SlideShare a Scribd company logo
1 of 8
Download to read offline
1 3
J IRAN CHEM SOC
DOI 10.1007/s13738-015-0769-7
ORIGINAL PAPER
Synthesis of 2‑(3‑chromonyl)‑2‑acyloxycarboxamides
via multicomponent reactions of isocyanides
Mohammad Bagher Teimouri1
 · Foad Mashayekhi1
 · Elham Alishaei2
 
Received: 26 December 2014 / Accepted: 2 November 2015
© Iranian Chemical Society 2015
in fruits, vegetables, nuts, seeds, flowers, and barks [1].
They are an integral part of the human diet and have been
reported to exhibit a wide range of biological effects. They
display not only spasmolytic, diuretic, clotting, antibacte-
rial, antiviral, anti-tumoral, anti-inflammatory, and anti-
anaphylactic activity, but can also be used as antioxidants,
pigments, photo-active materials, and biodegradable agro-
chemicals [2].
The peptide bond is an important functional group in
organic chemistry, biochemistry, and medicine [3–5]. Pep-
tides play crucial roles in the human body and other organ-
isms [6–8]. Due to the biological significance of molecules
with the chromone moiety, we have combined amides and
chromones as molecular entities through carbon–carbon
bond formation to create new molecules. Considering the
versatile activities of these structures, we think it would be
of interest to combine the chromone moiety and the peptide
bond in view of their promising applications in medicinal
chemistry and biological investigations.
Peptide bond is traditionally synthesized by the reac-
tion of an amine with an activated carboxylic acid [9–12].
Among the protocols for the synthesis of peptide bond, one
of the important methods is the Passerini three-component
reaction (P-3CR) [13]. The most commonly used P-3CR,
in which a carboxylic acid, an oxo compound and an iso-
cyanide are reacted results in α-acyloxycarboxamide prod-
ucts. This group of compounds is present in the structures
of many natural products, such as the pharmacologically
active depsipeptides [14, 15]. Also, the P-3CR reaction can
lead to interesting and potentially bioactive peptidomimetic
compounds and offers an inexpensive and rapid way to
generate compound libraries [16].
3-Formylchromone is a highly reactive and well studied
compound which can serve as the starting material for the
syntheses of a whole series of heterocyclic systems due to
Abstract  A three-component reaction between a 3-for-
mylchromone, an alkyl isocyanide, and a carboxylic acid
which affords novel 2-(3-chromonyl)-2-acyloxycarboxam-
ide derivatives is reported. This cascade reaction sequence
represents an atom-economic route to biologically interest-
ing molecules.
Graphical Abstract 
Electronic supplementary material  The online version of this
article (doi:10.1007/s13738-015-0769-7) contains supplementary
material, which is available to authorized users.
*	 Mohammad Bagher Teimouri
	 mbteimouri@yahoo.com; teimouri@khu.ac.ir
1
	 Faculty of Chemistry, Kharazmi University, Mofateh Ave.,
Tehran, Iran
2
	 Faculty of Chemistry, Omidiyeh Branch, Islamic Azad
University, Omidiyeh, Iran
CH2Cl2, rt
+ + R4
N C
OH
O
R3O
CHO
O
R2
R1
O
O
R2
R1
CONHR4
R3
OCO
Keywords  Carboxylic acid · 3-Formylchromone ·
Isocyanide · Passerini reaction
Introduction
Chromones (4H-chromen-4-one derivatives) are an impor-
tant moiety which forms the nucleus of a class of heterocy-
clic natural products called flavonoids that occur naturally
J IRAN CHEM SOC
1 3
the presence of three electrophilic centers at C-2, C-4, and
formyl group in this molecule [17]. 3-Formylchromone
can give access to compounds where the chromone ring is
retained or to 2-hydroxybenzoyl derivatives resulting from
the opening of the pyran-4-one ring.
In 2008 [18], 3-formylchromone was used as the oxo
component in Passerini reactions with tosylmethyl isocya-
nide (TosMIC) to yield chromenyl-amidoesters. In continu-
ation of our research in the synthesis of chromone-contain-
ing molecules [19–22], herein, this was taken advantage in
the formation of poly-functional 2-(3-chromonyl)-2-acy-
loxycarboxamides via a three-component condensation
reaction of alkyl isocyanides as an expanded report that
includes more results to another report [18].
Result and discussion
The one-pot three-component condensation reactions of
3-formylchromone derivatives 1 with various carboxylic
acids 2 in the presence of alkyl isocyanides 3 proceeded at
room temperature in dichloromethane and were complete
after 24 h to afford corresponding 2-(3-chromonyl)-2-acy-
loxycarboxamides 4, in good yields (Table 1). 1
H and 13
C
NMR spectra of the crude products clearly indicated the
formation of 2-(3-chromonyl)-2-acyloxycarboxamides 4.
Any other products could not be detected by NMR spec-
troscopy. All products 4a–p are new stable solid com-
pounds whose structures were established by IR, 1
H, 13
C
NMR spectroscopy, and elemental analysis. The full results
are summarized in Table 1.
To survey the generality and scope of this one-pot three-
component protocol, the methodology was applied to the
synthesis of a variety of 2-(3-chromonyl)-2-acyloxycar-
boxamide derivatives 4a–p. With the optimal condition in
hand, we extended the reaction to other carboxylic acid
compounds, and results are indicated in Table 1. Ten deriv-
atives of carboxylic acids including aromatic, heterocyclic,
aliphatic and α,β-unsaturated carboxylic acids, afforded
2-(3-chromonyl)-2-acyloxycarboxamides from good to
excellent isolated yields. Four derivatives of 3-formylchr-
omones underwent the one-pot reaction smoothly without
using any catalyst. To explore the scope of this reaction
with respect to reactive isocyanides, we have examined
four alkyl isocyanides. We have found that the reactions
proceed very efficiently with both sterically hindered and
less hindered alkyl isocyanides.
A probable mechanistic rationale portraying sequence
of events for this three-component coupling is postulated
in Scheme 1 [15]. The first step is believed to be the for-
mation of a loosely hydrogen-bonded adduct 5 from 3-for-
mylchromone derivative and a carboxylic acid followed
by α-addition of the electrophilic carbonyl carbon and the
nucleophilic oxygen atom of the carboxylic acid to the
isocyanide carbon atom under formation of a cyclic transi-
tion state 6 with all three parent compounds. The α-adduct
which cannot be isolated, rearranges in an intramolecular
transacylation to the stable 2-(3-chromonyl)-2-acyloxycar-
boxamides 4.
Conclusions
In summary, 3-formylchromone was introduced as a novel
oxo component in Passerini reactions. Several carboxylic
acids and alkyl isocyanides were compatible under these
reaction conditions to afford diverse 2-(3-chromonyl)-
2-acyloxycarboxamides of potential synthetic and phar-
maceutical interest in good to excellent yields. The present
method carries the advantage of being performed under
neutral conditions and requires no activation or modifica-
tion of the educts.
Experimental
Apparatus
Melting points were measured on a Electrothermal 9100
apparatus and are uncorrected. Elemental analyses were
performed using a Heraeus CHN–O-rapid analyzer. IR
spectra were measured on a Shimadzu IR-460 spectrom-
eter. 1
H and 13
C NMR spectra were recorded on a Bruker
DRX-300 Avance spectrometer at 300.1 and 75.5 MHz,
respectively, with CDCl3 or CD3SOCD3 as solvents and
calibrated using residual undeuterated solvent as an inter-
nal reference. Chemical shifts are reported in parts per mil-
lion (ppm) relative to TMS as internal reference. Analytical
TLC was carried out on pre-coated plates (Merck silica gel
60, F254) and visualized with UV light. All chemical rea-
gents were obtained from Merck, Fluka or Acros and were
used without further purification.
Typical procedure for the preparation of 2‑(benzylam
ino)‑1‑(6‑methyl‑4‑oxo‑4H‑chromen‑3‑yl)‑2‑oxoethyl
benzoate (4a)
To a magnetically stirred solution of 3-formyl-6-methyl-
chromone (0.188 g, 1.0 mmol) and benzoic acid (0.122 g,
