SlideShare a Scribd company logo
1 of 14
HR1 1. labor

Csatolt kétpóluspárt tartalmazó lineáris rezisztív
     hálózatok, a MATLAB használatának
  lehetőségei a HR feladatok megoldásában.


         A tényleges labor anyaga
            letölthető a WEB-ről:
        http://psat.evt.bme.hu/hare1
1. feladat
Az alábbi hálózatra számítsuk ki a csomó-
ponti potenciálok értékeit, felhasználva a
MATLAB adta lehetőségeket.


                  6Ω             8Ω
                            7Ω
             2Ω
                       3Ω

                                  4Ω
   10V                                 0.5A

                       5Ω
ϕ4
                                6Ω                                 8Ω
                                                              7Ω
                          2Ω    Ig1ϕ2           Ig2                              ϕ3
                                          3Ω
                ϕ1+10
                               Ug1                    Ug2               4Ω
       10V                                                                                 0.5A
                                     ϕ1                   0
                                          5Ω
1. A csatolt kétpólus egyenletei               3. Átrendezve az egyenleteket
   Ug1=ϕ2-ϕ1= -3 Ig2                            ϕ1      ϕ2     ϕ3     ϕ4     kons.
                                                  3            -3
   Ug2=ϕ3-0 = 3 Ig1=3 (ϕ1+10-ϕ2)/2                                            -1       0          - 15
                                                  2            2
2. Csomóponti egyenletek                          −1                         -1       1 1 1        10
                                                                   0                   + +
  ϕ 4 ϕ 4−ϕ 3 ϕ 4−( ϕ 1+10 )                       6                         8        7 8 6         6
    +         +                =0
  7       8          6                                1            -1        1 1        -1
                                                                              +                   0.5
 ϕ 3 ϕ 3−ϕ 4 ϕ 1−ϕ 2                                  3            3         4 8        8
    +         +        − 0 .5 = 0
  4       8       3                             1 1                                    -1          - 10
                                                 +                 0         0
 ϕ1        ϕ +10 −ϕ 2 ϕ 1+10 −ϕ 4               5 6                                    6             6
    − I g1+ 1        +            =0
  5             2             6
Feladat megvalósítása MATLAB-bal.
                         −1
Aϕ = kons.         ϕ = A kons.
Megoldás
                                            ϕ4
             I6           6Ω                              8Ω
                                       U7
                                                     7Ω
                  2Ω        ϕ2                                  ϕ3
                                  3Ω
       ϕ1+10
                                                           4Ω
      P10V
10V                                                                  0.5A
                             ϕ1                  0
                                  5Ω


                  U7 =    ϕ 4 = fi(4) = 5.1455 V
                   I6 =   [ϕ 4 -(ϕ 1+10)]/6 = (fi(4)-(fi(1)+10))/6 = -0.441A
               P10V =     {[ϕ 4 -(ϕ 1+10)]/6 + [ϕ 2 -(ϕ 1+10)]/2}*10 =
                   = ((fi(4)-(fi(1)+10))/6+(fi(2)-(fi(1)+10))/2)*10 = -29.39 W
2. feladat
Határozzuk meg a hálózat Thévenin
helyette- sítő kapcsolásának paramétereit ha
a./ us2=4V
b./ us2=6V !
                        1:3




                   5Ω         10Ω


                    2V        us2
iT1          iT2
                                          1:3
                                                                        Irz
                            uT1                       uT2
                                                                  Uüj

