SlideShare a Scribd company logo
1 of 23
Download to read offline
Università degli Studi di Napoli Federico II


                            FACOLTA’ DI INGEGNERIA

                              CORSO DI LAUREA IN
                            INGEGNERIA BIOMEDICA
           (CLASSE DELLE LAUREE IN INGEGNERIA DELL’INFORMAZIONE n.9)


“Homogenized trigonal models
for biomechanical applications”
        Relatore:                                             Candidato:
     Ch.mo Prof. Ing.                                       CIERVO MARCO
   MASSIMILIANO FRALDI
                                                             Matr. 691/939
        Correlatore:
   GIANPAOLO PERRELLA
Description

Hierarchical structures: importance in biomechanics


Ligaments: Anterior Cruciate Ligament (ACL)


Healing ACL ruptures: 6-cord wire-rope scaffold


Analytical model: George A. Costello’s theory of the wire rope


Homogenized Trigonal model: example of development
Anterior Cruciate Ligament
            Ligaments hierarchical structure




                                               Viscoelastic behaviour
ACL Kinematics




                                                                                             Flexion: 46.3 deg.                         Flexion: 44.8 deg.
                                                                                             Abduction: 0 deg.                        Abduction: 10.0 deg.
                                                                                          External rotation: 0 deg.                 External rotation: 29.1 deg.

         A. Guadagno,Relatore Ch.mo Prof. Ing. A. Pepino e Correlatore Ing. A. Ranavolo   J Biomech. 2010 July 20; 43(10): 2039–2042. doi:10.1016/j.jbiomech.2010.03.015.
                                    Napoli, 2004/2005.                                            A Knee-Specific Finite Element Analysis of the Human Anterior
VALUTAZIONE DELLE FORZE COMPRESSIVE E DI TAGLIO ALL’ARTICOLAZIONE DEL GINOCCHIO                         Cruciate Ligament Impingement against the Femoral
     CON SISTEMA DI ANALISI COMPUTERIZZATA MULTIFATTORIALE DEL MOVIMENTO,                                               Intercondylar Notch
                                                                                           Hyung-Soon Park1,†, Chulhyun Ahn,†, David T. Fung, Yupeng Ren, and Li-Qun
                                                                                                                               Zhang
ACL Kinematics




                     Journal of Biomechanics 38 (2005) 293–298
                 Interactions between kinematics and loading during
                                    walking for the
                            normal and ACL deficient knee
                       Thomas P. Andriacchia, Chris O. Dyrby
Altman’s Scaffold




                           Biomaterials 23 (2002) 4131–4141
                    Silk matrix for tissue engineered anterior cruciate
                                          ligaments
                    Gregory H. Altmana, Rebecca L. Horana, Helen H.
                            Lua, Jodie Moreaua, Ivan Martinb,
                          John C. Richmondc, David L. Kaplana
Analytical Model




core         wires        h1   h2   h3
Kinematics of a wire




                                     T     axial tension in the wire
                                     H     twisting moment in the wire
                                     N, N’ shear force in the wire, along the local cooordinates system directions
                                     G, G’ bending moment in the wire in x and y directions, along the local coordina-
                                           tes system
                                     κ, κ’ curvature of the wire in x and y directions, along the local coordinates
                                           system
                                     т     twist per unit length of the wire




Mechanical Engineering Series, Springer - Theory of Wke Rope, 2nd ed. - George A. Costello
Simple straigth strand
Rc                         core radius             Geometrical characteristics
Rw                         wire radius
α                          wire helix angle
R = Rc+2Rw                 strand total radius
r = Rc+Rw                  strand helical radius
E                          Young Modulus                      Material properties
v                          Poisson’s ratio
ξc = ε                                    core axial strain       Deformations
           Δα
ξw = ξc - Tg α                            wire axial strain

βr = Tg α - Δα + ν Rc ξc + Rw ξw helical rototional strain
        ξw
                     r       Tg α
 β                                        total rototional strain
 т = r βr = R β                           angle of twist per unit lenght
                                                                                           Costitutive assumptions
Δт’ = 1 - 2 Sin α Δα + ν Rc ξc +2 Rw ξw Sin α Cos α
                2

            r                  r                                                     F / AE   kεε            kεβ   ε 
                                                                                    M / ER 3  = k            k ββ   β 
Δκ’ = - 2 Sin α Cos α Δα + ν Rc ξc +2 Rw ξw Cos2 α curve variation                   t         βε                  
              r                     r
                                                                    Core Loads         Hipothesis of small displacements:
Fc = � E Rc2 ξc        Mc = E Rc4 т’ �                                                         Δα<<1, ξ<<1
                                      4 (1 + v)
                                                          Hw = E Rw4 Δт’ �                           Wire Loads
                        Nw’ = Hw Cos α - Gw’ Sin α Cos α
                                     2
Tw = � E Rw2 ξw                                                         4 (1 + v)
                                   r               r
Gw’ = E Rw4 Δκ’ �       Fw = mw (Tw Sin α + Nw’ Cos α) Mw = mw (Hw Sin α + Gw’ Cos α + r Tw Cos α + r Hw Sin α )
                4
30 Fibers



           R1 = [19 ± 2.8]10-6 m
1 Bundle
           Silk fibroin average radius
           Rf = 10.4067 10 m
                                                             Biomaterials 24 (2003) 401–416
                                -5                                Silk-based biomaterials
                                                    Gregory H. Altman,Frank Diaz,Caroline Jakuba,Tara
           Equivalent fiber radius                              Calabro,Rebecca L. Horan,
                                                     Jingsong Chen,Helen Lu,John Richmond, David L.
                                                                          Kaplan

                   On the right pilot-scale manu-
                   facturing equipment for the
                   fabrication of silk wire-rope
                   matrices

                   Two particluars (B) and (C) of
                   (i) and (iii), showing the
                   extraction of the fibroins

                   On the left a close-up view of
                   (i): the twisting machines
                   showing the motor controlled
                   spring-loaded clamps.
6 Bundles


                 Rch3 = R2                 Geometrical characteristics
                 Rwh3 = R3
                 αh3

                              E R34 Sin αh3 �                  Loads
                 Ach1wh2wh3 =
                              2(2 + ν)Cos2 αh3
                 Gych1wh2wh3’ = Ach1wh2wh3 Δκch1wh2wh3’

ξch1wh2wh3                                                                                     Deformations
ξch1wh2ch3 = ξch1wh2
βrch1wh2h3 = Δтch1wh2’ Rh3

βrch1wh2wh3 = ξch1wh2wh3 - Δαch1wh2wh3 + rh3
                                          ν R3 ξch1wh2wh3 + R2 ξch1wh2ch3
                 Tg αh3                                Tg αh3

Δтch1wh2wh3’ =   1 - 2 Sin2αh3 Δαch1wh2wh3 + ν R3 ξch1wh2wh3 + R2 ξch1wh2ch3 Sin αh3 Cos αh3
                       rh3                                  rh32
Δκch1wh2wh3’ = - 2 Sin αh3 Cos αh3 Δαch1wh2wh3 + ν R3 ξch1wh2wh3 + R2 ξch1wh2ch3 Cos2 αh3
                           rh3                             rh32
6 Bundles


                 Rch3 = R2                 Geometrical characteristics
                 Rwh3 = R3
                 αh3

                              E R34 Sin αh3 �                  Loads
                 Awh1wh2wh3 =
                              2(2 + ν)Cos2 αh3
                 Gywh1wh2wh3’ = Awh1wh2wh3 Δκwh1wh2wh3’

ξwh1wh2wh3                                                                                   Deformations
ξwh1wh2ch3 = ξwh1wh2
βrwh1wh2h3 = Δтwh1wh2’ Rh3

βrwh1wh2h3 =    ξwh1wh2wh3 - Δαwh1wh2wh3 + ν R3 ξwh1wh2wh3 + R2 ξwh1wh2ch3
                  Tg αh3                  rh3           Tg αh3

Δтwh1wh2wh3’ = 1 - 2 Sin αh3 Δαwh1wh2wh3 + ν
                        2
                                             R3 ξwh1wh2wh3 + R2 ξwh1wh2ch3 Sin αh3 Cos αh3
                     rh3                                  rh32
Δκwh1wh2wh3’ = - 2 Sin αh3 Cos αh3 Δαwh1wh2wh3 + ν
                                                    R3 ξwh1wh2wh3 + R2 ξwh1wh2ch3Cos2 αh3
                          rh3                             rh32
3 Strands