1.0 mmol) in anhydrous dichloromethane (10 mL) was
added benzyl isocyanide (0.117 g, 1.0 mmol) at room tem-
perature (25 °C). The reaction mixture was then stirred
for 24 h. After complete conversion, as monitored by TLC
using EtOAc/hexane 1:1 as eluent, the mixture was con-
centrated in vacuo and the solid residue was washed with
diethyl ether and crystallized from CH2Cl2/hexane (1:4)
J IRAN CHEM SOC	
1 3
Table 1  Synthesis of
compounds 4a–p
CH2Cl2, rt
+ + R4
N C
OH
O
R3O
CHO
O
R2
R1
O
O
R2
R1
CONHR4
R3
OCO
1
2 3
4
Entry R1
R2
R3
R4
Product Yield (%)a
1 CH3 H
O
O O
NH
O
O
CH3
4a
89
2 CH3 H
O
O O
NH
O
O
CH 3
4b
85
3 CH3 H
Cl
Cl
CH3
CH3
3
CH3
CH
CH3
CH3 CH3
O
O O
NH
O
O
CH3
Cl
Cl
CH3
CH3
CH3
4c
92
4 CH3 H
NO2
O
O O
NH
O
O
CH3
NO2
4d
95
5 CH3 H
O
O
O O
O
O
NH
CH3
O
4e
79
6 CH3 H
O
O O
NH
O
O
CH3
4f
86
7 CH3 H
Cl
O
O O
NH
O
O
CH3
Cl
4g
89
J IRAN CHEM SOC
1 3
Table 1  continued
8 CH3 H
Cl
O
O O
O
O
NH
CH3
Cl
4h
83
9 CH3 H
Br
O
O O
O
O
NH
CH3
Br
4i
86
10 CH3 H
Br
O
O O
O
O
NH
CH3
Br
4j
91
11 CH3 H
O
O O
O
O
NH
CH3
4k
81
12 H H
O
O O
NH
O
O
4l
92
13 H H
O
O
O O
NH
O
O
O
4m
82
14 H H
Br
3
CH3
CH
CH3
CH3 CH3
O
O O
NH
O
O
CH3
Br
CH3
4n
80
15 Cl H
O
O O
NH
O
O
Cl
4o
90
16 Cl Cl
NO2
O
O O
NH
O
O
Cl
NO2
Cl 4p
87
Entry R1
R2
R3
R4
Product Yield (%)a
a
  Refers to purified yield. Puri-
ties were >95 % according to
1
H NMR spectroscopy
J IRAN CHEM SOC	
1 3
to afford pure product. The dried product thus obtained
showed a single spot on TLC and was pure enough for all
analytical purposes.
Pale yellow powder; m.p. 196–198 °C (dec.); IR
(KBr) (νmax, cm−1
): 3343 (N–H), 1717, 1687, 1634
(C=O), 1610 (C=C); 1
H NMR (CDCl3, 300.1 MHz): δH
2.45 (3 H, s, CH3), 4.46 and 4.58 (2 H, doublet of AB-q,
2
JHH = 15.1 Hz, 3
JHH = 5.7 Hz, NH–CHAHB–Ph), 6.38 (1
H, s, O=C–CH), 7.18–7.60 (11 H, m, arom. H+NH), 7.99
(1 H, br. s, arom. H), 8.09–8.11 (2 H, m, arom. H), 8.32 (1
H, s, C=CH–O); 13
C NMR (CDCl3, 75.5 MHz): δC 176.5,
167.5, 165.2, 155.4, 154.6, 137.8, 135.8, 135.5, 133.6,
129.9, 129.1, 128.6, 128.5, 127.4, 127.3, 125.1, 123.4,
119.4, 118.0, 69.2, 43.5, 20.9; Anal. Calcd for C26H21NO5
(427.44) C 73.06, H 4.95, N 3.28 %; Found C 72.87, H
4.93, N 3.30 %.
2‑(Cyclohexylamino)‑1‑(6‑methyl‑4‑oxo‑4H‑chromen‑3‑
yl)‑2‑oxoethyl benzoate (4b)
White powder; m.p. 163–165 °C (dec.); IR (KBr) (νmax,
cm−1
): 3314 (N–H), 1714, 1662, 1644 (C=O), 1609
(C=C); 1
H NMR (CDCl3, 400.2 MHz): δH 1.22–2.19 (10
H, m, 5 CH2), 2.48 (3 H, s, CH3), 3.77 (1 H, m, NH–CH),
6.31 (1 H, s, O–CH), 6.84 (1 H, d, 3
JHH = 8.0 Hz, NH–
CH), 7.41–8.14 (8 H, m, arom. H), 8.33 (1 H, s, C=CH–O);
13
C NMR (CDCl3, 100.6 MHz): 176.5, 166.5, 165.3, 155.3,
154.6, 135.7, 135.5, 133.6, 129.9, 129.3, 128.6, 125.1,
123.6, 119.6, 118.1, 69.3, 48.4, 33.5, 32.8, 32.6, 25.5, 24.6,
21.0; Anal. Calcd for C25H25NO5 (419.46) C 71.58, H 6.01,
N 3.34 %; Found C 71.34, H 5.98, N 3.33 %.
1‑(6‑Methyl‑4‑oxo‑4H‑chromen‑3‑yl)‑2‑oxo‑2‑[(1,1,3,3‑t
etramethylbutyl)amino]ethyl 2,4‑dichlorobenzoate (4c)
White powder; m.p. 255–257 °C (dec.); IR (KBr) (νmax,
cm−1
): 3385 (N–H), 1727, 1676, 1645 (C=O), 1608
(C=C); 1
H NMR (CDCl3, 400.2 MHz): δH 0.90 (9 H, s,
CMe3), 1.37 (6 H, s, CMe2), 1.61 and 1.77 (2 H, AB-q sys-
tem, 2
JHH = 14.9 Hz, CH2), 2.43 (3 H, s, CH3), 6.22 (1 H,
s, O–CH), 7.24–7.49 and 7.89–8.04 (6 H, 2 m, arom. H),
8.23 (1 H, s, C=CH–O); 13
C NMR (CDCl3, 100.6 MHz):
177.4, 166.1, 164.2, 155.8, 155.3, 139.7, 136.6, 136.4,
135.7, 134.1, 131.8, 128.4, 128.0, 125.9, 124.2, 120.0,
118.9, 70.7, 56.4, 52.4, 32.3, 32.1, 30.0, 29.7, 21.8; Anal.
Calcd for C27H29Cl2NO5 (518.42) C 62.55, H 5.64, N
2.70 %; Found C 62.40, H 5.66, N 2.73 %.
2‑(Cyclohexylamino)‑1‑(6‑methyl‑4‑oxo‑4H‑chromen‑3‑
yl)‑2‑oxoethyl 4 nitrobenzoate (4d)
White powder; m.p. 254–256 °C (dec.); IR (KBr) (νmax,
cm−1
): 3274 (N–H), 1724, 1654, 1625 (C=O), 1619 (C=C)
1
H NMR (DMSO-d6, 300.1 MHz): δH 1.06–1.76 (10 H, m,
5 CH2), 2.43 (3 H, s, CH3), 3.50–3.60 (1 H, m, NH–CH),
6.28 (1 H, s, O=C–CH), 7.59–7.69 (2 H, m, arom. H), 7.87
(1 H, s, arom. H), 8.14 (1 H, d, 3
JHH = 7.8 Hz, NH–CH),
8.20 and 8.33 (4 H, m, C6H4NO2), 8.48 (1 H, s, C=CH–O);
13
C NMR (DMSO-d6, 75.5 MHz): δC 174.8, 165.1, 163.6,
156.8, 154.1, 150.4, 135.8, 135.7, 134.6, 131.0, 124.3,
123.9, 123.0, 119.0, 118.4, 69.0, 48.0, 32.1, 25.1, 24.6,
24.5, 20.4; Anal. Calcd for C25H24N2O7 (464.46) C 64.65,
H 5.21, N 6.03 %; Found C 64.78, H 5.20, N 6.00 %.
Scheme 1  Plausible reaction
mechanism
R4
N C
R3
OH
O
O
O
O
H
O
O H
O
O
R3
N
R4
R3
NHR4
O
O R3
5
64
1
2
3
O
O
R1
R2
H
O
O
O
R1
R2
O
O
R1
R2
O
O
R1
R2
J IRAN CHEM SOC
1 3
2‑(Cyclohexylamino)‑1‑(6‑methyl‑4‑oxo‑4H‑chromen‑3‑
yl)‑2‑oxoethyl 2‑furoate (4e)
White powder; m.p. 202–204 °C (dec.); IR (KBr) (νmax,
cm−1
): 3297 (N–H), 1724, 1690 (C=O); 1
H NMR (CDCl3,
400.2 MHz): δH 1.14–2.05 (10 H, m, 5 CH2), 2.48 (3 H, s,
CH3), 3.74–3.85 (1 H, m, NH–CH), 6.26 (1 H, s, O–CH),
6.55 (1 H, dd, 3
JHH = 3.6 Hz, 3
JHH = 1.6 Hz, OCH=CH–
CH of furan moiety), 6.83 (1 H, br d, 3
JHH = 8.0 Hz, NH–
CH), 7.33 (1 H, d, 3
JHH = 3.2 Hz, OCH=CH–CH of furan
moiety), 7.41 (1 H, t, 3
JHH = 8.4 Hz, CH of chromone moi-
ety), 7.53 (1, d, 3
JHH = 8.8 Hz, 3
JHH = 1.6 Hz, CH of chr-
omone moiety), 7.63 (1 H, app. s, OCH=CH–CH of furan
moiety), 8.03 (1 H, s, CH of chromone moiety), 8.32 (1
H, s, C=CH–O); 13
C NMR (CDCl3, 100.6 MHz): 176.4,
166.1, 157.1, 155.5, 154.6, 147.0, 143.8, 135.8, 135.5,
125.1, 123.5, 119.4, 119.3, 118.1, 112.1, 69.0, 48.4, 32.8,
32.6, 25.5, 24.6, 21.0; Anal. Calcd for C23H23NO6 (409.43)
C 67.47, H 5.66, N 3.42 %; Found C 67.69, H 5.70, N
3.39 %.
2‑(Cyclohexylamino)‑1‑(6‑methyl‑4‑oxo‑4H‑chromen‑3‑
yl)‑2‑oxoethyl phenylacetate (4f)
White powder; m.p. 120–122 °C (dec.); IR (KBr) (νmax,
cm−1
): 3312 (N–H), 1732, 1664, 1643 (C=O), 1555
(C=C); 1
H NMR (CDCl3, 300.1 MHz): δH 0.99–1.97 (10
H, m, 5 CH2), 2.46 (3 H, s, CH3), 3.65–3.73 (1 H, m, NH–
CH), 3.79 (2 H, s, O=CCH2), 6.03 (1 H, s, O=C–CH),
6.59 (1 H, d, 3
JHH = 8.1 Hz, NH–CH), 7.28–7.53 (7 H, m,
arom. H), 8.00 (1 H, br. s, arom. H), 8.05 (1 H, s, C=CH–
O); 13
C NMR (CDCl3, 75.5 MHz): δC 176.4, 170.0, 166.2,
155.4, 154.5, 135.7, 135.4, 133.4, 129.3, 128.7, 128.5,
127.3, 125.0, 123.5, 119.2, 118.0, 69.0, 48.2, 41.1, 32.7,
32.5, 25.4, 24.6, 20.9; Anal. Calcd for C26H27NO5 (433.49)
C 72.04, H 6.28, N 3.23 %; Found C 71.91, H 6.32, N
3.20 %.
2‑(Cyclohexylamino)‑1‑(6‑methyl‑4‑oxo‑4H‑chromen‑3‑
yl)‑2‑oxoethyl chloroacetate (4g)
White powder; m.p. 159–161 °C (dec.); IR (KBr) (νmax,
cm−1
): 3295 (N–H), 1741, 1661, 1645 (C=O), 1619
(C=C); 1
H NMR (CDCl3, 300.1 MHz): δH 1.07–1.99
(10 H, m, 5CH2), 2.46 (3 H, s, CH3), 3.72–3.75 (1 H,
m, NH–CH), 4.20 and 4.25 (2 H, AB-q, 2
JHH = 15.0 Hz,
O=CCH2), 6.13 (1 H, s, O=C–CH), 6.82 (1 H, d,
3
JHH = 7.9 Hz, NH–CH), 7.38–7.54 (2 H, m, arom. H),
7.99 (1 H, br. s, arom. H), 8.20 (1 H, s, C=CH–O); 13
C
NMR (CDCl3, 75.5 MHz): δC 176.3, 166.0, 165.5, 155.1,
154.7, 154.5, 135.9, 135.6, 125.0, 123.3, 118.8, 118.0,
69.8, 48.5, 40.6, 32.7, 32.5, 25.4, 24.5, 20.9; Anal. Calcd
for C20H22ClNO5 (391.87) C 61.30, H 5.66, N 3.57 %;
Found C 61.45, H 5.61, N 3.60 %.
2‑(Cyclohexylamino)‑1‑(6‑methyl‑4‑oxo‑4H‑chromen‑3‑
yl)‑2‑oxoethyl 3‑chloropropanoate (4h)
White powder; m.p. 155–157 °C (dec.); IR (KBr) (νmax, cm−1
):
3306 (N–H), 1731, 1661, 1645 (C=O), 1620 (C=C); 1
H
NMR (CDCl3, 300.1 MHz); δH 1.10–2.00 (10 H, m, 5 CH2),
2.46 (3 H, s, CH3), 2.94–3.01 (2 H, m, O=C–CH2), 3.80–3.82
(1 H, m, NH–CH), 3.82–3.84 (2 H, m, ClCH2), 6.13 (1 H, s,
O=C–CH), 6.82 (1 H, d, 3
JHH = 7.9 Hz, NH–CH), 7.39 (1
H, 3
JHH = 8.6 Hz, arom. H), 7.52 (1 H, dd, 3
JHH = 8.6 Hz,
4
JHH = 1.9 Hz, arom. H), 7.99 (1 H, app. s, arom. H), 8.18
(1 H, s, C=CH–O); 13
C NMR (CDCl3, 75.5 MHz): δC 176.4,
168.9, 166.0, 155.1, 154.5, 135.7, 135.5, 125.0, 123.4, 119.1,
118.0, 68.9, 48.4, 38.8, 37.4, 32.7, 32.5, 25.4, 24.6, 20.9;Anal.
Calcd for C21H24ClNO5 (405.87) C 62.14, H 5.96, N 3.45 %;
Found C 62.02, H 6.00, N 3.40 %.
2‑(Cyclohexylamino)‑1‑(6‑methyl‑4‑oxo‑4H‑chromen‑3‑