                                    5Ω                  10Ω


                                         2V                 us2


1. A csatolt kétpólus egyenletei
 uT2 = 3 uT1                                          3. Megoldáshoz kapcsolódó egyenlet

 iT1 = -3 iT2                                           a./ Uüj meghatározása esetén
2. Feszültség és áram egyenletek                                              Irz = 0
 Uüj = uT1 + 5 iT1 + 2
                                                        b./ Irz meghatározása esetén
 Uüj = uT2 + 10 iT2 + us2
                                                                              Uüj = 0
 iT1 + iT2 + Irz = 0
Feladat megvalósítása MATLAB-bal.
 UT1     UT2      IT1      IT2      Uüj      Irz   kon
  3       -1        0        0       0        0       0       uT2 = 3 uT1
  0        0        1        3       0        0       0        iT1 = -3 iT2
  1        0        5        0       -1       0       -2      Uüj = uT1 + 5 iT1 + 2

  0        1        0       10       -1       0      -U s2    Uüj = uT2 + 10 iT2 + us2

  0        0        1        1        0        1      0       iT1 + iT2 + Irz = 0
  0        0        0        0        0        1      0        a./ Irz = 0
  0        0        0        0        1        0      0        b./ Uüj = 0

Us2=4

A=[3 -1 0 0 0 0;0 0 1 3 0 0;1 0 5 0 -1 0;0 1 0 10 -1 0;0 0 1 1 0 1;0 0 0 0 0 1]

kon=[0;0;-2;-Us2;0;0]
mo=Akon

B=[3 -1 0 0 0 0;0 0 1 3 0 0;1 0 5 0 -1 0;0 1 0 10 -1 0;0 0 1 1 0 1;0 0 0 0 1 0]
mo2=Bkon
Us2=6

kon=[0;0;-2;-Us2;0;0]

mo3=Akon

mo4=Bkon

                    mo         mo2             mo3   mo4
                 -1.0000    -1.4545   UT1      -2    -2
                 -3.0000    -4.3636   UT2      -6    -6
                  0         -0.1091    IT1      0     0
                  0          0.0364    IT2      0     0
                  1.0000     0        Uüj       0     0
                  0         0.0727     Irz
                                                0     0

                              Mit jelent ez?

                        1/0.0727=
            1V          13.7551Ω
I1     Kétkapuk                            I2 !!!!


                          U1                                                      U2


     Átviteli típusú karakterisztikák (2 db)                      Hibrid típusú karakterisztikák (4 db)

          U 1  U 2                                            U 1  I 1          U 1  I 1 
            = A                       I2 !!!!                   = R               = H 
          I 1 
               I 2 
                                                                U 2 
                                                                       I 2 
                                                                                      I 2 
                                                                                             U 2 
                                                                                                
          U 2  U 1                                            I 1  U 1          I 1  U 1 
            = B                                                 = G               = K 
          I 2 
               I 1 
                                                                I 2 
                                                                       U 2 
                                                                                      U 2 
                                                                                             I 2 
                                                                                                
              A =B −1                                                  R =G −1             H = K −1
     I1                      I2                              I3

U1            A1                  U2       A2                     U3

            U 1    U 2  U 2  U 3  U 1     U 3 
              = A1     = A 2     = A1 A 2  
            I 1 
                   I 2  I 2 
                               I 3  I 1 
                                                I 3 
                                                     
3. feladat
Határozzuk meg az alábbi kétkapu
lehetséges karakterisztikáit, felhasználva a
MATLAB adta lehetőségeket.


                   6Ω             8Ω

         I1                  7Ω         I2
              2Ω
                        3Ω

    U1                             4Ω        U2


                        5Ω
ϕ3
                                   6Ω                                     8Ω
                                                                     7Ω
                I1           2Ω    Ig1ϕ2               Ig2                              U2 I2
                                             3Ω
                     ϕ1+U1
          U1                      Ug1                        Ug2               4Ω               U2


                                        ϕ1                       0
                                             5Ω
1. A csatolt kétpólus egyenletei               3. Átrendezve az egyenleteket
               7 ismeretlen (U1, U2, I1, I2, ϕ1, ϕ2, ϕ3) 5 egyenlet kell 5 egyenlet kell
   Ug1=ϕ2-ϕ1= -3 Ig2                         U U I I ϕ ϕ ϕ
                                                   1         2       1    2         1    2      3

