpm
 
Spe 164580-ms
Spe 164580-msSpe 164580-ms
Spe 164580-ms
 

Removal of metals white paper

  • 1. Innovative Resources Group MetalsRemovalProcessCharleston,SouthCarolina Removalof metalsfrom wastewater canbeaccomplishedeffectivelyby precipitatingthemetalsby various chemicalmeansandremovingtheprecipitateswithclarificationmethods.IRG Systems offers an improvedversion of the proven processby usingtubularmembranefilters(TMF).Thisresultsina moreeffective andreliablesolidsseparationprocessandprovidesexceptionaleffluentquality.Use of TMF alsoeliminatesthebulkyclarifierstypicallyusedin the processandmakesit possibleto provide the entire system as a portablecontainerizedsolution. Background Industrial processescanoftenresult in wastewater contaminatedwithheavymetals(suchas Hg, Pb, Zn, Ni, Cr, Cu, and Cd)that requiretreatmentpriorto dischargeorreuse.Basic treatmenttechnology for metalsremovalis chemicalprecipitation.Byaddingspecific chemicalreagentstothe wastestream, the chemicalsreactwithheavy metalsto form insolubleprecipitates.Theseprecipitatescanthenbe separatedfrom the water with the appropriate solid/liquidseparationprocess.Conventionalseparation equipmenttypicallyinvolves gravity separationmethods suchasan inclinedplateclarifier.Butgravity settlinghas somedisadvantagesdueto the separationprinciple:  A chemicalcoagulanthasto be fed into the wastewaterto form largersuspended particlesto enhancetheseparation process.Coagulantsbringthreeproblems: higheroperationcost,largersludge volume,and the possiblepresenceof impuritiesinthe coagulants.  Separationperformanceislesseffective dueto a lackof an absolutebarrier.  Separationperformanceisaffectedby changesinflowand temperature. Tubularmembranefilter(TMF)modulesincombinationwithchemical precipitationprovideexcellent reductionofheavy metalsdueto their absolutefiltration(0.1 micron)capabilityandtheir abilityto resist fouling. TMF productwater(referredto as filtrate) is readyfor eitherdisposalinto existing municipal waste systems or further treatment for plantreuse. Treatedeffluentlevelsof lessthan 1 ppm suspendedsolidsandless than0.1 ppm metalsare typical.  Treatedfiltrateis readyfor reuse, not just for discharge.  Removalefficiencyis excellentwithtreatmentlevels morethanadequateto meetstringent dischargestandards.  Less spaceisrequiredandsystem expansionisrelatively easy, often simplyby adding membranemodules.  Less coagulantisrequired.  TheTMF filtrationprocessis muchmoreconduciveto automationasopposedtoclarification. It canalso be started andstopped easilywithoutdegradationof treatedwater quality.
  • 2. MetalsRemovalProcessCharleston,SouthCarolina 2 ProcessDescription Themetalsremovalprocessiscomprisedofthe followingsteps:equalization,chemicaladditionand reaction,solidsseparation,solidsdewatering,filtrateneutralization, andmembranecleaning.Eachis explainedinmoredetail belowandon the attachedflowdiagram.Pleasenotethis is a general descriptionaseachsystem mayvary dependinguponthenatureof the waste stream and the metalsto be removed.  Equalization-An equalizationtankis used to holdinfluentwastewater allowingfluctuationsin water chemistryandflow to equalize. Volumeof this tank dependsuponinfluentwater quantity, qualityandfluctuation.  Chemical Addition and Reaction -Severalmethodsmaybe usedfor chemicaladditionto the waste stream dependinguponthenatureof the wastestream andthe types of metalsto be removed.It maybe doneelectrolyticallyby meansofan electrocoagulationstep.Orit may be doneby injectionofthe necessarychemical IndividualTMF Module reagentsfollowedby mixing.Typically,oneor two reactiontanks are requiredafterchemicaladditionforpH adjustment,oxidation/reductionreactions(onlyfor certainmetals),coagulantfeeding,etc.  SolidsSeparation -After sufficientchemical reactiontime,thewastestream enters a recirculationtankwhich allowsthewastewaterwiththe precipitatedsolidstobe recirculated throughthe TMF modules.Therecirculation tankisnormallydesignedtohave 2 to 5 minutes of hydraulic retentiontime.Therecirculationpumpissized to provide enoughflowto maintain a sufficientvelocityin the membranemoduletubestominimizemembranefouling. Therefore the recirculationpumpcapacityismuchhigherthanactualsystem capacity.TheTMF modules are connectedinserieswithmultipletrainsofmodulescomprisingthecompletesystem.The numberof TMF modulesinseriesandthe quantity of separatetrains are determinedbywaste stream conditions,flowrate, and selected membranefluxvalue.  