                 Rch2 = 0                 Geometrical characteristics
                 Rwh2
                                     1
                 rh2 =Rwh2   1+
                                  3 Sin2 αh2
                 αh2
                 Tch1wh2=Fch1wh2h3                        Loads
                 Hch1wh2=Mch1wh2h3
                            mh3 E R34 Sin αh3 �   E R24 �
                 Ach1wh2 =                      +
                             2(2 + ν)Cos2 αh3        4
                 Mch1ch2=0
                 Fch1ch2=0
ξch1wh2                                                                                 Deformations
ξch1ch2 = ξch1
βrch1h2 = Δтch1’ Rh2
             ξch1wh2 - Δαch1wh2 + ν 2 R3 ξch1wh2wh3 + R2 ξch1wh2ch3
βrch1wh2 =                           rh2
              Tg αh2                                  Tg αh2
Δтch1wh2’ = 1 - 2 Sin2αh2 Δαch1wh2+ ν 2 R3 ξch1wh2wh3 + R2 ξch1wh2ch3 Sin αh2 Cos αh2
                  rh2                               rh22
Δκch1wh2’ = - 2 Sin αh2 Cos αh2 Δαch1wh2 + ν 2 R3 ξch1wh2wh3 + R2 ξch1wh2ch3 Cos2 αh2
                      rh2                           rh22
3 Strands


                 Rch2 = 0                 Geometrical characteristics
                 Rwh2
                                     1
                 rh2 =Rwh2   1+
                                  3 Sin2 αh2
                 αh2
                 Twh1wh2=Fwh1wh2h3                       Loads
                 Hwh1wh2=Mwh1wh2h3
                           mh3 E R34 Sin αh3 �   E R24 �
                 Awh1wh2 =                     +
                            2(2 + ν)Cos2 αh3        4
                 Mwh1ch2=0
                                                                                 ξwh1wh2
                 Fwh1ch2=0
ξwh1wh2                                                                                    Deformations
ξwh1ch2 = ξwh1
βrwh1h2 = Δтwh1’ Rh2
             ξwh1wh2 - Δαwh1wh2 + ν 2 R3 ξwh1wh2wh3 + R2 ξwh1wh2ch3
βrwh1wh2 =                           rh2
              Tg αh2                                  Tg αh2
Δтwh1wh2’ = 1 - 2 Sin2αh2 Δαwh1wh2+ ν 2 R3 ξwh1wh2wh3 + R2 ξwh1wh2ch3Sin αh2 Cos αh2
                  rh2                               rh22
Δκwh1wh2’ = - 2 Sin αh2 Cos αh2 Δαwh1wh2 + ν 2 R3 ξwh1wh2wh3 + R2 ξwh1wh2ch3Cos2 αh2
                      rh2                           rh22
6 Cords


                        Rch1                      Geometrical characteristics
                        Rwh1
                        αh1

                       Twh1 = Fh1                                                                      Loads
                       Hwh1 = Mh1
                       Awh1 = mh2 Awh1wh2
                       Gywh1 = Awh1 Δκh1’
                       Fwh1 = mh1 (Twh1 Sin αh1 + Nwh1’ Cos αh1)
                       Mwh1 = mh1 (Hwh1 Sin αh1 + Gwh1’ Cos αh1 + rh1 Twh1 Cos αh1 + rh1 Hwh1 Sin αh1)

ξch1 = ε                                                                                                Deformations
ξwh1
βh1
т = rh1 βrh1 = Rh1 βh1
βrh1 = ξwh1 - Δαh1 + ν 4 R3 ξwh1wh2wh3 + 2 R2 ξwh1wh2ch3 + 4 R3 ξch1wh2wh3 + 2 R2 ξch1wh2ch3
       Tg αh1           rh1                                    Tg αh1
Δтh1’ = 1 - 2 Sin αh1 Δαh1 + ν 4 R3 ξwh1wh2wh3 + 2 R2 ξwh1wh2ch3 + 4 R3 ξch1wh2wh3 + 2 R2 ξch1wh2ch3 Sin αh1 Cos αh1
                  2

              rh1                                               rh12
Δκh1’ = - 2 Sin α Cos α Δα + ν 4 R3 ξwh1wh2wh3 + 2 R2 ξwh1wh2ch3 + 4 R3 ξch1wh2wh3 + 2 R2 ξch1wh2ch3 Cos2 α
                r                     r2
Analytical model
                    Results and validation
           600


                                       Calculated

           500         G. Vunjak-Novakovic et al.
                                                                  Root Mean Square Error Percentage
                                                                                                                      2
                                                                                                     
                                                                                              xi − xi 
                                                                                             n

           400
                                                                                           ∑ x 
                                                                                             
                                                                                           i 
                                                                                                       
                                                                  RMSEP =
                                                                                                   i                      = 0.023
Load (N)




                                                                                                        n

           300
                                                                    Annu. Rev. Biomed. Eng. 2004. 6:131–56

                                                                    TISSUE ENGINEERING OF LIGAMENTS

                                                                    G. Vunjak-Novakovic1, Gregory Altman2,3, Rebecca Horan2 and David L.
                                                                    Kaplan2
           200
                                                                    1 Massachusetts Institute of Technology, Harvard-MIT Division of Health
                                                                    Sciences and Technology, Cambridge, Massachusetts 02139; email: gorda-
                                                                    na@mit.edu

                                                                    2 Department of Biomedical Engineering, Tufts University, Medford,Massa-
                                                                    chusetts 02155; email: gregory.altman@tufts.edu, david.kaplan@tufts.edu,
             0.05       0.10          0.15          0.20   0.25     rebecca.horan@tufts.edu

                                                                    3 Tissue Regeneration, Inc., Medford, Massachusetts 02155
                               Displacement (%)
Homogenized model
                                   σ rr   S11   S12   S13   S14    0     0   ε rr          Costello’s constants      Trigonal constants [Pa]
                                  σ  S                                                      kεε=0.52972               S11=5.02232*1010
                                   θθ   12      S22   S23   S24    0     0   εθθ 
                                                                                            kεβ=0.0566074             S12=3.34821*1010
 F / AE   kεε   kεβ   ε     σ 33  S13     S23   S33   S34    0     0   ε 33 
       3
           =                  ⇔  =                                        ⋅        .   kβε=0.122818              S22=5.02232x1010
Mt / ER  k βε   k ββ   β 
                                σ 3θ  S14     S24   S34   S44    0     0  2ε 3θ 
                                  σ 3 r   0     0     0     0     S55   S56   2ε 3 r     kββ=0.0160126             S33=1.06738x109
                                                                                                                   S34=1.68011*109
                                  σ θ r   0
                                                0     0     0     S56   S66   2εθ r 
                                                                                        
                                                                                                                         S44=2.86704*107
                                                                                                                         S55=2.86704*107
                                                                                                                         S66=8.37054*109



         ΔL
                   Displacements along the z-axis [m]                                              Rotations around the z-axis [deg]
Homogenized model
                   Results and validation

           600                  Analytical model                                  40

                            Homogenized model


           500




                                                                 Rotation (deg)
                                                                                  60
Load (N)




           400

                                                                                  80


           300
                                                                                                    Analytical model
                                                                             100
                                                                                                 Homogenized model
           200
                     0.10        0.15              0.20   0.25                            0.10        0.15             0.20    0.25

                            Displacement (%)                                                       Displacement (%)

                 Root Mean Square Error Percentage                                      Root Mean Square Error Percentage
                                               2                                                                       2
                                 n        
                                   xi − xi                                                            n        
                                                                                                          xi − xi 
                                ∑ x 
                                  
                                i 
                                                                                                      ∑ x 
                                                                                                                  
                     RMSEP =
                                        i    = 0.028                                                  i      i    = 0.086
                                                                                            RMSEP =
                                      n                                                                      n
Conclusions and
   future developments
NON LINEAR BEHAVIOUR DEVELOPMENT