yl)‑2‑oxoethyl bromoacetate (4i)
White powder; m.p. 158–160 °C (dec.); IR (KBr) (νmax,
cm−1
): 3300 (N–H), 1732, 1663, 1645 (C=O), 1619
(C=C); 1
H NMR (CDCl3, 300.1 MHz): δH 1.12–2.00
(10 H, m, 5 CH2), 2.46 (3 H, s, CH3), 3.70–3.76 (1 H,
m, NH–CH), 3.98 (2 H, app. s, O=CCH2), 6.09 (1 H, s,
O=C–CH), 6.80 (1 H, d, 3
JHH = 7.8 Hz, NH–CH), 7.38–
7.54 (2 H, m, arom. H), 7.99 (1 H, br. s, arom. H), 8.19 (1
H, s, C=CH–O); 13
C NMR (CDCl3, 75.5 MHz): δC 176.3,
165.8, 165.6, 155.2, 154.5, 135.8, 135.6, 125.0, 123.4,
118.8, 118.0, 69.9, 48.4, 32.7, 32.5, 25.4, 25.3, 24.5,
20.9; Anal. Calcd for C20H22BrNO5 (436.29) C 55.06, H
5.08, N 3.21 %; Found C 54.91, H 5.07, N 3.18 %.
2‑(Cyclohexylamino)‑1‑(6‑methyl‑4‑oxo‑4H‑chromen‑3‑
yl)‑2‑oxoethyl 5‑bromopentanoate (4j)
Pale yellow powder; m.p. 138–140 °C (dec.); IR (KBr)
(νmax, cm−1
): 3321 (N–H), 1725, 1663, 1640 (C=O),
1618 (C=C); 1
H NMR (CDCl3, 300.1 MHz): δH 1.07–
2.68 and 2.47–2.68 (19 H, 2 m, 8 CH2+CH3), 3.43 (1 H,
t, 3
JHH = 6.4 Hz, CH2Br), 3.70–3.77 (1 H, m, NH–CH),
6.08 (1 H, s, O=C–CH), 6.77 (1 H, d, 3
JHH = 7.7 Hz, CH–
NH), 7.39–7.42 and 7.51–7.54 (2 H, 2 m, arom. H), 8.01
(1 H, app. s, arom. H), 8.20 (1 H, s, C=CH–O); 13
C NMR
(CDCl3, 75.5 MHz): δC 176.5, 171.7, 166.3, 155.0, 154.5,
135.7, 135.5, 125.0, 123.4, 119.3, 118.0, 68.4, 48.3, 33.1,
33.0, 32.7, 32.6, 31.7, 25.4, 24.6, 23.3, 21.0; Anal. Calcd
for C23H28BrNO5 (478.37) C 57.75, H 5.90, N 2.93 %;
Found C 57.83, H 5.85, N 2.90 %.
J IRAN CHEM SOC	
1 3
2‑(Cyclohexylamino)‑1‑(6‑methyl‑4‑oxo‑4H‑chromen‑3‑
yl)‑2‑oxoethyl (2E)‑3‑phenylacrylate (4k)
White powder; m.p. 159–161 °C (dec.); IR (KBr) (νmax,
cm−1
): 3318 (N–H), 3087 (=C–H), 1704, 1662, 1642
(C=O), 1619 (C=C); 1
H NMR (CDCl3, 300.1 MHz): δH
1.16–2.05 (10 H, m, 5 CH2), 2.46 (3 H, s, CH3), 3.78–3.81
(1 H, m, NH–CH), 6.20 (1 H, s, O=C–CH), 6.59 (1 H, d,
3
JHH = 16.0 Hz, HC=CH), 6.82 (1 H, br. d, 3
JHH = 8.1 Hz,
NH–CH), 7.39–7.41 (4 H, m, arom. H), 7.49–7.56 (3 H, m,
arom. H), 7.79 (1 H, d, 3
JHH = 16.0 Hz, HC=CH), 8.01
(1 H, br. s, arom. H), 8.27 (1 H, s, C=CH–O); 13
C NMR
(CDCl3, 75.5 MHz): δC 176.4, 166.4, 165.5, 155.3, 154.5,
146.5, 135.6, 135.4, 134.0, 130.6, 128.9, 128.2, 125.0,
123.5, 119.5, 118.0, 116.8, 116.7, 68.7, 48.4, 32.8, 32.6,
25.4, 24.6, 20.9; Anal. Calcd for C27H27NO5 (445.50) C
72.79, H 6.11, N 3.14 %; Found C 72.59, H 6.08, N 3.19 %.
2‑(Cyclohexylamino)‑2‑oxo‑1‑(4‑oxo‑4H‑chromen‑3‑yl)
ethyl benzoate (4l)
White powder; m.p. 165–167 °C (dec.); IR (KBr) (νmax,
cm−1
): 3290 (N–H), 1720, 1684, 1633 (C=O), 1610
(C=C); 1
H NMR (CDCl3, 400.2 MHz): δH 1.13–2.01 (10
H, m, 5 CH2), 3.70–3.80 (1 H, m, NH–CH), 6.22 (1 H, s,
O–CH), 6.78 (1 H, d, 3
JHH = 7.6 Hz, NH–CH), 7.39–7.68
and 8.08–8.31 (9 H, 2 m, arom. H), 8.33 (1 H, s, C=CH–
O); 13
C NMR (CDCl3, 100.6 MHz): 177.2, 167.2, 166.0,
157.1, 156.3, 135.0, 134.4, 130.7, 130.1, 129.4, 126.7,
126.4, 124.7, 120.7, 119.1, 70.1, 49.3, 33.6, 33.4, 26.3,
25.4; Anal. Calcd for C24H23NO5 (405.44) C 71.10, H 5.72,
N 3.45 %; Found C 70.82, H 5.68, N 3.44 %.
2‑(Cyclohexylamino)‑2‑oxo‑1‑(4‑oxo‑4H‑chromen‑3‑yl)
ethyl 2‑furoate (4m)
White powder; m.p. 183–185 °C (dec.); IR (KBr) (νmax,
cm−1
): 3305 (N–H), 1720, 1687, 1636 (C=O), 1607 (C=C);
1
H NMR (CDCl3, 400.2 MHz): δH 1.18–2.05 (10 H, m, 5
CH2), 3.77–3.83 (1 H, m, NH–CH), 6.26 (1 H, s, O–CH),
6.55 (1 H, dd, 3
JHH = 3.2 Hz, 3
JHH = 1.6 Hz, OCH=CH–
CH of furan moiety), 6.81 (1 H, d, 3
JHH = 8.0 Hz, NH–
CH), 7.33 (1 H, d, 3
JHH = 3.2 Hz, OCH=CH–CH of furan
moiety), 7.45 (1 H, t, 3
JHH = 7.2 Hz, CH of chromone moi-
ety), 7.51 (1 H, d, 3
JHH = 8.4 Hz, CH of chromone moi-
ety), 7.63 (1 H, d, app. s, OCH=CH–CH of furan moiety),
7.72 (1 H, t, 3
JHH = 7.6 Hz, CH of chromone moiety), 8.24
(1 H, d, 3
JHH = 8.0 Hz, CH of chromone moiety), 8.34 (1
H, s, C=CH–O); 13
C NMR (CDCl3, 100.6 MHz): 176.3,
166.0, 157.1, 156.3, 155.7, 147.0, 143.7, 134.3, 125.9,
125.7, 123.9, 119.5, 119.3, 118.3, 112.1, 77.0, 69.0, 48.5,
32.7, 32.6, 25.5, 24.6; Anal. Calcd for C22H21NO6 (395.40)
C 66.83, H 5.35, N 3.54 %; Found C 67.03, H 5.38, N
3.50 %.
2‑(Tert‑butylamino)‑1‑(6‑methyl‑4‑oxo‑4H‑chromen‑3‑y
l)‑2‑oxoethyl bromoacetate (4n)
White powder; m.p. 128–130 °C (dec.); IR (KBr) (νmax,
cm−1
): 3300 (N–H), 1762, 1685, 1634 (C=O), 1621
(C=C); 1
H NMR (CDCl3, 300.1 MHz): δH 1.35 (9 H, s,
C(CH3)3), 3.98 (2 H, app. s, O=CCH2), 6.03 (1 H, s, O=C–
CH), 6.75 (1 H, s, NH), 7.42–7.52 (2 H, m, arom. H), 7.69–
7.75 (1 H, m, arom. H), 8.21 (1 H, s, C=CH–O), 8.21–
8.24 (1 H, m, arom. H); 13
C NMR (CDCl3, 75.5 MHz):
δC 176.3, 165.7, 165.4, 156.2, 155.3, 134.3, 125.8, 125.7,
123.7, 119.2, 118.3, 69.9, 51.7, 28.6, 25.3; Anal. Calcd for
C18H20BrNO5 (410.25) C 52.70, H 4.91, N 3.41 %; Found
C 52.58, H 4.88, N 3.40 %.
1‑(6‑Chloro‑4‑oxo‑4H‑chromen‑3‑yl)‑2‑(cyclohexylamin
o)‑2‑oxoethyl benzoate (4o)
White powder; m.p. 191–193 °C (dec.); IR (KBr) (νmax,
cm−1
): 3297 (N–H), 1713, 1660, 1645 (C=O), 1610
(C=C); 1
H NMR (CDCl3, 400.2 MHz): δH 1.19–2.07 (10
H, m, 5 CH2), 3.80–3.86 (1 H, m, NH–CH), 6.28 (1 H, s,
O–CH), 6.71 (1 H, d, 3
JHH = 8.4 Hz, NH–CH), 7.48–7.52
(5 H, m, Phenyl), 8.12 and 8.13 (2 H, 2 d, 3
JHH = 7.2 Hz,
CH=CH of chromone moiety), 8.22 (1 H, d, 4
JHH = 2.8 Hz,
ClC=CH of chromone moiety), 8.34 (1 H, s, C=CH–O);
13
C NMR (CDCl3, 100.6 MHz): 178.1, 166.1, 165.2, 155.7,
154.6, 134.5, 133.7, 131.7, 129.9, 129.2, 128.6, 125.3,
124.9, 120.1, 120.0, 69.2, 48.5, 32.8, 32.7, 29.7, 25.5, 24.6;
Anal. Calcd for C24H22ClNO5 (439.88) C 65.53, H 5.04, N
3.18 %; Found C 65.74, H 5.00, N 3.20 %.
2‑(Cyclohexylamino)‑1‑(6,8‑dichloro‑4‑oxo‑4H‑chrome
n‑3‑yl)‑2‑oxoethyl 4‑nitrobenzoate (4p)
White powder; m.p. 258–260 °C (dec.); IR (KBr) (νmax,
cm−1
): 3279 (N–H), 1732, 1654 (C=O), 1599 (C=C);
1
H NMR (CDCl3, 300.1 MHz): δH 1.10–1.76 (10 H, m, 5
CH2), 3.52–3.60 (1 H, m, NH–CH), 6.27 (1 H, s, O=C–
CH), 7.98 (1 H, d, 3
JHH = 2.2 Hz, arom. H), 8.08 (1 H, d,
3
JHH = 7.7 Hz, CH–NH), 8.20–8.35 (3 H, 2 m, arom. H),
8.68 (1 H, s, C=CH–O); 13
C NMR (CDCl3, 75.5 MHz):
δC 173.4, 164.6, 163.5, 157.3, 150.4, 134.5, 134.2, 131.0,
130.2, 125.4, 124.0, 123.8, 123.3, 119.6, 68.8, 48.2, 32.0,
25.1, 24.5; Anal. Calcd for C24H20Cl2N2O7 (519.33)
C 55.51, H 3.88, N 5.39 %; Found C 55.42, H 3.90, N
5.35 %.
J IRAN CHEM SOC
1 3
Acknowledgments The authors thank Kharazmi University
Research Council for financial support of this research.
References
	1.	 G.P. Ellis, I.M. Lockhart, Chemistry of heterocyclic compounds,
chromenes, chromanones, and chromones, vol. 31, ed. by G.P.
Ellis (Wiley–VCH, London, 2007)
	2.	 R.S. Keri, S. Budagumpi, R.K. Pai, R.G. Balakrishna, Eur. J.
Med. Chem. 78, 340 (2014)
	3.	 T. Cupido, J. Tulla-Puche, J. Spengler, F. Albericio, Curr. Opin.
Drug Discov. Dev. 10, 768 (2007)
	 4.	 J.W. Bode, Curr. Opin. Drug Disco. Dev. 9, 765 (2006)
	 5.	 J.M. Humphrey, A.R. Chamberlin, Chem. Rev. 97, 2243 (1997)
	 6.	 F.-F. Tian, P. Zhou, Z.-L. Li, J. Mol. Struct. 830, 106 (2007)
	 7.	 M. Shu, H. Mei, S.Yang, L. Liao, Z. Li, Q.S.A.R. Comb, Sci. 28,
27 (2009)
	 8.	 T. Day, S.A. Greenfield, Exp. Brain Res. 155, 500 (2004)
	9.	 R.C. Larock, Comprehensive organic transformations (VCH,
New York, 1999)
	10.	 E. Valeur, M. Bradley, Chem. Soc. Rev. 38, 606 (2009)
	11.	 S.Y. Han, Y.A. Kim, Tetrahedron 60, 2447 (2004)
	12.	 C.A.G.N. Montalbetti, V. Falque, Tetrahedron 61, 10827 (2005)
	13.	 L. Banfi, R. Riva, Org. React. 65, 1 (2005)
	14.	 A. Dömling, Chem. Rev. 106, 17 (2006)
	15.	 A. Dömling, I. Ugi, Angew. Chem. Int. Ed. 39, 3168 (2000)
	16.	 I. Ugi, S. Heck, Comb. Chem. High Throughput Screen. 4, 1
(2001)
	17.	 G. Sabitha, Aldrichim. Acta 29, 15 (1996)
	18.	M.A. Terzidis, J. Stephanidou-Stephanatou, C.A. Tsoleridis,
Open Org. Chem. J. 2, 88 (2008)
	19.	 M.B. Teimouri, P. Akbari-Moghaddam, G. Golbaghi, A.C.S.
Comb, Science 13, 659 (2011)
	20.	 M.B. Teimouri, Tetrahedron 67, 1837 (2011)
	21.	 M.B. Teimouri, M. Eskandari, J. Chem. Res. 500 (2011)
	22.	 M.B. Teimouri, B. Asnaashari, Tetrahedron Lett. 55, 2249 (2014)

