SlideShare a Scribd company logo
1 of 9
Download to read offline
International Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue. 3
168
|Issn||2250-3005|| (Online) ||March||2013|| ||www.ijceronline.com||
Determining Pinpoint of Mobile Location in Global System for
Mobile Communication Network (Gsm)
1,
Adnan Affandi, 2,
Mubashshir Husain
1,2,
Department of Elect. & Comp. Eng.,King Abdul Aziz University,Jeddah, Saudi Arabia
Abstract:
The objective of this proposed paper is to present an extensive simple study about the mobile Location
and the technologies that can enable them in conventional GSM networks, which do not require any significant
changes to the network or the mobile device itself. A set of cell-based positioning techniques are proposed based
on information available from the network and on accurate path loss models. We have also developed a program
in matlab language for GSM vendors to use this feature without physical change in the network hardware.
Keywords: Global System For Mobile Communication, etc.
1. Introduction
In 1982, the Nordic PTT sent a proposal to Conférence Européenne des Postes et Télécommunications
(CEPT) to specify a common European telecommunication service at 900 MHz. A Global System for Mobile
Communications (GSM) standardization group was established to formulate the specifications for this pan-
European mobile cellular radio system. During 1982 through 1985, discussions centered around whether to build
an analog or a digital system. Then in 1985, GSM decided to develop a digital system. In 1986, companies
participated in a field test in Paris to determine whether a narrowband or broadband solution should be employed.
By May 1987, the narrowband Time Division Multiple Access (TDMA) solution was chosen. Concurrently, The
terrain profile of a particular area needs to be taken into account for estimating the path loss. The terrain profile
may vary from a simple curved earth profile to a highly mountainous profile. The presence of trees, buildings, and
other obstacles also must be taken into account. A number of propagation models are available to predict path loss
over irregular terrain.
While all these models aim to predict operators in 13 countries (two operators in the United Kingdom)
signed the Memorandum of Understanding (MoU) which committed them to fulfilling GSM specifications and
delivering a GSM system by July 1, 1991. This opened a large new market. In 1989 the ownership of the GSM
standard was shifted to ETSI (European Telecommunications Standards Institute). ETSI has members from 54
countries inside and outside Europe, and represents administrations, network operators, manufacturers, service
providers, research bodies and users. The next step in the GSM evolution was the specification of the Personal
Communication Network (PCN) for the 1800 MHz frequency range. This was named the Digital Cellular System
(DCS) 1800 (or GSM 1800). The Personal Communication Services (PCS) 1900 (or GSM 1900) for the 1900
MHz frequency range were also established for use in the Americas. Later GSM 800 and GSM 400 has been
added. GSM 800 is using a frequency area currently being used by analog system in the Americas. GSM 400 is
intended as a replacement of analog system around 450 MHz (NMT 450). This standard is not implemented by
GPRS (General Packet Radio Services) is an extension of the GSM architecture. Packet data traffic runs on a new
backbone IP network and is separate from the existing GSM core network that is used mainly for speech. GPRS
was introduced in 2001. EDGE is a new modulation method enabling higher data bit rates introduced in R9.
2. Outdoor Propagation Models
Radio transmission in a mobile communications system often takes place over irregular terrain. signal
strength at a particular receiving point or in a specific local area (called a sector), the methods vary widely in their
approach, complexity, and accuracy. Most of these models are based on a systematic interpretation of
measurement data obtained in the service area. Some of the commonly used outdoor propagation models are now
discussed.
2.1 Longley-Rice Model
The Longley-Rice model [Ric67], [Lon68] is applicable to point-to-point communication systems in the
frequency range from 40 MHz to 100 GHz, over different kinds of terrain. The median transmission loss is
predicted using the path geometry of the terrain profile and the refractivity of the troposphere. Geometric optics
techniques (primarily the 2-ray ground reflection model) are used to predict signal strengths within the radio
horizon. Diffraction losses over isolated obstacles are estimated using the Fresnel-Kirchoff knife-edge models.
Forward scatter theory is used to make troposcatter predictions over long distances, and far field diffraction losses
Determining Pinpoint Of Mobile Location In Global System…
169
|Issn||2250-3005|| (Online) ||March||2013|| ||www.ijceronline.com||
in double horizon paths are predicted using a modified Van der Pol-Bremmer method. The Longley-Rice
propagation prediction model is also referred to as the ITS irregular terrain model. The Longley-Rice model is also
available as a computer program [Lon78] to calculate large-scale median transmission loss relative to free space
loss over irregular terrain for frequencies between 20 MHz and 10 GHz. For a given transmission path, the
program takes as its input the transmission frequency, path length, polarization, antenna heights, surface
refractivity, effective radius of earth, ground conductivity, ground dielectric constant, and climate. The program
also operates on path-specific parameters such as horizon distance of the antennas, horizon elevation angle,
angular trans-horizon distance, terrain irregularity and other specific inputs.
The Longley-Rice method operates in two modes. When a detailed terrain path profile is available, the
path-specific parameters can be easily determined and the prediction is called a point-to-point mode prediction. On
the other hand, if the terrain path profile is not available, the Longley-Rice method provides techniques to estimate
the path-specific parameters, and such a prediction is called an area mode prediction. There have been many
modifications and corrections to the Longley-Rice model since its original publication. One important
modification [Lon78] deals with radio propagation in urban areas, and this is particularly relevant to mobile radio.
This modification introduces an excess term as an allowance for the additional attenuation due to urban clutter
near the receiving antenna. This extra term, called the urban factor (UF), has been derived by comparing the
predictions by the original Longley-Ricé model with those obtained by Okumura [0ku68].One shortcoming of the
Longley-Rice model is that it does not provide a way of determining corrections due to environmental factors in
the immediate vicinity of the mobile receiver, or consider correction factors to account for the effects of buildings
and foliage. Further, multipath is not considered.
2.2 Durkin’s Model
The execution of the Durkin path loss simulator consists of two parts. The --first part accesses a
topographic data base of a proposed service area and reconstructs the ground profile information along the radial
joining the transmitter to the receiver. The assumption is that the receiving antenna receives all of its energy along
that radial and, therefore, experiences no multipath propagation. In other words, the propagation phenomena that is
modeled is simply LOS and diffraction from obstacles along the radial, and excludes reflections from other
surrounding objects and local scatterers. The effect of this assumption is that the model is somewhat pessimistic in
narrow valleys, although it identifies isolated weak reception areas rather well. The second part of the simulation
algorithm calculates the expected path loss along that radial. After this is done, the simulated receiver location can
be iteratively moved to different locations in the service area to deduce the signal strength contour.
2.3 Okumura Model
Okumura’s model is one of the most widely used models for signal prediction in urban areas. This model
is applicable for frequencies in the range 150 MHz to 1920 MHz (although it is typically extrapolated up to 3000
MHz) and distances of 1 km to 100 km. It can be used for base station antenna heights ranging from 30 m to 1000
m.
Okumura developed a set of curves giving the median attenuation relative to free space
)( muA
, in an urban area
over a quasi-smooth terrain with a base station effective antenna height
)( teh
of 200m and a mobile antenna
height
)( reh
of 3 m. These curves were developed from extensive measurements using vertical Omni-directional
antennas at both the base and mobile, and are plotted as a function of frequency in the range 100 MHz to 1920
MHz and as a function of distance from the base station in the range 1 km to 100 km. To determine path loss using
Okumura’s model, the free space path loss between the points of interest is first determined, and then the value of
),( dfAmu (as read from the curves) is added to it along with correction factors to account for the type of terrain.
The model can be expressed as
AREAretemuF GhGhGdfALL  )()(),(50 (4.1)
where 50L
is the 50th percentile (i.e., median) value of propagation path loss, FL is the free space propagation
loss, muA
is the median attenuation relative to free space,
)( tehG
is the base station antenna height gain factor,
)( rehG
is the mobile antenna height gain factor, and AREAG is the gain due to the type of environment. Note that
the antenna height gains are strictly a function of height and have nothing to do with antenna patterns.
Determining Pinpoint Of Mobile Location In Global System…
170
|Issn||2250-3005|| (Online) ||March||2013|| ||www.ijceronline.com||
Plots of
),( dfAmu and AREAG for a wide range of frequencies are shown in Figure 4.1 and Figure 4.2 .
Furthermore, Okumura found that
)( tehG varies at a rate of 20 dB/decade and
)( rehG varies at a rate of 10
dB/decade for heights less than 3 m.
)
200
log(20)( te
te
h
hG 
1000 m  reh  10 m (4.2 a)
)
3
log(10)( re
re
h
hG 
reh  3 m (4.2 b)
)
3
log(20)( re
re
h
hG 
10 m  reh  3 m (4.2 c)
Other corrections may also be applied to Okumura’s model. Some of the important terrain related parameters are
the terrain undulation height (  h), isolated ridge height, average slope of the terrain and the mixed land-sea
parameter. Once the terrain related parameters are calculated, the necessary correction factors can be added or
subtracted as required. All these correction factors are also available as Okumura curves [0ku68].Okumura’s
model is wholly based on measured data and does riot provide any analytical explanation. For many situations,
extrapolations of the derived curves can be made to obtain values outside the measurement range, although the
validity of such extrapolations depends on the circumstances and the smoothness of the curve in question.
Okumura’s model is considered to be among the simplest and best in terms of accuracy in path loss prediction for
mature cellular and land mobile radio systems in cluttered environments. It is very practical and has become a
standard for system planning in modern land mobile radio systems in Japan. The major disadvantage with the
model is its slow response to rapid changes in terrain; therefore the model is fairly good in urban and suburban
areas, but not as good in rural areas. Common standard deviations between predicted and measured path loss
values are around 10 dB to 14 dB.
Figaure 4.1 Median attenuation related to free space
),( dfAmu , over a quasi-smooth terrain
Determining Pinpoint Of Mobile Location In Global System…
171
|Issn||2250-3005|| (Online) ||March||2013|| ||www.ijceronline.com||
Figaure 4.2 correction factor AREAG , for different types of terrain
2.4 Hata Model
The Hata model [Hat9O] is an empirical formulation of the graphical path loss data provided by
Okumura, and is valid from 150 MHz to 1500 MHz. Hata presented the urban area propagation loss as a standard
formula and supplied correction equations for application to other situations. The standard formula for median
path loss in urban areas is given by
dhhahfdBurbanL teretec log)log55.69.44()(log82.13log16.2655.69))((50 
(4.3)
where cf is the frequency (in MHz) from 150 MHz to 1500 MHz, teh is the effective transmitter (base station)
antenna height (in meters) ranging from 30 m to 200 m, reh is the effective receiver (mobile) antenna height (in
meters) ranging from 1 m to l0 m, d is the T-R separation distance (in kin), and
)( reha is the correction factor for
effective mobile antenna height which is a function of the size of the coverage area. For a small to medium sized
city, the mobile antenna correction factor is given by
)8.0log56.1()7.0log1.1()(  ccre ffha
(4.4)
and for a large city, it is given by
MHzfc 300 for dB 1.1)54.1(log*29.8)( 2
 rere hha
(4.5 a)
97.4)75.11(log*2.3)( 2
 rere hha dB for MHzfc 300 (4.5 b)
To obtain the path loss in a suburban area the standard Hata formula in equation (4.3) is modified as
4.5)]28[log(2)()( 2
5050  cfurbanLdBL (4.6)
And for path loss in open rural areas, the formula is modified as
98.40log33.18)(log78.4)()( 2
5050  cc ffurbanLdBL
(4.7)
Although Hata’s model does not have any of the path-specific corrections which are available in Okumura’s
model, the above expressions have significant practical value. The predictions of the Hata model compare very
closely with the original Okumura model, as long as d exceeds 1 km. This model is well suited for large cell
mobile systems, but not personal communications systems (PCS) which have cells on the order of 1km radius.
Determining Pinpoint Of Mobile Location In Global System…
172
|Issn||2250-3005|| (Online) ||March||2013|| ||www.ijceronline.com||
2.5 PCS Extension to Hata Model
The European Co-operative for Scientific and Technical research (EUROCOST) formed the COST-231
working committee to develop an extended version of the Hata model. COST-231 proposed the following formula
to extend Hata’s model to 2 GHz. The proposed model for path loss is [EUR91]
Mteretec CdhhahfdBurbanL  log)log55.69.44()(log82.13log9.333.46))((50
(4.8)
where
)( reha is defined in equations (4.4), (4.5 a), and (4.5 b) and
MC = 0 dB for medium sized city and suburban areas (4.9)
MC = 3 dB for metropolitan centers
The COST-231 extension of the Hata model is restricted to the following range of parameters:
f : 1500MHz to 2000 MHz
teh : 30 m to 200m
reh : 1 m to l0 m
d : 1 km to 20 km
3. Locate A Mobile Position
By using Hata Model we can locate a Mobile position in the network by getting:
The Power value of Transmitting from the tower (from network data base)
The height of the tower (from network data base).
The receiving value in the mobile from the mobile (by using logical channels).
Carrier frequency (from network data base).
Mobile elevation which around 1.5 m.
Is the area urban , suburban or open rural (from network data base).
Calculate the Path loss by subtract the receiving value in the mobile (Rx) from Transmitting value from the tower
(Tx).
RxTxL 50
(4.10)
Hata formula will be modifying for urban area to:
te
retec
h
hahfL
D log55.69.44
)(log82.13log16.2655.6950
10 