3D FEM JOINT IMPLEMENTATION WITH ON-SITE TESTS


IMPROVEMENT OF CURRENT SCAFFOLDS


DESIGN OF NEW STRUCTURES
References
[1]          N. M. Pugno, F. Bosia e T. Abdalrahman, «Hierarchical fiber         [12] D. Greenwald, S. Shumway, P. Albear e al., «Mechanical compari-
 bundle model to investigate the complex architectures of biological mate-         son of ten suture materials before and after in vivo incubation,» J Surg
                      rials,» PHYSICAL REVIEW E, 2012.                                                      Res, p. 56:372– 7, 1994.
[2]         A. Carpinteri, P. Cornetti, N. Pugno e A. Sapora, «Strength of       [13] K. Inouye, M. Kurokawa, S. Nishikawa e al., «Use of Bombyx mori
       hierarchical materials,» Microsyst Technol, p. 15:27–31, 2009.               silk fibroin as a substratum for cultivation of animal cells,» J Biochem
[3]      G. A. Costello, Theory of Wke Rope, 2nd ed., Mechanical Enginee-                              Biophys Meth, p. 37:159– 64, 1998.
              ring Series, Springer-Verlag New York, Inc., 1997.                 [14]         A. Nova, S. Keten, N. M. Pugno, A. Redaelli e M. J. Buehler,
[4]         M. Fraldi e S. Cowin, «Chirality in the torsion of cylinders with     «Molecular and Nanostructural Mechanisms of Deformation, Strength and
      trigonal symmetry,» Journal of Elasticity, pp. 69, 121-148, 2002.           Toughness of Spider Silk Fibrils,» Nano Letter, pp. 10, 2626–2634, 2010.
[5]       G. Perrella, A. Cutolo, L. Esposito, S. Cotugno, M. P. Carbone, G.     [15]       J. Perez-Rigueiro, C. Viney, J. Llorca e M. Elices, «Mechanical
 Mensittieri e M. Fraldi, «On the influence of tensile-torsion coupling in the     properties of single-brin silkworm silk,» J Appl Polym Sci, p. 75:1270–7,
    mechanical behaviour of rubber/cord composites,» in Conference on                                                  2000.
 rubber reinforcement and property modification by fillers, fibres & textiles,   [16]      R. Postlethwait, «Long-term comparative study of nonabsorbable
                      London, UK, 18-19 December, 2012.                                             sutures,» Ann Surg, p. 171:892–8, 1970.
[6]      G. Perrella, M. Fraldi, G. Mensittieri e C. Cotugno, Spurious stress    [17]         T. Salthouse, B. Matlaga e M. Wykoff, «Comparative tissue
 regimes in rubber-cord composites reinforced with trigonal fibers, Submit-          response to six suture materials in rabbit cornea, sclera, and ocular
                                      ted 2012.                                                 muscle,» Am J Ophthalmol, p. 84:224–33., 1977.
[7]         G. H. Altman, R. L. Horan, H. H. Lu, J. Moreau, I. Martin, J. C.     [18] S. Sofia, G. McCarthy, M. Gronowicz e al, «Functionalized silk-ba-
    Richmond e D. L. Kaplan, «Silk matrix for tissue engineered anterior           sed biomaterials for bone formation,» J Biomed Mater Res, p. 54:139–
         cruciate ligaments,» Biomaterials, pp. 23, 4131–4141, 2002.                                                48., 2001.
[8]      Ethicon Inc., «Wound closure manual. The suture: specific suturing      [19]      G. Vunjak-Novakovic, G. Altman, R. Horan e D. L. Kaplan, Annu.
  materials. Non-absorbable sutures,» Somerville, NJ, Copyright 2000, p.                            Rev. Biomed. Eng, 2004, pp. 6, 131–156.
                                     Chapter 2.                                  [20]       P. Chowdhury, J. Matyas e C. Frank, «The "epiligament" of the
[9]      G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen,        rabbit medial collateral ligament: a quantitative morphological study,»
  H. Lu, J. Richmond e D. L. Kaplan, «Silk-based biomaterials,» Biomate-                            Connect Tissue Res, pp. 27:33-50, 1991.
                           rials, pp. 24, 401-416, 2003.                         [21] R. Bray, «Blood supply of ligaments: a brief overview.,» Orthopae-
[10]        S. W. Cranford, A. Tarakanova, N. M. Pugno e M. J. Buehler,                                      dics, pp. 3:39-48, 1995.
  «Nonlinear material behaviour of spider silk yields,» NATURE, vol. 482,        [22] P. Salo, «The role of joint innervation in the pathogenesis of arthri-
                                  pp. 72-76, 2012.                                                   tis,» Can J Surg, pp. 42:91-100, 1999;.
[11]        J. Cunniff, S. Fossey, J. Song e al., «Mechanical and thermal        [23]        H. Johansson, P. Sjolander e P. Sojka, «A sensory role for the
    properties of Nephila clavipes dragline silk.,» Polymers for Advanced            cruciate ligaments,» Clin Orthop Relat Res, pp. 268:161-178., 1991.
                        Technologies, p. 5:401–10, 1994.
References
[24]       M. Benjamin e J. Ralphs, «The cell and developmental biology of          [37] T. Andriacchi, E. Alexander, M. Toney, C. Dyrby e J. Sum, «Apoint
        tendons and ligaments,» Int Rev Cytol, pp. 196:85-130, 2000.                    cluster method for in vivo motion analysis: appliedto a study of knee
[25]       I. Lo, S. Chi, T. Ivie, C. Frank e J. Rattner, «The cellular matrix: a      kinematics,» Journal of Biomechanical, pp. 120 (12), 743–749, 1998.
 feature of tensile bearing dense soft connective tissues,» Histol Histopathol,     [38]       M. LaFortune, P. Cavanagh, H. Sommer e A. Kalenak, «Three
                                pp. 17:523-537, 2002.                                 dimensional kinematics of the human knee during walking,» Journal of
[26]        D. Amiel, C. Chu e J. Lee, «Effect of loading on metabolism and                             Biomechanics, pp. 25, 347–357, 1992.
    repair of tendons and ligaments,» in Repetitive Motion Disorders of the         [39] L. Blankevoort, R. Huiskes e A. Delange, «The envelope ofpassi-
    Upper Extremity, Am Acad Orthop Surg, Rosemont, pp. 1995:217-230.                ve knee-joint motion,» Journal of Biomechanics, pp. 21, 705–720, 1988.
[27]          C. T. Laurencin e J. W. Freeman, Biomaterials, 2005, pp. 26,          [40]      M. Robson AW, «Ruptured crucial ligaments and their repair by
                                      7530–7536.                                                       operation,» Ann Surg, p. 37:716–8, 1903.
[28] H. E. Cabaud, W. G. Rodkey e J. A. Feagin, Am. J. Sports Med, 1979,            [41]        J. D. Frank BC, «The science of reconstruction of the anterior
                                     pp. 7, 18–22.                                        cruciate ligament,» J Bone Joint Surg Am, p. 79:1556– 76, 1997.
[29] F. H. Silver, Biomaterials, medical devices, and tissue engineering: an        [42] M. Murray, «Effect of the intra-articular environment on healing of
              integrated approach, London: Chapman & Hall, 1994.                     the ruptured anterior cruciate ligament,» J Bone Joint Surg Am,, August
[30] D. Amiel, E. Billings e J. a. F. L. Harwood, J. Appl. Physiol, 1990, pp.                                             2001.
                                     69, 902–906.                                   [43]      I. Lo, L. Marchik, D. Hart e al., «Comparison of mRNA levels for
[31] S. J. Cuccurullo, Physical Medicine and Rehabilitation Board Review,              matrix molecules in normal and disrupted anterior cruciate ligaments
                   New York: Demos Medical Publishing, 2004.                         using reverse transcription-polymerase chain reaction,» J Orthop Res, p.
[32]    J. Diamant, A. Keller, E. Baer e M. L. a. R. G. Arridge, Proc. R. Soc.,                                     16:421–8, 1998.
                          Ser. B, 1972, pp. 180, 293–315.                           [44] M. Murray e M. Spector, «The migration of cells from the ruptured
[33]      D. J. McBride Jr, R. A. Hahn e F. H. Silver, Int. J. Biol. Macromol.,      human anterior cruciate ligament into collagen-glycosaminoglycan rege-
                                 1985, pp. 7, 71–76.                                      neration templates in vitro,» Biomaterials, p. 22:2393–402, 2001.
[34] E. Mosler, W. Folkhard, E. Knorzer e H. Nemetschek-Gansler, J. Mol.            [45] M. Murray, S. Martin e M. Spector, «Migration of cells from human
                           Biol, 1985, pp. 182, 589–596.                                anterior cruciate ligament explants into collagen-glycosaminoglycan
[35]    A. Guadagno, VALUTAZIONE DELLE FORZE COMPRESSIVE E DI                                        scaffolds,» J Orthop Res, p. 18:557–64, 2000.
 TAGLIO ALL’ARTICOLAZIONE DEL GINOCCHIO CON SISTEMA DI ANA-                         [46] A. Harrold, «The defect of blood coagulation in joints,» J Clin Path,
LISI COMPUTERIZZATA MULTIFATTORIALE DEL MOVIMENTO, A. Ch.mo                                                        p. 14:305–8, 1961.
      Prof. Ing. Pepino e A. Ing. Ranavolo, A cura di, Napoli, 2004/2005.           [47]      M. L. Cameron, Y. Mizung e A. J. Cosgarea, J. Musculoskeletal
[36] T. P. Andriacchi e C. O. Dyrby, «Interactions between kinematics and                                       Med., 2000, pp. 17, 7–12.
  loading during walking for the normal and ACL deficient knee,» Journal of         [48]        K. Miyasaka, D. Daniel, M. Stone e P. Hirshman, Am. J. Knee
                      Biomechanics, pp. 38, 293–298, 2005.                                                      Surg., 1991, pp. 4, 6–10.
References
[49]      J. Freeman e A. L. Kwansa, Recent Pat. Biomed. Eng., 2008, pp. 1,      [62]        M. Santin, A. Motta, G. Freddi e al., «In vitro evaluation of the
                                       18-23.                                          inflammatory potential of the silk fibroin,» J Biomed Mater Res, p.
[50]         P. P. Weitzel, J. C. Richmond, G. H. Altman, T. Calabro e D. L.                                      46:382– 9, 1999.
  Kaplan, «Future direction of the treatment of ACL ruptures,» Orthop Clin N     [63]       A. E. H. Love, A treatise on the mathematical theory of elasticity,
                            Am, pp. 33, 653– 661, 2002.                                     4th ed, New York: Dover Publications, 1944, pp. Chapter
[51] J. P. Spalazzi, E. Dagher, S. B. Doty, X. E. Guo, S. A. Rodeo e H. H.                                       XVIII-XIX,381-426.
         Lu, Conf Proc IEEE Eng Med Biol Soc, 2006, pp. 1, 525–528.              [64]        W. Utting e N. Jones, «Response of wire rope strands to axial
[52] J. P. Spalazzi, E. Dagher, S. B. Doty, X. E. Guo, S. A. Rodeo e H. H.          tensile loads. Part I: Experimental results and theoretical predictions,»
                  Lu, J Biomed Mater Res A, 2008, pp. 86, 1–12.                    International Journal of Mechanical Science, pp. 29 (9), 605-61, 1987a.
[53]        H. H. Lu, S. F. El-Amin, K. D. Scott e C. T. Laurencin, J. Biomed.   [65]        W. Utting e N. Jones, « Response of wire rope strands to axial
                        Mater. Res., 2003, pp. 64, 465–474.                       tensile loads. Part II: Comparison of experimental results and theoretical
[54]     Y. Kato, M. Dunn, J. Zawadsky, A. Tria e F. Silver, «Regeneration of        predictions,» International Journal of Mechanical Science, pp. 29 (9),
   Achilles tendon with a collagen tendon rosthesis. Results of a one-year                                         621-36, 1987b.
       implantation study,» J Bone Jt Surg, Am Vol, p. 73:561–74, 1991.          [66]        A. Nawrocki e M. Labrosse, «A finite element model for simple
[55]        T. Bucknall, L. Teare e H. Ellis, «The choice of a suture to close      straight wire rope strand,» Computer and Structures, pp. 77, 345-369,
             abdominal incisions,» Eur Surg Res, p. 15:59–66, 1983.                                                     2000.
[56] R. L. Horan, J. C. Richmond, P. P. Weitzel, D. J. Horan, E. Mortarino,      [67]        G. Costello, « Mechanical models of helical strands,» Applied
     N. DeAngelis, I. Toponarski, J. Huang, H. Boepple, J. Prudom e G. H.                            Mechanics Reviews, pp. 50, 1-14, 1990.
                Altman, J Bone Joint Surg Br, 2009, pp. 91-B, 288.               [68]       T. W. (Lord Kelvin), Baltimore Lectures on Molecular Dynamics
[57] G. H. Altman, R. L. Horan, P. Weitze e J. C. Richmond, J. Am. Acad.                          and the Wave Theory of Light, London, 1904.
                       Orthop. Surg, 2008, pp. 16, 177–187.                      [69] C. McManus, The Origins of Asymmetry in Brains, Bodies, Atoms,
[58] R. L. Horan, «SeriACL TM Device (Gen IB) Trial for Anterior Cruciate                                  Left Hand, Right Hand, 2002.
      Ligament (ACL) Repair,» Serica Technologies, Inc., 21 April 2009.          [70] Y. Song, R. E. Debski, V. Musahl, M. Thomas e S. L.-Y. Woo, «A
[59]     K. R. Stone, A. W. Walgenbach, J. T. Abrams, J. Nelson, N. Gillett e       three-dimensional finite element model of the human anterior cruciate
                U. Galili, Transplantation, 1997, pp. 63, 640–645.                ligament:a computational analysis with experimental validation,» Journal
[60] J. W. Freeman, Bone and Tissue Regeneration Insights, 2009, pp. 2,                              of Biomechanics, pp. 37, 383-390, 2004.
                                      13–23.                                     [71]           H.-S. Park, C. Ahn, D. T. Fung, Y. Ren e L.-Q. Zhang, «A
[61]       F. Bonnarens e D. Drez, «Biomechanics of artificial ligaments and        Knee-Specific Finite Element Analysis of the Human Anterior Cruciate
 associated problems,» in The anterior cruciate deficient knee, new concepts          Ligament Impingement against the Femoral Intercondylar Notch,» J
   in ligament repair, St. Louis: C.V. Mosby, Jackson DW editor, 1987, pp.                                        Biomech, 2010.
                                      239-53.
References
[72]      C. Frank, «Ligament structure, physiology and function,» J Muscu-
                  loskel Neuron Interact, pp. 4(2):199-201, 2004.
[73]      A. L. Kwansa, Y. M. Empson, E. C. Ekwueme, V. I. Walters e J. W.
  Freeman, «Novel matrix based anterior cruciate ligament (ACL) regenera-
                             tion,» Soft Matter, 2010.
[74]      G. Li, L. E. DeFrate, H. E. Rubash e T. J. Gil, «In vivo kinematics of
the ACL during weight-bearing knee flexion,» Journal of Orthopaedic Resear-
                            ch, pp. 23,340–344, 2005.
[75]     T. Tischer, S. Vogt, S. Aryee, E. Steinhauser, C. Adamczyk, S. Milz,
    V. Martinek e A. B. Imhoff, Arch. Orthop. Trauma Surg, 2007, pp. 127,
                                      735–741.
[76]                 G. A. Costello, «Mechanics of Wire Rope,» 2003.
[77]       F. R. NOYES., D. L. BUTLER, E. S. GROOD e R. F. ZERNIKE,
 «Biomechanical Analysis of Human Ligament Grafts used in Knee-Ligament
  Repairs and Reconstructions,» The Journal of Bone and Joint Surgery, pp.
                                   344-352, 1984.
[78]     S.-Y. Woo, J. Hollis, D. Adams, R. Lyon e S. Takai, «Tensile proper-
 ties of human femur–anterior cruciate ligament–tibia complex: the effects of
           specimen age and orientation,» Am J Sports Med, 1991.