SolidsDewatering -Thewastestream isrecirculatedthroughtheTMF modulesuntilthe solidsconcentration reaches3%to5%. A portion of the concentratedwastestream isthen transferred to a sludgethickenerequipped withafilter pressor centrifugeto separatethe dewateredsolids.Supernatantfrom the dewateringprocessis transferred backto the recirculationtank.  EffluentNeutralization -Manymetalsremovalapplicationsrequiretheadditionofchemical reagentsthat raisethe pH of the waste stream. In those cases,the filtrate mustbe pH adjustedby addingcarbondioxideorotheracid.  MembraneCleaning -As is the casewithany membrane treatmentprocess,themembrane doesneed to be cleaned periodically.Thesystem is thereforeequippedwithanintegral membranecleaninplace(CIP)system. TheCIP system is comprisedofcleaningtanks,a cleaningpump,andrelatedpipingandvalves.
  • 3. MetalsRemovalProcessCharleston,SouthCarolina 3 ProcessOperation TheTMF system hasthree operationmodes:service,backpulse,andchemicalcleaning.Asimple descriptionofeachoperationmodeisdescribedbelow.Again,pleasenote this is a generaldescription as eachsystem mayvary dependinguponthenatureof the waste stream andthe metalsto be removed. ServiceMode -Thewastestream flowsby gravity or is pumpedfrom theequalizationtank into the reaction tankswith relevant chemical dosing andnecessarypH/ORP monitoring. Gravity flow into the recirculation tankthen takes place.Thewaterwith precipitatedmetals is drawnout of the tank by the process (recirculation)pump.Themembranefiltration processseparatesthe suspended solidsfrom the liquid.Thesuspended solidsareretainedby the membranes,concentratedinthere- circulating stream,andreturnedto the recirculationtank.Filtratethat has passedthru the membranes goesto addedprocessing(suchasneutralization)ordischarge.Sludgeintherecirculationtankissent to a sludgethickenerandthen to a filter press or centrifugebypneumatic diaphragmpump. BackpulseMode -After the system runs undernormalconditionsfora set periodof time, usually5-30 minutes,the recirculationpumpisshutdownandan automatic valve on the filtrate pipingisclosed.A solenoidvalve opens,allowing7-15psiof air to pushfiltrate from the backpulsecolumn,installedon filtrate piping,into the moduletrain for approximately10seconds.Becausethetrainis flooded,the air pressureinto the pipingforcesfilteredwater throughthe membranetubesintheoppositedirectionof the normalfiltrationflow, dislodgingsuspendedsolidsthat mayhave collectedonthemembrane surface. Chemical Cleaning -After the system hasbeen runfor several days or weeks,filtrate flowrate will decreasedueto normalmembranefoulingthatis not removedby the backpulsemode.When degradationofperformancehas MultipleTMF Trainsreachedaspecifiedlimit,chemicalcleaningis executedmanuallyor automaticallyto regainpropermembrane performance.DuringCIP,chemical solutionsare circulatedthroughthemembranemodulesviathe cleaningpump. Cleaningchemicals includingsodiumhypochlorite,acids,andsodium hydroxidearetypicallyused to dissolve contaminants from the membranesurface.
  • 4. MetalsRemovalProcessCharleston,SouthCarolina 4 EffectivenessofTreatmentMethod Thetablebelowlistsactualtest resultsfrom four separatewaste streams.Pleasenote that actual results willvary with eachapplication. WasteStream 1 WasteStream 2 WasteStream 3 WasteStream 4 Influent pH: 2.63 Cu: 36.6 mg/l Ni: 0.993 mg/l Cr: 0.464 mg/l Fe: 0.418 mg/l Conductivity: 2590 μs/cm pH: 8.34 Cu: 0.075 mg/l Ni: 87.1 mg/l Conductivity: 454 μs/cm pH: 2.99 Cu: 0.821 mg/l Ni: 0.18 mg/l Cr: 221.6 mg/l Fe: 1.054 mg/l Conductivity: 846 μs/cm pH: 3.16 Cu: 12.2 mg/l Ni: 81.5 mg/l Cr: 293.1 mg/l Fe: 0.692 mg/l Conductivity: 2940 μs/cm Filtratepriorto Neutralization pH: 11.07 Cu: not detected Ni: not detected Cr: not detected Fe: not detected Conductivity: 1303 μs/cm pH: 9.12 Cu: not detected Ni: 0.107 mg/l Conductivity: 512 μs/cm pH: 11.78 Cu: 0.01 mg/l Ni: not detected Cr: not detected Fe: not detected Conductivity: 2610 μs/cm pH: 9.99 Cu: not detected Ni: 0.088 mg/l Cr: 0.211 mg/l Fe: not detected Conductivity: 3770 μs/cm SystemCapacity Dueto the availableTMF modulesizes,the maximumcapacityof one individualtrainis limitedto approximately250,000gallonsperday. However, multipletrainscancompriseasinglesystem. Therefore virtuallyanysize system is possibleupwardsofseveral milliongallonsperday.