(4.11)
Where
)8.0log56.1()7.0log1.1()(  ccre ffha dB (for small city)
97.4)75.11(log*2.3)( 2
 rere hha dB (for a large city)
And for suburban area:
te
cretec
h
fhahfL
D log55.69.44
4.5)]28[log(2)(log82.13log16.2655.69 2
50
10 


(4.12)
And for open rural areas:
te
ccretec
h
ffhahfL
D log55.69.44
98.40log33.18)(log78.4)(log82.13log16.2655.69 2
50
10 


(4.13)
Determining Pinpoint Of Mobile Location In Global System…
173
|Issn||2250-3005|| (Online) ||March||2013|| ||www.ijceronline.com||
From the above equations we can calculate the distance from the tower to the mobile for different areas (urban,
suburban & open rural).after calculate the distance (D) we can create a circle as considering the position of the
tower is origin of the circle and the distance D is the radius of the circle as shown below:
Figure 4-3 One Direction Estimation
And after repeat these process two times more for same mobile from different towers we will have three circles as
shown below:
Figure 4-4 three directions estimation
The intersection between the three circles give us the location of the mobile .the intersection will be point or area
depends on the receiving value (Rx) and we will locate Mobile position by placed our calculation and diagrams
over good digitals Maps. These Maps programs can have them from good local vendor or use satellite Maps
programs like Google earth.
4. Error and Correction
During our process maybe we will have some errors in the calculation and this is related to wrong reading
values .this error in the reading values due to obstacles between the tower (transmitter) and mobile (receiver).
some time no clear line of sight between RBS and MS which give us error in our estimation around 10 to 14 dB.
But we can overcome on these errors by using GSM techniques:
Handover to different towers (RBS's): we can our input by select different transmitters as we know the mobile
receive from 6 different sites.
Frequency Hopping: this technique allows us to have varied frequencies to measure the mobile location because if
we have a bad estimation from one frequency we will pick another one.
Take the measurement in different times or for some period to avoid the wrong estimation and take the good ones.
By these major techniques we will get a good estimation about customer location in any network. And there are a
lot of techniques which are support our target.
As we know the GSM structure is very smart and always become smarter every day because it is a global system
and whole the world deal with it.
We are hoping to lead the world in the development in the future.
5 .Development Of Software
Different Programs Have Been Developed In Matlab For The Simulation Of “ Determining Pinpoint Of
Mobile Location In Global System For Mobile Communication network (GSM)”. In Fig.3 We Can See The
Screenshot Of The Software.
Fig 4.5
Determining Pinpoint Of Mobile Location In Global System…
174
|Issn||2250-3005|| (Online) ||March||2013|| ||www.ijceronline.com||
By using this simulator we can locate exact mobile location in Urban Area which is further divided into small and
large city , in Sub urban area which is again divided into small and large city and finally in open area which is
further divided into small and large city.
Determining pinpoint mobile location by using simulation software in Urban Area(Large City)
By using this software we demonstrated that how we can determine exact mobile location in Urban areas.
Screenshot is shown in fig.4.6
Fig 4.6
In this demonstration we have used the following values:
Where Tx=Transmitter
Rx=Receiver
Frq=Frequency
Hte = Height of Transmitter
Hre= Height of Receiver
Towerl
Tower Longitude Latitude
Tower-A 39.13702 21.58326
Tower-B 39.14961 21.66908
Tower-C 39.18081 21.48364
Determining pinpoint mobile location by using simulation software in Sub-Urban Area (small city)
By using this software we demonstrated that how we can determine exact mobile location in Sub-Urban areas.
Screenshot is shown in fig.4.7
TValues
Tower Tx Rx Frq Hte Hre
Tower-A 44 -94 900 1.5 30
Tower-B 44 -95 890 1.5 30
Tower-C 44 -96 900 1.5 30
Determining Pinpoint Of Mobile Location In Global System…
175
|Issn||2250-3005|| (Online) ||March||2013|| ||www.ijceronline.com||
Fig 4.7
In this demonstration we have used the following values:
TValues
Tower Tx Rx Frq Hte Hre
Tower-A 44 -93 900 1.5 30
Tower-B 44 -95 890 1.5 30
Tower-C 44 -97 900 1.5 30
Where Tx=Transmitter
Rx=Receiver
Frq=Frequency
Hte = Height of Transmitter
Hre= Height of Receiver
Determining pinpoint location by using simulation software in Open Area (Large city)
By using this software we demonstrated that how we can determine exact mobile location in Open areas.
Screenshot is shown in fig.
Fig 4.8
In this demonstration we have used the following values:
Towerl
Tower Longitude Latitude
Tower-A 39.10002 21.30003
Tower-B 39.14961 21.66908
Tower-C 39.18081 21.48364
Determining Pinpoint Of Mobile Location In Global System…
176
|Issn||2250-3005|| (Online) ||March||2013|| ||www.ijceronline.com||
Towerl
Tower Longitude Latitude
Tower-A 39.10002 21.30003
Tower-B 39.14961 21.66908
Tower-C 39.18081 21.48364
Where Tx=Transmitter
Rx=Receiver
Frq=Frequency
Hte = Height of Transmitter
Hre= Height of Receiver
Towerl
Tower Longitude Latitude
Tower-A 39.20002 21.50234
Tower-B 39.14961 21.66908
Tower-C 39.18081 21.48364
4. Conclusion
 This research paper aims to present an extensive study about the mobile Location and the technologies that
can enable them in conventional GSM networks.
 A set of cell-based positioning techniques are proposed based on information available from the network and on
accurate path loss models.
 This paper creates a software methods program for GSM vendors to use this feature without physical
change in the network hardware.
References
[1] Theodore S. Rappaport, Wireless Communication – Principles and Practice, Prentice Hall, 1996.
[2] Henry L. Bertoni , Radio Propagation for Modern Wireless System , Prentice Hall, 2000
[3] Lucent Technologies course , GSM 99/DCS 1800 System Introdution , Lucent Company, 1996
[4] Saudi Telecom Company course , GSM RF Cellular Engineering, Saudi Telecom Company ,2004.
[5] Saudi Telecom Company course, GSM Cell Planning Principles II, Saudi Telecom Company ,2004.
[6] Josef bajada. Mobile Positioning for Location Dependent Services in GSM Networks , 2000.M. Hellebrandt, R. Mathar,
“Location tracking of mobiles in cellular radio networks”, IEEE Transactions on Vehicular Technology, Sep.
1999,Vol. 48, No. 5, pp. 1558-1562.
[7] Some training courses were giving to me by leadership companies like Saudi telecom company STC and Ericsson Company
related to GSM and 3G.
[8] Mouly & Pautet, GSM system for mobile communication , Jone Wily & Sons, 1989.
[9] Rappaport , wireless communication principles & practice ,Marcel Dekker, 1994
[10] http://www.mobilecomms-technology.com/contractors/gisservices/andrew_old/
[11] http://www.andrew.com/
[12] John Scurias, A Brief Overview of GSM ,
[13] http:// www. Barrow.uwaterloo.ca , 1994
[14] Apostolis K. Salkintzis,'' A survey of Mobile Data Network '',
[15] http:// www. columbia.uwaterloo.ca , 1994