More Related Content

Viewers also liked (8)

Biomechanics of knee complex 7 muscles
Biomechanics of knee complex 7 musclesBiomechanics of knee complex 7 muscles
Biomechanics of knee complex 7 muscles
 
ACL prevention
ACL preventionACL prevention
ACL prevention
 
Prevent ACL Injury
Prevent ACL InjuryPrevent ACL Injury
Prevent ACL Injury
 
ACL Injury Prevention Program
ACL Injury Prevention ProgramACL Injury Prevention Program
ACL Injury Prevention Program
 
Biomechanics of knee complex 8 patellofemoral joint
Biomechanics of knee complex 8 patellofemoral jointBiomechanics of knee complex 8 patellofemoral joint
Biomechanics of knee complex 8 patellofemoral joint
 
Acl ppt
Acl pptAcl ppt
Acl ppt
 
Biomechanics of knee complex 6 tibiofemoral jt function
Biomechanics of knee complex 6 tibiofemoral jt functionBiomechanics of knee complex 6 tibiofemoral jt function
Biomechanics of knee complex 6 tibiofemoral jt function
 
Anterior cruciate ligament-Injury & management
Anterior cruciate ligament-Injury & managementAnterior cruciate ligament-Injury & management
Anterior cruciate ligament-Injury & management
 

Similar to Homogenized trigonal models for biomechanical applications description copia

Polarization, strain induced phase transitions and dielectric response in ult...
Polarization, strain induced phase transitions and dielectric response in ult...Polarization, strain induced phase transitions and dielectric response in ult...
Polarization, strain induced phase transitions and dielectric response in ult...
Ghanshyam Pilania
 
Crystal structure analysis
Crystal structure analysisCrystal structure analysis
Crystal structure analysis
zoelfalia
 
EP Thesis Defence 2016
EP Thesis Defence 2016EP Thesis Defence 2016
EP Thesis Defence 2016
Elia Previtera
 
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Alexander Decker
 

Similar to Homogenized trigonal models for biomechanical applications description copia (20)

Polarization, strain induced phase transitions and dielectric response in ult...
Polarization, strain induced phase transitions and dielectric response in ult...Polarization, strain induced phase transitions and dielectric response in ult...
Polarization, strain induced phase transitions and dielectric response in ult...
 
