SlideShare a Scribd company logo
1 of 79
Download to read offline
DIVISÃO DE ENGENHARIA
CURSO DE LINCENCIATURA EM ENGENHARIA DE PROCESSAMENTO MINERAL
Disciplina: Selecção de maquinaria. 3° Ano
Notas de aulas e exercícios resolvidos
.
Raúl Fernando Raúl
Tete, 2021
Índice
1. TRANSFERÊNCIA DE MASSA ......................................................................................5
1.1. Transportador de correia .............................................................................................5
1.1.1. Dimensionamento e produtividade ......................................................................5
1.2. Bombeamento de água e polpas..................................................................................6
1.2.1. Tubulações e acessórios.......................................................................................6
1.2.2. Etapas para a cálculo e escolha da bomba ...........................................................8
2. LEIS DE FRAGMENTAÇÃO.........................................................................................11
2.1. Britagem e moagem ..................................................................................................11
2.1.1. Dimensionamento de britadores ........................................................................12
2.2. Moagem.....................................................................................................................13
2.2.1. Moagem convencional.......................................................................................13
2.2.2. Potência vs grau de enchimento.........................................................................15
2.2.3. Potência vs %Ncr...............................................................................................16
3. CLASSIFICAÇÃO...........................................................................................................17
3.1. Dimensionamento de peneira....................................................................................17
3.2. Seleção e dimensionamento de Ciclone e Hidrociclone ...........................................21
3.3. Espessamento ............................................................................................................22
3.3.1. Método de Coe & Clevenger .............................................................................24
3.3.2. Método de Kynch...............................................................................................25
3.3.3. Método de Roberts.............................................................................................25
3.3.4. Método de Talmadge & Fitch............................................................................25
4. AGITAÇÃO E MISTURA...............................................................................................26
4.1. Scale-up.........................................................................................................................27
5. VAMOS PRATICAR!......................................................................................................29
5.1. Banda transportadora.................................................................................................29
5.2. Bombas de água ............................................................................................................30
5.2. Fórmula de Forcheimmer Bresse ..............................................................................38
5.3. Bombas de polpa.......................................................................................................46
5.4. Britagem........................................................................................................................52
5.5. Moagem.........................................................................................................................56
5.6. Agitação e mistura (Exercícios de Paiva) .....................................................................58
5.7. Espessamento ................................................................................................................62
5.8. Peneiramento.................................................................................................................63
5.9. Lista de exercícios.........................................................................................................65
5.10. Teste 2 (10/05/2019) ...................................................................................................73
5.11. Exame normal 2015 (agitação e mistura)....................................................................74
5.12. Exame normal (22/05/2019)........................................................................................75
5.13. Exame normal 2019 C/N.............................................................................................77
6. FILTRAÇÃO....................................................................................................................78
7. ACKNOWLEDGEMENTS..............................................................................................79
8. REFERÊNCIAS BIBLIOGRÁFICAS .............................................................................79
Índice de figuras
Figura 1: Acopolamento de tubos por Cachimbo (A) e Falnge (B) (CHAVES, 2002).............7
Figura 2: Pipe rack (CHAVES, 2002). ......................................................................................7
Figura 3: Válvula de mangote (CHAVES, 2002). .....................................................................7
Figura 4: Manómetro de polpas (CHAVES, 2002). ..................................................................8
Figura 5: Válvula de Taylor (CHAVES, 2002). ........................................................................8
Figura 6: Potência consumida por um moinho em função do grau de enchimento (TAVARES.
L, 2012)....................................................................................................................................16
Figura 7: Efeito da velocidade de rotação na potência de moinhos (TAVARES. L, 2012). ...16
Figura 8: Classificador mecânico-helicoidal. ..........................................................................21
Figura 9: Acondicionador e impelidor para agitação e mistura (PAIVA. J, 2014). ................26
Figura 10: Scale-up do acondicionador e impelidor (PAIVA. J, 2014)...................................28
Figura 11: Esquema do bombeamento de água (1)..................................................................30
Figura 12: Esquema do bombeamento de água (2)..................................................................32
Figura 13: Esquema de bombeamento (3). ..............................................................................34
Figura 14: Diagrama de Mood para determinação do fator de atrito.......................................35
Figura 15: Esquema de bombeamento de água (4)..................................................................41
Figura 16: Tabela de Comprimentos Equivalentes em conexões, para cálculos de Perdas
Localizadas. .............................................................................................................................44
Figura 17: Tabela de Perda de Carga em Tubulações de PVC, Galvanizado e Ferro Fundido
(Para Cada 100 m de Tubos)....................................................................................................45
Figura 18: Diagrama do fator C para britadores (CHAVES, 2002). .......................................54
Figura 19: Diagrama do fator D para britadores (CHAVES, 2002). .......................................55
Figura 20: Diagrama de 𝐾𝑆𝑃 e 𝐾𝑙 para moinhos (CHAVES, 2002)......................................57
Figura 21: Representação gráfica dos dados de sedimentação em proveta (Autor, 2019). .....70
Figura 22: Distribuição granulométrica do exercício de britagem (JAIME. C, 2019). ...........73
Figura 23: Curvas de partição de uma amostra de Overflow de hidrociclone (JAIME. C, 2019).
..................................................................................................................................................76
Índice de tabelas
Tabela 1: Diferenças entre o bombeamento de água e polpa.....................................................9
Tabela 2: Rugosidade de alguns materiais...............................................................................10
Tabela 3: Fator B x % material retido......................................................................................19
Tabela 4: Fator C v eficiência da separação . ..........................................................................19
Tabela 5: Fator D x % material menor que a metade da tela...................................................19
Tabela 6: Fator E x malha da tela para materiais molhados (humidade superior a 10%)........20
Tabela 7: Fator F x deck de peneiramento...............................................................................20
Tabela 8: Comprimento equivalente........................................................................................36
Tabela 9: Perdas de carga localizadas......................................................................................36
Tabela 10: Valores para as variáveis K e velocidade da fórmula de Bresse............................39
Tabela 11: Diâmetros de tubulações com conexões ................................................................42
Tabela 12: Cálculo da compatibilidade do diâmetro a partir do Excel....................................49
Tabela 13: Distribuição granulométrica do exercício de britagem..........................................53
Tabela 14: Distribuição granulométrica do exercício de peneiramento. .................................63
Tabela 15: Dados de sedimentação em proveta.......................................................................70
5
Raúl F. Raúl, 2019
1. TRANSFERÊNCIA DE MASSA
1.1. Transportador de correia
1.1.1. Dimensionamento e produtividade
𝑄 = 3600 ∙ 𝐹𝑡𝑚 ∙ 𝐶 ∙ 𝑉 ∙ 𝛾 a velocidade é variável (1.1.1)
C é o coeficiente da instalação
𝐹𝑡𝑚 =
𝑏 ∙ ℎ
2
=
𝐵1 ∙
𝐵1
2
⁄ ∙ 𝑡𝑔𝜇
2
(1.1.2)
𝑡𝑔𝜇 =
ℎ
𝐵1
2
⁄
(1.1.3)
𝐹𝑡𝑚 =
𝐵1
2
4
∙ 𝑡𝑔𝜇 (1.1.4)
𝐵1 = 0,9𝐵 − 0,05 𝑚 (1.1.5)
𝑄 = 3600 ∙
𝐵1
2
4
∙ 𝑡𝑔𝜇 ∙ 𝐶 ∙ 𝑉 ∙ 𝛾 (1.1.6)
𝑄 = 𝐾 ∙ 𝐵1
2
∙ 𝐶 ∙ 𝑉 ∙ 𝛾 (1.1.7)
𝐾 = 900 ∙ 𝑡𝑔𝜇 𝑝𝑎𝑟𝑎 𝑐𝑜𝑟𝑟𝑒𝑖𝑎𝑠 𝑝𝑙𝑎𝑛𝑎𝑠
 Potência do motor
𝑁 =
𝑁0
𝜇𝑚
[𝐾𝑊] (1.1.8)
 Potência de tambor motriz ou árvore motor
6
Raúl F. Raúl, 2019
𝑁0 =
𝑊0 ∙ 𝑣
1000
[𝐾𝑊] (1.1.9)
𝑊0 é a força de tração
V é a velocidade
𝑊0 = 𝐾0(𝑊
𝑐 + 𝑊
𝑣) (1.1.10)
𝐾0 = 1,20 − 1,50
 No ramo de carga
𝑊
𝑐 = (𝑞 + 𝑞𝑐) ∙ 𝑐𝑜𝑠𝛽 + 𝑞′
𝑟 ∙ 𝐿 ∙ 𝑤 ± (𝑞 + 𝑞𝑐) ∙ 𝐿 ∙ 𝑠𝑒𝑛𝛽 (1.1.11)
Quando se trata de correia horizontal
𝑐𝑜𝑠𝛽e 𝑠𝑒𝑛𝛽 = 0
 No ramo de retorno
𝑊
𝑐 = 𝑞𝑐 ∙ 𝑐𝑜𝑠𝛽 + 𝑞′
𝑟 ∙ 𝐿 ∙ 𝑤 ± 𝑞𝑐 ∙ 𝐿 ∙ 𝑠𝑒𝑛𝛽 (1.1.12)
1.2. Bombeamento de água e polpas
1.2.1. Tubulações e acessórios
As tubulações são de ferro fundido ou aço, flangeado ou com acoplamento rápido. outros
materiais como fibra de vidros, polímeros de engenharia, cimento amianto, tubos revestidos
internamente, etc. estão começando a ser utilizados. A boa prática aconselha instalar, dentro
da usina, apenas tubulações horizontais e verticais. quando acontece a interrupção no
bombeamento, cessando o escoamento, os sólidos sedimentam imediatamente. Nas
tubulações horizontais fica livre a parte superior da secção do tubo, de modo que, retomado
o escoamento, a turbulência se encarrega de colocar os sólidos sedimentados em suspensão.
Nas tubulações verticais, os sólidos se depositam na extremidade inferior do tubo, sendo
acessíveis através do flange do cachimbo.
7
Raúl F. Raúl, 2019
Figura 1: Acopolamento de tubos por Cachimbo (A) e Falnge (B) (CHAVES, 2002).
Como critério de projecto industrial, sempre que possível, vários tubos devem ser reunidos
num feixe de tubos paralelos, com um suporte único e passando todos pelo mesmo percurso.
isto facilita a identificação das tubulações, a sua manutenção e racionaliza o peojecto. o arranjo
mostrado na figura 2 é chamado de pipe rack.
Figura 2: Pipe rack (CHAVES, 2002).
A figura 3 mostra uma válvula de mangote, de uso típico em bombeamento de polpas. É
impossível utilizar válvulas com elementos metálicos em contacto com a polpa, o que exclui a
maioria dos tipos utilizados para água.
Figura 3: Válvula de mangote (CHAVES, 2002).
Os manómetros utilizados em linhas de polpa são separados do contacto com a polpa por um
diafragma flexível, que transmite as pressões e impede a passagem dos sólidos.
(A) (B)
8
Raúl F. Raúl, 2019
Figura 4: Manómetro de polpas (CHAVES, 2002).
É muito comum a instalação de uma bomba de reserva, quando o bombeamento em questão
seja crítico para a operação do circuito. a passagem rápida de uma bomba para a outra pode ser
ajudada pela válvula de Taylor, mostrada na figura 5, que é autoexplicativa.
Figura 5: Válvula de Taylor (CHAVES, 2002).
1.2.2. Etapas para a cálculo e escolha da bomba
i. Calcular a vazão requerida;
ii. Calcular o diâmetro da tubulação;
iii. Encontrar a altura da sucção;
iv. Encontrara a altura do recalque;
v. Encontrar o comprimento da sucção;
vi. Encontrar o comprimento do recalque;
vii. Encontrar o comprimento total da tubulação;
viii. Encontrar a perda de carga por comprimento do tubo;
ix. Encontrar a perda de carga nas conexões;
x. Encontrar a perda de carga total no sistema da tubulação;
xi. Encontrar a ATM (altura manométrica total).
9
Raúl F. Raúl, 2019
A tabela 1 ilustra algumas diferenças no bombeamento dos dois fluídos diferentes.
Tabela 1: Diferenças entre o bombeamento de água e polpa.
Bombas de água Bombas de polpas
Variedades de roletes Variedades de roletes
Vazões elevadas Vazões elevadas
Alta eficiência Baixa eficiência
Cargas elevadas Cargas pequenas
Fonte: Autor, 2019.