More Related Content

What's hot

Project_Ionic_Liquid_Master 1 of Chemistry and Biology
Project_Ionic_Liquid_Master 1 of Chemistry and BiologyProject_Ionic_Liquid_Master 1 of Chemistry and Biology
Project_Ionic_Liquid_Master 1 of Chemistry and BiologyJing YI
 
Characterization & structure elucidation of certain classes of Sec.Metabolotes
Characterization & structure elucidation of certain classes of Sec.MetabolotesCharacterization & structure elucidation of certain classes of Sec.Metabolotes
Characterization & structure elucidation of certain classes of Sec.MetabolotesNilesh Thorat
 
7 organic chemistry learning outcomes
7 organic chemistry learning outcomes7 organic chemistry learning outcomes
7 organic chemistry learning outcomesMartin Brown
 
Synthesis and Characterization of New Complexes of 2-(6-Methoxybenzo[d]thiazo...
Synthesis and Characterization of New Complexes of 2-(6-Methoxybenzo[d]thiazo...Synthesis and Characterization of New Complexes of 2-(6-Methoxybenzo[d]thiazo...
Synthesis and Characterization of New Complexes of 2-(6-Methoxybenzo[d]thiazo...IOSR Journals
 
Synthesis Of Hetero-cyclic Drugs 2
Synthesis Of Hetero-cyclic Drugs 2Synthesis Of Hetero-cyclic Drugs 2
Synthesis Of Hetero-cyclic Drugs 2Nirali Mistry
 
Thiourea mediated regioselective synthesis of symmetrical and unsymmetrical d...
Thiourea mediated regioselective synthesis of symmetrical and unsymmetrical d...Thiourea mediated regioselective synthesis of symmetrical and unsymmetrical d...
Thiourea mediated regioselective synthesis of symmetrical and unsymmetrical d...Science Padayatchi
 
Methodology of organic synthesis
Methodology of organic synthesisMethodology of organic synthesis
Methodology of organic synthesissumit prajapati
 
A STUDY ON FORMATION OF SALYCILIC ACID FORMALDEHYDE POLYMER SAMPLE
A STUDY ON FORMATION OF SALYCILIC ACID FORMALDEHYDE POLYMER SAMPLEA STUDY ON FORMATION OF SALYCILIC ACID FORMALDEHYDE POLYMER SAMPLE
A STUDY ON FORMATION OF SALYCILIC ACID FORMALDEHYDE POLYMER SAMPLEEDITOR IJCRCPS
 
Biochemistry Basic Lab procedures
Biochemistry Basic Lab proceduresBiochemistry Basic Lab procedures
Biochemistry Basic Lab proceduresDr. Dipesh Yadav
 
Mechanistic Aspects of Oxidation of P-Bromoacetophen one by Hexacyanoferrate ...
Mechanistic Aspects of Oxidation of P-Bromoacetophen one by Hexacyanoferrate ...Mechanistic Aspects of Oxidation of P-Bromoacetophen one by Hexacyanoferrate ...
Mechanistic Aspects of Oxidation of P-Bromoacetophen one by Hexacyanoferrate ...IJERA Editor
 

What's hot (18)

JACS Fluorination 2013
JACS Fluorination 2013JACS Fluorination 2013
JACS Fluorination 2013
 
Tetracycline
TetracyclineTetracycline
Tetracycline
 
Project_Ionic_Liquid_Master 1 of Chemistry and Biology
Project_Ionic_Liquid_Master 1 of Chemistry and BiologyProject_Ionic_Liquid_Master 1 of Chemistry and Biology
Project_Ionic_Liquid_Master 1 of Chemistry and Biology
 
RSC
RSCRSC
RSC
 
Characterization & structure elucidation of certain classes of Sec.Metabolotes
Characterization & structure elucidation of certain classes of Sec.MetabolotesCharacterization & structure elucidation of certain classes of Sec.Metabolotes
Characterization & structure elucidation of certain classes of Sec.Metabolotes
 
7 organic chemistry learning outcomes
7 organic chemistry learning outcomes7 organic chemistry learning outcomes
7 organic chemistry learning outcomes
 
iasj
iasjiasj
iasj
 
Synthesis and Characterization of New Complexes of 2-(6-Methoxybenzo[d]thiazo...
Synthesis and Characterization of New Complexes of 2-(6-Methoxybenzo[d]thiazo...Synthesis and Characterization of New Complexes of 2-(6-Methoxybenzo[d]thiazo...
Synthesis and Characterization of New Complexes of 2-(6-Methoxybenzo[d]thiazo...
 
Synthesis Of Hetero-cyclic Drugs 2
Synthesis Of Hetero-cyclic Drugs 2Synthesis Of Hetero-cyclic Drugs 2
Synthesis Of Hetero-cyclic Drugs 2
 
Thiourea mediated regioselective synthesis of symmetrical and unsymmetrical d...
Thiourea mediated regioselective synthesis of symmetrical and unsymmetrical d...Thiourea mediated regioselective synthesis of symmetrical and unsymmetrical d...
Thiourea mediated regioselective synthesis of symmetrical and unsymmetrical d...
 
1797 1-3521-2-10-20180530
1797 1-3521-2-10-201805301797 1-3521-2-10-20180530
1797 1-3521-2-10-20180530
 
Methodology of organic synthesis
Methodology of organic synthesisMethodology of organic synthesis
Methodology of organic synthesis
 
A STUDY ON FORMATION OF SALYCILIC ACID FORMALDEHYDE POLYMER SAMPLE
A STUDY ON FORMATION OF SALYCILIC ACID FORMALDEHYDE POLYMER SAMPLEA STUDY ON FORMATION OF SALYCILIC ACID FORMALDEHYDE POLYMER SAMPLE
A STUDY ON FORMATION OF SALYCILIC ACID FORMALDEHYDE POLYMER SAMPLE
 
Biochemistry Basic Lab procedures
Biochemistry Basic Lab proceduresBiochemistry Basic Lab procedures
Biochemistry Basic Lab procedures
 
Mechanistic Aspects of Oxidation of P-Bromoacetophen one by Hexacyanoferrate ...
Mechanistic Aspects of Oxidation of P-Bromoacetophen one by Hexacyanoferrate ...Mechanistic Aspects of Oxidation of P-Bromoacetophen one by Hexacyanoferrate ...
Mechanistic Aspects of Oxidation of P-Bromoacetophen one by Hexacyanoferrate ...
 
Organic chemistry
Organic chemistryOrganic chemistry
Organic chemistry
 
1991 et-re2 cl8 cotton
1991 et-re2 cl8 cotton1991 et-re2 cl8 cotton
1991 et-re2 cl8 cotton
 
K0347480 copy
K0347480   copyK0347480   copy
K0347480 copy
 

Viewers also liked

Магистратура
МагистратураМагистратура
Магистратураgossoudarev
 
CIRCULAR ACTIVITATS EXTRAESCOLARS
CIRCULAR ACTIVITATS EXTRAESCOLARSCIRCULAR ACTIVITATS EXTRAESCOLARS
CIRCULAR ACTIVITATS EXTRAESCOLARSAlex Dominguez Puig
 
3D Printing- Medical Applications
3D Printing- Medical Applications3D Printing- Medical Applications
3D Printing- Medical ApplicationsWill McInnis
 
Diagnostico de la personalidad y aprendizaje
Diagnostico de la personalidad y aprendizajeDiagnostico de la personalidad y aprendizaje
Diagnostico de la personalidad y aprendizajerositarodriguez8c
 
SOS éducation - Rapport d'activité 2014-2015
SOS éducation - Rapport d'activité 2014-2015SOS éducation - Rapport d'activité 2014-2015
SOS éducation - Rapport d'activité 2014-2015Sos éducation
 
Decreto supremo 146 91 ef
Decreto supremo 146 91 efDecreto supremo 146 91 ef
Decreto supremo 146 91 efJosias Espinoza
 
Plataformas de arte online
Plataformas de arte onlinePlataformas de arte online
Plataformas de arte onlineTheArtMarket
 
Margarita Zegarra Florez. Maria Jesus ALvarado. La construcción de una intele...
Margarita Zegarra Florez. Maria Jesus ALvarado. La construcción de una intele...Margarita Zegarra Florez. Maria Jesus ALvarado. La construcción de una intele...
Margarita Zegarra Florez. Maria Jesus ALvarado. La construcción de una intele...Josias Espinoza
 
Pirate Training Presentation
Pirate Training PresentationPirate Training Presentation
Pirate Training PresentationAnnamarie Carlson
 
Ap 4 pambansang sagisag
Ap 4   pambansang sagisagAp 4   pambansang sagisag
Ap 4 pambansang sagisagaizenikuta
 
Replacement strategy for dairy farmers
Replacement strategy for dairy farmersReplacement strategy for dairy farmers
Replacement strategy for dairy farmersHenk Hogeveen
 
The-Journal-2016
The-Journal-2016The-Journal-2016
The-Journal-2016myvyngo
 
Los catolicos y la iglesia en el peru
Los catolicos y la iglesia en el peruLos catolicos y la iglesia en el peru
Los catolicos y la iglesia en el peruJosias Espinoza
 
Animal health economics and precision farming
Animal health economics and precision farmingAnimal health economics and precision farming
Animal health economics and precision farmingHenk Hogeveen
 
Project on equity analysis on banking sector
Project on equity analysis on banking sectorProject on equity analysis on banking sector
Project on equity analysis on banking sectorHIMANI PADIA
 
equity research in banking sector
equity research in banking sectorequity research in banking sector
equity research in banking sectorJagruti Godambe
 

Viewers also liked (17)

Магистратура
МагистратураМагистратура
Магистратура
 
CIRCULAR ACTIVITATS EXTRAESCOLARS
CIRCULAR ACTIVITATS EXTRAESCOLARSCIRCULAR ACTIVITATS EXTRAESCOLARS
CIRCULAR ACTIVITATS EXTRAESCOLARS
 
3D Printing- Medical Applications
3D Printing- Medical Applications3D Printing- Medical Applications
3D Printing- Medical Applications
 
Diagnostico de la personalidad y aprendizaje
Diagnostico de la personalidad y aprendizajeDiagnostico de la personalidad y aprendizaje
Diagnostico de la personalidad y aprendizaje
 
SOS éducation - Rapport d'activité 2014-2015
SOS éducation - Rapport d'activité 2014-2015SOS éducation - Rapport d'activité 2014-2015
SOS éducation - Rapport d'activité 2014-2015
 
Decreto supremo 146 91 ef
Decreto supremo 146 91 efDecreto supremo 146 91 ef
Decreto supremo 146 91 ef
 
Bacares Jara
Bacares Jara Bacares Jara
Bacares Jara
 
Plataformas de arte online
Plataformas de arte onlinePlataformas de arte online
Plataformas de arte online
 
Margarita Zegarra Florez. Maria Jesus ALvarado. La construcción de una intele...
Margarita Zegarra Florez. Maria Jesus ALvarado. La construcción de una intele...Margarita Zegarra Florez. Maria Jesus ALvarado. La construcción de una intele...
Margarita Zegarra Florez. Maria Jesus ALvarado. La construcción de una intele...
 