Introduction to Modern Methods and Tools for Biologically Plausible Modelling...
Introduction to Modern Methods and Tools for Biologically Plausible Modelling...Introduction to Modern Methods and Tools for Biologically Plausible Modelling...
Introduction to Modern Methods and Tools for Biologically Plausible Modelling...
 
Model of visual cortex
Model of visual cortexModel of visual cortex
Model of visual cortex
 
Ab-initio real-time spectroscopy: application to non-linear optics
Ab-initio real-time spectroscopy: application to non-linear opticsAb-initio real-time spectroscopy: application to non-linear optics
Ab-initio real-time spectroscopy: application to non-linear optics
 
Non-linear optics by means of dynamical Berry phase
Non-linear optics  by means of  dynamical Berry phaseNon-linear optics  by means of  dynamical Berry phase
Non-linear optics by means of dynamical Berry phase
 
Statics and dynamics of nanoscale structures
Statics and dynamics of nanoscale structures Statics and dynamics of nanoscale structures
Statics and dynamics of nanoscale structures
 
Crystal structure analysis
Crystal structure analysisCrystal structure analysis
Crystal structure analysis
 
UCSD NANO106 - 11 - X-rays and their interaction with matter
UCSD NANO106 - 11 - X-rays and their interaction with matterUCSD NANO106 - 11 - X-rays and their interaction with matter
UCSD NANO106 - 11 - X-rays and their interaction with matter
 
Nmr for friends
Nmr for friendsNmr for friends
Nmr for friends
 
Ldb Convergenze Parallele_11
Ldb Convergenze Parallele_11Ldb Convergenze Parallele_11
Ldb Convergenze Parallele_11
 
The Missing Fundamental Element
The Missing Fundamental ElementThe Missing Fundamental Element
The Missing Fundamental Element
 
Mott insulators
Mott insulatorsMott insulators
Mott insulators
 
Review on Micro-opto-electro-mechanical Systems
Review on Micro-opto-electro-mechanical SystemsReview on Micro-opto-electro-mechanical Systems
Review on Micro-opto-electro-mechanical Systems
 
Extreme light research group overview
Extreme light research group overviewExtreme light research group overview
Extreme light research group overview
 
2016.06.21 lasuam NanoFrontMag
2016.06.21 lasuam NanoFrontMag2016.06.21 lasuam NanoFrontMag
2016.06.21 lasuam NanoFrontMag
 
Introduction to modern methods and tools for biologically plausible modeling ...
Introduction to modern methods and tools for biologically plausible modeling ...Introduction to modern methods and tools for biologically plausible modeling ...
Introduction to modern methods and tools for biologically plausible modeling ...
 
EP Thesis Defence 2016
EP Thesis Defence 2016EP Thesis Defence 2016
EP Thesis Defence 2016
 
FINE CHARACTERIZATION OF NANOSCALE MATERIALS BY TEM METHODS
FINE CHARACTERIZATION OF NANOSCALE MATERIALS  BY TEM METHODSFINE CHARACTERIZATION OF NANOSCALE MATERIALS  BY TEM METHODS
FINE CHARACTERIZATION OF NANOSCALE MATERIALS BY TEM METHODS
 
Search for Neutron Electric Dipole Moment
Search for Neutron Electric Dipole MomentSearch for Neutron Electric Dipole Moment
Search for Neutron Electric Dipole Moment
 