   Ug2=U2-0 = 3 Ig1=3 (ϕ1+U1-ϕ2)/2                3
                                                         -1          0    0
                                                                                3        -3
                                                                                                 0
2. Csomóponti egyenletek                          2                             2        2
   ϕ 3 ϕ 3− U 2 ϕ 3−( ϕ 1+ U1 )                   −1     -1                     -1            1 1 1
                                                                     0     0             0     + +
        +         +                  =0            6     8                      6             7 8 6
    7        8              6                           1 1                     1        -1    -1
       U 2 U 2 −ϕ 3 ϕ 1−ϕ 2                       0      +           0    -1
          +            +         −I 2 = 0               4 8                     3        3     8
       4        8           3                  −1
             ϕ1         ϕ 2−ϕ 1− U1                          0       1     0
                                                                             1 1
                                                                              −
                                                                                         1
                                                                                                0
                 + I1 +               =0       2                             5 2         2
              5              2                1 1                            1 1         -1     -1
        ϕ + U −ϕ ϕ + U −ϕ                       +            0       -1    0  +
 − I1 + 1 1 2 + 1 1 3 = 0                     2 6                            2 6         2      6
             2               6
Megoldás MATLAB-bal
U1=[3/2;-1/6;0;-1/2;1/2+1/6]
                                                      U1   U2     I1    I2   ϕ1   ϕ2   ϕ3
U2=[-1;-1/8;1/4+1/8;0;0]                              3                      3    -3
                                                           -1     0    0                0
I1=[0;0;0;1;-1]                                       2                      2    2
                                                      −1    -1               -1        1 1 1
                                                                  0     0         0     + +
I2=[0;0;-1;0;0]                                        6    8                6         7 8 6
                                                           1 1                1   -1    -1
Fi1=[3/2;-1/6;1/3;1/5-1/2;1/2+1/6]                    0      +    0    -1
                                                           4 8                3   3     8
Fi2=[-3/2;0;-1/3;1/2;-1/2]                        −1                         1 1 1
                                                            0     1     0      −        0
                                                   2                         5 2 2
Fi3=[0;1/7+1/8+1/6;-1/8;0;-1/6]                   1 1                         1 1 -1    -1
                                                    +       0     -1       0    +

  A ism = 0
                                                  2 6                         2 6 2     6


                                         M is1 = N is2                     ahol is1-ben van a
                                                                           karakterisztika bal
7x5     1x7         1x5
                                                                           oldala és ϕ-k, is2-
                                         5x5    1x5             2x5    1x2 ben a jobb oldal
                        -1
 is1 = M N is2                                 M-1N 
                                                                              a karakterisztika
  1x5             5x5        2x5   1x2          2x5
MR=[U1 U2 Fi1 Fi2 Fi3]        NR=[– I1 –I2]
MG=[I1 I2 Fi1 Fi2 Fi3]        NG=[– U1 –U2]
MH=[U1 I2 Fi1 Fi2 Fi3]        NH=[– I1 –U2]
MK=[I1 U2 Fi1 Fi2 Fi3]        NR=[– U1 –I2]
MA=[U1 I1 Fi1 Fi2 Fi3]        NA=[– U2 I2]
MB=[U2 –I2 Fi1 Fi2 Fi3]       NB=[– U1 –I1]!!!!!!
                Nézzük az impedancia karakterisztikát!
MR=                                                         NR=
  1.5000 -1.0000 1.5000 -1.5000      0                         0   0
 -0.1667 -0.1250 -0.1667      0 0.4345                         0   0
       0 0.3750 0.3333 -0.3333 -0.1250                         0   1
 -0.5000       0 -0.3000 0.5000       0                       -1   0
  0.6667       0 0.6667 -0.5000 -0.1667                        1   0

