Science Project


Published on

Published in: Technology, Business
  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide
  • Good morning. Ladies and Gentlemen. My name is … and … . We come form mahidol Wittayanusorn school Thailand. Today we would like to present our project. The title is Efficiency of nematode ( Steinernema carpocapsae ) and symbiosis bacterium Xenorhabdus nematophila from the entomopathogenic nematode for eliminating termite Coptotermes curvignathus in Para Rubber. Now we would like all of you to know about the background and introduction of our work.
  • Science Project

    1. 1. Efficiency of a nematode ( Steinernema carpocapsae ) and its symbiotic bacterium ( Xenorhabdus nematophila ) at eliminating the termite Coptotermes curvignathus that infests Para rubber Chakraphan Hiranwrongwera Patcharapon Adisettakul Supathep Tansirichaiya Project
    2. 2. Thailand Agricultural country Introduction Para rubber
    3. 3. Problem from termite Chemical control Biological control Para Rubber Coptotermes curvignathus Introduction
    4. 4. Damage from Coptotermes curvignathus to Para rubbers’ root Introduction
    5. 5. Biological control Virus Bacteria Fungi Nematode Temporary Permanent Introduction
    6. 6. For the life cycle of nematode , there is only one stage to eliminate the insects: Infective Juvenile (IJ). The most efficiency of eliminating insects is Steinernema carpocapsae. Introduction
    7. 7. There is, in nematode intestine, symbiosis bacteria Xenorhabdus nematophila . This bacteria produces some substances that can eliminate insects. Introduction
    8. 8. Developing methods to eliminate Coptotermes curvignathus by using nematode Introduction
    9. 9. To study efficiency of nematode and bacteria from the entomopathogenic nematode to eliminate termite in para rubber Objective Para rubber
    10. 10. Methods Research the information Preparation Inject suspension on termite
    11. 11. Preparation Termite Coptotermes curvignathus Nematode Steinernema carpocapsae Bacteria Xenorhabdus nematophila Suspension of nematode and bacteria Methods
    12. 12. Survey the rubber plantation to find the termites Coptotermes curvignathus Collect the sample of termites Feed the termites to adapt themselves Divide 30 termites to each plate Preparation of termite Coptotermes curvignathus Methods
    13. 13. Spray the nematodes to infect maggots Wait until the nematodes separate from maggots Keep in the sponges at 5 c Preparation of nematode Steinernema carpocapsae Methods
    14. 14. Adjust the concentrate Count the number of the nematodes Squeeze the sponges which have the nematode inside in 0.4% formaldehyde Preparation of nematode Steinernema carpocapsae Methods
    15. 15. Culture the bacteria in NBTA by using liquid from maggots After 24 hours move bacteria into YS-broth Wait until the maggots die Spray the nematodes Steinernema carpocapsae to infect maggots Shake for 24 hours Preparation of bacteria Xenorhabdus Nematophila Methods
    16. 16. Centrifuge bacteria in the Appendrop Remove a half of media mix it by vortex Put nematodes into Appendrop Mix it Preparation of suspension of nematode and bacteria Methods
    17. 17. Experiment Treatment 1, water Treatment 2, YS-broth Treatment 3, formaldehyde Treatment 5, nematode Steinernema carpocapsae Treatment 4, bacteria Xenorhabdus Nematophila Treatment 6, suspension of nematode and bacteria Methods
    18. 18. Prepare Water YS-broth Formaldehyde Nematode Bacteria Nematode and bacteria Experiment Control groups Experimental groups Methods
    19. 19. Pipettes Water YS-broth Formaldehyde Nematode Bacteria Nematode and bacteria - ---- Termite Coptotermes curvignathus ---- - Experiment Methods
    20. 20. After 24 hours Observed and recorded Experiment Methods
    21. 21. Result
    22. 22. Mortality of termite
    23. 23. Mortality of termite
    24. 24. Conclusion The nematode has the most efficiency in eradicating termites in para rubber
    25. 25. Andrew, H.H. Wong and J. Kenneth Grace. (2004). Laboratory Evaluation of the Formosan Subterranean Termite Resistance of Borate-treated Rubberwood Chipboard. University Malaysia Sarawak Faculty of Resource Science and Technology, Malaysia Blackburn, M., E. Golubeva, D. Bowen, and R. H. ffrench-Constant. (1998). A novel insecticidal toxin from Photorhabdus luminescens , Toxin complex a (Tca), and its histopathological effects on the midgut of Manduca sexta . Applied and Environmental Microbiology . 64:3036-3041. Daborn, P. J., N. Waterfield, C. P. Silva, C. P. Y. Au, S. Sharma, and R. H. ffrench-Constant. ( 2002). A single Photorhabdus gene, makes caterpillars floppy ( mcf ), allows Escherichia coli to persist within and kill insects. Proceedings of the National Academy of Sciences . 99:10742-10747. Hayat B. , Abdus S. K., Abid F. , Alam Z. and Amanullah K. (2005). Toxic effects of palpoluck Polygonum hydropepper L. and Bhang Cannabis sativa L. plants extracts against termites Heterotermes indicola (Wasmann) and Coptotermes heimi (Wasmann) (Isoptera:Rhinotermitidae). Songklanakarin J. Sci. Technol. , 27(4): 705-710 References
    26. 26. <ul><li>Finally, this project is accredited to the supports and assistances from </li></ul><ul><ul><li>The Thailand Research Fund </li></ul></ul><ul><ul><li>Plant Protection Research and Development Office , Department of A griculture ,Thailand </li></ul></ul><ul><ul><li>Mahidol Wittayanusorn School, Thailand </li></ul></ul>Acknowledgement
    27. 27. for your attention Thanks