More Related Content

What's hot

System Consideration, Design and Implementation of Point To Point Microwave L...
System Consideration, Design and Implementation of Point To Point Microwave L...System Consideration, Design and Implementation of Point To Point Microwave L...
System Consideration, Design and Implementation of Point To Point Microwave L...ijtsrd
 
Comparative Study of Path Loss Models for Wireless Communication in Urban and...
Comparative Study of Path Loss Models for Wireless Communication in Urban and...Comparative Study of Path Loss Models for Wireless Communication in Urban and...
Comparative Study of Path Loss Models for Wireless Communication in Urban and...Onyebuchi nosiri
 
A compact triband microstrip antenna utilizing hexagonal CSRR for wireless co...
A compact triband microstrip antenna utilizing hexagonal CSRR for wireless co...A compact triband microstrip antenna utilizing hexagonal CSRR for wireless co...
A compact triband microstrip antenna utilizing hexagonal CSRR for wireless co...journalBEEI
 
Simulation and optimization of a tuneable rectangular microstrip patch antenn...
Simulation and optimization of a tuneable rectangular microstrip patch antenn...Simulation and optimization of a tuneable rectangular microstrip patch antenn...
Simulation and optimization of a tuneable rectangular microstrip patch antenn...TELKOMNIKA JOURNAL
 
Effect on Channel Capacity of Multi-User MIMO System in Crowded Area
Effect on Channel Capacity of Multi-User MIMO System in Crowded AreaEffect on Channel Capacity of Multi-User MIMO System in Crowded Area
Effect on Channel Capacity of Multi-User MIMO System in Crowded AreaIJEEE
 
Channel Overlapping Between IMT-Advanced Users and Fixed Satellite Service
Channel Overlapping Between IMT-Advanced Users and Fixed Satellite ServiceChannel Overlapping Between IMT-Advanced Users and Fixed Satellite Service
Channel Overlapping Between IMT-Advanced Users and Fixed Satellite ServiceEECJOURNAL
 
Design and analysis of microstrip antenna with zig-zag feeder for wireless co...
Design and analysis of microstrip antenna with zig-zag feeder for wireless co...Design and analysis of microstrip antenna with zig-zag feeder for wireless co...
Design and analysis of microstrip antenna with zig-zag feeder for wireless co...journalBEEI
 
Volume 2-issue-6-2098-2101
Volume 2-issue-6-2098-2101Volume 2-issue-6-2098-2101
Volume 2-issue-6-2098-2101Editor IJARCET
 
5.computer analysis of the cost 231 hata model for path loss estimation at 90...
5.computer analysis of the cost 231 hata model for path loss estimation at 90...5.computer analysis of the cost 231 hata model for path loss estimation at 90...
5.computer analysis of the cost 231 hata model for path loss estimation at 90...Alexander Decker
 
Validation study of path loss models on
Validation study of path loss models onValidation study of path loss models on
Validation study of path loss models onijngnjournal
 
A new look on CSI imperfection in downlink NOMA systems
A new look on CSI imperfection in downlink NOMA systemsA new look on CSI imperfection in downlink NOMA systems
A new look on CSI imperfection in downlink NOMA systemsjournalBEEI
 
Bi-directional Beams Waveguide Slotted Antenna at Millimeter Wave
Bi-directional Beams Waveguide Slotted Antenna at Millimeter WaveBi-directional Beams Waveguide Slotted Antenna at Millimeter Wave
Bi-directional Beams Waveguide Slotted Antenna at Millimeter WaveTELKOMNIKA JOURNAL
 
Survey of analysis and performance of ofdm signals in time and frequency disp...
Survey of analysis and performance of ofdm signals in time and frequency disp...Survey of analysis and performance of ofdm signals in time and frequency disp...
Survey of analysis and performance of ofdm signals in time and frequency disp...eSAT Publishing House
 
Comparison between Zero Forcing (ZF) & Maximum Ratio Transmission (MRT) on th...
Comparison between Zero Forcing (ZF) & Maximum Ratio Transmission (MRT) on th...Comparison between Zero Forcing (ZF) & Maximum Ratio Transmission (MRT) on th...
Comparison between Zero Forcing (ZF) & Maximum Ratio Transmission (MRT) on th...Eng. Mohammed Ahmed Siddiqui
 

What's hot (17)

System Consideration, Design and Implementation of Point To Point Microwave L...
System Consideration, Design and Implementation of Point To Point Microwave L...System Consideration, Design and Implementation of Point To Point Microwave L...
System Consideration, Design and Implementation of Point To Point Microwave L...
 
Comparative Study of Path Loss Models for Wireless Communication in Urban and...
Comparative Study of Path Loss Models for Wireless Communication in Urban and...Comparative Study of Path Loss Models for Wireless Communication in Urban and...
Comparative Study of Path Loss Models for Wireless Communication in Urban and...
 
A compact triband microstrip antenna utilizing hexagonal CSRR for wireless co...
A compact triband microstrip antenna utilizing hexagonal CSRR for wireless co...A compact triband microstrip antenna utilizing hexagonal CSRR for wireless co...
A compact triband microstrip antenna utilizing hexagonal CSRR for wireless co...
 
positioning
positioningpositioning
positioning
 
Simulation and optimization of a tuneable rectangular microstrip patch antenn...
Simulation and optimization of a tuneable rectangular microstrip patch antenn...Simulation and optimization of a tuneable rectangular microstrip patch antenn...
Simulation and optimization of a tuneable rectangular microstrip patch antenn...
 
Effect on Channel Capacity of Multi-User MIMO System in Crowded Area
Effect on Channel Capacity of Multi-User MIMO System in Crowded AreaEffect on Channel Capacity of Multi-User MIMO System in Crowded Area
Effect on Channel Capacity of Multi-User MIMO System in Crowded Area
 
3D Beamforming
3D Beamforming3D Beamforming
3D Beamforming
 
Channel Overlapping Between IMT-Advanced Users and Fixed Satellite Service
Channel Overlapping Between IMT-Advanced Users and Fixed Satellite ServiceChannel Overlapping Between IMT-Advanced Users and Fixed Satellite Service
Channel Overlapping Between IMT-Advanced Users and Fixed Satellite Service
 
Design and analysis of microstrip antenna with zig-zag feeder for wireless co...
Design and analysis of microstrip antenna with zig-zag feeder for wireless co...Design and analysis of microstrip antenna with zig-zag feeder for wireless co...
Design and analysis of microstrip antenna with zig-zag feeder for wireless co...
 