     MR-1*NR=                                  MH-1*NH=
                                A hibrid karakterisztika pedig
R=     3.7489 -2.0426     Ω              H=     14.7333 Ω     -4.4444
       2.4715 0.4596                             -5.3778       2.1759 S
      -0.8809 0.7660                             -5.0000       1.6667
       1.2204 -1.5830                             9.7333      -3.4444
       1.8111 -0.3574                             3.7333      -0.7778

More Related Content

Featured

AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfmarketingartwork
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024Neil Kimberley
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)contently
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024Albert Qian
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsKurio // The Social Media Age(ncy)
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Search Engine Journal
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summarySpeakerHub
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next Tessa Mero
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentLily Ray
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best PracticesVit Horky
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project managementMindGenius
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...RachelPearson36
 
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Applitools
 
12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at WorkGetSmarter
 

Featured (20)

AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
 
Skeleton Culture Code
Skeleton Culture CodeSkeleton Culture Code
Skeleton Culture Code
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
 
12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work
 
ChatGPT webinar slides
ChatGPT webinar slidesChatGPT webinar slides
ChatGPT webinar slides
 
More than Just Lines on a Map: Best Practices for U.S Bike Routes
More than Just Lines on a Map: Best Practices for U.S Bike RoutesMore than Just Lines on a Map: Best Practices for U.S Bike Routes
More than Just Lines on a Map: Best Practices for U.S Bike Routes
 