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
 

Homogenized trigonal models for biomechanical applications description copia

  • 1. Università degli Studi di Napoli Federico II FACOLTA’ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA BIOMEDICA (CLASSE DELLE LAUREE IN INGEGNERIA DELL’INFORMAZIONE n.9) “Homogenized trigonal models for biomechanical applications” Relatore: Candidato: Ch.mo Prof. Ing. CIERVO MARCO MASSIMILIANO FRALDI Matr. 691/939 Correlatore: GIANPAOLO PERRELLA
  • 2. Description Hierarchical structures: importance in biomechanics Ligaments: Anterior Cruciate Ligament (ACL) Healing ACL ruptures: 6-cord wire-rope scaffold Analytical model: George A. Costello’s theory of the wire rope Homogenized Trigonal model: example of development
  • 3. Anterior Cruciate Ligament Ligaments hierarchical structure Viscoelastic behaviour
  • 4. ACL Kinematics Flexion: 46.3 deg. Flexion: 44.8 deg. Abduction: 0 deg. Abduction: 10.0 deg. External rotation: 0 deg. External rotation: 29.1 deg. A. Guadagno,Relatore Ch.mo Prof. Ing. A. Pepino e Correlatore Ing. A. Ranavolo J Biomech. 2010 July 20; 43(10): 2039–2042. doi:10.1016/j.jbiomech.2010.03.015. Napoli, 2004/2005. A Knee-Specific Finite Element Analysis of the Human Anterior VALUTAZIONE DELLE FORZE COMPRESSIVE E DI TAGLIO ALL’ARTICOLAZIONE DEL GINOCCHIO Cruciate Ligament Impingement against the Femoral CON SISTEMA DI ANALISI COMPUTERIZZATA MULTIFATTORIALE DEL MOVIMENTO, Intercondylar Notch Hyung-Soon Park1,†, Chulhyun Ahn,†, David T. Fung, Yupeng Ren, and Li-Qun Zhang
  • 5. ACL Kinematics Journal of Biomechanics 38 (2005) 293–298 Interactions between kinematics and loading during walking for the normal and ACL deficient knee Thomas P. Andriacchia, Chris O. Dyrby
  • 6. Altman’s Scaffold Biomaterials 23 (2002) 4131–4141 Silk matrix for tissue engineered anterior cruciate ligaments Gregory H. Altmana, Rebecca L. Horana, Helen H. Lua, Jodie Moreaua, Ivan Martinb, John C. Richmondc, David L. Kaplana
  • 7. Analytical Model core wires h1 h2 h3
  • 8. Kinematics of a wire T axial tension in the wire H twisting moment in the wire N, N’ shear force in the wire, along the local cooordinates system directions G, G’ bending moment in the wire in x and y directions, along the local coordina- tes system κ, κ’ curvature of the wire in x and y directions, along the local coordinates system т twist per unit length of the wire Mechanical Engineering Series, Springer - Theory of Wke Rope, 2nd ed. - George A. Costello
  • 9. Simple straigth strand Rc core radius Geometrical characteristics Rw wire radius α wire helix angle R = Rc+2Rw strand total radius r = Rc+Rw strand helical radius E Young Modulus Material properties v Poisson’s ratio ξc = ε core axial strain Deformations Δα ξw = ξc - Tg α wire axial strain βr = Tg α - Δα + ν Rc ξc + Rw ξw helical rototional strain ξw r Tg α β total rototional strain т = r βr = R β angle of twist per unit lenght Costitutive assumptions Δт’ = 1 - 2 Sin α Δα + ν Rc ξc +2 Rw ξw Sin α Cos α 2 r r  F / AE   kεε kεβ   ε  M / ER 3  = k k ββ   β  Δκ’ = - 2 Sin α Cos α Δα + ν Rc ξc +2 Rw ξw Cos2 α curve variation  t   βε   r r Core Loads Hipothesis of small displacements: Fc = � E Rc2 ξc Mc = E Rc4 т’ � Δα<<1, ξ<<1 4 (1 + v) Hw = E Rw4 Δт’ � Wire Loads Nw’ = Hw Cos α - Gw’ Sin α Cos α 2 Tw = � E Rw2 ξw 4 (1 + v) r r Gw’ = E Rw4 Δκ’ � Fw = mw (Tw Sin α + Nw’ Cos α) Mw = mw (Hw Sin α + Gw’ Cos α + r Tw Cos α + r Hw Sin α ) 4
  • 10. 30 Fibers R1 = [19 ± 2.8]10-6 m 1 Bundle Silk fibroin average radius Rf = 10.4067 10 m Biomaterials 24 (2003) 401–416 -5 Silk-based biomaterials Gregory H. Altman,Frank Diaz,Caroline Jakuba,Tara Equivalent fiber radius Calabro,Rebecca L. Horan, Jingsong Chen,Helen Lu,John Richmond, David L. Kaplan On the right pilot-scale manu- facturing equipment for the fabrication of silk wire-rope matrices Two particluars (B) and (C) of (i) and (iii), showing the extraction of the fibroins On the left a close-up view of (i): the twisting machines showing the motor controlled spring-loaded clamps.
  • 11. 6 Bundles Rch3 = R2 Geometrical characteristics Rwh3 = R3 αh3 E R34 Sin αh3 � Loads Ach1wh2wh3 = 2(2 + ν)Cos2 αh3 Gych1wh2wh3’ = Ach1wh2wh3 Δκch1wh2wh3’ ξch1wh2wh3 Deformations ξch1wh2ch3 = ξch1wh2 βrch1wh2h3 = Δтch1wh2’ Rh3 βrch1wh2wh3 = ξch1wh2wh3 - Δαch1wh2wh3 + rh3 ν R3 ξch1wh2wh3 + R2 ξch1wh2ch3 Tg αh3 Tg αh3 Δтch1wh2wh3’ = 1 - 2 Sin2αh3 Δαch1wh2wh3 + ν R3 ξch1wh2wh3 + R2 ξch1wh2ch3 Sin αh3 Cos αh3 rh3 rh32 Δκch1wh2wh3’ = - 2 Sin αh3 Cos αh3 Δαch1wh2wh3 + ν R3 ξch1wh2wh3 + R2 ξch1wh2ch3 Cos2 αh3 rh3 rh32
  • 12. 6 Bundles Rch3 = R2 Geometrical characteristics Rwh3 = R3 αh3 E R34 Sin αh3 � Loads Awh1wh2wh3 = 2(2 + ν)Cos2 αh3 Gywh1wh2wh3’ = Awh1wh2wh3 Δκwh1wh2wh3’ ξwh1wh2wh3 Deformations ξwh1wh2ch3 = ξwh1wh2 βrwh1wh2h3 = Δтwh1wh2’ Rh3 βrwh1wh2h3 = ξwh1wh2wh3 - Δαwh1wh2wh3 + ν R3 ξwh1wh2wh3 + R2 ξwh1wh2ch3 Tg αh3 rh3 Tg αh3 Δтwh1wh2wh3’ = 1 - 2 Sin αh3 Δαwh1wh2wh3 + ν 2 R3 ξwh1wh2wh3 + R2 ξwh1wh2ch3 Sin αh3 Cos αh3 rh3 rh32 Δκwh1wh2wh3’ = - 2 Sin αh3 Cos αh3 Δαwh1wh2wh3 + ν R3 ξwh1wh2wh3 + R2 ξwh1wh2ch3Cos2 αh3 rh3 rh32
  • 13. 3 Strands Rch2 = 0 Geometrical characteristics Rwh2 1 rh2 =Rwh2 1+ 3 Sin2 αh2 αh2 Tch1wh2=Fch1wh2h3 Loads Hch1wh2=Mch1wh2h3 mh3 E R34 Sin αh3 � E R24 � Ach1wh2 = + 2(2 + ν)Cos2 αh3 4 Mch1ch2=0 Fch1ch2=0 ξch1wh2 Deformations ξch1ch2 = ξch1 βrch1h2 = Δтch1’ Rh2 ξch1wh2 - Δαch1wh2 + ν 2 R3 ξch1wh2wh3 + R2 ξch1wh2ch3 βrch1wh2 = rh2 Tg αh2 Tg αh2 Δтch1wh2’ = 1 - 2 Sin2αh2 Δαch1wh2+ ν 2 R3 ξch1wh2wh3 + R2 ξch1wh2ch3 Sin αh2 Cos αh2 rh2 rh22 Δκch1wh2’ = - 2 Sin αh2 Cos αh2 Δαch1wh2 + ν 2 R3 ξch1wh2wh3 + R2 ξch1wh2ch3 Cos2 αh2 rh2 rh22
  • 14. 3 Strands Rch2 = 0 Geometrical characteristics Rwh2 1 rh2 =Rwh2 1+ 3 Sin2 αh2 αh2 Twh1wh2=Fwh1wh2h3 Loads Hwh1wh2=Mwh1wh2h3 mh3 E R34 Sin αh3 � E R24 � Awh1wh2 = + 2(2 + ν)Cos2 αh3 4 Mwh1ch2=0 ξwh1wh2 Fwh1ch2=0 ξwh1wh2 Deformations ξwh1ch2 = ξwh1 βrwh1h2 = Δтwh1’ Rh2 ξwh1wh2 - Δαwh1wh2 + ν 2 R3 ξwh1wh2wh3 + R2 ξwh1wh2ch3 βrwh1wh2 = rh2 Tg αh2 Tg αh2 Δтwh1wh2’ = 1 - 2 Sin2αh2 Δαwh1wh2+ ν 2 R3 ξwh1wh2wh3 + R2 ξwh1wh2ch3Sin αh2 Cos αh2 rh2 rh22 Δκwh1wh2’ = - 2 Sin αh2 Cos αh2 Δαwh1wh2 + ν 2 R3 ξwh1wh2wh3 + R2 ξwh1wh2ch3Cos2 αh2 rh2 rh22
  • 15. 6 Cords Rch1 Geometrical characteristics Rwh1 αh1 Twh1 = Fh1 Loads Hwh1 = Mh1 Awh1 = mh2 Awh1wh2 Gywh1 = Awh1 Δκh1’ Fwh1 = mh1 (Twh1 Sin αh1 + Nwh1’ Cos αh1) Mwh1 = mh1 (Hwh1 Sin αh1 + Gwh1’ Cos αh1 + rh1 Twh1 Cos αh1 + rh1 Hwh1 Sin αh1) ξch1 = ε Deformations ξwh1 βh1 т = rh1 βrh1 = Rh1 βh1 βrh1 = ξwh1 - Δαh1 + ν 4 R3 ξwh1wh2wh3 + 2 R2 ξwh1wh2ch3 + 4 R3 ξch1wh2wh3 + 2 R2 ξch1wh2ch3 Tg αh1 rh1 Tg αh1 Δтh1’ = 1 - 2 Sin αh1 Δαh1 + ν 4 R3 ξwh1wh2wh3 + 2 R2 ξwh1wh2ch3 + 4 R3 ξch1wh2wh3 + 2 R2 ξch1wh2ch3 Sin αh1 Cos αh1 2 rh1 rh12 Δκh1’ = - 2 Sin α Cos α Δα + ν 4 R3 ξwh1wh2wh3 + 2 R2 ξwh1wh2ch3 + 4 R3 ξch1wh2wh3 + 2 R2 ξch1wh2ch3 Cos2 α r r2