Volume 2-issue-6-2098-2101
Volume 2-issue-6-2098-2101Volume 2-issue-6-2098-2101
Volume 2-issue-6-2098-2101
 
5.computer analysis of the cost 231 hata model for path loss estimation at 90...
5.computer analysis of the cost 231 hata model for path loss estimation at 90...5.computer analysis of the cost 231 hata model for path loss estimation at 90...
5.computer analysis of the cost 231 hata model for path loss estimation at 90...
 
Validation study of path loss models on
Validation study of path loss models onValidation study of path loss models on
Validation study of path loss models on
 
A new look on CSI imperfection in downlink NOMA systems
A new look on CSI imperfection in downlink NOMA systemsA new look on CSI imperfection in downlink NOMA systems
A new look on CSI imperfection in downlink NOMA systems
 
Bi-directional Beams Waveguide Slotted Antenna at Millimeter Wave
Bi-directional Beams Waveguide Slotted Antenna at Millimeter WaveBi-directional Beams Waveguide Slotted Antenna at Millimeter Wave
Bi-directional Beams Waveguide Slotted Antenna at Millimeter Wave
 
Survey of analysis and performance of ofdm signals in time and frequency disp...
Survey of analysis and performance of ofdm signals in time and frequency disp...Survey of analysis and performance of ofdm signals in time and frequency disp...
Survey of analysis and performance of ofdm signals in time and frequency disp...
 
Comparison between Zero Forcing (ZF) & Maximum Ratio Transmission (MRT) on th...
Comparison between Zero Forcing (ZF) & Maximum Ratio Transmission (MRT) on th...Comparison between Zero Forcing (ZF) & Maximum Ratio Transmission (MRT) on th...
Comparison between Zero Forcing (ZF) & Maximum Ratio Transmission (MRT) on th...
 
19.19051802
19.1905180219.19051802
19.19051802
 

Viewers also liked

Viewers also liked (7)

Ad03301810188
Ad03301810188Ad03301810188
Ad03301810188
 
flyer carolina 1
flyer carolina 1flyer carolina 1
flyer carolina 1
 
C033012016
C033012016C033012016
C033012016
 
Ac03301770180
Ac03301770180Ac03301770180
Ac03301770180
 
Universidad tecnica de machala DEBER EXCEL
Universidad tecnica de machala DEBER EXCELUniversidad tecnica de machala DEBER EXCEL
Universidad tecnica de machala DEBER EXCEL
 
Ae03301890197
Ae03301890197Ae03301890197
Ae03301890197
 
Textos dramáticos.
Textos dramáticos.Textos dramáticos.
Textos dramáticos.
 

Similar to Ab03301680176

Signal Strength Evaluation of a 3G Network in Owerri Metropolis Using Path Lo...
Signal Strength Evaluation of a 3G Network in Owerri Metropolis Using Path Lo...Signal Strength Evaluation of a 3G Network in Owerri Metropolis Using Path Lo...
Signal Strength Evaluation of a 3G Network in Owerri Metropolis Using Path Lo...Onyebuchi nosiri
 
Compared to wireless deployment in areas with different environmentse
Compared to wireless deployment in areas with different environmentseCompared to wireless deployment in areas with different environmentse
Compared to wireless deployment in areas with different environmentseIJECEIAES
 
Implementation of Particle Swarm Optimization Technique for Enhanced Outdoor ...
Implementation of Particle Swarm Optimization Technique for Enhanced Outdoor ...Implementation of Particle Swarm Optimization Technique for Enhanced Outdoor ...
Implementation of Particle Swarm Optimization Technique for Enhanced Outdoor ...Onyebuchi nosiri
 
COMPARISON OF RADIO PROPAGATION MODELS FOR LONG TERM EVOLUTION (LTE) NETWORK
COMPARISON OF RADIO PROPAGATION MODELS FOR LONG TERM EVOLUTION (LTE) NETWORKCOMPARISON OF RADIO PROPAGATION MODELS FOR LONG TERM EVOLUTION (LTE) NETWORK
COMPARISON OF RADIO PROPAGATION MODELS FOR LONG TERM EVOLUTION (LTE) NETWORKijngnjournal
 
An Analytical Analysis of Path Loss Models for Mobile Cellular Wireless Commu...
An Analytical Analysis of Path Loss Models for Mobile Cellular Wireless Commu...An Analytical Analysis of Path Loss Models for Mobile Cellular Wireless Commu...
An Analytical Analysis of Path Loss Models for Mobile Cellular Wireless Commu...IJCI JOURNAL
 
AN ANALYTICAL ANALYSIS OF PATH LOSS MODELS FOR MOBILE CELLULAR WIRELESS COMMU...
AN ANALYTICAL ANALYSIS OF PATH LOSS MODELS FOR MOBILE CELLULAR WIRELESS COMMU...AN ANALYTICAL ANALYSIS OF PATH LOSS MODELS FOR MOBILE CELLULAR WIRELESS COMMU...
AN ANALYTICAL ANALYSIS OF PATH LOSS MODELS FOR MOBILE CELLULAR WIRELESS COMMU...IJCI JOURNAL
 
Comparative Study of Path Loss Models for Wireless Communication in Urban and...
Comparative Study of Path Loss Models for Wireless Communication in Urban and...Comparative Study of Path Loss Models for Wireless Communication in Urban and...
Comparative Study of Path Loss Models for Wireless Communication in Urban and...Onyebuchi nosiri
 
Third Generation Wireless Modeling in Urban Environment
Third Generation Wireless Modeling in Urban EnvironmentThird Generation Wireless Modeling in Urban Environment
Third Generation Wireless Modeling in Urban EnvironmentEECJOURNAL
 
AN ANALYTICAL ANALYSIS OF PATH LOSS MODELS FOR MOBILE CELLULAR WIRELESS COMMU...
AN ANALYTICAL ANALYSIS OF PATH LOSS MODELS FOR MOBILE CELLULAR WIRELESS COMMU...AN ANALYTICAL ANALYSIS OF PATH LOSS MODELS FOR MOBILE CELLULAR WIRELESS COMMU...
AN ANALYTICAL ANALYSIS OF PATH LOSS MODELS FOR MOBILE CELLULAR WIRELESS COMMU...IJCI JOURNAL
 
Validation Study of Path Loss Models on Wimax At 2.6 Ghz Frequency Band in Su...
Validation Study of Path Loss Models on Wimax At 2.6 Ghz Frequency Band in Su...Validation Study of Path Loss Models on Wimax At 2.6 Ghz Frequency Band in Su...
Validation Study of Path Loss Models on Wimax At 2.6 Ghz Frequency Band in Su...josephjonse
 
Radio field strength propagation data and pathloss calculation methods in umt...
Radio field strength propagation data and pathloss calculation methods in umt...Radio field strength propagation data and pathloss calculation methods in umt...
Radio field strength propagation data and pathloss calculation methods in umt...Alexander Decker
 
Volume 2-issue-6-2098-2101
Volume 2-issue-6-2098-2101Volume 2-issue-6-2098-2101
Volume 2-issue-6-2098-2101Editor IJARCET
 
K Coverage Probability of 5G Wireless Cognitive Radio Network under Shadow Fa...
K Coverage Probability of 5G Wireless Cognitive Radio Network under Shadow Fa...K Coverage Probability of 5G Wireless Cognitive Radio Network under Shadow Fa...
K Coverage Probability of 5G Wireless Cognitive Radio Network under Shadow Fa...ijeei-iaes
 
Path Loss Characterization of 3G Wireless Signal for Urban and Suburban Envir...
Path Loss Characterization of 3G Wireless Signal for Urban and Suburban Envir...Path Loss Characterization of 3G Wireless Signal for Urban and Suburban Envir...
Path Loss Characterization of 3G Wireless Signal for Urban and Suburban Envir...Onyebuchi nosiri
 
Path Loss Characterization of 3G Wireless Signal for Urban and Suburban Envir...
Path Loss Characterization of 3G Wireless Signal for Urban and Suburban Envir...Path Loss Characterization of 3G Wireless Signal for Urban and Suburban Envir...
Path Loss Characterization of 3G Wireless Signal for Urban and Suburban Envir...Onyebuchi nosiri
 
Determination of Propagation Path Loss and Contour Map for FUTA FM Radio Fede...
Determination of Propagation Path Loss and Contour Map for FUTA FM Radio Fede...Determination of Propagation Path Loss and Contour Map for FUTA FM Radio Fede...
Determination of Propagation Path Loss and Contour Map for FUTA FM Radio Fede...IOSR Journals
 
Determination of Propagation Path Loss and Contour Map for FUTA FM Radio Fede...
Determination of Propagation Path Loss and Contour Map for FUTA FM Radio Fede...Determination of Propagation Path Loss and Contour Map for FUTA FM Radio Fede...
Determination of Propagation Path Loss and Contour Map for FUTA FM Radio Fede...IOSR Journals
 
A systematic evaluation of link budget for
A systematic evaluation of link budget forA systematic evaluation of link budget for
A systematic evaluation of link budget forAlexander Decker
 
A systematic evaluation of link budget for
A systematic evaluation of link budget forA systematic evaluation of link budget for
A systematic evaluation of link budget forAlexander Decker
 
Wc nots final unit new 7
Wc nots final unit new  7Wc nots final unit new  7
Wc nots final unit new 7SURESHA V
 

Similar to Ab03301680176 (20)

Signal Strength Evaluation of a 3G Network in Owerri Metropolis Using Path Lo...
Signal Strength Evaluation of a 3G Network in Owerri Metropolis Using Path Lo...Signal Strength Evaluation of a 3G Network in Owerri Metropolis Using Path Lo...
Signal Strength Evaluation of a 3G Network in Owerri Metropolis Using Path Lo...
 