Labor11

  • 1. HR1 1. labor Csatolt kétpóluspárt tartalmazó lineáris rezisztív hálózatok, a MATLAB használatának lehetőségei a HR feladatok megoldásában. A tényleges labor anyaga letölthető a WEB-ről: http://psat.evt.bme.hu/hare1
  • 2. 1. feladat Az alábbi hálózatra számítsuk ki a csomó- ponti potenciálok értékeit, felhasználva a MATLAB adta lehetőségeket. 6Ω 8Ω 7Ω 2Ω 3Ω 4Ω 10V 0.5A 5Ω
  • 3. ϕ4 6Ω 8Ω 7Ω 2Ω Ig1ϕ2 Ig2 ϕ3 3Ω ϕ1+10 Ug1 Ug2 4Ω 10V 0.5A ϕ1 0 5Ω 1. A csatolt kétpólus egyenletei 3. Átrendezve az egyenleteket Ug1=ϕ2-ϕ1= -3 Ig2 ϕ1 ϕ2 ϕ3 ϕ4 kons. 3 -3 Ug2=ϕ3-0 = 3 Ig1=3 (ϕ1+10-ϕ2)/2 -1 0 - 15 2 2 2. Csomóponti egyenletek −1 -1 1 1 1 10 0 + + ϕ 4 ϕ 4−ϕ 3 ϕ 4−( ϕ 1+10 ) 6 8 7 8 6 6 + + =0 7 8 6 1 -1 1 1 -1 + 0.5 ϕ 3 ϕ 3−ϕ 4 ϕ 1−ϕ 2 3 3 4 8 8 + + − 0 .5 = 0 4 8 3 1 1 -1 - 10 + 0 0 ϕ1 ϕ +10 −ϕ 2 ϕ 1+10 −ϕ 4 5 6 6 6 − I g1+ 1 + =0 5 2 6
  • 4. Feladat megvalósítása MATLAB-bal. −1 Aϕ = kons. ϕ = A kons.
  • 5. Megoldás ϕ4 I6 6Ω 8Ω U7 7Ω 2Ω ϕ2 ϕ3 3Ω ϕ1+10 4Ω P10V 10V 0.5A ϕ1 0 5Ω U7 = ϕ 4 = fi(4) = 5.1455 V I6 = [ϕ 4 -(ϕ 1+10)]/6 = (fi(4)-(fi(1)+10))/6 = -0.441A P10V = {[ϕ 4 -(ϕ 1+10)]/6 + [ϕ 2 -(ϕ 1+10)]/2}*10 = = ((fi(4)-(fi(1)+10))/6+(fi(2)-(fi(1)+10))/2)*10 = -29.39 W
  • 6. 2. feladat Határozzuk meg a hálózat Thévenin helyette- sítő kapcsolásának paramétereit ha a./ us2=4V b./ us2=6V ! 1:3 5Ω 10Ω 2V us2
  • 7. iT1 iT2 1:3 Irz uT1 uT2 Uüj 5Ω 10Ω 2V us2 1. A csatolt kétpólus egyenletei uT2 = 3 uT1 3. Megoldáshoz kapcsolódó egyenlet iT1 = -3 iT2 a./ Uüj meghatározása esetén 2. Feszültség és áram egyenletek Irz = 0 Uüj = uT1 + 5 iT1 + 2 b./ Irz meghatározása esetén Uüj = uT2 + 10 iT2 + us2 Uüj = 0 iT1 + iT2 + Irz = 0
  • 8. Feladat megvalósítása MATLAB-bal. UT1 UT2 IT1 IT2 Uüj Irz kon 3 -1 0 0 0 0 0 uT2 = 3 uT1 0 0 1 3 0 0 0 iT1 = -3 iT2 1 0 5 0 -1 0 -2 Uüj = uT1 + 5 iT1 + 2 0 1 0 10 -1 0 -U s2 Uüj = uT2 + 10 iT2 + us2 0 0 1 1 0 1 0 iT1 + iT2 + Irz = 0 0 0 0 0 0 1 0 a./ Irz = 0 0 0 0 0 1 0 0 b./ Uüj = 0 Us2=4 A=[3 -1 0 0 0 0;0 0 1 3 0 0;1 0 5 0 -1 0;0 1 0 10 -1 0;0 0 1 1 0 1;0 0 0 0 0 1] kon=[0;0;-2;-Us2;0;0] mo=Akon B=[3 -1 0 0 0 0;0 0 1 3 0 0;1 0 5 0 -1 0;0 1 0 10 -1 0;0 0 1 1 0 1;0 0 0 0 1 0] mo2=Bkon
  • 9. Us2=6 kon=[0;0;-2;-Us2;0;0] mo3=Akon mo4=Bkon mo mo2 mo3 mo4 -1.0000 -1.4545 UT1 -2 -2 -3.0000 -4.3636 UT2 -6 -6 0 -0.1091 IT1 0 0 0 0.0364 IT2 0 0 1.0000 0 Uüj 0 0 0 0.0727 Irz 0 0 Mit jelent ez? 1/0.0727= 1V 13.7551Ω