Balanço de energia
𝑃1
𝜌
+
1
2
𝛼𝑉1
2
+ 𝑔 ∙ ℎ1 + 𝑤 =
𝑃2
𝜌
+
1
2
𝛼𝑉2
2
+ 𝑔 ∙ ℎ2 + ∑ 𝐹
1
2
𝛼𝑉1
2
+ 𝑔 ∙ ℎ1 + 𝑤 =
1
2
𝛼𝑉2
2
+ 𝑔 ∙ ℎ2 + ∫
𝑑𝑃
𝜌
𝑃2
𝑃1
+ ∑ 𝐹
∑ 𝐹 = 𝐹𝑡𝑢𝑏𝑜 𝑟𝑒𝑐𝑡𝑜 + 𝐹𝑠𝑎𝑖𝑑𝑎 + 𝐹𝑒𝑛𝑡𝑟𝑎𝑑𝑎 + 𝐹𝑣á𝑙𝑣𝑢𝑙𝑎 (1.2.1)
𝐹 = 𝑓 ∙
𝐿
𝐷
∙
𝑣2
2𝑔
(1.2.2)
𝒇 𝑝𝑜𝑑𝑒 𝑠𝑒𝑟 𝑜𝑏𝑡𝑖𝑑𝑜 𝑎 𝑝𝑎𝑟𝑡𝑖𝑟 𝑑𝑒 {
𝐷𝑖𝑎𝑔𝑟𝑎𝑚𝑎 𝑑𝑒 𝑓𝑢𝑛𝑛𝑖𝑛𝑔 𝐹 = 4 ∙ 𝑓 ∙
𝐿
𝐷
∙
𝑣2
2
𝐷𝑖𝑎𝑔𝑟𝑎𝑚𝑎 𝑑𝑒 𝑀𝑜𝑜𝑑 𝐹 = 𝑓 ∙
𝐿
𝐷
∙
𝑣2
2𝑔
𝑅 =
𝜌 ∙ 𝑣 ∙ 𝐷
𝜇
(1.2.3)
Escoamento laminar: 𝑅𝑒 < 2000
𝑅𝑒 =
16
𝑓
(1.2.4)
Escoamento turbulento: 𝑅𝑒 < 4000
𝑓 =
0,25
[𝑙𝑜𝑔 (
𝜀
𝐷
3,7
+
5,74
𝑅𝑒0,9)]
2
(1.2.5)
10
Raúl F. Raúl, 2019
A tabela 2 mostra o valor da rugosidade para determinados materiais
Tabela 2: Rugosidade de alguns materiais.
Material Rugosidade 𝜺 (𝒎𝒆𝒕𝒓𝒐𝒔)
Plástico 3.0 × 10−7
Aço 4.5 × 10−5
Ferro galvanizado 1.5 × 10−4
Concreto 1.2 × 10−4
Fonte: CHAVES, 2002.
 Velocidade de escoamento
𝑣 =
𝑄
𝐴
⟺ 𝑣 =
4𝑄
𝜋𝐷2
(1.2.6)
Onde:
Q é a vazão do escoamento;
D é o diâmetro.
 Velocidade crítica (VL)
𝑉𝐿 = 𝐹𝐿√2𝑔𝐷
𝜌𝑠 − 𝜌𝑙
𝜌𝑙
(1.2.7)
𝐹𝐿 𝑑𝑒𝑝𝑒𝑛𝑑𝑒 𝑑𝑒 {
𝑑50
𝑇𝑖𝑝𝑜 𝑑𝑒 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙
𝐶𝑣𝑠 = %𝑠ó𝑙 (𝑉
𝑉
⁄ )
𝑉 = 𝑉𝐿 + (0,3 𝑎 0,5) 𝑚/𝑠 (1.2.8)
Se igualarmos a velocidade de escoamento com a velocidade limite, temos:
𝑉 = 𝑉𝐿
11
Raúl F. Raúl, 2019
4𝑄
𝜋𝐷2
= 𝐹𝐿√2𝑔𝐷
𝜌𝑠 − 𝜌𝑙
𝜌𝑙
(1.2.9)
 Perdas de carga
ẘ = 𝑔(ℎ2 − ℎ1) + ∑ 𝐹 (1.2.10)
𝑤 = 𝑄 ∙ 𝜌 (1.2.11)
 Potência hidráulica
𝑃ℎ𝑖𝑑 = 𝑤 ∙ ẘ (1.2.12)
 Potência real
𝑃𝑟𝑒𝑎𝑙 =
𝑃ℎ𝑖𝑑
𝜂
(1.2.13)
2. LEIS DE FRAGMENTAÇÃO
2.1. Britagem e moagem
𝐶𝑜𝑚𝑝𝑜𝑟𝑡𝑎𝑚𝑒𝑛𝑡𝑜 𝑚𝑒𝑐â𝑛𝑖𝑐𝑜 𝑑𝑎𝑠 𝑟𝑜𝑐ℎ𝑎𝑠 {
𝑅𝑜𝑐ℎ𝑎𝑠 𝑒𝑙á𝑠𝑡𝑖𝑐𝑎𝑠
𝑅𝑜𝑐ℎ𝑎𝑠 𝑖𝑛𝑒𝑙á𝑠𝑡𝑖𝑐𝑎𝑠 (𝑃𝑙á𝑠𝑡𝑖𝑐𝑎𝑠)
As rochas elásticas demandam menor energia;
As inelásticas demandam maior energia;
As visco-elásticos podem se comportar como elásticas dependendo da velocidade do impacto
e a temperatura.
Materiais plásticos têm maior tenacidade;
Materiais elásticos têm maior dureza;
A tenacidade e a dureza são inversamente proporcionais.
As partículas finas demandam maior energia porque tem maior superfície de contacto.
12
Raúl F. Raúl, 2019
Isso pode ser verificado nas seguintes relações entre potência e área de contacto:
↓ 𝑃 =
𝐹
↑ 𝐴
Quanto maior for a área de contacto, menor será a potência e vice-versa.
↓ 𝜎 =
𝐹
↑ 𝐴
O mesmo acontece com a tensão, quanto maior for a área de contacto, menor será a tensão e
vice-versa.
Na operação dos britadores, tem como parâmetro importante a controlar se que é a potência de
operação.
𝐶𝑟𝑖𝑡é𝑟𝑖𝑜 𝑑𝑒 𝑠𝑒𝑙𝑒𝑐çã𝑜 𝑑𝑒 𝑏𝑟𝑖𝑡𝑎𝑑𝑜𝑟𝑒𝑠 {
𝑅𝑒𝑐𝑒𝑝çã𝑜
𝐶𝑎𝑝𝑎𝑐𝑖𝑑𝑎𝑑𝑒
2.1.1. Dimensionamento de britadores
𝑄 = 𝑄𝑡 ∙ 𝐴 ∙ 𝐵 ∙ 𝐶 ∙ 𝐷 (2.1.1)
𝐴 = 0,636 ∙ 𝜌𝑎𝑝𝑎𝑟𝑒𝑛𝑡𝑒 (2.1.2)
𝐵 = 1,56 ∙ 𝑒(−0,0306∙𝑊𝑖) (2.1.3)
𝐹𝑎𝑐𝑡𝑜𝑟 𝐶 𝑑𝑒𝑝𝑒𝑛𝑑𝑒 𝑑𝑒
{
𝑃 (
𝐴𝑃𝐴
2
) = 𝑥%
𝑇𝑏
𝐴𝐴
𝐴𝐴 =
𝑇𝑏
0,8
, 𝑜𝑛𝑑𝑒 𝑇𝑏 𝑒ℎ 𝑜 𝑡𝑎𝑚𝑎𝑛ℎ𝑜 𝑑𝑜 𝑏𝑙𝑜𝑐𝑜 𝑒 𝐴𝐴 𝑒ℎ 𝑎 𝑎𝑏𝑒𝑟𝑡𝑢𝑟𝑎 𝑑𝑜 𝑏𝑟𝑖𝑡𝑎𝑑𝑜𝑟
𝐴𝑃𝐴 = 𝐴𝑃𝐹 + 𝑀𝑄 (2.1.4)
APA é a abertura na posição aberta
APF é a abertura na posição fechada (𝐸𝑛𝑐𝑜𝑛𝑡𝑟𝑎 𝑠𝑒 𝑛𝑜 𝑚𝑜𝑑𝑒𝑙𝑜 𝑒𝑠𝑐𝑜𝑙ℎ𝑖𝑑𝑜)
MQ é o movimento do queixo (𝐸𝑛𝑐𝑜𝑛𝑡𝑟𝑎 𝑠𝑒 𝑛𝑜 𝑚𝑜𝑑𝑒𝑙𝑜 𝑒𝑠𝑐𝑜𝑙ℎ𝑖𝑑𝑜)
13
Raúl F. Raúl, 2019
𝐹𝑎𝑐𝑡𝑜𝑟 𝐷 𝑑𝑒𝑝𝑒𝑛𝑑𝑒 𝑑𝑒 {
𝐴𝑃𝐹
𝑇𝑒𝑜𝑟 𝑑𝑒 𝑎𝑟𝑔𝑖𝑙𝑎
𝑇𝑒𝑜𝑟 𝑑𝑒 ℎ𝑢𝑚𝑖𝑑𝑎𝑑𝑒
Vazão teórica
𝑄𝑡 é encontrada na tabela depois de selecionar o britador e faz se a média dos dois valores.
Vazão mássica
𝑤 = 𝑄 ∙ 𝜌𝑎𝑝𝑎𝑟𝑒𝑛𝑡𝑒 (2.1.5)
Note: Quando a vazão mássica for menor que a quantidade alimentada quer dizer o britador
selecionado não satisfaz a produção logo deve se mudar o britador ou por outro lado pode
mudar o APF até conseguir satisfazer.
2.2. Moagem
2.2.1. Moagem convencional
A ƞ de moagem é de 10 a 15% e a outra percentagem é de gasto de energia.
𝑅𝑒𝑔𝑖𝑚𝑒𝑠 𝑑𝑒 𝑜𝑝𝑒𝑟𝑎çã𝑜 𝑑𝑒 𝑚𝑜𝑖𝑛ℎ𝑜𝑠 {
𝑐𝑎𝑠𝑐𝑎𝑡𝑎
𝑐𝑎𝑡𝑎𝑟𝑎𝑡𝑎 (𝑀𝑎𝑖𝑠 𝑟𝑖𝑔𝑜𝑟𝑜𝑠𝑜)
𝑐𝑒𝑛𝑡𝑟𝑖𝑓𝑢𝑔𝑜 (𝐹
𝑔 = 𝐹𝐶𝑒𝑛𝑡𝑟í𝑓𝑢𝑔𝑎)
𝐹
𝑔 = 𝑚𝑔 (2.2.1)
𝐹
𝑐 = 𝑚 ∙ 𝑤2
∙ 𝑟 𝑟 =
𝑑
2
(2.2.2)
𝐹
𝑐 = 𝑚 ∙ 𝑤2
∙
𝑑
2
𝑚𝑔 = 𝑚 ∙ 𝑤2
∙ 𝑟
Cortando massa com massa, temos:
𝑔 = 𝑤2
∙ 𝑟
𝑤2
=
𝑔
𝑟
⟹
𝑔
𝑑
2
𝑤 = √
2𝑔
𝑑
𝑟𝑎𝑑
𝑠
⁄ essa unidade deve ser convertida de 𝑟𝑎𝑑
𝑠
⁄ para 𝑟𝑝𝑚.
14
Raúl F. Raúl, 2019
1 𝑟𝑜𝑡 → 2𝜋𝑟𝑎𝑑 𝑤 = √
2𝑔
𝑑
∙
1
2𝜋
𝑟𝑜𝑡
𝑠
⁄
𝑦 = 1 𝑟𝑎𝑑 𝑤 = √
2∙0,81
𝑑
∙
1
2𝜋
𝑟𝑜𝑡
𝑠
⁄
𝑦 =
1𝑟𝑜𝑡∙1 𝑟𝑎𝑑
2𝜋𝑟𝑎𝑑
𝑤 =
0,70497
√𝑑
𝑟𝑜𝑡
𝑠
⁄ ∙ 60𝑠
𝑚𝑖𝑛
⁄
𝑦 =
1
2𝜋
𝑟𝑜𝑡 𝑤 =
42,3
√𝑑
𝑟𝑜𝑡
𝑚𝑖𝑛
⁄
𝑁𝑐 =
42,3
√𝑑
𝑟. 𝑝. 𝑚 (𝑉𝑒𝑙𝑜𝑐𝑖𝑑𝑎𝑑𝑒 𝑐𝑟í𝑡𝑖𝑐𝑎) (2.2.3)
Note: Nos moinhos é recomendado a operação abaixo desta velocidade. (𝑠𝑒 𝑎 𝑜𝑝𝑒𝑟𝑎çã𝑜
𝑒𝑠𝑡𝑖𝑣𝑒𝑟 𝑎𝑐𝑖𝑚𝑎 𝑑𝑒𝑠𝑡𝑎 𝑣𝑒𝑙𝑜𝑐𝑖𝑑𝑎d𝑒, 𝑎𝑠 𝑏𝑜𝑙𝑎𝑠 𝑒𝑠𝑡𝑎𝑟ã𝑜 𝑛𝑎𝑠 𝑝𝑎𝑟𝑒𝑑𝑒𝑠). Para cada equipamento
tem sua velocidade crítica onde nas bombas de polpa recomenda se a operação acima da sua
velocidade crítica.
 Potência do moinho
𝑃 = 8,44 ∙ 𝐷𝑚
2,5
∙ 𝐿 ∙ 𝐾𝑚𝑡 ∙ 𝐾𝐿 ∙ 𝐾𝑆𝑃 (2.2.4)
𝑃 = 𝑇 ∙ 𝐸 (2.2.5)
Onde:
T é a raxa de alimentação (𝑡
ℎ
⁄ );
E é a energia especifica (𝐾𝑊 ∙ ℎ
𝑡
⁄ );
𝐷𝑚 é o diâmetro do moinho;
L é o comprimento do moinho;
𝐾𝑚𝑡 é factor de carregamento;
𝐾𝑙 é o factor que depende do tipo de moinho;
𝐾𝑠𝑝 é o factor de velocidade;
15
Raúl F. Raúl, 2019
𝐾𝑚𝑡 = 1,0 para moinhos de bola a úmido com descarga por transborde.
𝐾𝑚𝑡 = 1,3 para moinhos de bolas e de barras a úmido, com descarga de grade ou periférica.
𝐾𝑚𝑡 = 1,25 para moinhos que operam a seco.