Pirate Training Presentation
Pirate Training PresentationPirate Training Presentation
Pirate Training Presentation
 
Ap 4 pambansang sagisag
Ap 4   pambansang sagisagAp 4   pambansang sagisag
Ap 4 pambansang sagisag
 
Replacement strategy for dairy farmers
Replacement strategy for dairy farmersReplacement strategy for dairy farmers
Replacement strategy for dairy farmers
 
The-Journal-2016
The-Journal-2016The-Journal-2016
The-Journal-2016
 
Los catolicos y la iglesia en el peru
Los catolicos y la iglesia en el peruLos catolicos y la iglesia en el peru
Los catolicos y la iglesia en el peru
 
Animal health economics and precision farming
Animal health economics and precision farmingAnimal health economics and precision farming
Animal health economics and precision farming
 
Project on equity analysis on banking sector
Project on equity analysis on banking sectorProject on equity analysis on banking sector
Project on equity analysis on banking sector
 
equity research in banking sector
equity research in banking sectorequity research in banking sector
equity research in banking sector
 

Similar to articl 1

Molecules 22-00357
Molecules 22-00357Molecules 22-00357
Molecules 22-00357elshimaa eid
 
Novel coumarin isoxazoline derivatives: Synthesis and study of antibacterial ...
Novel coumarin isoxazoline derivatives: Synthesis and study of antibacterial ...Novel coumarin isoxazoline derivatives: Synthesis and study of antibacterial ...
Novel coumarin isoxazoline derivatives: Synthesis and study of antibacterial ...Ratnakaram Venkata Nadh
 
Synthesis, characterization, amdet and docking studies of novel diclofenac de...
Synthesis, characterization, amdet and docking studies of novel diclofenac de...Synthesis, characterization, amdet and docking studies of novel diclofenac de...
Synthesis, characterization, amdet and docking studies of novel diclofenac de...Alexander Decker
 
Visible Spectrophotometric Determination of Gemigliptin Using Charge Transfer...
Visible Spectrophotometric Determination of Gemigliptin Using Charge Transfer...Visible Spectrophotometric Determination of Gemigliptin Using Charge Transfer...
Visible Spectrophotometric Determination of Gemigliptin Using Charge Transfer...Ratnakaram Venkata Nadh
 
Visible Spectrophotometric Determination of Gemigliptin Using Charge Transfer...
Visible Spectrophotometric Determination of Gemigliptin Using Charge Transfer...Visible Spectrophotometric Determination of Gemigliptin Using Charge Transfer...
Visible Spectrophotometric Determination of Gemigliptin Using Charge Transfer...Ratnakaram Venkata Nadh
 
Experimental and theoretical studies on the photodegradation of 2-ethylhexyl ...
Experimental and theoretical studies on the photodegradation of 2-ethylhexyl ...Experimental and theoretical studies on the photodegradation of 2-ethylhexyl ...
Experimental and theoretical studies on the photodegradation of 2-ethylhexyl ...Maciej Przybyłek
 
Targeted Intermediates of Eudesmic Acid: Synthesis and X-ray Investigations
Targeted Intermediates of Eudesmic Acid: Synthesis and X-ray InvestigationsTargeted Intermediates of Eudesmic Acid: Synthesis and X-ray Investigations
Targeted Intermediates of Eudesmic Acid: Synthesis and X-ray Investigationsijtsrd
 
Synthesis and Characterization of a New Cationic Surfactant Derived from 5-Ch...
Synthesis and Characterization of a New Cationic Surfactant Derived from 5-Ch...Synthesis and Characterization of a New Cationic Surfactant Derived from 5-Ch...
Synthesis and Characterization of a New Cationic Surfactant Derived from 5-Ch...IJERA Editor
 
A new and efficient synthesis of 1 (4-subtitued phenyl)-3-(1-(6-(substitued-2...
A new and efficient synthesis of 1 (4-subtitued phenyl)-3-(1-(6-(substitued-2...A new and efficient synthesis of 1 (4-subtitued phenyl)-3-(1-(6-(substitued-2...
A new and efficient synthesis of 1 (4-subtitued phenyl)-3-(1-(6-(substitued-2...Alexander Decker
 
Kinetics and Thermodynamics of Mandelic Acid Oxidation By Tripropylammonium H...
Kinetics and Thermodynamics of Mandelic Acid Oxidation By Tripropylammonium H...Kinetics and Thermodynamics of Mandelic Acid Oxidation By Tripropylammonium H...
Kinetics and Thermodynamics of Mandelic Acid Oxidation By Tripropylammonium H...inventionjournals
 
Simple Synthesis of Some Novel Polyfunctionally Derivatives of 2H-Coumarin-2-...
Simple Synthesis of Some Novel Polyfunctionally Derivatives of 2H-Coumarin-2-...Simple Synthesis of Some Novel Polyfunctionally Derivatives of 2H-Coumarin-2-...
Simple Synthesis of Some Novel Polyfunctionally Derivatives of 2H-Coumarin-2-...IOSRJAC
 
Tetrahedron Lett 2009_50_1431-1434Xyl
Tetrahedron Lett 2009_50_1431-1434XylTetrahedron Lett 2009_50_1431-1434Xyl
Tetrahedron Lett 2009_50_1431-1434XylSubrata Ghosh
 
Synthesis Characterization And Antimicrobial Activity Of 6- Oxido-1- ((5 -5- ...
Synthesis Characterization And Antimicrobial Activity Of 6- Oxido-1- ((5 -5- ...Synthesis Characterization And Antimicrobial Activity Of 6- Oxido-1- ((5 -5- ...
Synthesis Characterization And Antimicrobial Activity Of 6- Oxido-1- ((5 -5- ...IOSR Journals
 

Similar to articl 1 (20)

Molecules 22-00357
Molecules 22-00357Molecules 22-00357
Molecules 22-00357
 
Molecules 17-01074
Molecules 17-01074Molecules 17-01074
Molecules 17-01074
 
NBZMOD2012
NBZMOD2012NBZMOD2012
NBZMOD2012
 
Novel coumarin isoxazoline derivatives: Synthesis and study of antibacterial ...
Novel coumarin isoxazoline derivatives: Synthesis and study of antibacterial ...Novel coumarin isoxazoline derivatives: Synthesis and study of antibacterial ...
Novel coumarin isoxazoline derivatives: Synthesis and study of antibacterial ...
 
Synthesis, characterization, amdet and docking studies of novel diclofenac de...
Synthesis, characterization, amdet and docking studies of novel diclofenac de...Synthesis, characterization, amdet and docking studies of novel diclofenac de...
Synthesis, characterization, amdet and docking studies of novel diclofenac de...
 
Visible Spectrophotometric Determination of Gemigliptin Using Charge Transfer...
Visible Spectrophotometric Determination of Gemigliptin Using Charge Transfer...Visible Spectrophotometric Determination of Gemigliptin Using Charge Transfer...
Visible Spectrophotometric Determination of Gemigliptin Using Charge Transfer...
 
Visible Spectrophotometric Determination of Gemigliptin Using Charge Transfer...
Visible Spectrophotometric Determination of Gemigliptin Using Charge Transfer...Visible Spectrophotometric Determination of Gemigliptin Using Charge Transfer...
Visible Spectrophotometric Determination of Gemigliptin Using Charge Transfer...
 
Experimental and theoretical studies on the photodegradation of 2-ethylhexyl ...
Experimental and theoretical studies on the photodegradation of 2-ethylhexyl ...Experimental and theoretical studies on the photodegradation of 2-ethylhexyl ...
Experimental and theoretical studies on the photodegradation of 2-ethylhexyl ...
 
Targeted Intermediates of Eudesmic Acid: Synthesis and X-ray Investigations
Targeted Intermediates of Eudesmic Acid: Synthesis and X-ray InvestigationsTargeted Intermediates of Eudesmic Acid: Synthesis and X-ray Investigations
Targeted Intermediates of Eudesmic Acid: Synthesis and X-ray Investigations
 
Synthesis and Characterization of a New Cationic Surfactant Derived from 5-Ch...
Synthesis and Characterization of a New Cationic Surfactant Derived from 5-Ch...Synthesis and Characterization of a New Cationic Surfactant Derived from 5-Ch...
Synthesis and Characterization of a New Cationic Surfactant Derived from 5-Ch...
 
A new and efficient synthesis of 1 (4-subtitued phenyl)-3-(1-(6-(substitued-2...
A new and efficient synthesis of 1 (4-subtitued phenyl)-3-(1-(6-(substitued-2...A new and efficient synthesis of 1 (4-subtitued phenyl)-3-(1-(6-(substitued-2...
A new and efficient synthesis of 1 (4-subtitued phenyl)-3-(1-(6-(substitued-2...
 
Kinetics and Thermodynamics of Mandelic Acid Oxidation By Tripropylammonium H...
Kinetics and Thermodynamics of Mandelic Acid Oxidation By Tripropylammonium H...Kinetics and Thermodynamics of Mandelic Acid Oxidation By Tripropylammonium H...
Kinetics and Thermodynamics of Mandelic Acid Oxidation By Tripropylammonium H...
 
synopsis_2
synopsis_2synopsis_2
synopsis_2
 
Simple Synthesis of Some Novel Polyfunctionally Derivatives of 2H-Coumarin-2-...
Simple Synthesis of Some Novel Polyfunctionally Derivatives of 2H-Coumarin-2-...Simple Synthesis of Some Novel Polyfunctionally Derivatives of 2H-Coumarin-2-...
Simple Synthesis of Some Novel Polyfunctionally Derivatives of 2H-Coumarin-2-...
 
Tetrahedron Lett 2009_50_1431-1434Xyl
Tetrahedron Lett 2009_50_1431-1434XylTetrahedron Lett 2009_50_1431-1434Xyl
Tetrahedron Lett 2009_50_1431-1434Xyl
 
Synthesis Characterization And Antimicrobial Activity Of 6- Oxido-1- ((5 -5- ...
Synthesis Characterization And Antimicrobial Activity Of 6- Oxido-1- ((5 -5- ...Synthesis Characterization And Antimicrobial Activity Of 6- Oxido-1- ((5 -5- ...
Synthesis Characterization And Antimicrobial Activity Of 6- Oxido-1- ((5 -5- ...
 