  • 10. I1 Kétkapuk I2 !!!! U1 U2 Átviteli típusú karakterisztikák (2 db) Hibrid típusú karakterisztikák (4 db) U 1  U 2  U 1  I 1  U 1  I 1    = A  I2 !!!!   = R    = H  I 1    I 2    U 2    I 2    I 2    U 2    U 2  U 1  I 1  U 1  I 1  U 1    = B    = G    = K  I 2    I 1    I 2    U 2    U 2    I 2    A =B −1 R =G −1 H = K −1 I1 I2 I3 U1 A1 U2 A2 U3 U 1  U 2  U 2  U 3  U 1  U 3    = A1     = A 2     = A1 A 2   I 1    I 2  I 2      I 3  I 1      I 3   
  • 11. 3. feladat Határozzuk meg az alábbi kétkapu lehetséges karakterisztikáit, felhasználva a MATLAB adta lehetőségeket. 6Ω 8Ω I1 7Ω I2 2Ω 3Ω U1 4Ω U2 5Ω
  • 12. ϕ3 6Ω 8Ω 7Ω I1 2Ω Ig1ϕ2 Ig2 U2 I2 3Ω ϕ1+U1 U1 Ug1 Ug2 4Ω U2 ϕ1 0 5Ω 1. A csatolt kétpólus egyenletei 3. Átrendezve az egyenleteket 7 ismeretlen (U1, U2, I1, I2, ϕ1, ϕ2, ϕ3) 5 egyenlet kell 5 egyenlet kell Ug1=ϕ2-ϕ1= -3 Ig2 U U I I ϕ ϕ ϕ 1 2 1 2 1 2 3 Ug2=U2-0 = 3 Ig1=3 (ϕ1+U1-ϕ2)/2 3 -1 0 0 3 -3 0 2. Csomóponti egyenletek 2 2 2 ϕ 3 ϕ 3− U 2 ϕ 3−( ϕ 1+ U1 ) −1 -1 -1 1 1 1 0 0 0 + + + + =0 6 8 6 7 8 6 7 8 6 1 1 1 -1 -1 U 2 U 2 −ϕ 3 ϕ 1−ϕ 2 0 + 0 -1 + + −I 2 = 0 4 8 3 3 8 4 8 3 −1 ϕ1 ϕ 2−ϕ 1− U1 0 1 0 1 1 − 1 0 + I1 + =0 2 5 2 2 5 2 1 1 1 1 -1 -1 ϕ + U −ϕ ϕ + U −ϕ + 0 -1 0 + − I1 + 1 1 2 + 1 1 3 = 0 2 6 2 6 2 6 2 6
  • 13. Megoldás MATLAB-bal U1=[3/2;-1/6;0;-1/2;1/2+1/6] U1 U2 I1 I2 ϕ1 ϕ2 ϕ3 U2=[-1;-1/8;1/4+1/8;0;0] 3 3 -3 -1 0 0 0 I1=[0;0;0;1;-1] 2 2 2 −1 -1 -1 1 1 1 0 0 0 + + I2=[0;0;-1;0;0] 6 8 6 7 8 6 1 1 1 -1 -1 Fi1=[3/2;-1/6;1/3;1/5-1/2;1/2+1/6] 0 + 0 -1 4 8 3 3 8 Fi2=[-3/2;0;-1/3;1/2;-1/2] −1 1 1 1 0 1 0 − 0 2 5 2 2 Fi3=[0;1/7+1/8+1/6;-1/8;0;-1/6] 1 1 1 1 -1 -1 + 0 -1 0 + A ism = 0 2 6 2 6 2 6 M is1 = N is2 ahol is1-ben van a karakterisztika bal 7x5 1x7 1x5 oldala és ϕ-k, is2- 5x5 1x5 2x5 1x2 ben a jobb oldal -1 is1 = M N is2 M-1N  a karakterisztika 1x5 5x5 2x5 1x2 2x5
  • 14. MR=[U1 U2 Fi1 Fi2 Fi3] NR=[– I1 –I2] MG=[I1 I2 Fi1 Fi2 Fi3] NG=[– U1 –U2] MH=[U1 I2 Fi1 Fi2 Fi3] NH=[– I1 –U2] MK=[I1 U2 Fi1 Fi2 Fi3] NR=[– U1 –I2] MA=[U1 I1 Fi1 Fi2 Fi3] NA=[– U2 I2] MB=[U2 –I2 Fi1 Fi2 Fi3] NB=[– U1 –I1]!!!!!! Nézzük az impedancia karakterisztikát! MR= NR= 1.5000 -1.0000 1.5000 -1.5000 0 0 0 -0.1667 -0.1250 -0.1667 0 0.4345 0 0 0 0.3750 0.3333 -0.3333 -0.1250 0 1 -0.5000 0 -0.3000 0.5000 0 -1 0 0.6667 0 0.6667 -0.5000 -0.1667 1 0 MR-1*NR= MH-1*NH= A hibrid karakterisztika pedig R= 3.7489 -2.0426 Ω H= 14.7333 Ω -4.4444 2.4715 0.4596 -5.3778 2.1759 S -0.8809 0.7660 -5.0000 1.6667 1.2204 -1.5830 9.7333 -3.4444 1.8111 -0.3574 3.7333 -0.7778