Segundo o Bond, a energia especifica é dada por:
𝐸 = 10 ∙ 𝑊𝑖 (
1
√𝑃80
−
1
√𝐹80
) (2.2.6)
√𝑃80 e √𝐹80 são os tamanhos representativos do produto e da alimentação do moinho,
respetivamente, em micrómetros.
𝑊𝑖 é a energia específica (energia por unidade de massa) necessária para cominuir um material
de uma granulometria muito grosseira.
↓ 𝑃 = 2𝜋𝑁 ∙ 𝑇𝑞 ↓ (2.2.7)
𝑇𝑞 = 𝐹
𝑔 ∙ 𝑑 (2.2.8)
Onde:
N é o número de rotações;
𝑇𝑞 é o torque.
Podemos notar a relação entre o torque e a potência na equação acima, onde as duas grandezas
são directamente proporcionais.
2.2.2. Potência vs grau de enchimento
O efeito do grau de enchimento essencialmente se deve ao deslocamento do centro de
gravidade e da massa da carga. À medida que aumenta a carga, o centro de gravidade do
moinho se desloca para o centro. A potência consumida é aproximadamente simétrica em torno
do valor de 50% (Figura 6).
16
Raúl F. Raúl, 2019
Figura 6: Potência consumida por um moinho em função do grau de enchimento (TAVARES.
L, 2012).
2.2.3. Potência vs %Ncr
Na prática, observa-se que o expoente 2,5 de 𝐷𝑚 varia entre 2,3 ate 3. O efeito da variação da
velocidade de rotação do moinho é mostrado graficamente na figura 7. O efeito da velocidade
de rotação do moinho se da por dois efeitos: o valor de N e o deslocamento do centro de
gravidade com a velocidade. O centro de gravidade inicialmente se desloca do eixo para a
periferia do tubo com o aumento da velocidade, mas à medida que a velocidade crítica se
aproxima, o centro de gravidade se move de volta na direção do centro do moinho, uma vez
que uma proporção cada vez maior.
Figura 7: Efeito da velocidade de rotação na potência de moinhos (TAVARES. L, 2012).
17
Raúl F. Raúl, 2019
 Tamanho de bolas
 Moinhos de D maior usam bolas menores;
 Moinhos de D menor usam bolas maiores.
𝑑𝑚á𝑥 = 1,171𝐹
80
1
2
(
𝑊𝑖 ∙ 𝜌𝑠
%𝑁𝑐 ∙ 𝐷𝑚
1
2
)
0,34
(2.2.9)
3. CLASSIFICAÇÃO
𝑇𝑖𝑝𝑜𝑠 𝑑𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑑𝑜𝑟𝑒𝑠 {
𝑃𝑛𝑒𝑢𝑚á𝑡𝑖𝑐𝑜𝑠
𝐻𝑖𝑑𝑟á𝑢𝑙𝑖𝑐𝑜𝑠
𝑀𝑒𝑐â𝑛𝑖𝑐𝑜𝑠
Adota se os classificadores pneumáticos dos hidráulicos porque a velocidade de sedimentação
das partículas no ar é maior que na água.
3.1. Dimensionamento de peneira
As peneiras são peças vitais e críticas em qualquer usina de beneficiamento. Assim sendo, todo
cuidado deve ser tomado na seleção de peneiras para que sejam de tamanho e tipo adequado.
Os dados necessários para seleção e dimensionamento de equipamentos são:
a) Características do material a ser peneirado, tais como: densidade e umidade; forma das
partículas; tamanho máximo da alimentação; presença de materiais argilosos;
distribuição granulométrica; densidade e umidade; temperatura, entre outros;
b) Capacidade;
c) Faixas de separação do produto;
d) Eficiência desejada;
e) Tipo de serviço; lavagem classificação final, classificação intermediária, etc.
f) Limitação ou não de espaço e peso;
g) Grau de conhecimento do material e do produto desejado.
No dimensionamento das peneiras, existem várias fórmulas diferentes que são mencionados
abaixo. Para este artigo, o autor não detalhou todas, mas sim levou em consideração uma delas
que é a da Smith Engeneering Works.
 Fórmula de bauman (empírica);
 Fórmula de Westerfield;
18
Raúl F. Raúl, 2019
 Fórmula da Smith Engineering Works;
 Manual de faço.
 Fórmula da Smith Engineering Works
𝐴𝑝 =
𝑃
𝐴𝐵𝐶𝐷𝐸𝐹𝐺
(3.1.1)
𝐴𝑝 = Área de tela (𝑚2)
𝑃 = Quantidade de material passante na tela (𝑡
ℎ
⁄ );
𝐴 = Capacidade da tela [
(𝑡
ℎ
⁄ )
𝑚2
⁄ ];
𝐵 = Fator relativo à % de material retido na tela;
𝐶 = Fator relativo à eficiência desejada para o peneiramento;
𝐷 = Fator relativo à % de material menor que a metade da malha;
𝐸 = Fator relativo à umidade do material;
𝐹 = Fator relativo ao deck em consideração.
Esta formula é válida para peneiras inclinadas. o manual recomendava aumentar a capacidade
unitária em 40% quando se desejasse usar peneiras horizontais. para grelhas vibratórias, a
formula, segundo o manual, poderia ser aplicada se se considerasse um aumento de capacidade
de cerca de 40% e uma perda de eficiência de 15% em relação à peneira vibratória.
 Factor A
𝐴 = 12,13 ∙ ℎ𝑡0,32
− 10,3 para ℎ𝑡 < 51𝑚𝑚 (3.1.2)
𝐴 = 0,34ℎ𝑡 + 14,41 para ℎ𝑡 ≥ 51𝑚𝑚 (3.1.3)
ℎ𝑡 = (ℎ + 𝑑𝑤)𝑐𝑜𝑠𝜃 − 𝑑𝑤 (3.1.4)
% da área aberta (𝐴𝐴)
𝐴𝐴 = 21,5 log10 ℎ + 37 (3.1.5)
19
Raúl F. Raúl, 2019
ℎ é a abertura da malha (𝑚𝑚)
𝐴𝑛
= 12,13 ∙ ℎ𝑡0,32
− 10,3 (3.1.6)
 Fator B
𝐵 = 1,6 − 1,2[1 − 𝑃(ℎ𝑡)] (3.1.7)
Tabela 3: Fator B x % material retido.
% 10 20 30 40 50 60 70 80 85 90 92 94 96 98 100
B 1,05 1,01 0,98 0,95 0,90 0,86 0,80 0,70 0,64 0,55 0,50 0,44 0,34 0,30 -
Fonte: CHAVES, 2002.
 Fator C
𝐶 = 0,7 + 01,2 ∙ 𝑃 (
ℎ𝑡
2
) (3.1.8)
Tabela 4: Fator C v eficiência da separação .
Eficiência (%) 60 70 75 80 85 90 92 94 96 98
C 2,1 1,7 1,55 1,40 1,25 1,10 1,05 1,00 0,95 0,90
Fonte: CHAVES, 2002.
 Fator D
O fator D depende do fator E.
𝑇 = 1,26 ∙ ℎ𝑡 → 𝐷 = 1,1 − 0,1 ∙ 𝐸 {
→⟶⟶ 𝑆𝑒𝑐𝑜 𝐸 = 0
𝐻𝑢𝑚𝑖𝑑𝑜 {
𝐸 = 1𝑃 𝑠𝑒 𝑇 ≤ 1
𝐸 = 1,5 + 0,25𝑇 𝑠𝑒 𝑇 ≤ 2
𝐸 = 2,5𝑝44 𝑠𝑒 𝑇 ≤ 6
Tabela 5: Fator D x % material menor que a metade da tela.
% < 𝒎𝒆𝒊𝒂 𝒎𝒂𝒍𝒉𝒂 10 20 30 40 50 60 70 80 90 100
D 0,55 0,75 0,80 1,0 1,2 1,4 1,8 2,2 3,0
Fonte: CHAVES, 2002.
20
Raúl F. Raúl, 2019
Tabela 6: Fator E x malha da tela para materiais molhados (humidade superior a 10%).
Malha
-
20#
+20#-
1/𝟑𝟐"
+1/32-
1/𝟏𝟔"
+1/16-
5/𝟖"
+1/8-
3/𝟏𝟔"
+3/16-
5/𝟏𝟔"
+5/16-
3/𝟖"
+3/8-
1/𝟐"
Malha
(mm)
0,8 0,8-1,6 1,6-3,2 3,2-4,8 4,8-7,9 7,9-9,5
9,5-
12,7
E 1,0 1,25 1,50 1,75 1,90 2,10 2,25 2,5
Fonte: CHAVES, 2002.
 Fator F
𝐹 =
𝜌
1600
(3.1.9)
Tabela 7: Fator F x deck de peneiramento.
Nível superior 𝟐°
𝟑°
𝟒°
F 1,0 0,9 0,75 0,6
Fonte: CHAVES, 2002.
 Fator G
𝐺 = 0,975[1 − 𝑃(1,25ℎ𝑡) + 𝑃(0,75ℎ𝑡)]0,511
fator de meia size. (3.1.10)
Variáveis operacionais do ciclone
A variável principal no ciclone é a pressão.
Vortex no ciclone
É colocado para impedir que o material tenha um caminho curto ou o material pode sair logo
no overflow.
Variáveis operacionais
↑𝑉𝑜𝑟𝑡𝑒𝑥 𝑓𝑖𝑛𝑑𝑒𝑟−−−−−↑𝑑50
↑𝐴𝑝𝑒𝑥−−−−−−−−−↓𝑑50
↑𝑃𝑟𝑒𝑠𝑠ã𝑜−−−−−−−−↓𝑑50
↑𝑉𝑎𝑧ã𝑜−−−−−−−−−↓𝑑50
21
Raúl F. Raúl, 2019
↑𝜌𝑠ó𝑙−−−−−−−−−−↓𝑑50
↑%𝑠ó𝑙−−−−−−−−−↓𝑑50
Separador/classificador helicoidal/espiral
Figura 8: Classificador mecânico-helicoidal.
Variáveis operacionais
↑𝑄−−−↑𝑑50
↑𝑁𝑐−−−↑𝑑50
↑𝐴𝑙𝑡𝑢𝑟𝑎 𝑑𝑜 𝑡𝑎𝑛𝑞𝑢𝑒−−−↓𝑑50
↑𝐷𝑖𝑙𝑢𝑖çã𝑜 𝑑𝑎 𝑝𝑜𝑙𝑝𝑎−−−↑𝑑50
Deve se:
 Aumentar a vazão;
 Aumentar a velocidade de rotação da espiral;
 Aumentar a diluição da polpa e
 Diminuir a altura do tanque.
3.2. Seleção e dimensionamento de Ciclone e Hidrociclone
Associação de ciclones
22
Raúl F. Raúl, 2019
Note: Nunca se deve instalar um ciclone frente da alimentação porque a alimentação irá para
o único ciclone consequentemente terá menor probabilidade de distribuição da alimentação.
Número de hidrociclones
𝑁ℎ𝑖𝑑 =
𝑉
𝑄
(3.2.1)
Onde:
Q = é dada na tabela pela pressão e diâmetro (𝑚3
ℎ
⁄ )
𝑉 → 𝑉 =
𝑚
𝜌
[𝑚3
ℎ
⁄ ] (3.2.2)
Ciclone
𝑆 = 𝑆𝑏 ∙ 𝐶1 ∙ 𝐶2 ∙ 𝐶3 (3.2.3)
A fórmula acima é valida apenas para um ciclone com uma bateria, no caso aparecer ligado
mais de uma bateria a fórmula fica:
𝑆 = 𝑆𝑏 ∙ 𝐶1 ∙ 𝐶2 ∙ 𝐶3 ∙ 𝑁 (3.2.4)
Onde:
𝑆𝑏: separação básica achada pelo diâmetro do ciclone
𝐶1: Factor correção pela densidade ou peso especifico em
𝑔
𝑐𝑚2
⁄
𝐶2: Factor correção pela pressão em Psi
𝐶3: Factor correção pela concentração de sólidos em volume
N: Número de bateria dos ciclones
3.3. Espessamento
𝑇𝑖𝑝𝑜𝑠 𝑑𝑒 𝑒𝑠𝑝𝑒𝑠𝑠𝑎𝑑𝑜𝑟𝑒𝑠 {
𝑙𝑎𝑚𝑖𝑛𝑎𝑟𝑒𝑠
𝐶𝑜𝑛𝑣𝑒𝑛𝑐𝑖𝑜𝑛𝑎𝑖𝑠 {
𝐶𝑜𝑙𝑢𝑛𝑎𝑠
𝑃𝑜𝑛𝑡𝑒𝑠
𝐶𝑎𝑖𝑥ã
23
Raúl F. Raúl, 2019
Arraste hidrodinâmico é quando o espessador opera em regime turbulento, por isso adota se
o feedwell que reduz o fluxo da alimentação para que seja de regime laminar.
Rack/Raspador gira numa velocidade necessária para não gerar turbulência que dificultará a
sedimentação das partículas.
 Zonas de alimentação e Clarificação
Zona crítica- Os sólidos ocupam espaço e a água sobe.
Zona de compressão- os sólidos se compactam.
Para aumentar a velocidade de sedimentação das partículas usa se coagulantes ou floculantes.