Ijaret 06 10_001
Ijaret 06 10_001Ijaret 06 10_001
Ijaret 06 10_001
 
K0428699
K0428699K0428699
K0428699
 
K0428699
K0428699K0428699
K0428699
 
Molecules 16-03380-v3
Molecules 16-03380-v3Molecules 16-03380-v3
Molecules 16-03380-v3
 

articl 1

  • 1. 1 3 J IRAN CHEM SOC DOI 10.1007/s13738-015-0769-7 ORIGINAL PAPER Synthesis of 2‑(3‑chromonyl)‑2‑acyloxycarboxamides via multicomponent reactions of isocyanides Mohammad Bagher Teimouri1  · Foad Mashayekhi1  · Elham Alishaei2   Received: 26 December 2014 / Accepted: 2 November 2015 © Iranian Chemical Society 2015 in fruits, vegetables, nuts, seeds, flowers, and barks [1]. They are an integral part of the human diet and have been reported to exhibit a wide range of biological effects. They display not only spasmolytic, diuretic, clotting, antibacte- rial, antiviral, anti-tumoral, anti-inflammatory, and anti- anaphylactic activity, but can also be used as antioxidants, pigments, photo-active materials, and biodegradable agro- chemicals [2]. The peptide bond is an important functional group in organic chemistry, biochemistry, and medicine [3–5]. Pep- tides play crucial roles in the human body and other organ- isms [6–8]. Due to the biological significance of molecules with the chromone moiety, we have combined amides and chromones as molecular entities through carbon–carbon bond formation to create new molecules. Considering the versatile activities of these structures, we think it would be of interest to combine the chromone moiety and the peptide bond in view of their promising applications in medicinal chemistry and biological investigations. Peptide bond is traditionally synthesized by the reac- tion of an amine with an activated carboxylic acid [9–12]. Among the protocols for the synthesis of peptide bond, one of the important methods is the Passerini three-component reaction (P-3CR) [13]. The most commonly used P-3CR, in which a carboxylic acid, an oxo compound and an iso- cyanide are reacted results in α-acyloxycarboxamide prod- ucts. This group of compounds is present in the structures of many natural products, such as the pharmacologically active depsipeptides [14, 15]. Also, the P-3CR reaction can lead to interesting and potentially bioactive peptidomimetic compounds and offers an inexpensive and rapid way to generate compound libraries [16]. 3-Formylchromone is a highly reactive and well studied compound which can serve as the starting material for the syntheses of a whole series of heterocyclic systems due to Abstract  A three-component reaction between a 3-for- mylchromone, an alkyl isocyanide, and a carboxylic acid which affords novel 2-(3-chromonyl)-2-acyloxycarboxam- ide derivatives is reported. This cascade reaction sequence represents an atom-economic route to biologically interest- ing molecules. Graphical Abstract  Electronic supplementary material  The online version of this article (doi:10.1007/s13738-015-0769-7) contains supplementary material, which is available to authorized users. * Mohammad Bagher Teimouri mbteimouri@yahoo.com; teimouri@khu.ac.ir 1 Faculty of Chemistry, Kharazmi University, Mofateh Ave., Tehran, Iran 2 Faculty of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran CH2Cl2, rt + + R4 N C OH O R3O CHO O R2 R1 O O R2 R1 CONHR4 R3 OCO Keywords  Carboxylic acid · 3-Formylchromone · Isocyanide · Passerini reaction Introduction Chromones (4H-chromen-4-one derivatives) are an impor- tant moiety which forms the nucleus of a class of heterocy- clic natural products called flavonoids that occur naturally
  • 2. J IRAN CHEM SOC 1 3 the presence of three electrophilic centers at C-2, C-4, and formyl group in this molecule [17]. 3-Formylchromone can give access to compounds where the chromone ring is retained or to 2-hydroxybenzoyl derivatives resulting from the opening of the pyran-4-one ring. In 2008 [18], 3-formylchromone was used as the oxo component in Passerini reactions with tosylmethyl isocya- nide (TosMIC) to yield chromenyl-amidoesters. In continu- ation of our research in the synthesis of chromone-contain- ing molecules [19–22], herein, this was taken advantage in the formation of poly-functional 2-(3-chromonyl)-2-acy- loxycarboxamides via a three-component condensation reaction of alkyl isocyanides as an expanded report that includes more results to another report [18]. Result and discussion The one-pot three-component condensation reactions of 3-formylchromone derivatives 1 with various carboxylic acids 2 in the presence of alkyl isocyanides 3 proceeded at room temperature in dichloromethane and were complete after 24 h to afford corresponding 2-(3-chromonyl)-2-acy- loxycarboxamides 4, in good yields (Table 1). 1 H and 13 C NMR spectra of the crude products clearly indicated the formation of 2-(3-chromonyl)-2-acyloxycarboxamides 4. Any other products could not be detected by NMR spec- troscopy. All products 4a–p are new stable solid com- pounds whose structures were established by IR, 1 H, 13 C NMR spectroscopy, and elemental analysis. The full results are summarized in Table 1. To survey the generality and scope of this one-pot three- component protocol, the methodology was applied to the synthesis of a variety of 2-(3-chromonyl)-2-acyloxycar- boxamide derivatives 4a–p. With the optimal condition in hand, we extended the reaction to other carboxylic acid compounds, and results are indicated in Table 1. Ten deriv- atives of carboxylic acids including aromatic, heterocyclic, aliphatic and α,β-unsaturated carboxylic acids, afforded 2-(3-chromonyl)-2-acyloxycarboxamides from good to excellent isolated yields. Four derivatives of 3-formylchr- omones underwent the one-pot reaction smoothly without using any catalyst. To explore the scope of this reaction with respect to reactive isocyanides, we have examined four alkyl isocyanides. We have found that the reactions proceed very efficiently with both sterically hindered and less hindered alkyl isocyanides. A probable mechanistic rationale portraying sequence of events for this three-component coupling is postulated in Scheme 1 [15]. The first step is believed to be the for- mation of a loosely hydrogen-bonded adduct 5 from 3-for- mylchromone derivative and a carboxylic acid followed by α-addition of the electrophilic carbonyl carbon and the nucleophilic oxygen atom of the carboxylic acid to the isocyanide carbon atom under formation of a cyclic transi- tion state 6 with all three parent compounds. The α-adduct which cannot be isolated, rearranges in an intramolecular transacylation to the stable 2-(3-chromonyl)-2-acyloxycar- boxamides 4. Conclusions In summary, 3-formylchromone was introduced as a novel oxo component in Passerini reactions. Several carboxylic acids and alkyl isocyanides were compatible under these reaction conditions to afford diverse 2-(3-chromonyl)- 2-acyloxycarboxamides of potential synthetic and phar- maceutical interest in good to excellent yields. The present method carries the advantage of being performed under neutral conditions and requires no activation or modifica- tion of the educts. Experimental Apparatus Melting points were measured on a Electrothermal 9100 apparatus and are uncorrected. Elemental analyses were performed using a Heraeus CHN–O-rapid analyzer. IR spectra were measured on a Shimadzu IR-460 spectrom- eter. 1 H and 13 C NMR spectra were recorded on a Bruker DRX-300 Avance spectrometer at 300.1 and 75.5 MHz, respectively, with CDCl3 or CD3SOCD3 as solvents and calibrated using residual undeuterated solvent as an inter- nal reference. Chemical shifts are reported in parts per mil- lion (ppm) relative to TMS as internal reference. Analytical TLC was carried out on pre-coated plates (Merck silica gel 60, F254) and visualized with UV light. All chemical rea- gents were obtained from Merck, Fluka or Acros and were used without further purification. Typical procedure for the preparation of 2‑(benzylam ino)‑1‑(6‑methyl‑4‑oxo‑4H‑chromen‑3‑yl)‑2‑oxoethyl benzoate (4a) To a magnetically stirred solution of 3-formyl-6-methyl- chromone (0.188 g, 1.0 mmol) and benzoic acid (0.122 g, 1.0 mmol) in anhydrous dichloromethane (10 mL) was added benzyl isocyanide (0.117 g, 1.0 mmol) at room tem- perature (25 °C). The reaction mixture was then stirred for 24 h. After complete conversion, as monitored by TLC using EtOAc/hexane 1:1 as eluent, the mixture was con- centrated in vacuo and the solid residue was washed with diethyl ether and crystallized from CH2Cl2/hexane (1:4)