Compared to wireless deployment in areas with different environmentse
Compared to wireless deployment in areas with different environmentseCompared to wireless deployment in areas with different environmentse
Compared to wireless deployment in areas with different environmentse
 
Implementation of Particle Swarm Optimization Technique for Enhanced Outdoor ...
Implementation of Particle Swarm Optimization Technique for Enhanced Outdoor ...Implementation of Particle Swarm Optimization Technique for Enhanced Outdoor ...
Implementation of Particle Swarm Optimization Technique for Enhanced Outdoor ...
 
COMPARISON OF RADIO PROPAGATION MODELS FOR LONG TERM EVOLUTION (LTE) NETWORK
COMPARISON OF RADIO PROPAGATION MODELS FOR LONG TERM EVOLUTION (LTE) NETWORKCOMPARISON OF RADIO PROPAGATION MODELS FOR LONG TERM EVOLUTION (LTE) NETWORK
COMPARISON OF RADIO PROPAGATION MODELS FOR LONG TERM EVOLUTION (LTE) NETWORK
 
An Analytical Analysis of Path Loss Models for Mobile Cellular Wireless Commu...
An Analytical Analysis of Path Loss Models for Mobile Cellular Wireless Commu...An Analytical Analysis of Path Loss Models for Mobile Cellular Wireless Commu...
An Analytical Analysis of Path Loss Models for Mobile Cellular Wireless Commu...
 
AN ANALYTICAL ANALYSIS OF PATH LOSS MODELS FOR MOBILE CELLULAR WIRELESS COMMU...
AN ANALYTICAL ANALYSIS OF PATH LOSS MODELS FOR MOBILE CELLULAR WIRELESS COMMU...AN ANALYTICAL ANALYSIS OF PATH LOSS MODELS FOR MOBILE CELLULAR WIRELESS COMMU...
AN ANALYTICAL ANALYSIS OF PATH LOSS MODELS FOR MOBILE CELLULAR WIRELESS COMMU...
 
Comparative Study of Path Loss Models for Wireless Communication in Urban and...
Comparative Study of Path Loss Models for Wireless Communication in Urban and...Comparative Study of Path Loss Models for Wireless Communication in Urban and...
Comparative Study of Path Loss Models for Wireless Communication in Urban and...
 
Third Generation Wireless Modeling in Urban Environment
Third Generation Wireless Modeling in Urban EnvironmentThird Generation Wireless Modeling in Urban Environment
Third Generation Wireless Modeling in Urban Environment
 
AN ANALYTICAL ANALYSIS OF PATH LOSS MODELS FOR MOBILE CELLULAR WIRELESS COMMU...
AN ANALYTICAL ANALYSIS OF PATH LOSS MODELS FOR MOBILE CELLULAR WIRELESS COMMU...AN ANALYTICAL ANALYSIS OF PATH LOSS MODELS FOR MOBILE CELLULAR WIRELESS COMMU...
AN ANALYTICAL ANALYSIS OF PATH LOSS MODELS FOR MOBILE CELLULAR WIRELESS COMMU...
 
Validation Study of Path Loss Models on Wimax At 2.6 Ghz Frequency Band in Su...
Validation Study of Path Loss Models on Wimax At 2.6 Ghz Frequency Band in Su...Validation Study of Path Loss Models on Wimax At 2.6 Ghz Frequency Band in Su...
Validation Study of Path Loss Models on Wimax At 2.6 Ghz Frequency Band in Su...
 
Radio field strength propagation data and pathloss calculation methods in umt...
Radio field strength propagation data and pathloss calculation methods in umt...Radio field strength propagation data and pathloss calculation methods in umt...
Radio field strength propagation data and pathloss calculation methods in umt...
 
Volume 2-issue-6-2098-2101
Volume 2-issue-6-2098-2101Volume 2-issue-6-2098-2101
Volume 2-issue-6-2098-2101
 
K Coverage Probability of 5G Wireless Cognitive Radio Network under Shadow Fa...
K Coverage Probability of 5G Wireless Cognitive Radio Network under Shadow Fa...K Coverage Probability of 5G Wireless Cognitive Radio Network under Shadow Fa...
K Coverage Probability of 5G Wireless Cognitive Radio Network under Shadow Fa...
 
Path Loss Characterization of 3G Wireless Signal for Urban and Suburban Envir...
Path Loss Characterization of 3G Wireless Signal for Urban and Suburban Envir...Path Loss Characterization of 3G Wireless Signal for Urban and Suburban Envir...
Path Loss Characterization of 3G Wireless Signal for Urban and Suburban Envir...
 
Path Loss Characterization of 3G Wireless Signal for Urban and Suburban Envir...
Path Loss Characterization of 3G Wireless Signal for Urban and Suburban Envir...Path Loss Characterization of 3G Wireless Signal for Urban and Suburban Envir...
Path Loss Characterization of 3G Wireless Signal for Urban and Suburban Envir...
 
Determination of Propagation Path Loss and Contour Map for FUTA FM Radio Fede...
Determination of Propagation Path Loss and Contour Map for FUTA FM Radio Fede...Determination of Propagation Path Loss and Contour Map for FUTA FM Radio Fede...
Determination of Propagation Path Loss and Contour Map for FUTA FM Radio Fede...
 
Determination of Propagation Path Loss and Contour Map for FUTA FM Radio Fede...
Determination of Propagation Path Loss and Contour Map for FUTA FM Radio Fede...Determination of Propagation Path Loss and Contour Map for FUTA FM Radio Fede...
Determination of Propagation Path Loss and Contour Map for FUTA FM Radio Fede...
 
A systematic evaluation of link budget for
A systematic evaluation of link budget forA systematic evaluation of link budget for
A systematic evaluation of link budget for
 
A systematic evaluation of link budget for
A systematic evaluation of link budget forA systematic evaluation of link budget for
A systematic evaluation of link budget for
 
Wc nots final unit new 7
Wc nots final unit new  7Wc nots final unit new  7
Wc nots final unit new 7
 

Recently uploaded

Case study on tata clothing brand zudio in detail
Case study on tata clothing brand zudio in detailCase study on tata clothing brand zudio in detail
Case study on tata clothing brand zudio in detailAriel592675
 
Vip Female Escorts Noida 9711199171 Greater Noida Escorts Service
Vip Female Escorts Noida 9711199171 Greater Noida Escorts ServiceVip Female Escorts Noida 9711199171 Greater Noida Escorts Service
Vip Female Escorts Noida 9711199171 Greater Noida Escorts Serviceankitnayak356677
 
The CMO Survey - Highlights and Insights Report - Spring 2024
The CMO Survey - Highlights and Insights Report - Spring 2024The CMO Survey - Highlights and Insights Report - Spring 2024
The CMO Survey - Highlights and Insights Report - Spring 2024christinemoorman
 
Market Sizes Sample Report - 2024 Edition
Market Sizes Sample Report - 2024 EditionMarket Sizes Sample Report - 2024 Edition
Market Sizes Sample Report - 2024 EditionMintel Group
 
Future Of Sample Report 2024 | Redacted Version
Future Of Sample Report 2024 | Redacted VersionFuture Of Sample Report 2024 | Redacted Version
Future Of Sample Report 2024 | Redacted VersionMintel Group
 
(8264348440) 🔝 Call Girls In Mahipalpur 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Mahipalpur 🔝 Delhi NCR(8264348440) 🔝 Call Girls In Mahipalpur 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Mahipalpur 🔝 Delhi NCRsoniya singh
 
RE Capital's Visionary Leadership under Newman Leech
RE Capital's Visionary Leadership under Newman LeechRE Capital's Visionary Leadership under Newman Leech
RE Capital's Visionary Leadership under Newman LeechNewman George Leech
 