 Velocidades
Regime laminar
𝑉𝑇 =
𝑔 ∙ 𝑑𝑃
2(𝜌𝑠 − 𝜌𝑙)
18𝜇
(3.3.1)
Regime turbulento
𝑉𝑇 = √
4𝑔 ∙ 𝑑𝑃(𝜌𝑠 − 𝜌𝑙)
3𝐶𝐷𝜌𝑙
(3.3.2)
Onde:
𝑉𝑇 = velocidade terminal da partícula (𝑚
𝑠
⁄ );
𝜌𝑠ó𝑙= densidade do solido, (
𝑘𝑔
𝑚3
⁄ );
𝜌 = densidade do liquido, (
𝑘𝑔
𝑚3
⁄ );
𝑔 = aceleração da gravidade, (𝑚
𝑠2
⁄ );
𝑑𝑝 = diâmetro da partícula, 𝑚.
𝜇 = viscosidade cinemática (
𝑘𝑔
𝑚 ∙ 𝑠
⁄ )
 Área
24
Raúl F. Raúl, 2019
𝑆𝑚𝑖𝑛 =
𝑄𝐴𝐶𝐴 (
1
𝐶𝐶
−
1
𝐶𝐸
)
𝜇
(3.3.3)
𝜇𝐶 =
𝑍𝑖𝑐 − 𝑍𝑐
𝑄
(3.3.4)
𝐶𝐶 =
𝐶0 ∙ 𝑍0
𝜃
(3.3.5)
 Altura
𝐻 =
𝑉
𝑆
ou 𝐻 =
𝑄𝐴𝐶𝐴
𝑆∙𝜌𝑠
(𝑇𝐸 − 𝑇𝐶)
𝜌𝑠−𝜌
𝜌𝑚−𝜌
(3.3.6)
 Volume do espessador
𝑉 =
𝑄𝐴𝐶𝐴
𝜌𝑠
(𝑇𝐸 − 𝑇𝐶)
𝜌𝑠 − 𝜌
𝜌𝑚 − 𝜌
(3.3.7)
 Volume do sólido
𝑉
𝑠 =
𝑄𝐴𝐶𝐴
𝜌𝑠
(𝑇𝐸 − 𝑇𝐶) (3.3.8)
3.3.1. Método de Coe & Clevenger
𝑆 =
𝑄𝐴𝐶𝐴 (
1
𝐶
−
1
𝐶𝐸
)
𝜇
(3.3.1.1)
𝜇 =
𝑄 − 𝑄𝐸
𝑆
(3.3.1.2)
25
Raúl F. Raúl, 2019
3.3.2. Método de Kynch
𝑆 =
𝑄𝐴𝐶𝐴 (
1
𝐶
−
1
𝐶𝐸
)
𝜇
(3.3.2.1)
𝜇 =
𝑍𝑖 − 𝑍
𝜃
(3.3.2.2)
3.3.3. Método de Roberts
𝑆𝑚𝑖𝑛 =
𝑄𝐴𝐶𝐴 (
1
𝐶𝐶
−
1
𝐶𝐸
)
𝜇𝐶
(3.3.3.1)
𝐶𝐶 =
𝐶0 ∙ 𝑍0
𝑍𝑖𝑐
(3.3.3.2)
𝜇𝐶 =
𝑍𝑖𝑐 − 𝑍𝑐
𝜃𝑐
(3.3.3.3)
3.3.4. Método de Talmadge & Fitch
𝑆𝑚𝑖𝑛 =
𝑄𝐴𝐶𝐴 (
1
𝐶𝐶
−
1
𝐶𝐸
)
𝜇𝐶
(3.3.4.1)
𝐶𝐶 =
𝐶0 ∙ 𝑍0
𝑍𝑖𝑐
(3.3.4.2)
𝜇𝐶 =
𝑍𝑖𝑐 − 𝑍𝑐
𝜃𝑐
(3.3.4.3)
Onde:
Vazão mássica do sólido: 𝑄𝐴𝐶𝐴 (t/h);
Vazão volumétrica do sólido: 𝑄𝐴𝐶𝐴/ 𝜌𝑠ó𝑙 𝑚3
ℎ
⁄ ;
26
Raúl F. Raúl, 2019
Tempo de residência do sólido na zona de compressão: 𝑇𝐸 − 𝑇𝐶;
𝑍𝐸 = 𝑍 = altura da interface (m);
𝜃 = tempo;
𝑍𝑖 = altura inicial da suspensão (m);
𝐶𝐸= especificada para a lama espessada;
𝐶0 = concentração inicial da suspensão (𝑡
𝑚3
⁄ ).
4. AGITAÇÃO E MISTURA
Os termos agitação e mistura são geralmente utilizados para operações nas quais um líquido é
forçado mecanicamente ao escoamento em um tanque.
A rigor, esta definição é a de agitação, sendo o conceito de mistura aplicado à operação de
propiciar a mistura de duas ou mais fases diferentes: líquido-líquido, líquido-gás, líquido-
sólido e sólido-sólido.
Figura 9: Acondicionador e impelidor para agitação e mistura (PAIVA. J, 2014).
𝑍 = 𝑇 𝐷 = 𝐶
27
Raúl F. Raúl, 2019
𝑇 = 3𝐷 𝑇 = 12𝐵
𝑅𝑒 =
𝜌𝑁𝐷2
𝜇
(4.1)
𝑁𝑃𝑜 =
𝑃
𝜌𝑁3𝐷5
(4.2)
 Potência para completa dispersão
𝑃
𝑉
⁄ = 0,092 ∙ 𝑔 ∙
𝑇
𝐷
∙ 𝑉𝜃 ∙ √(
1−𝜀
𝜀
) ∙ ∆𝜌 ∙ 𝑒5,3∙
𝐶
𝑇 [𝑊
𝑚3
⁄ ] (4.3)
Parâmetros
𝑇
𝐷
=
𝑇
𝐶
= 3
𝐶
𝑇
= 0,33
𝑔 = 9,81 𝑚
𝑠2
⁄ 𝜀 = 1 − %𝑠ó𝑙 𝑒𝑚 𝑣𝑜𝑙𝑢𝑚𝑒
𝑉𝜃 = √
4
3
𝑔𝑑50 ∙
∆𝜌
𝐶𝐷 ∙ 𝜌𝑙
(4.4)
 Volume do cilindro
𝑉 = 𝐴 × ℎ 𝐴 =
𝜋𝑑2
4
𝑉 =
𝜋𝑑2
4
× ℎ (4.5)
[𝑊
𝑚3
⁄ × 𝑚3
]
𝑃
𝑉
⁄ = [
𝑊𝑎𝑡𝑡𝑠
𝑚3
] → 𝑃 = 𝑊
𝑚3
⁄ × 𝑚3 (4.6)
4.1. Scale-up
Consiste na ampliação da escala laboratorial para escala industrial.
28
Raúl F. Raúl, 2019
Figura 10: Scale-up do acondicionador e impelidor (PAIVA. J, 2014).
Tanque cilíndrico com Z = T
Volumes dos tanques 𝑉1e 𝑉2
𝑅 =
𝑇2
𝑇1
= (
𝑉2
𝑉1
)
1
3
(4.1.1)
𝐷2 = 𝑅 ∙ 𝐷1 (4.1.2)
𝐶2 = 𝑅 ∙ 𝐶1 (4.1.3)
𝑇2 = 𝑅 ∙ 𝑇1 (4.1.4)
A razão (𝑅) pode ser obtida a partir do volume ou de diâmetro.
Para diâmetro
𝐷 =
𝐷2
𝐷1
(4.1.5)
Para volume
𝑅 =
𝑉2
𝑉1
𝑉2 = 3𝑉1 (4.1.6)
29
Raúl F. Raúl, 2019
Rotação
𝑁2
𝑁1
= (
1
𝑅
)
𝑛
= (
𝐷2
𝐷1
)
𝑛
(4.1.7)
𝒏 corresponde aos valores dados para materiais segundo os seus objetivos.
5. VAMOS PRATICAR!
Nesta parte de resolução de exercícios, é importante ter todas as tabelas e os diagramas de
todos os equipamentos com conhecimentos básicos para as suas leituras (leitura dos valores
tabelados) pois este artigo não contém todas as tabelas e os diagramas.
5.1. Banda transportadora
1. Determinar os parâmetros básicos de um transportador de correia, a carga a transportar é
carvão mineral com densidade de 1.6 𝑡
𝑚3
⁄ , produtividade de 240 𝑡/ℎ, comprimento do
transportador 280𝑚, ângulo e inclinação da instalação 5 graus, talude dinâmico da carga 15
grau, o peso unitário e de atrito dos roletes 1.2 e 0.03 respetivamente. Adoptar 𝑙′=1𝑚;
𝑙′′=2.6𝑚 S = 20 graus, K = 470, 𝐺′𝑟=120 𝑘𝑔, 𝐺′′𝑟=50 𝑘𝑔, V =3.05 m/s e a eficiência do
equipamento é de 70%.
𝑄 =
𝐶
𝜌
→
240 𝑡/ℎ
1,6𝑡
𝑚3
⁄
= 150 𝑚3
ℎ
⁄
𝐵1 = √
150
470∙𝑡𝑔15∙1∙3∙5∙1,6
= 0,5
𝐵 =
0,5+0,05
0,9
= 0,61𝑚
𝑞 =
𝑔𝑄
3,6𝑉
=
9,81∙150
3,6∙3,05
= 133,87𝑁/𝑚
𝑞′
𝑟 =
𝑔𝐺′𝑟
𝑙′
=
9,81∙120
1
= 1176𝑁/𝑚
𝑞′
′𝑟 =
𝑔𝐺′′𝑟
𝑙′′
=
9,81∙50
2,6
= 188,48𝑁/𝑚
𝑊
𝑐 = (𝑞 + 𝑞𝑐) ∙ 𝑐𝑜𝑠𝛽 + 𝑞′
𝑟 ∙ 𝐿 ∙ 𝑤 ± (𝑞 + 𝑞𝑐) ∙ 𝐿 ∙ 𝑠𝑒𝑛𝛽
𝑊
𝑐 = (133,87 + 1,2) ∙ 𝑐𝑜𝑠5 + 11763 ∙ 280 ∙ 0,03 + (133,87) ∙ 280 ∙ 𝑠𝑒𝑛5 = 10172,48
𝑊
𝑐 = 𝑞𝑐 ∙ 𝑐𝑜𝑠𝛽 + 𝑞′
𝑟 ∙ 𝐿 ∙ 𝑤 ± 𝑞𝑐 ∙ 𝐿 ∙ 𝑠𝑒𝑛𝛽
30
Raúl F. Raúl, 2019
𝑊
𝑐 = 1,2 ∙ 𝑐𝑜𝑠5 + 188,46 ∙ 280 ∙ 0,03 − 1,2 ∙ 280 ∙ 𝑠𝑒𝑛5 = 1563,82
𝑁 =
𝑁0
𝜇𝑚
=
𝑁0
0,7
𝑁0 =
𝑊0∙𝑉
1000
=
𝑊0
500
𝑊0 = 𝑊0(𝑊
𝑣 + 𝑊
𝑐) = 14083,56
𝑁0 = 42,954858 𝐾𝑊
5.2. Bombas de água
1. Água a 20 graus celsius é bombeada de um tanque para outro em uma ponta superior de
vazão de 5×10−3 𝑚3
ℎ
⁄ . a tubulação tem D = 4in, sendo de acho. A eficiência da bomba é de
65%.
Calcule a potência (KW), necessária para a primeira bomba (A) considere as perdas na entrada
0.26𝐽/𝐾𝑔 e na saída 0.102, perda de carga na válvula = 0.20.
Figura 11: Esquema do bombeamento de água (1).
Dados
𝑇 = 20 𝑔𝑟𝑎𝑢𝑠 𝑐𝑒𝑙𝑠𝑖𝑢𝑠 = 𝜇 = 1𝑐𝑝 = 0,001 𝑃𝑎 ∙ 𝑠
𝑄 = 5 × 10−3 𝑚3
ℎ
⁄
𝐷 = 4𝑖𝑛 = 0,102𝑚
31
Raúl F. Raúl, 2019
Ƞ = 65%
𝐹𝐸𝑛𝑡𝑟𝑎𝑑𝑎 = 0,26 𝐽/𝑘𝑔
𝐹𝑆𝑎𝑖𝑑𝑎 = 0,102 𝐽/𝑘𝑔
𝐹𝑉𝑎𝑙𝑣𝑢𝑙𝑎 = 0,20
Cotovelos de 90 graus são 2
Material de aço, logo a sua 𝜖 = 4,6 × 10−5
a rugosidade encontra se na tabela para cada
material
𝜌𝐻2𝑂 = 1000
𝑘𝑔
𝑚3
⁄
Para a resolução deste exercício assim como os outros da mesma natureza e necessário ter
auxilio das tabelas de perdas de carga, de velocidades e de seleção de bombas.
𝑄 = 𝐴 ∙ 𝑉
𝑉 =
4∙5×10−3𝑚3
ℎ
⁄
𝜋∙0,1022𝑚
= 0,62𝑚/𝑠
𝑅𝑒 =
1000∙0,62∙0,102
0,001
= 63240 ≈ 6,3 × 104
correspondente ao regime turbulento
Rugosidade relativa
𝜖
𝐷
=
4,6×10−5
0,102
= 4,4 × 10−4
≈ 0,0005 𝑙𝑜𝑔𝑜 𝑓 = 0,005
𝐹𝑐𝑜𝑡 = 4 ∙ 𝑓 ∙
𝐿
𝐷
∙
𝑣2
2
𝐿
𝐷
𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒 𝑎𝑜 𝑐𝑜𝑚𝑝𝑟𝑖𝑚𝑒𝑛𝑡𝑜 (𝐿𝑒) 𝑞𝑢𝑒 é 𝑒𝑛𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑜 𝑛𝑎 𝑡𝑎𝑏𝑒𝑙𝑎.