  • 3. J IRAN CHEM SOC 1 3 Table 1  Synthesis of compounds 4a–p CH2Cl2, rt + + R4 N C OH O R3O CHO O R2 R1 O O R2 R1 CONHR4 R3 OCO 1 2 3 4 Entry R1 R2 R3 R4 Product Yield (%)a 1 CH3 H O O O NH O O CH3 4a 89 2 CH3 H O O O NH O O CH 3 4b 85 3 CH3 H Cl Cl CH3 CH3 3 CH3 CH CH3 CH3 CH3 O O O NH O O CH3 Cl Cl CH3 CH3 CH3 4c 92 4 CH3 H NO2 O O O NH O O CH3 NO2 4d 95 5 CH3 H O O O O O O NH CH3 O 4e 79 6 CH3 H O O O NH O O CH3 4f 86 7 CH3 H Cl O O O NH O O CH3 Cl 4g 89
  • 4. J IRAN CHEM SOC 1 3 Table 1  continued 8 CH3 H Cl O O O O O NH CH3 Cl 4h 83 9 CH3 H Br O O O O O NH CH3 Br 4i 86 10 CH3 H Br O O O O O NH CH3 Br 4j 91 11 CH3 H O O O O O NH CH3 4k 81 12 H H O O O NH O O 4l 92 13 H H O O O O NH O O O 4m 82 14 H H Br 3 CH3 CH CH3 CH3 CH3 O O O NH O O CH3 Br CH3 4n 80 15 Cl H O O O NH O O Cl 4o 90 16 Cl Cl NO2 O O O NH O O Cl NO2 Cl 4p 87 Entry R1 R2 R3 R4 Product Yield (%)a a   Refers to purified yield. Puri- ties were >95 % according to 1 H NMR spectroscopy
  • 5. J IRAN CHEM SOC 1 3 to afford pure product. The dried product thus obtained showed a single spot on TLC and was pure enough for all analytical purposes. Pale yellow powder; m.p. 196–198 °C (dec.); IR (KBr) (νmax, cm−1 ): 3343 (N–H), 1717, 1687, 1634 (C=O), 1610 (C=C); 1 H NMR (CDCl3, 300.1 MHz): δH 2.45 (3 H, s, CH3), 4.46 and 4.58 (2 H, doublet of AB-q, 2 JHH = 15.1 Hz, 3 JHH = 5.7 Hz, NH–CHAHB–Ph), 6.38 (1 H, s, O=C–CH), 7.18–7.60 (11 H, m, arom. H+NH), 7.99 (1 H, br. s, arom. H), 8.09–8.11 (2 H, m, arom. H), 8.32 (1 H, s, C=CH–O); 13 C NMR (CDCl3, 75.5 MHz): δC 176.5, 167.5, 165.2, 155.4, 154.6, 137.8, 135.8, 135.5, 133.6, 129.9, 129.1, 128.6, 128.5, 127.4, 127.3, 125.1, 123.4, 119.4, 118.0, 69.2, 43.5, 20.9; Anal. Calcd for C26H21NO5 (427.44) C 73.06, H 4.95, N 3.28 %; Found C 72.87, H 4.93, N 3.30 %. 2‑(Cyclohexylamino)‑1‑(6‑methyl‑4‑oxo‑4H‑chromen‑3‑ yl)‑2‑oxoethyl benzoate (4b) White powder; m.p. 163–165 °C (dec.); IR (KBr) (νmax, cm−1 ): 3314 (N–H), 1714, 1662, 1644 (C=O), 1609 (C=C); 1 H NMR (CDCl3, 400.2 MHz): δH 1.22–2.19 (10 H, m, 5 CH2), 2.48 (3 H, s, CH3), 3.77 (1 H, m, NH–CH), 6.31 (1 H, s, O–CH), 6.84 (1 H, d, 3 JHH = 8.0 Hz, NH– CH), 7.41–8.14 (8 H, m, arom. H), 8.33 (1 H, s, C=CH–O); 13 C NMR (CDCl3, 100.6 MHz): 176.5, 166.5, 165.3, 155.3, 154.6, 135.7, 135.5, 133.6, 129.9, 129.3, 128.6, 125.1, 123.6, 119.6, 118.1, 69.3, 48.4, 33.5, 32.8, 32.6, 25.5, 24.6, 21.0; Anal. Calcd for C25H25NO5 (419.46) C 71.58, H 6.01, N 3.34 %; Found C 71.34, H 5.98, N 3.33 %. 1‑(6‑Methyl‑4‑oxo‑4H‑chromen‑3‑yl)‑2‑oxo‑2‑[(1,1,3,3‑t etramethylbutyl)amino]ethyl 2,4‑dichlorobenzoate (4c) White powder; m.p. 255–257 °C (dec.); IR (KBr) (νmax, cm−1 ): 3385 (N–H), 1727, 1676, 1645 (C=O), 1608 (C=C); 1 H NMR (CDCl3, 400.2 MHz): δH 0.90 (9 H, s, CMe3), 1.37 (6 H, s, CMe2), 1.61 and 1.77 (2 H, AB-q sys- tem, 2 JHH = 14.9 Hz, CH2), 2.43 (3 H, s, CH3), 6.22 (1 H, s, O–CH), 7.24–7.49 and 7.89–8.04 (6 H, 2 m, arom. H), 8.23 (1 H, s, C=CH–O); 13 C NMR (CDCl3, 100.6 MHz): 177.4, 166.1, 164.2, 155.8, 155.3, 139.7, 136.6, 136.4, 135.7, 134.1, 131.8, 128.4, 128.0, 125.9, 124.2, 120.0, 118.9, 70.7, 56.4, 52.4, 32.3, 32.1, 30.0, 29.7, 21.8; Anal. Calcd for C27H29Cl2NO5 (518.42) C 62.55, H 5.64, N 2.70 %; Found C 62.40, H 5.66, N 2.73 %. 2‑(Cyclohexylamino)‑1‑(6‑methyl‑4‑oxo‑4H‑chromen‑3‑ yl)‑2‑oxoethyl 4 nitrobenzoate (4d) White powder; m.p. 254–256 °C (dec.); IR (KBr) (νmax, cm−1 ): 3274 (N–H), 1724, 1654, 1625 (C=O), 1619 (C=C) 1 H NMR (DMSO-d6, 300.1 MHz): δH 1.06–1.76 (10 H, m, 5 CH2), 2.43 (3 H, s, CH3), 3.50–3.60 (1 H, m, NH–CH), 6.28 (1 H, s, O=C–CH), 7.59–7.69 (2 H, m, arom. H), 7.87 (1 H, s, arom. H), 8.14 (1 H, d, 3 JHH = 7.8 Hz, NH–CH), 8.20 and 8.33 (4 H, m, C6H4NO2), 8.48 (1 H, s, C=CH–O); 13 C NMR (DMSO-d6, 75.5 MHz): δC 174.8, 165.1, 163.6, 156.8, 154.1, 150.4, 135.8, 135.7, 134.6, 131.0, 124.3, 123.9, 123.0, 119.0, 118.4, 69.0, 48.0, 32.1, 25.1, 24.6, 24.5, 20.4; Anal. Calcd for C25H24N2O7 (464.46) C 64.65, H 5.21, N 6.03 %; Found C 64.78, H 5.20, N 6.00 %. Scheme 1  Plausible reaction mechanism R4 N C R3 OH O O O O H O O H O O R3 N R4 R3 NHR4 O O R3 5 64 1 2 3 O O R1 R2 H O O O R1 R2 O O R1 R2 O O R1 R2
  • 6. J IRAN CHEM SOC 1 3 2‑(Cyclohexylamino)‑1‑(6‑methyl‑4‑oxo‑4H‑chromen‑3‑ yl)‑2‑oxoethyl 2‑furoate (4e) White powder; m.p. 202–204 °C (dec.); IR (KBr) (νmax, cm−1 ): 3297 (N–H), 1724, 1690 (C=O); 1 H NMR (CDCl3, 400.2 MHz): δH 1.14–2.05 (10 H, m, 5 CH2), 2.48 (3 H, s, CH3), 3.74–3.85 (1 H, m, NH–CH), 6.26 (1 H, s, O–CH), 6.55 (1 H, dd, 3 JHH = 3.6 Hz, 3 JHH = 1.6 Hz, OCH=CH– CH of furan moiety), 6.83 (1 H, br d, 3 JHH = 8.0 Hz, NH– CH), 7.33 (1 H, d, 3 JHH = 3.2 Hz, OCH=CH–CH of furan moiety), 7.41 (1 H, t, 3 JHH = 8.4 Hz, CH of chromone moi- ety), 7.53 (1, d, 3 JHH = 8.8 Hz, 3 JHH = 1.6 Hz, CH of chr- omone moiety), 7.63 (1 H, app. s, OCH=CH–CH of furan moiety), 8.03 (1 H, s, CH of chromone moiety), 8.32 (1 H, s, C=CH–O); 13 C NMR (CDCl3, 100.6 MHz): 176.4, 166.1, 157.1, 155.5, 154.6, 147.0, 143.8, 135.8, 135.5, 125.1, 123.5, 119.4, 119.3, 118.1, 112.1, 69.0, 48.4, 32.8, 32.6, 25.5, 24.6, 21.0; Anal. Calcd for C23H23NO6 (409.43) C 67.47, H 5.66, N 3.42 %; Found C 67.69, H 5.70, N 3.39 %. 2‑(Cyclohexylamino)‑1‑(6‑methyl‑4‑oxo‑4H‑chromen‑3‑ yl)‑2‑oxoethyl phenylacetate (4f) White powder; m.p. 120–122 °C (dec.); IR (KBr) (νmax, cm−1 ): 3312 (N–H), 1732, 1664, 1643 (C=O), 1555 (C=C); 1 H NMR (CDCl3, 300.1 MHz): δH 0.99–1.97 (10 H, m, 5 CH2), 2.46 (3 H, s, CH3), 3.65–3.73 (1 H, m, NH– CH), 3.79 (2 H, s, O=CCH2), 6.03 (1 H, s, O=C–CH), 6.59 (1 H, d, 3 JHH = 8.1 Hz, NH–CH), 7.28–7.53 (7 H, m, arom. H), 8.00 (1 H, br. s, arom. H), 8.05 (1 H, s, C=CH– O); 13 C NMR (CDCl3, 75.5 MHz): δC 176.4, 170.0, 166.2, 155.4, 154.5, 135.7, 135.4, 133.4, 129.3, 128.7, 128.5, 127.3, 125.0, 123.5, 119.2, 118.0, 69.0, 48.2, 41.1, 32.7, 32.5, 25.4, 24.6, 20.9; Anal. Calcd for C26H27NO5 (433.49) C 72.04, H 6.28, N 3.23 %; Found C 71.91, H 6.32, N 3.20 %. 2‑(Cyclohexylamino)‑1‑(6‑methyl‑4‑oxo‑4H‑chromen‑3‑ yl)‑2‑oxoethyl chloroacetate (4g) White powder; m.p. 159–161 °C (dec.); IR (KBr) (νmax, cm−1 ): 3295 (N–H), 1741, 1661, 1645 (C=O), 1619 (C=C); 1 H NMR (CDCl3, 300.1 MHz): δH 1.07–1.99 (10 H, m, 5CH2), 2.46 (3 H, s, CH3), 3.72–3.75 (1 H, m, NH–CH), 4.20 and 4.25 (2 H, AB-q, 2 JHH = 15.0 Hz, O=CCH2), 6.13 (1 H, s, O=C–CH), 6.82 (1 H, d, 3 JHH = 7.9 Hz, NH–CH), 7.38–7.54 (2 H, m, arom. H), 7.99 (1 H, br. s, arom. H), 8.20 (1 H, s, C=CH–O); 13 C NMR (CDCl3, 75.5 MHz): δC 176.3, 166.0, 165.5, 155.1, 154.7, 154.5, 135.9, 135.6, 125.0, 123.3, 118.8, 118.0, 69.8, 48.5, 40.6, 32.7, 32.5, 25.4, 24.5, 20.9; Anal. Calcd for C20H22ClNO5 (391.87) C 61.30, H 5.66, N 3.57 %; Found C 61.45, H 5.61, N 3.60 %. 2‑(Cyclohexylamino)‑1‑(6‑methyl‑4‑oxo‑4H‑chromen‑3‑ yl)‑2‑oxoethyl 3‑chloropropanoate (4h) White powder; m.p. 155–157 °C (dec.); IR (KBr) (νmax, cm−1 ): 3306 (N–H), 1731, 1661, 1645 (C=O), 1620 (C=C); 1 H NMR (CDCl3, 300.1 MHz); δH 1.10–2.00 (10 H, m, 5 CH2), 2.46 (3 H, s, CH3), 2.94–3.01 (2 H, m, O=C–CH2), 3.80–3.82 (1 H, m, NH–CH), 3.82–3.84 (2 H, m, ClCH2), 6.13 (1 H, s, O=C–CH), 6.82 (1 H, d, 3 JHH = 7.9 Hz, NH–CH), 7.39 (1 H, 3 JHH = 8.6 Hz, arom. H), 7.52 (1 H, dd, 3 JHH = 8.6 Hz, 4 JHH = 1.9 Hz, arom. H), 7.99 (1 H, app. s, arom. H), 8.18 (1 H, s, C=CH–O); 13 C NMR (CDCl3, 75.5 MHz): δC 176.4, 168.9, 166.0, 155.1, 154.5, 135.7, 135.5, 125.0, 123.4, 119.1, 118.0, 68.9, 48.4, 38.8, 37.4, 32.7, 32.5, 25.4, 24.6, 20.9;Anal. Calcd for C21H24ClNO5 (405.87) C 62.14, H 5.96, N 3.45 %; Found C 62.02, H 6.00, N 3.40 %. 