Marketing Management Business Plan_My Sweet Creations
Marketing Management Business Plan_My Sweet CreationsMarketing Management Business Plan_My Sweet Creations
Marketing Management Business Plan_My Sweet Creationsnakalysalcedo61
 
BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,noida100girls
 
Lean: From Theory to Practice — One City’s (and Library’s) Lean Story… Abridged
Lean: From Theory to Practice — One City’s (and Library’s) Lean Story… AbridgedLean: From Theory to Practice — One City’s (and Library’s) Lean Story… Abridged
Lean: From Theory to Practice — One City’s (and Library’s) Lean Story… AbridgedKaiNexus
 
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort ServiceCall US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort Servicecallgirls2057
 
Global Scenario On Sustainable and Resilient Coconut Industry by Dr. Jelfina...
Global Scenario On Sustainable  and Resilient Coconut Industry by Dr. Jelfina...Global Scenario On Sustainable  and Resilient Coconut Industry by Dr. Jelfina...
Global Scenario On Sustainable and Resilient Coconut Industry by Dr. Jelfina...ictsugar
 
Annual General Meeting Presentation Slides
Annual General Meeting Presentation SlidesAnnual General Meeting Presentation Slides
Annual General Meeting Presentation SlidesKeppelCorporation
 
8447779800, Low rate Call girls in Uttam Nagar Delhi NCR
8447779800, Low rate Call girls in Uttam Nagar Delhi NCR8447779800, Low rate Call girls in Uttam Nagar Delhi NCR
8447779800, Low rate Call girls in Uttam Nagar Delhi NCRashishs7044
 
Progress Report - Oracle Database Analyst Summit
Progress  Report - Oracle Database Analyst SummitProgress  Report - Oracle Database Analyst Summit
Progress Report - Oracle Database Analyst SummitHolger Mueller
 
8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR
8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR
8447779800, Low rate Call girls in Shivaji Enclave Delhi NCRashishs7044
 
VIP Kolkata Call Girl Howrah 👉 8250192130 Available With Room
VIP Kolkata Call Girl Howrah 👉 8250192130  Available With RoomVIP Kolkata Call Girl Howrah 👉 8250192130  Available With Room
VIP Kolkata Call Girl Howrah 👉 8250192130 Available With Roomdivyansh0kumar0
 
FULL ENJOY Call girls in Paharganj Delhi | 8377087607
FULL ENJOY Call girls in Paharganj Delhi | 8377087607FULL ENJOY Call girls in Paharganj Delhi | 8377087607
FULL ENJOY Call girls in Paharganj Delhi | 8377087607dollysharma2066
 
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / NcrCall Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncrdollysharma2066
 
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu MenzaYouth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu Menzaictsugar
 

Recently uploaded (20)

Case study on tata clothing brand zudio in detail
Case study on tata clothing brand zudio in detailCase study on tata clothing brand zudio in detail
Case study on tata clothing brand zudio in detail
 
Vip Female Escorts Noida 9711199171 Greater Noida Escorts Service
Vip Female Escorts Noida 9711199171 Greater Noida Escorts ServiceVip Female Escorts Noida 9711199171 Greater Noida Escorts Service
Vip Female Escorts Noida 9711199171 Greater Noida Escorts Service
 
The CMO Survey - Highlights and Insights Report - Spring 2024
The CMO Survey - Highlights and Insights Report - Spring 2024The CMO Survey - Highlights and Insights Report - Spring 2024
The CMO Survey - Highlights and Insights Report - Spring 2024
 
Market Sizes Sample Report - 2024 Edition
Market Sizes Sample Report - 2024 EditionMarket Sizes Sample Report - 2024 Edition
Market Sizes Sample Report - 2024 Edition
 
Future Of Sample Report 2024 | Redacted Version
Future Of Sample Report 2024 | Redacted VersionFuture Of Sample Report 2024 | Redacted Version
Future Of Sample Report 2024 | Redacted Version
 
(8264348440) 🔝 Call Girls In Mahipalpur 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Mahipalpur 🔝 Delhi NCR(8264348440) 🔝 Call Girls In Mahipalpur 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Mahipalpur 🔝 Delhi NCR
 
RE Capital's Visionary Leadership under Newman Leech
RE Capital's Visionary Leadership under Newman LeechRE Capital's Visionary Leadership under Newman Leech
RE Capital's Visionary Leadership under Newman Leech
 
Marketing Management Business Plan_My Sweet Creations
Marketing Management Business Plan_My Sweet CreationsMarketing Management Business Plan_My Sweet Creations
Marketing Management Business Plan_My Sweet Creations
 
BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
BEST Call Girls In Greater Noida ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
 
Lean: From Theory to Practice — One City’s (and Library’s) Lean Story… Abridged
Lean: From Theory to Practice — One City’s (and Library’s) Lean Story… AbridgedLean: From Theory to Practice — One City’s (and Library’s) Lean Story… Abridged
Lean: From Theory to Practice — One City’s (and Library’s) Lean Story… Abridged
 
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort ServiceCall US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
 
Global Scenario On Sustainable and Resilient Coconut Industry by Dr. Jelfina...
Global Scenario On Sustainable  and Resilient Coconut Industry by Dr. Jelfina...Global Scenario On Sustainable  and Resilient Coconut Industry by Dr. Jelfina...
Global Scenario On Sustainable and Resilient Coconut Industry by Dr. Jelfina...
 
Annual General Meeting Presentation Slides
Annual General Meeting Presentation SlidesAnnual General Meeting Presentation Slides
Annual General Meeting Presentation Slides
 
8447779800, Low rate Call girls in Uttam Nagar Delhi NCR
8447779800, Low rate Call girls in Uttam Nagar Delhi NCR8447779800, Low rate Call girls in Uttam Nagar Delhi NCR
8447779800, Low rate Call girls in Uttam Nagar Delhi NCR
 
Progress Report - Oracle Database Analyst Summit
Progress  Report - Oracle Database Analyst SummitProgress  Report - Oracle Database Analyst Summit
Progress Report - Oracle Database Analyst Summit
 
8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR
8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR
8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR
 
VIP Kolkata Call Girl Howrah 👉 8250192130 Available With Room
VIP Kolkata Call Girl Howrah 👉 8250192130  Available With RoomVIP Kolkata Call Girl Howrah 👉 8250192130  Available With Room
VIP Kolkata Call Girl Howrah 👉 8250192130 Available With Room
 
FULL ENJOY Call girls in Paharganj Delhi | 8377087607
FULL ENJOY Call girls in Paharganj Delhi | 8377087607FULL ENJOY Call girls in Paharganj Delhi | 8377087607
FULL ENJOY Call girls in Paharganj Delhi | 8377087607
 
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / NcrCall Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
 
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu MenzaYouth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
 