𝐹𝑐𝑜𝑡 = 4 ∙ 0,005(2 ∙ 35)
0,622
2
= 0,27𝐽/𝑘𝑔
𝐹𝑟𝑒𝑐𝑡𝑜 = 4 ∙ 𝑓 ∙
𝐿
𝐷
∙
𝑣2
2
Neste caso, o 𝐿 corresponde ao somatório de todas as distancias nas quais o fluído vai percorrer
logo 𝛴𝐿 = 125𝑚
𝐹𝑟𝑒𝑐𝑡𝑜 = 4 ∙ 0,005 ∙
125
0,102
∙
0,622
2
= 4,004 𝐽/𝑘𝑔
32
Raúl F. Raúl, 2019
∑ 𝐹 = 𝐹𝑡𝑢𝑏𝑜 𝑟𝑒𝑐𝑡𝑜 + 𝐹𝑠𝑎𝑖𝑑𝑎 + 𝐹𝑒𝑛𝑡𝑟𝑎𝑑𝑎 + 𝐹𝑣𝑎𝑙𝑣𝑢𝑙𝑎 + 𝐹𝑐𝑜𝑡
∑ 𝐹 = 4,004 + 0,102 + 0,26 + 0,20 + 0,27 = 4,73
ẘ = 𝑔(ℎ2 − ℎ1) + ∑ 𝐹
ẘ = 9,81(15 − 1,5) + 4,73 = 626,417 𝐽. 𝑘𝑔
𝑤 = 𝑄 ∙ 𝜌 = 5 × 10−3
∙ 1000 = 5𝑘𝑔/𝑠
𝑃ℎ𝑖𝑑 = 𝑤 ∙ ẘ
𝑃ℎ𝑖𝑑 =
5𝑘𝑔
𝑠
∙ 626,417 𝐽. 𝑘𝑔 = 3132,08 𝐽/𝑠
𝑃𝑟𝑒𝑎𝑙 =
𝑃ℎ𝑖𝑑
𝜂
=
3132,08 𝐽/𝑠
0,65
= 4818,59 𝑊𝑎𝑡𝑡𝑠 = 4,81859 𝐾𝑊𝑎𝑡𝑡𝑠
Exercício 2
Figura 12: Esquema do bombeamento de água (2).
Dados
𝑇 = 20 𝑔𝑟𝑎𝑢𝑠 𝑐𝑒𝑙𝑠𝑖𝑢𝑠 = 𝜇 = 1𝑐𝑝 = 0,001 𝑃𝑎 ∙ 𝑠
𝑄 = 0,025 𝑚3
ℎ
⁄
33
Raúl F. Raúl, 2019
𝐷 = 4𝑖𝑛 = 0,102𝑚
Ƞ = 65%
𝐹𝐸𝑛𝑡𝑟𝑎𝑑𝑎 = 0,26 𝐽/𝑘𝑔
𝐹𝑆𝑎𝑖𝑑𝑎 = 0,102 𝐽/𝑘𝑔
𝐹𝑉𝑎𝑙𝑣𝑢𝑙𝑎 = 0,20
Cotovelos de 90 graus = 1
Material de aço, logo a sua 𝜖 = 4,6 × 10−5
a rugosidade encontra se na tabela para cada
material
𝜌𝐻2𝑂 = 1000
𝑘𝑔
𝑚3
⁄
𝑄 = 𝐴 ∙ 𝑉
𝑉 =
4∙0,025𝑚3
ℎ
⁄
𝜋∙0,1022𝑚
= 3,05𝑚/𝑠
𝑅𝑒 =
1000∙3,05∙0,102
0,001
= 31110 ≈ 3,1 × 105
𝜖
𝐷
=
4,6×10−5
0,102
= 4,4 × 10−4
≈ 0,0005 𝑙𝑜𝑔𝑜 𝑓 = 0,005
𝐹𝑐𝑜𝑡 = 4 ∙ 𝑓 ∙
𝐿
𝐷
∙
𝑣2
2
𝐿
𝐷
𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒 𝑎𝑜 𝑐𝑜𝑚𝑝𝑟𝑖𝑚𝑒𝑛𝑡𝑜 (𝐿𝑒) 𝑞𝑢𝑒 é 𝑒𝑛𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑜 𝑛𝑎 𝑡𝑎𝑏𝑒𝑙𝑎.
𝐹𝑐𝑜𝑡 = 4 ∙ 0,005(17 + 35)
3,052
2
= 4,83𝐽/𝑘𝑔
𝐹𝑟𝑒𝑐𝑡𝑜 = 4 ∙ 𝑓 ∙
𝐿
𝐷
∙
𝑣2
2
𝐹𝑟𝑒𝑐𝑡𝑜 = 4 ∙ 0,005 ∙
350
0,102
∙
3,052
2
= 319,20 𝐽/𝑘𝑔
∑ 𝐹 = 𝐹𝑡𝑢𝑏𝑜 𝑟𝑒𝑐𝑡𝑜 + 𝐹𝑠𝑎𝑖𝑑𝑎 + 𝐹𝑒𝑛𝑡𝑟𝑎𝑑𝑎 + 𝐹𝑣𝑎𝑙𝑣𝑢𝑙𝑎 + 𝐹𝑐𝑜𝑡
∑ 𝐹 = 319,20 + 0,102 + 0,26 + 0,20 + 4,83 = 324,59 𝐽/𝑘𝑔
∆ℎ = 580 − 560 = 20
ẘ = 9,81(20 + 5) + 324,59 = 569,84 𝑊𝑎𝑡𝑡𝑠
34
Raúl F. Raúl, 2019
𝑤 = 𝑄 ∙ 𝜌 = 0,025 ∙ 1000 = 25𝑘𝑔/𝑠
𝑃ℎ𝑖𝑑 = 𝑤 ∙ ẘ
𝑃ℎ𝑖𝑑 =
25𝑘𝑔
𝑠
∙ 569,84 𝐽. 𝑘𝑔 = 14246 𝐽/𝑠
𝑃𝑟𝑒𝑎𝑙
14246 𝐽/𝑠
0,65
= 21916,92 𝑊𝑎𝑡𝑡𝑠 = 21,91692 𝐾𝑊𝑎𝑡𝑡𝑠
3. Exercício
Considere o sistema baixo com um tubo de diâmetro nominal de 3 polegadas na área de sucção
e uma vazão mássica de 56,19kg/s. a massa especifica do fluído newtoniano é de 0.891g/cm3
e viscosidade de 59cP. Considerando as tubulações (com curvas), válvula gaveta aberta,
determine a ATM da sucção e da descarga. Considerar a entrada do sistema (sistema do tanque)
e a expansão na saída da tubulação. A região de descarga possui diâmetro nominal de 1 ½
polegadas.
Figura 13: Esquema de bombeamento (3).
Dados de todo sistema
Joelhos de 90 graus rosqueados
Válvula do tipo gaveta aberta
Rugosidade das tubulações: 𝜀 = 0,04 𝑚𝑚
𝐷 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 {
1
1
2
′′
= 0,038 𝑚 (𝑒𝑥𝑡𝑒𝑟𝑛𝑜)𝑐𝑜𝑚 𝑒𝑠𝑝𝑒𝑠𝑠𝑢𝑟𝑎 𝑑𝑜 𝑡𝑢𝑏𝑜 = 1,5 𝑚𝑚
3′′
= 88,90 𝑚𝑚 𝑒 𝑒𝑠𝑝𝑒𝑠𝑠𝑢𝑟𝑎 = 4,05 𝑚𝑚
O exercício pede a determinação de ATM em partes (sucção e descarga).
Determinação de perdas de carga por atrito na sucção
Bombeamento de
um fluído
Newtoniano.
35
Raúl F. Raúl, 2019
Dados gerais dados da sucção
Fluído newtoniano 𝐷𝑁 = 3′′
𝑚
̇ = 56,19 𝑘𝑔/𝑠 𝐷𝑒 = 88,9 × 10−3
𝑚
𝜌 = 891𝑘𝑔/𝑚3
𝑒 = 4,05 × 10−3
𝑚
𝜇 == 59 × 10−3
𝑃𝑎. 𝑠 𝐷𝑖 = 𝐷𝑒 − 2𝑒 = 80,8 × 10−3
𝑚
Cálculo da velocidade
𝐴 =
𝜋𝐷𝑖2
4
=
𝜋×(80,8×10−3)
2
4
= 5,127 × 10−3
𝑚2
𝑄 =
𝑚
̇
𝜌
=
56,19
891
= 6,300 × 10−3
𝑚3
/𝑠
𝑣 =
𝑄
𝐴
=
6,300×10−3
5,127×10−3
= 12,298 𝑚/𝑠
𝑅𝑒 =
𝜌𝑣𝐷
𝜇
=
891∙12,298∙80,8×10−3
59×10−3
= 15007,33 ≈ 1,5 × 104
𝜀
𝐷
=
0,04×10−3
80,8×10−3
= 0,0005
Com este valor, vamos para o diagrama de Mood para achar o fator de atrito.
Figura 14: Diagrama de Mood para determinação do fator de atrito.
36
Raúl F. Raúl, 2019
Acessórios
1 joelho de 90 graus rosqueado
Válvula do tipo gaveta aberta
Tabela 8: Comprimento equivalente.
Tabela 9: Perdas de carga localizadas.
𝐿 = 3 + 0,3 = 3,3𝑚 da tubulação da sucção.
𝐿𝑒𝑞 = 2,83 + 0,457 + 3,3 = 6,587 𝑚
Sabe se que 𝑓𝐹𝑎𝑛𝑛𝑖𝑛𝑔 =
𝑓𝐷𝑎𝑟𝑐𝑦
4
=
0,016
4
= 0,004
∆𝑃
𝜌
2𝑓𝐹
𝐿𝑒𝑞
𝐷
∙ 𝑣2
= 2 ∙ 0,004 ∙
6,587
80,8×10−3
∙ (12,2989)2
= 98,63 𝑚2
/𝑠2
∆𝑃
𝜌
= 178,80 𝑚2
/𝑠2
Vamos dividir pela gravidade para termos o valor em metros.
ℎ𝑓𝑠 =
∆𝑃
𝜌𝑔
=
98,63 𝑚2/𝑠2
9,81 𝑚/𝑠2
= 10,054 𝑚
37
Raúl F. Raúl, 2019
Na descarga vamos usar o método do coeficiente de perda de carga localizada (𝑘𝑓).
ℎ = 𝑘𝑓
𝑣2
2𝑔
Sem nenhuma informação sobre a forma do tudo na saída, o 𝑘𝑓 = 0,5 Bordas retas.
ℎ = 0,5
12,2982
2∙9,81
= 3,854 𝑚
ℎ𝑓𝑠 = 10,054 + 3,854 = 13,9088 𝑚
Considerando todas as parcelas de energia antes da bomba (balanço de energia).
𝐻𝑠 =
𝑃𝑠
𝛾
+ 𝑧𝑠 − ℎ𝑓𝑠 𝑃 = 𝑝𝑟𝑒𝑠𝑠ã𝑜 𝑎𝑡𝑚𝑜𝑠𝑓é𝑟𝑖𝑐𝑎 𝑒𝑚 𝑝𝑎𝑠𝑐𝑎𝑙
𝐻𝑠 =
101325𝑃𝑎
891∙9,81
+ 150 − 13,9088 = 147,683 𝑚 ATM da sucção
ATM na descarga
Dados gerais Dados da sucção
Fluído newtoniano 𝐷𝑁 = 1
1
2
′′
𝑚
̇ = 56,19 𝑘𝑔/𝑠 𝐷𝑒 = 0,0381𝑚
𝜌 = 891𝑘𝑔/𝑚3
𝑒 = 1,5 × 10−3
𝑚
𝜇 == 59 × 10−3
𝑃𝑎. 𝑠 𝐷𝑖 = 𝐷𝑒 − 2𝑒 = 0,035𝑚
𝑣 =
𝑄
𝐴
= 65 𝑚/𝑠
𝑅𝑒 = 34507,35 ≈ 3,5 × 104
38
Raúl F. Raúl, 2019
𝜀
𝐷
= 0,0011
Vamos achar o fator de atrito no diagrama de Mood 𝑓𝐷 = 0,025
Comprimento equivalente
3 joelhos de 90 graus = 3,84 𝑚
𝐿 = 28𝑚
𝐿𝑒𝑞 = 32,34𝑚 Expansão na descarga
∆𝑃
𝜌
= 48824,56 𝑚2
/𝑠2
𝑘𝑓 = 1
ℎ𝑓𝑑 = 4977,02𝑚 ℎ𝑓𝑑 = 216,49𝑚
Balanço de energia
ℎ𝐷 =
𝑃𝑠
𝛾
+ 𝑧𝑠 − ℎ𝑓𝑠 =
101325
891∙𝑔
+ (150 + 15 − 0,3) + 5193,5
ℎ𝐷 = 5369,4 𝑚
𝐴𝑇𝑀𝑡𝑜𝑡𝑎𝑙 = ℎ𝐷 − ℎ𝑠
𝐴𝑇𝑀𝑡𝑜𝑡𝑎𝑙 = 5369,4 − 147,683 = 5221,717 𝑚
O nosso valor de ATM é muito elevado porque a nossa velocidade na descarga é grande.
Sabemos que quando maior for a velocidade, maior também serão as perdas de cargas. A
velocidade e as perdas de cargas são diretamente proporcionais.