2‑(Cyclohexylamino)‑1‑(6‑methyl‑4‑oxo‑4H‑chromen‑3‑ yl)‑2‑oxoethyl bromoacetate (4i) White powder; m.p. 158–160 °C (dec.); IR (KBr) (νmax, cm−1 ): 3300 (N–H), 1732, 1663, 1645 (C=O), 1619 (C=C); 1 H NMR (CDCl3, 300.1 MHz): δH 1.12–2.00 (10 H, m, 5 CH2), 2.46 (3 H, s, CH3), 3.70–3.76 (1 H, m, NH–CH), 3.98 (2 H, app. s, O=CCH2), 6.09 (1 H, s, O=C–CH), 6.80 (1 H, d, 3 JHH = 7.8 Hz, NH–CH), 7.38– 7.54 (2 H, m, arom. H), 7.99 (1 H, br. s, arom. H), 8.19 (1 H, s, C=CH–O); 13 C NMR (CDCl3, 75.5 MHz): δC 176.3, 165.8, 165.6, 155.2, 154.5, 135.8, 135.6, 125.0, 123.4, 118.8, 118.0, 69.9, 48.4, 32.7, 32.5, 25.4, 25.3, 24.5, 20.9; Anal. Calcd for C20H22BrNO5 (436.29) C 55.06, H 5.08, N 3.21 %; Found C 54.91, H 5.07, N 3.18 %. 2‑(Cyclohexylamino)‑1‑(6‑methyl‑4‑oxo‑4H‑chromen‑3‑ yl)‑2‑oxoethyl 5‑bromopentanoate (4j) Pale yellow powder; m.p. 138–140 °C (dec.); IR (KBr) (νmax, cm−1 ): 3321 (N–H), 1725, 1663, 1640 (C=O), 1618 (C=C); 1 H NMR (CDCl3, 300.1 MHz): δH 1.07– 2.68 and 2.47–2.68 (19 H, 2 m, 8 CH2+CH3), 3.43 (1 H, t, 3 JHH = 6.4 Hz, CH2Br), 3.70–3.77 (1 H, m, NH–CH), 6.08 (1 H, s, O=C–CH), 6.77 (1 H, d, 3 JHH = 7.7 Hz, CH– NH), 7.39–7.42 and 7.51–7.54 (2 H, 2 m, arom. H), 8.01 (1 H, app. s, arom. H), 8.20 (1 H, s, C=CH–O); 13 C NMR (CDCl3, 75.5 MHz): δC 176.5, 171.7, 166.3, 155.0, 154.5, 135.7, 135.5, 125.0, 123.4, 119.3, 118.0, 68.4, 48.3, 33.1, 33.0, 32.7, 32.6, 31.7, 25.4, 24.6, 23.3, 21.0; Anal. Calcd for C23H28BrNO5 (478.37) C 57.75, H 5.90, N 2.93 %; Found C 57.83, H 5.85, N 2.90 %.
  • 7. J IRAN CHEM SOC 1 3 2‑(Cyclohexylamino)‑1‑(6‑methyl‑4‑oxo‑4H‑chromen‑3‑ yl)‑2‑oxoethyl (2E)‑3‑phenylacrylate (4k) White powder; m.p. 159–161 °C (dec.); IR (KBr) (νmax, cm−1 ): 3318 (N–H), 3087 (=C–H), 1704, 1662, 1642 (C=O), 1619 (C=C); 1 H NMR (CDCl3, 300.1 MHz): δH 1.16–2.05 (10 H, m, 5 CH2), 2.46 (3 H, s, CH3), 3.78–3.81 (1 H, m, NH–CH), 6.20 (1 H, s, O=C–CH), 6.59 (1 H, d, 3 JHH = 16.0 Hz, HC=CH), 6.82 (1 H, br. d, 3 JHH = 8.1 Hz, NH–CH), 7.39–7.41 (4 H, m, arom. H), 7.49–7.56 (3 H, m, arom. H), 7.79 (1 H, d, 3 JHH = 16.0 Hz, HC=CH), 8.01 (1 H, br. s, arom. H), 8.27 (1 H, s, C=CH–O); 13 C NMR (CDCl3, 75.5 MHz): δC 176.4, 166.4, 165.5, 155.3, 154.5, 146.5, 135.6, 135.4, 134.0, 130.6, 128.9, 128.2, 125.0, 123.5, 119.5, 118.0, 116.8, 116.7, 68.7, 48.4, 32.8, 32.6, 25.4, 24.6, 20.9; Anal. Calcd for C27H27NO5 (445.50) C 72.79, H 6.11, N 3.14 %; Found C 72.59, H 6.08, N 3.19 %. 2‑(Cyclohexylamino)‑2‑oxo‑1‑(4‑oxo‑4H‑chromen‑3‑yl) ethyl benzoate (4l) White powder; m.p. 165–167 °C (dec.); IR (KBr) (νmax, cm−1 ): 3290 (N–H), 1720, 1684, 1633 (C=O), 1610 (C=C); 1 H NMR (CDCl3, 400.2 MHz): δH 1.13–2.01 (10 H, m, 5 CH2), 3.70–3.80 (1 H, m, NH–CH), 6.22 (1 H, s, O–CH), 6.78 (1 H, d, 3 JHH = 7.6 Hz, NH–CH), 7.39–7.68 and 8.08–8.31 (9 H, 2 m, arom. H), 8.33 (1 H, s, C=CH– O); 13 C NMR (CDCl3, 100.6 MHz): 177.2, 167.2, 166.0, 157.1, 156.3, 135.0, 134.4, 130.7, 130.1, 129.4, 126.7, 126.4, 124.7, 120.7, 119.1, 70.1, 49.3, 33.6, 33.4, 26.3, 25.4; Anal. Calcd for C24H23NO5 (405.44) C 71.10, H 5.72, N 3.45 %; Found C 70.82, H 5.68, N 3.44 %. 2‑(Cyclohexylamino)‑2‑oxo‑1‑(4‑oxo‑4H‑chromen‑3‑yl) ethyl 2‑furoate (4m) White powder; m.p. 183–185 °C (dec.); IR (KBr) (νmax, cm−1 ): 3305 (N–H), 1720, 1687, 1636 (C=O), 1607 (C=C); 1 H NMR (CDCl3, 400.2 MHz): δH 1.18–2.05 (10 H, m, 5 CH2), 3.77–3.83 (1 H, m, NH–CH), 6.26 (1 H, s, O–CH), 6.55 (1 H, dd, 3 JHH = 3.2 Hz, 3 JHH = 1.6 Hz, OCH=CH– CH of furan moiety), 6.81 (1 H, d, 3 JHH = 8.0 Hz, NH– CH), 7.33 (1 H, d, 3 JHH = 3.2 Hz, OCH=CH–CH of furan moiety), 7.45 (1 H, t, 3 JHH = 7.2 Hz, CH of chromone moi- ety), 7.51 (1 H, d, 3 JHH = 8.4 Hz, CH of chromone moi- ety), 7.63 (1 H, d, app. s, OCH=CH–CH of furan moiety), 7.72 (1 H, t, 3 JHH = 7.6 Hz, CH of chromone moiety), 8.24 (1 H, d, 3 JHH = 8.0 Hz, CH of chromone moiety), 8.34 (1 H, s, C=CH–O); 13 C NMR (CDCl3, 100.6 MHz): 176.3, 166.0, 157.1, 156.3, 155.7, 147.0, 143.7, 134.3, 125.9, 125.7, 123.9, 119.5, 119.3, 118.3, 112.1, 77.0, 69.0, 48.5, 32.7, 32.6, 25.5, 24.6; Anal. Calcd for C22H21NO6 (395.40) C 66.83, H 5.35, N 3.54 %; Found C 67.03, H 5.38, N 3.50 %. 2‑(Tert‑butylamino)‑1‑(6‑methyl‑4‑oxo‑4H‑chromen‑3‑y l)‑2‑oxoethyl bromoacetate (4n) White powder; m.p. 128–130 °C (dec.); IR (KBr) (νmax, cm−1 ): 3300 (N–H), 1762, 1685, 1634 (C=O), 1621 (C=C); 1 H NMR (CDCl3, 300.1 MHz): δH 1.35 (9 H, s, C(CH3)3), 3.98 (2 H, app. s, O=CCH2), 6.03 (1 H, s, O=C– CH), 6.75 (1 H, s, NH), 7.42–7.52 (2 H, m, arom. H), 7.69– 7.75 (1 H, m, arom. H), 8.21 (1 H, s, C=CH–O), 8.21– 8.24 (1 H, m, arom. H); 13 C NMR (CDCl3, 75.5 MHz): δC 176.3, 165.7, 165.4, 156.2, 155.3, 134.3, 125.8, 125.7, 123.7, 119.2, 118.3, 69.9, 51.7, 28.6, 25.3; Anal. Calcd for C18H20BrNO5 (410.25) C 52.70, H 4.91, N 3.41 %; Found C 52.58, H 4.88, N 3.40 %. 1‑(6‑Chloro‑4‑oxo‑4H‑chromen‑3‑yl)‑2‑(cyclohexylamin o)‑2‑oxoethyl benzoate (4o) White powder; m.p. 191–193 °C (dec.); IR (KBr) (νmax, cm−1 ): 3297 (N–H), 1713, 1660, 1645 (C=O), 1610 (C=C); 1 H NMR (CDCl3, 400.2 MHz): δH 1.19–2.07 (10 H, m, 5 CH2), 3.80–3.86 (1 H, m, NH–CH), 6.28 (1 H, s, O–CH), 6.71 (1 H, d, 3 JHH = 8.4 Hz, NH–CH), 7.48–7.52 (5 H, m, Phenyl), 8.12 and 8.13 (2 H, 2 d, 3 JHH = 7.2 Hz, CH=CH of chromone moiety), 8.22 (1 H, d, 4 JHH = 2.8 Hz, ClC=CH of chromone moiety), 8.34 (1 H, s, C=CH–O); 13 C NMR (CDCl3, 100.6 MHz): 178.1, 166.1, 165.2, 155.7, 154.6, 134.5, 133.7, 131.7, 129.9, 129.2, 128.6, 125.3, 124.9, 120.1, 120.0, 69.2, 48.5, 32.8, 32.7, 29.7, 25.5, 24.6; Anal. Calcd for C24H22ClNO5 (439.88) C 65.53, H 5.04, N 3.18 %; Found C 65.74, H 5.00, N 3.20 %. 2‑(Cyclohexylamino)‑1‑(6,8‑dichloro‑4‑oxo‑4H‑chrome n‑3‑yl)‑2‑oxoethyl 4‑nitrobenzoate (4p) White powder; m.p. 258–260 °C (dec.); IR (KBr) (νmax, cm−1 ): 3279 (N–H), 1732, 1654 (C=O), 1599 (C=C); 1 H NMR (CDCl3, 300.1 MHz): δH 1.10–1.76 (10 H, m, 5 CH2), 3.52–3.60 (1 H, m, NH–CH), 6.27 (1 H, s, O=C– CH), 7.98 (1 H, d, 3 JHH = 2.2 Hz, arom. H), 8.08 (1 H, d, 3 JHH = 7.7 Hz, CH–NH), 8.20–8.35 (3 H, 2 m, arom. H), 8.68 (1 H, s, C=CH–O); 13 C NMR (CDCl3, 75.5 MHz): δC 173.4, 164.6, 163.5, 157.3, 150.4, 134.5, 134.2, 131.0, 130.2, 125.4, 124.0, 123.8, 123.3, 119.6, 68.8, 48.2, 32.0, 25.1, 24.5; Anal. Calcd for C24H20Cl2N2O7 (519.33) C 55.51, H 3.88, N 5.39 %; Found C 55.42, H 3.90, N 5.35 %.
  • 8. J IRAN CHEM SOC 1 3 Acknowledgments The authors thank Kharazmi University Research Council for financial support of this research. References 1. G.P. Ellis, I.M. Lockhart, Chemistry of heterocyclic compounds, chromenes, chromanones, and chromones, vol. 31, ed. by G.P. Ellis (Wiley–VCH, London, 2007) 2. R.S. Keri, S. Budagumpi, R.K. Pai, R.G. Balakrishna, Eur. J. Med. Chem. 78, 340 (2014) 3. T. Cupido, J. Tulla-Puche, J. Spengler, F. Albericio, Curr. Opin. Drug Discov. Dev. 10, 768 (2007) 4. J.W. Bode, Curr. Opin. Drug Disco. Dev. 9, 765 (2006) 5. J.M. Humphrey, A.R. Chamberlin, Chem. Rev. 97, 2243 (1997) 6. F.-F. Tian, P. Zhou, Z.-L. Li, J. Mol. Struct. 830, 106 (2007) 7. M. Shu, H. Mei, S.Yang, L. Liao, Z. Li, Q.S.A.R. Comb, Sci. 28, 27 (2009) 8. T. Day, S.A. Greenfield, Exp. Brain Res. 155, 500 (2004) 9. R.C. Larock, Comprehensive organic transformations (VCH, New York, 1999) 10. E. Valeur, M. Bradley, Chem. Soc. Rev. 38, 606 (2009) 11. S.Y. Han, Y.A. Kim, Tetrahedron 60, 2447 (2004) 12. C.A.G.N. Montalbetti, V. Falque, Tetrahedron 61, 10827 (2005) 13. L. Banfi, R. Riva, Org. React. 65, 1 (2005) 14. A. Dömling, Chem. Rev. 106, 17 (2006) 15. A. Dömling, I. Ugi, Angew. Chem. Int. Ed. 39, 3168 (2000) 16. I. Ugi, S. Heck, Comb. Chem. High Throughput Screen. 4, 1 (2001) 17. G. Sabitha, Aldrichim. Acta 29, 15 (1996) 18. M.A. Terzidis, J. Stephanidou-Stephanatou, C.A. Tsoleridis, Open Org. Chem. J. 2, 88 (2008) 19. M.B. Teimouri, P. Akbari-Moghaddam, G. Golbaghi, A.C.S. Comb, Science 13, 659 (2011) 20. M.B. Teimouri, Tetrahedron 67, 1837 (2011) 21. M.B. Teimouri, M. Eskandari, J. Chem. Res. 500 (2011) 22. M.B. Teimouri, B. Asnaashari, Tetrahedron Lett. 55, 2249 (2014)