  • 16. Analytical model Results and validation 600 Calculated 500 G. Vunjak-Novakovic et al. Root Mean Square Error Percentage 2   xi − xi  n 400 ∑ x   i   RMSEP = i  = 0.023 Load (N) n 300 Annu. Rev. Biomed. Eng. 2004. 6:131–56 TISSUE ENGINEERING OF LIGAMENTS G. Vunjak-Novakovic1, Gregory Altman2,3, Rebecca Horan2 and David L. Kaplan2 200 1 Massachusetts Institute of Technology, Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139; email: gorda- na@mit.edu 2 Department of Biomedical Engineering, Tufts University, Medford,Massa- chusetts 02155; email: gregory.altman@tufts.edu, david.kaplan@tufts.edu, 0.05 0.10 0.15 0.20 0.25 rebecca.horan@tufts.edu 3 Tissue Regeneration, Inc., Medford, Massachusetts 02155 Displacement (%)
  • 17. Homogenized model  σ rr   S11 S12 S13 S14 0 0   ε rr  Costello’s constants Trigonal constants [Pa] σ  S kεε=0.52972 S11=5.02232*1010  θθ   12 S22 S23 S24 0 0   εθθ     kεβ=0.0566074 S12=3.34821*1010  F / AE   kεε kεβ   ε  σ 33  S13 S23 S33 S34 0 0   ε 33   3 =  ⇔  = ⋅ . kβε=0.122818 S22=5.02232x1010 Mt / ER  k βε k ββ   β    σ 3θ  S14 S24 S34 S44 0 0  2ε 3θ  σ 3 r   0 0 0 0 S55 S56   2ε 3 r  kββ=0.0160126 S33=1.06738x109       S34=1.68011*109 σ θ r   0    0 0 0 S56 S66   2εθ r     S44=2.86704*107 S55=2.86704*107 S66=8.37054*109 ΔL Displacements along the z-axis [m] Rotations around the z-axis [deg]
  • 18. Homogenized model Results and validation 600 Analytical model 40 Homogenized model 500 Rotation (deg) 60 Load (N) 400 80 300 Analytical model 100 Homogenized model 200 0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25 Displacement (%) Displacement (%) Root Mean Square Error Percentage Root Mean Square Error Percentage 2 2 n   xi − xi  n   xi − xi  ∑ x   i   ∑ x    RMSEP = i  = 0.028 i  i  = 0.086 RMSEP = n n
  • 19. Conclusions and future developments NON LINEAR BEHAVIOUR DEVELOPMENT 3D FEM JOINT IMPLEMENTATION WITH ON-SITE TESTS IMPROVEMENT OF CURRENT SCAFFOLDS DESIGN OF NEW STRUCTURES
  • 20. References [1] N. M. Pugno, F. Bosia e T. Abdalrahman, «Hierarchical fiber [12] D. Greenwald, S. Shumway, P. Albear e al., «Mechanical compari- bundle model to investigate the complex architectures of biological mate- son of ten suture materials before and after in vivo incubation,» J Surg rials,» PHYSICAL REVIEW E, 2012. Res, p. 56:372– 7, 1994. [2] A. Carpinteri, P. Cornetti, N. Pugno e A. Sapora, «Strength of [13] K. Inouye, M. Kurokawa, S. Nishikawa e al., «Use of Bombyx mori hierarchical materials,» Microsyst Technol, p. 15:27–31, 2009. silk fibroin as a substratum for cultivation of animal cells,» J Biochem [3] G. A. Costello, Theory of Wke Rope, 2nd ed., Mechanical Enginee- Biophys Meth, p. 37:159– 64, 1998. ring Series, Springer-Verlag New York, Inc., 1997. [14] A. Nova, S. Keten, N. M. Pugno, A. Redaelli e M. J. Buehler, [4] M. Fraldi e S. Cowin, «Chirality in the torsion of cylinders with «Molecular and Nanostructural Mechanisms of Deformation, Strength and trigonal symmetry,» Journal of Elasticity, pp. 69, 121-148, 2002. Toughness of Spider Silk Fibrils,» Nano Letter, pp. 10, 2626–2634, 2010. [5] G. Perrella, A. Cutolo, L. Esposito, S. Cotugno, M. P. Carbone, G. [15] J. Perez-Rigueiro, C. Viney, J. Llorca e M. Elices, «Mechanical Mensittieri e M. Fraldi, «On the influence of tensile-torsion coupling in the properties of single-brin silkworm silk,» J Appl Polym Sci, p. 75:1270–7, mechanical behaviour of rubber/cord composites,» in Conference on 2000. rubber reinforcement and property modification by fillers, fibres & textiles, [16] R. Postlethwait, «Long-term comparative study of nonabsorbable London, UK, 18-19 December, 2012. sutures,» Ann Surg, p. 171:892–8, 1970. [6] G. Perrella, M. Fraldi, G. Mensittieri e C. Cotugno, Spurious stress [17] T. Salthouse, B. Matlaga e M. Wykoff, «Comparative tissue regimes in rubber-cord composites reinforced with trigonal fibers, Submit- response to six suture materials in rabbit cornea, sclera, and ocular ted 2012. muscle,» Am J Ophthalmol, p. 84:224–33., 1977. [7] G. H. Altman, R. L. Horan, H. H. Lu, J. Moreau, I. Martin, J. C. [18] S. Sofia, G. McCarthy, M. Gronowicz e al, «Functionalized silk-ba- Richmond e D. L. Kaplan, «Silk matrix for tissue engineered anterior sed biomaterials for bone formation,» J Biomed Mater Res, p. 54:139– cruciate ligaments,» Biomaterials, pp. 23, 4131–4141, 2002. 48., 2001. [8] Ethicon Inc., «Wound closure manual. The suture: specific suturing [19] G. Vunjak-Novakovic, G. Altman, R. Horan e D. L. Kaplan, Annu. materials. Non-absorbable sutures,» Somerville, NJ, Copyright 2000, p. Rev. Biomed. Eng, 2004, pp. 6, 131–156. Chapter 2. [20] P. Chowdhury, J. Matyas e C. Frank, «The "epiligament" of the [9] G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, rabbit medial collateral ligament: a quantitative morphological study,» H. Lu, J. Richmond e D. L. Kaplan, «Silk-based biomaterials,» Biomate- Connect Tissue Res, pp. 27:33-50, 1991. rials, pp. 24, 401-416, 2003. [21] R. Bray, «Blood supply of ligaments: a brief overview.,» Orthopae- [10] S. W. Cranford, A. Tarakanova, N. M. Pugno e M. J. Buehler, dics, pp. 3:39-48, 1995. «Nonlinear material behaviour of spider silk yields,» NATURE, vol. 482, [22] P. Salo, «The role of joint innervation in the pathogenesis of arthri- pp. 72-76, 2012. tis,» Can J Surg, pp. 42:91-100, 1999;. [11] J. Cunniff, S. Fossey, J. Song e al., «Mechanical and thermal [23] H. Johansson, P. Sjolander e P. Sojka, «A sensory role for the properties of Nephila clavipes dragline silk.,» Polymers for Advanced cruciate ligaments,» Clin Orthop Relat Res, pp. 268:161-178., 1991. Technologies, p. 5:401–10, 1994.
  • 21. References [24] M. Benjamin e J. Ralphs, «The cell and developmental biology of [37] T. Andriacchi, E. Alexander, M. Toney, C. Dyrby e J. Sum, «Apoint tendons and ligaments,» Int Rev Cytol, pp. 196:85-130, 2000. cluster method for in vivo motion analysis: appliedto a study of knee [25] I. Lo, S. Chi, T. Ivie, C. Frank e J. Rattner, «The cellular matrix: a kinematics,» Journal of Biomechanical, pp. 120 (12), 743–749, 1998. feature of tensile bearing dense soft connective tissues,» Histol Histopathol, [38] M. LaFortune, P. Cavanagh, H. Sommer e A. Kalenak, «Three pp. 17:523-537, 2002. dimensional kinematics of the human knee during walking,» Journal of [26] D. Amiel, C. Chu e J. Lee, «Effect of loading on metabolism and Biomechanics, pp. 25, 347–357, 1992. repair of tendons and ligaments,» in Repetitive Motion Disorders of the [39] L. Blankevoort, R. Huiskes e A. Delange, «The envelope ofpassi- Upper Extremity, Am Acad Orthop Surg, Rosemont, pp. 1995:217-230. ve knee-joint motion,» Journal of Biomechanics, pp. 21, 705–720, 1988. [27] C. T. Laurencin e J. W. Freeman, Biomaterials, 2005, pp. 26, [40] M. Robson AW, «Ruptured crucial ligaments and their repair by 7530–7536. operation,» Ann Surg, p. 37:716–8, 1903. [28] H. E. Cabaud, W. G. Rodkey e J. A. Feagin, Am. J. Sports Med, 1979, [41] J. D. Frank BC, «The science of reconstruction of the anterior pp. 7, 18–22. cruciate ligament,» J Bone Joint Surg Am, p. 79:1556– 76, 1997. [29] F. H. Silver, Biomaterials, medical devices, and tissue engineering: an [42] M. Murray, «Effect of the intra-articular environment on healing of integrated approach, London: Chapman & Hall, 1994. the ruptured anterior cruciate ligament,» J Bone Joint Surg Am,, August [30] D. Amiel, E. Billings e J. a. F. L. Harwood, J. Appl. Physiol, 1990, pp. 2001. 