5.2. Fórmula de Forcheimmer Bresse
O próximo exercício é um pouco diferente dos exercícios já resolvidos na sala pois ele traz
nos uma novidade que é o uso da fórmula de Bresse para o cálculo do diâmetro da
tubulação sem precisar fazer as iterações como nos exercícios anteriores e esta fórmula é
usada quando o enunciado te dá o tempo do funcionamento seja por turno ou por horas
diárias ou anuais.
Antes de começar com a resolução do exercício, vamos abordar um pouco sobre a fórmula de
Bresse só para sabermos onde e quando é que podemos usar.
A fórmula de Bresse é expressa pela equação:
𝐷 = 𝐾√𝑄
39
Raúl F. Raúl, 2019
Onde:
𝐷 =diâmetro económico (𝑚);
𝐾 = coeficiente variável, função dos custos de investimento e de operação;
𝑄 = vazão de bombeamento (𝑚3
/𝑠).
A fórmula de Bresse tem se mostrado de grande utilidade prática. O coeficiente 𝐾 tem sido
objeto de vários estudos. O valor de 𝐾 depende de variáveis tais como: custo médio do
conjunto elevatório, inclusive despesas de operação e manutenção, custo médio da tubulação,
inclusive despesas de transporte, assentamento e conservação, peso específico do fluído,
rendimento global do conjunto elevatório, etc.
Cabe ao projetista eleger convenientemente o valor de 𝐾. Na realidade, escolher o valor de 𝐾
equivale fixar a velocidade. Ao explicitar a variável 𝑄 da fórmula de Bresse e aplicando-se na
equação da continuidade, tem-se que:
𝑣 =
4
𝜋𝐾2
Através desta expressão organizou-se a tabela 10, que apresenta valores de K e de velocidade.
Geralmente a velocidade média das instalações situa-se entre 0,6 𝑒 2,4 𝑚/𝑠. As maiores
velocidades são utilizadas em instalações que funcionam apenas algumas horas por dia.
Tabela 10: Valores para as variáveis K e velocidade da fórmula de Bresse.
Valor de K Velocidade (m/s) Valor de K Velocidade (m/s)
0,75 2,26 1,10 1,05
0,80 1,99 1,20 0,88
0,85 1,76 1,30 0,75
0,90 1,57 1,40 0,65
1,00 1,27
𝐷𝑟 = 𝐾√𝑁𝑈
4
∙ √𝑄 (Forcheimmer Bresse)
𝐷𝑟 = 0,9𝑄0,45
(EUA)
𝐷𝑟 = 𝐾 (
𝑁𝑈∙𝑒
𝑓
)
0,54
𝑄0,46
(França)
40
Raúl F. Raúl, 2019
𝐷𝑟 = 1,3 ∙ (𝑁𝑈)
1
4√𝑄 (Para pouco funcionamento)
𝐷𝑟 = 1,46𝑋0,25
√𝑄 (Forcheimmer Bresse)
𝐷𝑟 = 1,3𝑇0,25
√𝑄 (ABNT)
𝑵𝑼 = 𝑻 é o numero de horas de trabalho de instalação por dia dividido por 24;
X é o numero de horas de trabalho de instalação por ano dividido por 8760;
𝒆 é o custo de energia elétrica;
𝒇 é o custo do material do conduto em Kg;
K é o coeficiente (1,55 para 24h e 1,35 para 10h).
Exercício 4
Uma empresa de transporte possui uma lavação de camiões (car wash) e filtra água do rio
que fica próximo da empresa, armazenando em um reservatório de 120 mil litros de água
filtrada. Para este processo, precisa se comprar uma bomba que seja acionada as 09:30min e
desligada as 14:45min com o reservatório cheio. Este processo acontecerá a cada três dias e
será considerada a instalação de tubos de aço comercial. Você é o engenheiro contratado da
empresa para este dimensionamento, verifique qual modelo da bomba é o mais adequado para
esta linha de bombeamento.
41
Raúl F. Raúl, 2019
Figura 15: Esquema de bombeamento de água (4).
Dados
∆𝑉 = 120 000 𝑙 = 120 𝑚3
42
Raúl F. Raúl, 2019
∆𝑡 = 14: 45 − 09: 30 = 05: 15𝑚𝑖𝑛 = 5,25ℎ
Logo para a equação de Bresse, o 𝑋 = 𝑁𝑈 é igual a 5,25ℎ
Material metálico-aço comercial
Primeiro passo: Calcular a vazão requerida.
𝑄𝑟 =
∆𝑉
∆𝑡
=
120
5,25
= 22,857
𝑚3
ℎ
= 0,00635𝑚3
/𝑠
Segundo passo: Calcular diâmetro da tubulação.
Dados
𝑁𝑈 = 5,25ℎ
𝑄𝑟 = 0,00635𝑚3
/𝑠
𝐷𝑟 = 1,3(𝑁𝑈)
1
4√𝑄𝑟
𝐷𝑟 = 1,3 (
5,25
24
)
1
4
√0,00635
𝐷𝑟 = 0,070842 𝑚 = 70,842 𝑚𝑚
Com este diâmetro calculado, vamos para a tabela dos diâmetros de tubulações com conexões
disponíveis no mercado.
Tabela 11: Diâmetros de tubulações com conexões
𝒊𝒏 3
4′′
⁄ 1′′ 1 1
4′′
⁄ 1 1
2′′
⁄ 2′′ 21
2′′
⁄ 3′′
4′′
5′′
𝒎𝒎 19,05 25,4 31,75 38,1 50,8 63,5 76,2 101,6 127
Na tabela 11, vamos escolher o diâmetro maior ou igual ao diâmetro calculado e nesse caso
temos diâmetro de 3′′
correspondendo 76,2 𝑚𝑚.
Terceiro passo: Encontrar a altura da sucção.
Sabemos que a altura da sucção é a diferença de altura entre o nível dinâmico da captação e o
bocal de sucção da bomba. Na altura de sucção não é levado em consideração a altura abaixo
do nível do fluído.
43
Raúl F. Raúl, 2019
ℎ𝑠 = 6,25 + 1,17 − 1,33 + 0,55
ℎ𝑠 = 6,64 𝑚. 𝑐. 𝑎
Quarto passo: Encontrar a altura de recalque
A altura de recalque é a diferença de altura entre o bocal da sucção da bomba e o ponto de
maior elevação do fluído até o destino final da instalação.
ℎ𝑟 = 0,15 + 5,63 + 2,80 + 13,85 + 2,15
ℎ𝑟 = 24,58 𝑚. 𝑐. 𝑎
Quinto passo: Encontrar o comprimento da sucção.
É a extensão linear em metros de tubo utilizados na instalação desde o injector ate o bocal de
entrada da bomba.
𝐿𝑠 = 1,15 + 6,25 + 1,90 + 1,20 + 1,33 + 1,41 + 0,70 + 2,85
𝐿𝑠 = 16,79 𝑚
Sexto passo: Encontrar o comprimento de recalque.
É a extensão linear em metros de tubo utilizados na instalação, desde a saída da bomba até o
ponto final da instalação.
𝐿𝑟 = 5,63 + 4,63 + 7,23 + 13,85 + 3,55 + 3,70 + 1,66 + 1,85 + 1,75
𝐿𝑟 = 43,58 𝑚
Sétimo passo: Encontrar o comprimento total da tubulação.
= ∑ 𝐿𝑠 𝑒 𝐿𝑟
𝐿𝑡 = 16,79 + 43,58 = 60,37𝑚
Oitavo passo: perda de carga por comprimento do tudo.
Esta perda de carga por comprimento do tubo é igual ao comprimento total da tubulação.
𝐽𝐿 = 60,37 𝑚
Nono passo: Encontrar a perda de carga nas conexões.
É o atrito exercido na parede interna das conexões.
44
Raúl F. Raúl, 2019
Esta perda de carga é achada na tabela de perda de carga por conexões.
Figura 16: Tabela de Comprimentos Equivalentes em conexões, para cálculos de Perdas
Localizadas.
Válvula de pé com crivo 1 × 22 𝑚 = 22 𝑚
Válvula de retenção 1 × 8 𝑚 = 8 𝑚
Registro de gaveta 1 × 0,5 𝑚 = 0,5 𝑚
Luva de redução 3 × 0,78 𝑚 = 2,34 𝑚
União 7 × 0,02 𝑚 = 0,14 𝑚
Curva de 45 graus 10 × 0,6 𝑚 = 6 𝑚
Curva de 90 graus 4 × 1,3 𝑚 = 5,2 𝑚
∑ 22 + 8 + 0,5 + 2,34 + 0,14 + 6 + 5,2 = 44,18 𝑚
Décimo passo: Encontrar a perda de carga total no sistema de tubulação.
Para esta etapa, vamos usar a tabela de perda de carga percentual onde precisaremos de
diâmetro, vazão e tipo de material. Em casos de não encontrar a vazão igual à vazão calculada,
recomenda se a escolha do valor maior. Se a tabela a seguir não estiver bem visível, sugiro que
baixe uma com visibilidade melhor.
45
Raúl F. Raúl, 2019
Figura 17: Tabela de Perda de Carga em Tubulações de PVC, Galvanizado e Ferro Fundido
(Para Cada 100 m de Tubos).
𝑓𝐽 = 3% = 0,03
𝐽𝑇 = (𝐽𝐶𝑜𝑛𝑒𝑥𝑜𝑒𝑠 + 𝐽𝑇𝑢𝑏𝑢𝑙𝑎𝑐𝑎𝑜)𝑓𝐽
𝐽𝑇 = (44,18 + 60,37)0,03
𝐽𝑇 = 3,1365 𝑚. 𝑐. 𝑎
Por último: Encontrar a altura manométrica
𝐴𝑇𝑀 = ℎ𝑠 + ℎ𝑟 + 𝐽𝑇
𝐴𝑇𝑀 = 6,64 + 24,58 + 3,1365
𝐴𝑇𝑀 = 34,3565 𝑚. 𝑐. 𝑎
Conhecendo a ATM e a vazão, podemos ir para os ábacos disponíveis e escolhermos a bomba
qualificada para esta linha de bombeamento.
46
Raúl F. Raúl, 2019
5.3. Bombas de polpa
Exercício 1.
Dados
𝑑50 = 0,3𝑚𝑚
𝑚𝑠ó𝑙 = 13,2 𝑡/ℎ
%𝑠ó𝑙 = 9,4
𝜌𝑠ó𝑙 = 3𝑡/𝑚3
Para a resolução dos exercícios sobre bombeamento de popas, temos os seguintes passos por
seguir:
Primeiro passo: Características da polpa
%𝑠ó𝑙 =
𝑚𝑠ó𝑙
𝑚𝑝𝑜𝑙𝑝𝑎
× 100%
𝑚𝑝𝑜𝑙𝑝𝑎 =
𝑚𝑠ó𝑙
%𝑠ó𝑙
=
13,2
9,4
= 140,42 𝑡/ℎ
𝑃𝑜𝑙𝑝𝑎 = 𝑠ó𝑙𝑖𝑑𝑜 + á𝑔𝑢𝑎 → á𝑔𝑢𝑎 = 𝑝𝑜𝑙𝑝𝑎 − 𝑠ó𝑙𝑖𝑑𝑜 → 𝐻2𝑂 = 140,42 − 13,2 = 127,2 𝑡/ℎ
𝑄𝑃 = 𝑄𝑠ó𝑙 + 𝑄𝐻2𝑂 {
𝐻2𝑂 =
𝑚𝐻2𝑂
𝜌𝐻2𝑂
=
127,2
1
= 127,2 𝑚3
/ℎ
𝑄𝑠ó𝑙 =
𝑚𝑠ó𝑙
𝜌𝑠ó𝑙
=
13,2
3
= 4,4 𝑚3
/ℎ
𝑄𝑃 = 𝑄𝑠ó𝑙 + 𝑄𝐻2𝑂 = 127,2 + 4,4 = 131,6 𝑚3
/ℎ
𝐶𝑣𝑠 = %𝑠ó𝑙(𝑉
𝑉
⁄ ) =
𝑄𝑠ó𝑙
𝑄𝑃
× 100% =
4,4 𝑚3/ℎ
131,6 𝑚3/ℎ
= 3,34%
𝜌𝑝𝑜𝑙𝑝𝑎 =
𝑚𝑝𝑜𝑙𝑝𝑎
𝑄𝑃
=
140,42 𝑡/ℎ
131,6 𝑚3/ℎ
= 1,06 𝑡 ∙ (𝑚3)−1
Segundo passo: cálculo de velocidades
𝑉𝐿 = 𝐹𝐿 ∙ √2𝑔𝑑
∆𝜌
𝜌𝑙
Nas velocidades, nem sempre nos dão o diâmetro exato nos enunciados, nesse caso obriga-nos
a fazer iterações até encontrar o diâmetro equivalente. Mas existe uma forma de encontrar o
diâmetro máximo em que, em alguns casos pode ser exatamente o diâmetro equivalente ou
47
Raúl F. Raúl, 2019
pode não ser. Ao verificar se que esse diâmetro encontrado pela expressão do Eng. Jean não é
equivalente, fará se as iterações, mas diminuindo o diâmetro encontrado pela a expressão que
o Eng propôs. Ele igualou as duas velocidades V = VL e insolou o diâmetro.