Ab03301680176

  • 1. International Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue. 3 168 |Issn||2250-3005|| (Online) ||March||2013|| ||www.ijceronline.com|| Determining Pinpoint of Mobile Location in Global System for Mobile Communication Network (Gsm) 1, Adnan Affandi, 2, Mubashshir Husain 1,2, Department of Elect. & Comp. Eng.,King Abdul Aziz University,Jeddah, Saudi Arabia Abstract: The objective of this proposed paper is to present an extensive simple study about the mobile Location and the technologies that can enable them in conventional GSM networks, which do not require any significant changes to the network or the mobile device itself. A set of cell-based positioning techniques are proposed based on information available from the network and on accurate path loss models. We have also developed a program in matlab language for GSM vendors to use this feature without physical change in the network hardware. Keywords: Global System For Mobile Communication, etc. 1. Introduction In 1982, the Nordic PTT sent a proposal to Conférence Européenne des Postes et Télécommunications (CEPT) to specify a common European telecommunication service at 900 MHz. A Global System for Mobile Communications (GSM) standardization group was established to formulate the specifications for this pan- European mobile cellular radio system. During 1982 through 1985, discussions centered around whether to build an analog or a digital system. Then in 1985, GSM decided to develop a digital system. In 1986, companies participated in a field test in Paris to determine whether a narrowband or broadband solution should be employed. By May 1987, the narrowband Time Division Multiple Access (TDMA) solution was chosen. Concurrently, The terrain profile of a particular area needs to be taken into account for estimating the path loss. The terrain profile may vary from a simple curved earth profile to a highly mountainous profile. The presence of trees, buildings, and other obstacles also must be taken into account. A number of propagation models are available to predict path loss over irregular terrain. While all these models aim to predict operators in 13 countries (two operators in the United Kingdom) signed the Memorandum of Understanding (MoU) which committed them to fulfilling GSM specifications and delivering a GSM system by July 1, 1991. This opened a large new market. In 1989 the ownership of the GSM standard was shifted to ETSI (European Telecommunications Standards Institute). ETSI has members from 54 countries inside and outside Europe, and represents administrations, network operators, manufacturers, service providers, research bodies and users. The next step in the GSM evolution was the specification of the Personal Communication Network (PCN) for the 1800 MHz frequency range. This was named the Digital Cellular System (DCS) 1800 (or GSM 1800). The Personal Communication Services (PCS) 1900 (or GSM 1900) for the 1900 MHz frequency range were also established for use in the Americas. Later GSM 800 and GSM 400 has been added. GSM 800 is using a frequency area currently being used by analog system in the Americas. GSM 400 is intended as a replacement of analog system around 450 MHz (NMT 450). This standard is not implemented by GPRS (General Packet Radio Services) is an extension of the GSM architecture. Packet data traffic runs on a new backbone IP network and is separate from the existing GSM core network that is used mainly for speech. GPRS was introduced in 2001. EDGE is a new modulation method enabling higher data bit rates introduced in R9. 2. Outdoor Propagation Models Radio transmission in a mobile communications system often takes place over irregular terrain. signal strength at a particular receiving point or in a specific local area (called a sector), the methods vary widely in their approach, complexity, and accuracy. Most of these models are based on a systematic interpretation of measurement data obtained in the service area. Some of the commonly used outdoor propagation models are now discussed. 2.1 Longley-Rice Model The Longley-Rice model [Ric67], [Lon68] is applicable to point-to-point communication systems in the frequency range from 40 MHz to 100 GHz, over different kinds of terrain. The median transmission loss is predicted using the path geometry of the terrain profile and the refractivity of the troposphere. Geometric optics techniques (primarily the 2-ray ground reflection model) are used to predict signal strengths within the radio horizon. Diffraction losses over isolated obstacles are estimated using the Fresnel-Kirchoff knife-edge models. Forward scatter theory is used to make troposcatter predictions over long distances, and far field diffraction losses
  • 2. Determining Pinpoint Of Mobile Location In Global System… 169 |Issn||2250-3005|| (Online) ||March||2013|| ||www.ijceronline.com|| in double horizon paths are predicted using a modified Van der Pol-Bremmer method. The Longley-Rice propagation prediction model is also referred to as the ITS irregular terrain model. The Longley-Rice model is also available as a computer program [Lon78] to calculate large-scale median transmission loss relative to free space loss over irregular terrain for frequencies between 20 MHz and 10 GHz. For a given transmission path, the program takes as its input the transmission frequency, path length, polarization, antenna heights, surface refractivity, effective radius of earth, ground conductivity, ground dielectric constant, and climate. The program also operates on path-specific parameters such as horizon distance of the antennas, horizon elevation angle, angular trans-horizon distance, terrain irregularity and other specific inputs. The Longley-Rice method operates in two modes. When a detailed terrain path profile is available, the path-specific parameters can be easily determined and the prediction is called a point-to-point mode prediction. On the other hand, if the terrain path profile is not available, the Longley-Rice method provides techniques to estimate the path-specific parameters, and such a prediction is called an area mode prediction. There have been many modifications and corrections to the Longley-Rice model since its original publication. One important modification [Lon78] deals with radio propagation in urban areas, and this is particularly relevant to mobile radio. This modification introduces an excess term as an allowance for the additional attenuation due to urban clutter near the receiving antenna. This extra term, called the urban factor (UF), has been derived by comparing the predictions by the original Longley-Ricé model with those obtained by Okumura [0ku68].One shortcoming of the Longley-Rice model is that it does not provide a way of determining corrections due to environmental factors in the immediate vicinity of the mobile receiver, or consider correction factors to account for the effects of buildings and foliage. Further, multipath is not considered. 2.2 Durkin’s Model The execution of the Durkin path loss simulator consists of two parts. The --first part accesses a topographic data base of a proposed service area and reconstructs the ground profile information along the radial joining the transmitter to the receiver. The assumption is that the receiving antenna receives all of its energy along that radial and, therefore, experiences no multipath propagation. In other words, the propagation phenomena that is modeled is simply LOS and diffraction from obstacles along the radial, and excludes reflections from other surrounding objects and local scatterers. The effect of this assumption is that the model is somewhat pessimistic in narrow valleys, although it identifies isolated weak reception areas rather well. The second part of the simulation algorithm calculates the expected path loss along that radial. After this is done, the simulated receiver location can be iteratively moved to different locations in the service area to deduce the signal strength contour. 2.3 Okumura Model Okumura’s model is one of the most widely used models for signal prediction in urban areas. This model is applicable for frequencies in the range 150 MHz to 1920 MHz (although it is typically extrapolated up to 3000 MHz) and distances of 1 km to 100 km. It can be used for base station antenna heights ranging from 30 m to 1000 m. Okumura developed a set of curves giving the median attenuation relative to free space )( muA , in an urban area over a quasi-smooth terrain with a base station effective antenna height )( teh of 200m and a mobile antenna height )( reh of 3 m. These curves were developed from extensive measurements using vertical Omni-directional antennas at both the base and mobile, and are plotted as a function of frequency in the range 100 MHz to 1920 MHz and as a function of distance from the base station in the range 1 km to 100 km. To determine path loss using Okumura’s model, the free space path loss between the points of interest is first determined, and then the value of ),( dfAmu (as read from the curves) is added to it along with correction factors to account for the type of terrain. The model can be expressed as AREAretemuF GhGhGdfALL  )()(),(50 (4.1) where 50L is the 50th percentile (i.e., median) value of propagation path loss, FL is the free space propagation loss, muA is the median attenuation relative to free space, )( tehG is the base station antenna height gain factor, )( rehG is the mobile antenna height gain factor, and AREAG is the gain due to the type of environment. Note that the antenna height gains are strictly a function of height and have nothing to do with antenna patterns.
  • 3. Determining Pinpoint Of Mobile Location In Global System… 170 |Issn||2250-3005|| (Online) ||March||2013|| ||www.ijceronline.com|| Plots of ),( dfAmu and AREAG for a wide range of frequencies are shown in Figure 4.1 and Figure 4.2 . Furthermore, Okumura found that )( tehG varies at a rate of 20 dB/decade and )( rehG varies at a rate of 10 dB/decade for heights less than 3 m. ) 200 log(20)( te te h hG  1000 m  reh  10 m (4.2 a) ) 3 log(10)( re re h hG  reh  3 m (4.2 b) ) 3 log(20)( re re h hG  10 m  reh  3 m (4.2 c) Other corrections may also be applied to Okumura’s model. Some of the important terrain related parameters are the terrain undulation height (  h), isolated ridge height, average slope of the terrain and the mixed land-sea parameter. Once the terrain related parameters are calculated, the necessary correction factors can be added or subtracted as required. All these correction factors are also available as Okumura curves [0ku68].Okumura’s model is wholly based on measured data and does riot provide any analytical explanation. For many situations, extrapolations of the derived curves can be made to obtain values outside the measurement range, although the validity of such extrapolations depends on the circumstances and the smoothness of the curve in question. Okumura’s model is considered to be among the simplest and best in terms of accuracy in path loss prediction for mature cellular and land mobile radio systems in cluttered environments. It is very practical and has become a standard for system planning in modern land mobile radio systems in Japan. The major disadvantage with the model is its slow response to rapid changes in terrain; therefore the model is fairly good in urban and suburban areas, but not as good in rural areas. Common standard deviations between predicted and measured path loss values are around 10 dB to 14 dB. Figaure 4.1 Median attenuation related to free space ),( dfAmu , over a quasi-smooth terrain