69, 902–906. [43] I. Lo, L. Marchik, D. Hart e al., «Comparison of mRNA levels for [31] S. J. Cuccurullo, Physical Medicine and Rehabilitation Board Review, matrix molecules in normal and disrupted anterior cruciate ligaments New York: Demos Medical Publishing, 2004. using reverse transcription-polymerase chain reaction,» J Orthop Res, p. [32] J. Diamant, A. Keller, E. Baer e M. L. a. R. G. Arridge, Proc. R. Soc., 16:421–8, 1998. Ser. B, 1972, pp. 180, 293–315. [44] M. Murray e M. Spector, «The migration of cells from the ruptured [33] D. J. McBride Jr, R. A. Hahn e F. H. Silver, Int. J. Biol. Macromol., human anterior cruciate ligament into collagen-glycosaminoglycan rege- 1985, pp. 7, 71–76. neration templates in vitro,» Biomaterials, p. 22:2393–402, 2001. [34] E. Mosler, W. Folkhard, E. Knorzer e H. Nemetschek-Gansler, J. Mol. [45] M. Murray, S. Martin e M. Spector, «Migration of cells from human Biol, 1985, pp. 182, 589–596. anterior cruciate ligament explants into collagen-glycosaminoglycan [35] A. Guadagno, VALUTAZIONE DELLE FORZE COMPRESSIVE E DI scaffolds,» J Orthop Res, p. 18:557–64, 2000. TAGLIO ALL’ARTICOLAZIONE DEL GINOCCHIO CON SISTEMA DI ANA- [46] A. Harrold, «The defect of blood coagulation in joints,» J Clin Path, LISI COMPUTERIZZATA MULTIFATTORIALE DEL MOVIMENTO, A. Ch.mo p. 14:305–8, 1961. Prof. Ing. Pepino e A. Ing. Ranavolo, A cura di, Napoli, 2004/2005. [47] M. L. Cameron, Y. Mizung e A. J. Cosgarea, J. Musculoskeletal [36] T. P. Andriacchi e C. O. Dyrby, «Interactions between kinematics and Med., 2000, pp. 17, 7–12. loading during walking for the normal and ACL deficient knee,» Journal of [48] K. Miyasaka, D. Daniel, M. Stone e P. Hirshman, Am. J. Knee Biomechanics, pp. 38, 293–298, 2005. Surg., 1991, pp. 4, 6–10.
  • 22. References [49] J. Freeman e A. L. Kwansa, Recent Pat. Biomed. Eng., 2008, pp. 1, [62] M. Santin, A. Motta, G. Freddi e al., «In vitro evaluation of the 18-23. inflammatory potential of the silk fibroin,» J Biomed Mater Res, p. [50] P. P. Weitzel, J. C. Richmond, G. H. Altman, T. Calabro e D. L. 46:382– 9, 1999. Kaplan, «Future direction of the treatment of ACL ruptures,» Orthop Clin N [63] A. E. H. Love, A treatise on the mathematical theory of elasticity, Am, pp. 33, 653– 661, 2002. 4th ed, New York: Dover Publications, 1944, pp. Chapter [51] J. P. Spalazzi, E. Dagher, S. B. Doty, X. E. Guo, S. A. Rodeo e H. H. XVIII-XIX,381-426. Lu, Conf Proc IEEE Eng Med Biol Soc, 2006, pp. 1, 525–528. [64] W. Utting e N. Jones, «Response of wire rope strands to axial [52] J. P. Spalazzi, E. Dagher, S. B. Doty, X. E. Guo, S. A. Rodeo e H. H. tensile loads. Part I: Experimental results and theoretical predictions,» Lu, J Biomed Mater Res A, 2008, pp. 86, 1–12. International Journal of Mechanical Science, pp. 29 (9), 605-61, 1987a. [53] H. H. Lu, S. F. El-Amin, K. D. Scott e C. T. Laurencin, J. Biomed. [65] W. Utting e N. Jones, « Response of wire rope strands to axial Mater. Res., 2003, pp. 64, 465–474. tensile loads. Part II: Comparison of experimental results and theoretical [54] Y. Kato, M. Dunn, J. Zawadsky, A. Tria e F. Silver, «Regeneration of predictions,» International Journal of Mechanical Science, pp. 29 (9), Achilles tendon with a collagen tendon rosthesis. Results of a one-year 621-36, 1987b. implantation study,» J Bone Jt Surg, Am Vol, p. 73:561–74, 1991. [66] A. Nawrocki e M. Labrosse, «A finite element model for simple [55] T. Bucknall, L. Teare e H. Ellis, «The choice of a suture to close straight wire rope strand,» Computer and Structures, pp. 77, 345-369, abdominal incisions,» Eur Surg Res, p. 15:59–66, 1983. 2000. [56] R. L. Horan, J. C. Richmond, P. P. Weitzel, D. J. Horan, E. Mortarino, [67] G. Costello, « Mechanical models of helical strands,» Applied N. DeAngelis, I. Toponarski, J. Huang, H. Boepple, J. Prudom e G. H. Mechanics Reviews, pp. 50, 1-14, 1990. Altman, J Bone Joint Surg Br, 2009, pp. 91-B, 288. [68] T. W. (Lord Kelvin), Baltimore Lectures on Molecular Dynamics [57] G. H. Altman, R. L. Horan, P. Weitze e J. C. Richmond, J. Am. Acad. and the Wave Theory of Light, London, 1904. Orthop. Surg, 2008, pp. 16, 177–187. [69] C. McManus, The Origins of Asymmetry in Brains, Bodies, Atoms, [58] R. L. Horan, «SeriACL TM Device (Gen IB) Trial for Anterior Cruciate Left Hand, Right Hand, 2002. Ligament (ACL) Repair,» Serica Technologies, Inc., 21 April 2009. [70] Y. Song, R. E. Debski, V. Musahl, M. Thomas e S. L.-Y. Woo, «A [59] K. R. Stone, A. W. Walgenbach, J. T. Abrams, J. Nelson, N. Gillett e three-dimensional finite element model of the human anterior cruciate U. Galili, Transplantation, 1997, pp. 63, 640–645. ligament:a computational analysis with experimental validation,» Journal [60] J. W. Freeman, Bone and Tissue Regeneration Insights, 2009, pp. 2, of Biomechanics, pp. 37, 383-390, 2004. 13–23. [71] H.-S. Park, C. Ahn, D. T. Fung, Y. Ren e L.-Q. Zhang, «A [61] F. Bonnarens e D. Drez, «Biomechanics of artificial ligaments and Knee-Specific Finite Element Analysis of the Human Anterior Cruciate associated problems,» in The anterior cruciate deficient knee, new concepts Ligament Impingement against the Femoral Intercondylar Notch,» J in ligament repair, St. Louis: C.V. Mosby, Jackson DW editor, 1987, pp. Biomech, 2010. 239-53.
  • 23. References [72] C. Frank, «Ligament structure, physiology and function,» J Muscu- loskel Neuron Interact, pp. 4(2):199-201, 2004. [73] A. L. Kwansa, Y. M. Empson, E. C. Ekwueme, V. I. Walters e J. W. Freeman, «Novel matrix based anterior cruciate ligament (ACL) regenera- tion,» Soft Matter, 2010. [74] G. Li, L. E. DeFrate, H. E. Rubash e T. J. Gil, «In vivo kinematics of the ACL during weight-bearing knee flexion,» Journal of Orthopaedic Resear- ch, pp. 23,340–344, 2005. [75] T. Tischer, S. Vogt, S. Aryee, E. Steinhauser, C. Adamczyk, S. Milz, V. Martinek e A. B. Imhoff, Arch. Orthop. Trauma Surg, 2007, pp. 127, 735–741. [76] G. A. Costello, «Mechanics of Wire Rope,» 2003. [77] F. R. NOYES., D. L. BUTLER, E. S. GROOD e R. F. ZERNIKE, «Biomechanical Analysis of Human Ligament Grafts used in Knee-Ligament Repairs and Reconstructions,» The Journal of Bone and Joint Surgery, pp. 344-352, 1984. [78] S.-Y. Woo, J. Hollis, D. Adams, R. Lyon e S. Takai, «Tensile proper- ties of human femur–anterior cruciate ligament–tibia complex: the effects of specimen age and orientation,» Am J Sports Med, 1991.