4𝑄
𝜋𝐷2 = 𝐹𝐿 ∙ √2𝑔𝑑
∆𝜌
𝜌𝑙
4𝑄
𝜋𝐷2∙𝐹𝐿
= √2𝑔𝑑
∆𝜌
𝜌𝑙
(
4𝑄
𝜋𝐷2∙𝐹𝐿
)
2
= (√2𝑔𝑑
∆𝜌
𝜌𝑙
)
2
(
4𝑄
𝜋𝐷2∙𝐹𝐿
)
2
= √2𝑔𝑑
∆𝜌
𝜌𝑙
𝐷 = √
4𝑄2𝜌𝑙
𝜋2𝐷2∙𝐹𝐿2𝑔(𝜌𝑠−𝜌𝑙)
5
E é importante lembrar ou saber que a velocidade de bombeamento de uma polpa heterogénea
deve atender duas exigências diferentes e independentes:
 Ela deve ser suficiente grande para produzir a turbulência necessária para manter os
sólidos em suspensão.
 Ela deve ser menor possível para produzir o atrito com as paredes do tubo e
consequentemente, reduzir a perda de carga.
𝐹𝐿 𝑑𝑒𝑝𝑒𝑛𝑑𝑒 𝑑𝑒 {
𝑑50
𝑇𝑖𝑝𝑜 𝑑𝑒 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑒
𝐶𝑣𝑠 = %𝑠ó𝑙(𝑉
𝑉
⁄ )
𝐹𝐿 𝑑𝑒𝑝𝑒𝑛𝑑𝑒 𝑑𝑒 {
𝑑50 = 0,3𝑚𝑚
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑒 = 1,1 𝑛𝑎 𝑡𝑎𝑏𝑒𝑙𝑎
𝐶𝑣𝑠 = %𝑠ó𝑙(𝑉
𝑉
⁄ ) = 3,34%
𝑉𝐿 = 1,1 ∙ √2 ∙ 9,81𝐷
3−1,06
1,06
A partir da substituição feita na equação acima, é recomendável que se reduza a expressão para
facilitar nas iterações.
𝑉𝐿 = 6,6 ∙ √𝐷 expressão reduzida
48
Raúl F. Raúl, 2019
As iterações no Excel são mais fáceis e rápidas, mas é pena que o docente não ira permitir o
uso de qualquer dispositivo eletrónico com exceção da maquina calculadora durante a
realização dos testes. Para este caso, o autor irá mostrar as duas formas: calculando
manualmente e com Excel.
𝟏𝒂
𝒊𝒕𝒆𝒓𝒂çã𝒐
𝐷 = 4𝑖𝑛 = 102𝑚𝑚 = 0,102𝑚
𝑉𝐿 = 6,6 ∙ √0,102 = 2,1 𝑚/𝑠
𝑉𝑟 = 𝑉𝐿 + (0,3 𝑎 0,5)
𝑉𝑟 = 2,1 + (0,3 𝑎 0,5)
𝑉𝑟 = 2,4 𝑎 2,6 m/s
𝑄𝑝𝑜𝑙𝑝𝑎 = 131,6
𝑚3
ℎ
×
1000𝑙
3600𝑠
= 36,6 𝑙/𝑠
𝑉𝑒𝑠𝑐𝑜𝑎𝑚𝑒𝑛𝑡𝑜 =
1273∙𝑄
(𝑙
𝑠
⁄ )
𝑑(𝑚𝑚)
2
𝑉𝑒𝑠𝑐𝑜𝑎𝑚𝑒𝑛𝑡𝑜 =
1273∙36,6
1022 = 4,5 𝑚/𝑠
Note: A velocidade de escoamento não está no intervalo da velocidade crítica, em outras
palavras, o diâmetro escolhido não é equivalente.
𝟐𝒂
𝒊𝒕𝒆𝒓𝒂çã𝒐
𝐷 = 5𝑖𝑛 = 127𝑚𝑚 = 0,127𝑚
𝑉𝐿 = 6,6 ∙ √0,127 = 2,4 𝑚/𝑠
𝑉𝑟 = 2,4 + (0,3 𝑎 0,5)
𝑉𝑟 = 2,7 𝑎 2,9 m/s
𝑉𝑒𝑠𝑐𝑜𝑎𝑚𝑒𝑛𝑡𝑜 =
1273∙36,6
1272
= 2,9 𝑚/𝑠
Verifica se que com este diâmetro, a velocidade de escoamento satisfaz a meta do projeto ou a
velocidade de escoamento é compatível com a velocidade crítica.
 Iterações a partir do Excel
49
Raúl F. Raúl, 2019
Na construção da tabela 12, baseou-se nas fórmulas já conhecidas para cálculos de
velocidades para bombeamento de polpa. Na tabela 12 temos diâmetro em metros, milímetros
e polegadas, colocou se essas todas unidades para facilitar nos cálculos, visto que no cálculo
da velocidade limite usamos diâmetro em metros e no cálculo da velocidade de escoamento
usamos diâmetro em milímetros. Na mesma tabela temos dois resultados isso porque a lógica
matemática (a velocidade de escoamento é compatível se ela estiver dentro do intervalo da
velocidade crítica “0,3 𝑎 0,5”) da velocidade de escoamento estava dando erros durante as
operações no Excel, foi por isso que temos dois resultados em que a primeira baseia-se na
velocidade crítica abaixo (a sua lógica é: se a velocidade de escoamento for maior ou igual a
velocidade crítica abaixo, o diâmetro é compatível e se não for, é incompatível) e o outro
resultado baseia-se na velocidade crítica acima (a sua lógica é: se a velocidade de escoamento
for menor ou igual a velocidade crítica acima, o diâmetro é compatível e se não, é
incompatível). A partir desses dois resultados fez se o cruzamento para achar onde é que
temos “compatível”, “compatível” e temos o nosso resultado que corresponde ao diâmetro
de 5 𝑖𝑛.
Tabela 12: Cálculo da compatibilidade do diâmetro a partir do Excel.
D(in) D(mm) D(m) VL Vabaixo Vacima Vescoamento Resultado Resultado
1.00 25.40 0.03 1.05 1.35 1.65 72.13 Incompantível Compatível
2.00 50.80 0.05 1.49 1.79 2.09 18.03 Incompantível Compatível
3.00 76.20 0.08 1.82 2.12 2.42 8.01 Incompantível Compatível
4.00 101.60 0.10 2.10 2.40 2.70 4.51 Incompantível Compatível
5.00 127.00 0.13 2.35 2.65 2.95 2.89 Compatível Compatível
6.00 152.40 0.15 2.57 2.87 3.17 2.00 Compatível Incompantível
7.00 177.80 0.18 2.78 3.08 3.38 1.47 Compatível Incompantível
8.00 203.20 0.20 2.97 3.27 3.57 1.13 Compatível Incompantível
9.00 228.60 0.23 3.15 3.45 3.75 0.89 Compatível Incompantível
10.00 254.00 0.25 3.32 3.62 3.92 0.72 Compatível Incompantível
Fonte: Autor, 2021
D 𝑖𝑛 diâmetro em polegadas;
D 𝑚𝑚 diâmetro em milímetros;
D 𝑚 diâmetro em metros;
VL velocidade limite;
𝑉𝐴𝑏𝑎𝑖𝑥𝑜 velocidade critica (𝑉𝐿 + 0,3);
50
Raúl F. Raúl, 2019
𝑉𝐴𝑐𝑖𝑚𝑎 velocidade critica (𝑉𝐿 + 0,5).
Terceiro passo: cálculo das perdas de carga
Carga geométrica
−1,5 + 11,5 − 2 = 8 𝑚𝑐𝑝
Carga distribuída
𝐸𝑠𝑡𝑎 𝑑𝑒𝑝𝑒𝑛𝑑𝑒 𝑑𝑒 {
Velocidade de escoamento
Diâmetro
Na tabela, o valor encontrado é dividido por 100, isto é, a cada 100𝑚 há perda de carga.
𝐶𝑜𝑚 𝑒𝑠𝑡𝑎 𝑣𝑒𝑙𝑜𝑐𝑖𝑑𝑎𝑑𝑒 𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑟𝑜, 𝑜 𝑣𝑎𝑙𝑜𝑟 𝑑𝑒 ƻ = 8 𝑚. 𝑐. 𝑎 {
𝑣 = 2,9𝑚/𝑠
𝐷 = 127𝑚𝑚
ƻ =
8 𝑚𝑐𝑎
100
Carga distribuída
𝑍 = 𝐿 ∙ ƻ 𝐿 = 11,5 + 80 + 2 = 93,5 𝑚
𝑍 = 93,5 𝑚 ∙
8 𝑚𝑐𝑎
100
= 7,5 𝑚𝑐𝑎
Carga localizada
Perdas de carga nas pequenas partes como nas válvulas que depende do diâmetro.
No enunciado temos uma válvula de mangote e duas de cotovelos 4d, com esta informação
podemos buscar os valores correspondentes na tabela.
𝐷 {
uma válvula de mangote → 1 × 2,9 m equivalente = 2,9
𝐷𝑢𝑎𝑠 válvulas de cotovelos 4d → 2 × 1,9 m equivalente = 3,8
(𝐶𝑜𝑚𝑝𝑟𝑖𝑚𝑒𝑛𝑡𝑜 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑒) Le = 2,9 + 3,8 = 6,7 m equivalente
Z′
= 𝐿𝑒 × ƻ Z′
= 6,7𝑚 ×
8 𝑚𝑐𝑎
100
= 0,5 𝑚𝑐𝑎
Carga total
É o somatório de todas as cargas
𝐶𝑎𝑟𝑔𝑎 𝑔𝑒𝑜𝑚é𝑡𝑟𝑖𝑐𝑎 + 𝑐𝑎𝑟𝑔𝑎 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢í𝑑𝑎 + 𝑐𝑎𝑟𝑔𝑎 𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑑𝑎
8 𝑚𝑐𝑝 + 7,5 𝑚𝑐𝑎 + 0,5 𝑚𝑐𝑎 =?
51
Raúl F. Raúl, 2019
Perceba que não se pode somar (𝑚. 𝑐. 𝑝) metros coluna de polpa com (𝑚. 𝑐. 𝑎 )metros coluna
de água. Então recorre se para o diagrama de cave para converter 𝑚. 𝑐. 𝑝 em 𝑚. 𝑐. 𝑎.
𝐻𝑅 = 𝐸𝑅 =
𝐴𝑙𝑡𝑢𝑟𝑎 𝑚.𝑐.𝑝
𝐴𝑙𝑡𝑢𝑟𝑎 𝑚.𝑐.𝑎
𝐸𝑅𝑜𝑢 𝐻𝑅 𝑑𝑒𝑝𝑒𝑛𝑑𝑒 𝑑𝑒 {
𝑑50
%𝑠ó𝑙 𝑒𝑚 𝑝𝑒𝑠𝑜
𝜌𝑠ó𝑙
𝐴𝑙𝑡𝑢𝑟𝑎 𝑚. 𝑐. 𝑎 =
𝐴𝑙𝑡𝑢𝑟𝑎 𝑚.𝑐.𝑝
𝐸𝑅
=
8
0,95
= 8,4 𝑚𝑐𝑎
Agora pode se efetuar a soma das cargas.
𝐶𝑎𝑟𝑔𝑎𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑔𝑒𝑜𝑚é𝑡𝑟𝑖𝑐𝑎 + 𝐶𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢í𝑑𝑎 + 𝐶𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑑𝑎
𝐶𝑎𝑟𝑔𝑎𝑡𝑜𝑡𝑎𝑙 = 8,4 + 7,5 + 0,5 = 16,4 𝑚𝑐𝑎
𝐴𝑇𝑀 =
𝑤
𝑔
→ 𝑤 = 𝑔(∆ℎ) + ∑ 𝐹
𝐴𝑇𝑀 = ∑ 𝐹
𝐴𝑇𝑀 =
16,4 𝑚×1 𝑓𝑡
0,3048 𝑚
= 53,80 𝑓𝑡
𝑃𝑎𝑟𝑎 𝑠𝑒𝑙𝑒𝑐𝑖𝑜𝑛𝑎𝑟 𝑜𝑢 𝑒𝑠𝑐𝑜𝑙ℎ𝑒𝑟 𝑎 𝑏𝑜𝑚𝑏𝑎, 𝑡𝑒𝑚𝑜 𝑞𝑢𝑒 𝑡𝑒𝑟 {
𝐴𝑇𝑀 (𝑓𝑡)
𝑉𝑎𝑧ã𝑜 (
𝐺𝑎𝑙õ𝑒𝑠
𝑚𝑖𝑛
)
Para ter esses dois parâmetros nas respetivas unidades, faremos as conversões.
1𝑓𝑡 = 0,3048 𝑚 1 𝑚3
ℎ
⁄ = 4,4 Galões/min
𝑦 = 3,17 𝑚 131,6 𝑚3
ℎ
⁄ = 𝑦
𝑦 = 10,40𝑓𝑡 𝑦 = 579,04Galões/min
3. Exercício
Um tanque de 4𝑓𝑡 de altura e 3𝑓𝑡 de diâmetro está completo com água e aberto para atmosfera.
O tanque é esvaziado por um orifício em sua base de 0.5𝑖𝑛 e a sua velocidade de jacto obedece
𝑉 = √2𝑔ℎ.
Determine o tempo necessário para que o tanque esvazie.