  • 4. Determining Pinpoint Of Mobile Location In Global System… 171 |Issn||2250-3005|| (Online) ||March||2013|| ||www.ijceronline.com|| Figaure 4.2 correction factor AREAG , for different types of terrain 2.4 Hata Model The Hata model [Hat9O] is an empirical formulation of the graphical path loss data provided by Okumura, and is valid from 150 MHz to 1500 MHz. Hata presented the urban area propagation loss as a standard formula and supplied correction equations for application to other situations. The standard formula for median path loss in urban areas is given by dhhahfdBurbanL teretec log)log55.69.44()(log82.13log16.2655.69))((50  (4.3) where cf is the frequency (in MHz) from 150 MHz to 1500 MHz, teh is the effective transmitter (base station) antenna height (in meters) ranging from 30 m to 200 m, reh is the effective receiver (mobile) antenna height (in meters) ranging from 1 m to l0 m, d is the T-R separation distance (in kin), and )( reha is the correction factor for effective mobile antenna height which is a function of the size of the coverage area. For a small to medium sized city, the mobile antenna correction factor is given by )8.0log56.1()7.0log1.1()(  ccre ffha (4.4) and for a large city, it is given by MHzfc 300 for dB 1.1)54.1(log*29.8)( 2  rere hha (4.5 a) 97.4)75.11(log*2.3)( 2  rere hha dB for MHzfc 300 (4.5 b) To obtain the path loss in a suburban area the standard Hata formula in equation (4.3) is modified as 4.5)]28[log(2)()( 2 5050  cfurbanLdBL (4.6) And for path loss in open rural areas, the formula is modified as 98.40log33.18)(log78.4)()( 2 5050  cc ffurbanLdBL (4.7) Although Hata’s model does not have any of the path-specific corrections which are available in Okumura’s model, the above expressions have significant practical value. The predictions of the Hata model compare very closely with the original Okumura model, as long as d exceeds 1 km. This model is well suited for large cell mobile systems, but not personal communications systems (PCS) which have cells on the order of 1km radius.
  • 5. Determining Pinpoint Of Mobile Location In Global System… 172 |Issn||2250-3005|| (Online) ||March||2013|| ||www.ijceronline.com|| 2.5 PCS Extension to Hata Model The European Co-operative for Scientific and Technical research (EUROCOST) formed the COST-231 working committee to develop an extended version of the Hata model. COST-231 proposed the following formula to extend Hata’s model to 2 GHz. The proposed model for path loss is [EUR91] Mteretec CdhhahfdBurbanL  log)log55.69.44()(log82.13log9.333.46))((50 (4.8) where )( reha is defined in equations (4.4), (4.5 a), and (4.5 b) and MC = 0 dB for medium sized city and suburban areas (4.9) MC = 3 dB for metropolitan centers The COST-231 extension of the Hata model is restricted to the following range of parameters: f : 1500MHz to 2000 MHz teh : 30 m to 200m reh : 1 m to l0 m d : 1 km to 20 km 3. Locate A Mobile Position By using Hata Model we can locate a Mobile position in the network by getting: The Power value of Transmitting from the tower (from network data base) The height of the tower (from network data base). The receiving value in the mobile from the mobile (by using logical channels). Carrier frequency (from network data base). Mobile elevation which around 1.5 m. Is the area urban , suburban or open rural (from network data base). Calculate the Path loss by subtract the receiving value in the mobile (Rx) from Transmitting value from the tower (Tx). RxTxL 50 (4.10) Hata formula will be modifying for urban area to: te retec h hahfL D log55.69.44 )(log82.13log16.2655.6950 10    (4.11) Where )8.0log56.1()7.0log1.1()(  ccre ffha dB (for small city) 97.4)75.11(log*2.3)( 2  rere hha dB (for a large city) And for suburban area: te cretec h fhahfL D log55.69.44 4.5)]28[log(2)(log82.13log16.2655.69 2 50 10    (4.12) And for open rural areas: te ccretec h ffhahfL D log55.69.44 98.40log33.18)(log78.4)(log82.13log16.2655.69 2 50 10    (4.13)
  • 6. Determining Pinpoint Of Mobile Location In Global System… 173 |Issn||2250-3005|| (Online) ||March||2013|| ||www.ijceronline.com|| From the above equations we can calculate the distance from the tower to the mobile for different areas (urban, suburban & open rural).after calculate the distance (D) we can create a circle as considering the position of the tower is origin of the circle and the distance D is the radius of the circle as shown below: Figure 4-3 One Direction Estimation And after repeat these process two times more for same mobile from different towers we will have three circles as shown below: Figure 4-4 three directions estimation The intersection between the three circles give us the location of the mobile .the intersection will be point or area depends on the receiving value (Rx) and we will locate Mobile position by placed our calculation and diagrams over good digitals Maps. These Maps programs can have them from good local vendor or use satellite Maps programs like Google earth. 4. Error and Correction During our process maybe we will have some errors in the calculation and this is related to wrong reading values .this error in the reading values due to obstacles between the tower (transmitter) and mobile (receiver). some time no clear line of sight between RBS and MS which give us error in our estimation around 10 to 14 dB. But we can overcome on these errors by using GSM techniques: Handover to different towers (RBS's): we can our input by select different transmitters as we know the mobile receive from 6 different sites. Frequency Hopping: this technique allows us to have varied frequencies to measure the mobile location because if we have a bad estimation from one frequency we will pick another one. Take the measurement in different times or for some period to avoid the wrong estimation and take the good ones. By these major techniques we will get a good estimation about customer location in any network. And there are a lot of techniques which are support our target. As we know the GSM structure is very smart and always become smarter every day because it is a global system and whole the world deal with it. We are hoping to lead the world in the development in the future. 5 .Development Of Software Different Programs Have Been Developed In Matlab For The Simulation Of “ Determining Pinpoint Of Mobile Location In Global System For Mobile Communication network (GSM)”. In Fig.3 We Can See The Screenshot Of The Software. Fig 4.5
  • 7. Determining Pinpoint Of Mobile Location In Global System… 174 |Issn||2250-3005|| (Online) ||March||2013|| ||www.ijceronline.com|| By using this simulator we can locate exact mobile location in Urban Area which is further divided into small and large city , in Sub urban area which is again divided into small and large city and finally in open area which is further divided into small and large city. Determining pinpoint mobile location by using simulation software in Urban Area(Large City) By using this software we demonstrated that how we can determine exact mobile location in Urban areas. Screenshot is shown in fig.4.6 Fig 4.6 In this demonstration we have used the following values: Where Tx=Transmitter Rx=Receiver Frq=Frequency Hte = Height of Transmitter Hre= Height of Receiver Towerl Tower Longitude Latitude Tower-A 39.13702 21.58326 Tower-B 39.14961 21.66908 Tower-C 39.18081 21.48364 Determining pinpoint mobile location by using simulation software in Sub-Urban Area (small city) By using this software we demonstrated that how we can determine exact mobile location in Sub-Urban areas. Screenshot is shown in fig.4.7 TValues Tower Tx Rx Frq Hte Hre Tower-A 44 -94 900 1.5 30 Tower-B 44 -95 890 1.5 30 Tower-C 44 -96 900 1.5 30
  • 8. Determining Pinpoint Of Mobile Location In Global System… 175 |Issn||2250-3005|| (Online) ||March||2013|| ||www.ijceronline.com|| Fig 4.7 In this demonstration we have used the following values: TValues Tower Tx Rx Frq Hte Hre Tower-A 44 -93 900 1.5 30 Tower-B 44 -95 890 1.5 30 Tower-C 44 -97 900 1.5 30 Where Tx=Transmitter Rx=Receiver Frq=Frequency Hte = Height of Transmitter Hre= Height of Receiver Determining pinpoint location by using simulation software in Open Area (Large city) By using this software we demonstrated that how we can determine exact mobile location in Open areas. Screenshot is shown in fig. Fig 4.8 In this demonstration we have used the following values: Towerl Tower Longitude Latitude Tower-A 39.10002 21.30003 Tower-B 39.14961 21.66908 Tower-C 39.18081 21.48364
  • 9. Determining Pinpoint Of Mobile Location In Global System… 176 |Issn||2250-3005|| (Online) ||March||2013|| ||www.ijceronline.com|| Towerl Tower Longitude Latitude Tower-A 39.10002 21.30003 Tower-B 39.14961 21.66908 Tower-C 39.18081 21.48364 Where Tx=Transmitter Rx=Receiver Frq=Frequency Hte = Height of Transmitter Hre= Height of Receiver Towerl Tower Longitude Latitude Tower-A 39.20002 21.50234 Tower-B 39.14961 21.66908 Tower-C 39.18081 21.48364 4. Conclusion  This research paper aims to present an extensive study about the mobile Location and the technologies that can enable them in conventional GSM networks.  A set of cell-based positioning techniques are proposed based on information available from the network and on accurate path loss models.  This paper creates a software methods program for GSM vendors to use this feature without physical change in the network hardware. References [1] Theodore S. Rappaport, Wireless Communication – Principles and Practice, Prentice Hall, 1996. [2] Henry L. Bertoni , Radio Propagation for Modern Wireless System , Prentice Hall, 2000 [3] Lucent Technologies course , GSM 99/DCS 1800 System Introdution , Lucent Company, 1996 [4] Saudi Telecom Company course , GSM RF Cellular Engineering, Saudi Telecom Company ,2004. [5] Saudi Telecom Company course, GSM Cell Planning Principles II, Saudi Telecom Company ,2004. [6] Josef bajada. Mobile Positioning for Location Dependent Services in GSM Networks , 2000.M. Hellebrandt, R. Mathar, “Location tracking of mobiles in cellular radio networks”, IEEE Transactions on Vehicular Technology, Sep. 1999,Vol. 48, No. 5, pp. 1558-1562. [7] Some training courses were giving to me by leadership companies like Saudi telecom company STC and Ericsson Company related to GSM and 3G. [8] Mouly & Pautet, GSM system for mobile communication , Jone Wily & Sons, 1989. [9] Rappaport , wireless communication principles & practice ,Marcel Dekker, 1994 [10] http://www.mobilecomms-technology.com/contractors/gisservices/andrew_old/ [11] http://www.andrew.com/ [12] John Scurias, A Brief Overview of GSM , [13] http:// www. Barrow.uwaterloo.ca , 1994 [14] Apostolis K. Salkintzis,'' A survey of Mobile Data Network '', [15] http:// www. columbia.uwaterloo.ca , 1994