𝑉 = √2𝑔ℎ
52
Raúl F. Raúl, 2019
𝑑𝑣
𝑑𝑡
= −𝑣𝑎
𝐴𝑑𝑣
𝑑𝑡
= −𝑣𝑎
𝐴𝑑𝑣
𝑑𝑡
= −𝑎√2𝑔ℎ
𝐴
𝑎
𝑑ℎ
√2𝑔ℎ
= −𝑑𝑡
𝐴
𝑎
∫
𝑑ℎ
√2𝑔ℎ
= − ∫ 𝑑𝑡
𝐴
𝑎√2𝑔ℎ
∫
𝑑ℎ
√ℎ
= − ∫ 𝑑𝑡
𝐴
𝑎√2𝑔ℎ
∫
𝑑ℎ
√ℎ
ℎ1
ℎ2
= − ∫ 𝑡
𝑡1
𝑡2
A partir da tabela das propriedades de integrais, teremos:
𝐴
𝑎√2𝑔ℎ
[(2√ℎ1) − (2√ℎ2)] = −(𝑡1 − 𝑡2)
𝐴
𝑎√2𝑔ℎ
2(√ℎ1) = 𝑡2
𝐴
𝑎
√
2ℎ
𝑔
= 𝑡 Note que: 𝑎 =
𝜋𝐷𝑎
2
4
𝐴
𝑎
=
𝜋𝐷𝑇
2
4
𝜋𝐷𝑎
2
4
𝐴 =
𝜋𝐷𝑇
2
4
𝐴
𝑎
=
𝐷𝑇
2
𝐷𝑎
2
𝐷𝑇
2
𝐷𝑎
2 √
2ℎ
𝑔
= 𝑡
5.4. Britagem
1. Escolha o britador de mandíbulas necessário para realizar a britagem primária de 650 𝑡/ℎ
de minério de cobre (de densidade aparente de 2,3 𝑡/𝑚3
), com a distribuição granulométrica
dada por:
53
Raúl F. Raúl, 2019
Tabela 13: Distribuição granulométrica do exercício de britagem.
Peneira
(cm)
50 35 25 17,5 12,5 10 7,5 5 3,5
Passante
(%)
100 98,2 89,9 71,6 53,6 38,2 28,7 22,4 18,1
Fonte: JAIME. C, 2019.
O índice de trabalho do minério é 14 𝑘𝑊 − ℎ𝑟/𝑡𝑜𝑛, e o teor de argila é 6%, sendo que a
umidade é aproximadamente 8%.
𝑄 = 𝑄𝑡 ∙ 𝐴 ∙ 𝐵 ∙ 𝐶 ∙ 𝐷
𝐴 = 0,636 ∙ 2,3 = 1,41
𝐵 = 1,56 ∙ 𝑒(−0,0306∙14)
= 1.02
𝐴𝐴 =
𝑇𝑏
0,8
, 𝑜𝑛𝑑𝑒 𝑇𝑏 𝑒ℎ 𝑜 𝑡𝑎𝑚𝑎𝑛ℎ𝑜 𝑑𝑜 𝑏𝑙𝑜𝑐𝑜 𝑒 𝐴𝐴 𝑒ℎ 𝑎 𝑎𝑏𝑒𝑟𝑡𝑢𝑟𝑎 𝑑𝑜 𝑏𝑟𝑖𝑡𝑎𝑑𝑜𝑟
𝐴𝐴 =
𝑇𝑏
0,8
= 62,5𝑐𝑚 com este valor encontrado podemos selecionar um britador que tenha uma
abertura igual ou acima deste valor na tabela. Na tabela, o primeiro valor (100) representa
largura e o segundo (80𝐶) representa a abertura.
Modelo 10080C
𝐴𝑃𝐴 = 𝐴𝑃𝐹 + 𝑀𝑄 = 4 + 1 = 5𝑖𝑛 = 12,7𝑐𝑚
𝐹𝑎𝑐𝑡𝑜𝑟 𝐶 𝑑𝑒𝑝𝑒𝑛𝑑𝑒 𝑑𝑒 {
𝑃 (
12,7
2
) = 6,35𝑐𝑚
50
80
× 100% = 62,5%
Agora precisamos encontrar a percentagem que corresponde a 6.35 𝑐𝑚 na tabela. De uma
forma, é possível achar se construir um gráfico em função da distribuição dada, mas como
sendo candidato para engenharia evite dar muitas voltas e faça logo interpolação dos dados da
distribuição e encontre os valores.
5𝑐𝑚 − − − − − −22,4%
6,35𝑐𝑚 − − − − − 𝑦
7,5𝑐𝑚 − − − − − 28,7%
54
Raúl F. Raúl, 2019
6,35𝑐𝑚 − 5𝑐𝑚
7,5𝑐𝑚 − 5
=
𝑦 − 22,4%
28,7𝑐𝑚 − 22,7%
→ 𝑦 = 25,55%
Com estes valores 𝐶 = (62.5% 𝑒 25.55%) vamos para tabela de fator C e achar o valor.
No diagrama abaixo, entra se com a percentagem de alimentação no eixo das abcissas e faz se
uma recta de baixo para cima ate intercetar as curvas das percentagens da relação entre tamanho
de bloco máximo de material e a abertura de entrada do britador e depois de intercetar, no
mesmo ponto de interceção vai fazer uma reta (de direita para esquerda) paralela ao eixo das
abcissas até intercetar o eixo vertical onde fará a litura do valor de C.
Figura 18: Diagrama do fator C para britadores (CHAVES, 2002).
𝐶 = (62.5% 𝑒 25.55%) = 1.3
𝐹𝑎𝑡𝑜𝑟 𝐷 𝑑𝑒𝑝𝑒𝑛𝑑𝑒 𝑑𝑒 {
𝐴𝑃𝐹 = 4
𝑇𝑒𝑜𝑟 𝑑𝑒 𝑎𝑟𝑔𝑖𝑙𝑎 = 6% (𝑣𝑎𝑚𝑜𝑠 𝑢𝑠𝑎𝑟 𝑜 𝑔𝑟á𝑓𝑖𝑐𝑜 𝐵)
𝑇𝑒𝑜𝑟 𝑑𝑒 ℎ𝑢𝑚𝑖𝑑𝑎𝑑𝑒 ≈ 8%
55
Raúl F. Raúl, 2019
Figura 19: Diagrama do fator D para britadores (CHAVES, 2002).
Para leitura do valor de D, os procedimentos são os mesmos aplicados para o valor de C, mas
aqui tem que tomar muita atenção pois temos dois grupos de curvas de humidade que são A e
B.
Vazão teórica
𝑄𝑡 =
90+140
2
= 115 𝑚3
/ℎ
𝑄 = 115
𝑚3
ℎ
∙ 1,41 ∙ 1.02 ∙ 1,3 ∙ 0,83 = 178,45 𝑚3
/ℎ
𝑄 = 178,45
𝑚3
ℎ
× 2,3
𝑡
𝑚3
= 410,45 𝑡/ℎ
Note: Com 𝐴𝑃𝐹 = 4𝑖𝑛, o resultado não é satisfatória para a produção recomendada, neste
caso, devemos tentar com ostros APFs e se não deu certo, vamos trocar o modelo.
Vamos tentar com 𝐴𝑃𝐹 = 6𝑖𝑛
𝑄 = 𝑄𝑡 ∙ 𝐴 ∙ 𝐵 ∙ 𝐶 ∙ 𝐷
𝐴 = 0,636 ∙ 2,3 = 1,41
𝐵 = 1,56 ∙ 𝑒(−0,0306∙14)
= 1.02
𝐴𝑃𝐴 = 𝐴𝑃𝐹 + 𝑀𝑄 = 6 + 1 = 5𝑖𝑛 = 17,78𝑐𝑚
𝐹𝑎𝑐𝑡𝑜𝑟 𝐶 𝑑𝑒𝑝𝑒𝑛𝑑𝑒 𝑑𝑒 {
𝑃 (
17,77
2
) = 8,89𝑐𝑚 𝑛𝑎 𝑡𝑎𝑏𝑒𝑙𝑎 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑚 34%
50
80
× 100% = 62,5%
Logo o 𝐶 = 1,38
56
Raúl F. Raúl, 2019
𝐹𝑎𝑡𝑜𝑟 𝐷 𝑑𝑒𝑝𝑒𝑛𝑑𝑒 𝑑𝑒 {
𝐴𝑃𝐹 = 6
𝑇𝑒𝑜𝑟 𝑑𝑒 𝑎𝑟𝑔𝑖𝑙𝑎 = 6% (𝑣𝑎𝑚𝑜𝑠 𝑢𝑠𝑎𝑟 𝑜 𝑔𝑟á𝑓𝑖𝑐𝑜 𝐵)
𝑇𝑒𝑜𝑟 𝑑𝑒 ℎ𝑢𝑚𝑖𝑑𝑎𝑑𝑒 ≈ 8%
Logo o 𝐷 = 0,9
𝑄𝑡 =
140+200
2
= 170 𝑚3
/ℎ
𝑄 = 170
𝑚3
ℎ
∙ 1,41 ∙ 1.02 ∙ 1,38 ∙ 0,9 = 314,42 𝑚3
/ℎ
𝑄 = 314,42
𝑚3
ℎ
× 2,3
𝑡
𝑚3
= 723,18 𝑡/ℎ
Note: Com 𝐴𝑃𝐹 = 6𝑖𝑛, o resultado é satisfatório. E só é satisfatória se a vazão calculada for
maior ou igual a vazão desejada.
5.5. Moagem
1. Escolha o diâmetro do moinho necessário para a moagem de um minério com 𝑊𝑖 =
17,0 𝑘𝑊ℎ/𝑡, a uma taxa de alimentação nova de 320 𝑡/ℎ em circuito fechado em um moinho
com descarga por transborde que opera a úmido. O grau de enchimento a ser usado é de 30%
e a o moinho opera a 75% da velocidade crítica. A alimentação tem 80% passante em 6,7 𝑚𝑚 e
o produto final deverá ter 80% passante em 120 micrómetros. A princípio, considere um
moinho com comprimento igual ao diâmetro.
Dados
𝑊𝑖 = 17,0 𝑘𝑊ℎ/𝑡
𝑇 = 320𝑡/ℎ
Descarga por transbordo
%𝑁 = 75%
𝐽 = 30%
𝐹80 = 6,7𝑚𝑚 = 6700𝜇𝑚
𝑃80 = 120𝜇𝑚
L=𝐷𝑚
𝐾𝑚𝑡 = 1 𝑝𝑎𝑟𝑎 𝑚𝑜𝑖𝑛ℎ𝑜𝑠 𝑑𝑒 𝑏𝑜𝑙𝑎𝑠 𝑎 ú𝑚𝑖𝑑𝑜 𝑐𝑜𝑚 𝑑𝑒𝑠𝑐𝑎𝑟𝑔𝑎 𝑝𝑜𝑟 𝑡𝑟𝑎𝑛𝑠𝑏𝑜𝑟𝑑𝑜
57
Raúl F. Raúl, 2019
Figura 20: Diagrama de 𝐾𝑆𝑃 e 𝐾𝑙 para moinhos (CHAVES, 2002).
𝐾𝑙 = {
𝑇𝑖𝑝𝑜 𝑑𝑒 𝑚𝑜𝑖𝑛ℎ𝑜 (𝑀𝑜𝑖𝑛ℎ𝑜 𝑑𝑒 𝑏𝑜𝑙𝑎𝑠)
𝐺𝑟𝑎𝑢 𝑑𝑒 𝑒𝑛𝑐ℎ𝑖𝑚𝑒𝑛𝑡𝑜 (𝐽 = 30%)
= 4,44
𝐾𝑆𝑃 = {
𝑇𝑖𝑝𝑜 𝑑𝑒 𝑚𝑜𝑖𝑛ℎ𝑜 (𝑀𝑜𝑖𝑛ℎ𝑜 𝑑𝑒 𝑏𝑜𝑙𝑎𝑠)
%𝑛𝐶𝑅 = 75%
= 0,198
𝐸 = 10 ∙ 𝑊𝑖 (
1
√𝑃80
−
1
√𝐹80
)
𝐸 = 10 ∙ 17 (
1
√120
−
1
√6700
) = 13,44𝐾 𝑊
𝑃 = 𝐸 × 𝑇 = 13,44 ∙ 320 = 4301,42 𝐾𝑊
𝑃 = 8,44 ∙ 𝐷𝑚
2,5
∙ 𝐿 ∙ 𝐾𝑚𝑡 ∙ 𝐾𝐿 ∙ 𝐾𝑆𝑃
No exercício diz se que o diâmetro (D) do moinho é igual ao comprimento (L) do moinho.
𝐷 = √
𝑃
8,44∙𝐾𝑚𝑡∙𝐾𝐿∙𝐾𝑆𝑃
3,5
→ 𝐷 = √
𝑃
8,44∙𝐾𝑚𝑡∙𝐾𝐿∙𝐾𝑆𝑃
3,5
= 6,17𝑚𝑚
Pela ordem da organização deste artigo, era suposto seguir o capitulo de ciclones e
hidrociclones nesta parte, mas veremos a resolução dos exercícios sobre esse tema na ficha de
exercício no final do artigo.
58
Raúl F. Raúl, 2019
5.6. Agitação e mistura (Exercícios de Paiva)
1. Um tanque de 1,83 m de diâmetro contendo 4 chicanas é mantido sob agitação. O agitador
é do tipo “flat six-blade turbine” com diâmetro 0,61 m e rotação de 90 rpm. A largura da
chicana é de 0,15 m e T = Z. Propriedades do fluído: μ = 10 cP e 𝜌 = 929 kg/m3
.
a) calcule o número de potência e a potência.
b) a potência, no caso de um líquido com viscosidade de 100.000 cP.
c) compare os resultados.
Dados
Z = 1,83
O agitador é do tipo “flat six-blade turbine”
D = 0.61 m
N = 90 rpm
B = 0.15 m
T = Z
μ = 10 cP 1cp (𝐶𝑒𝑛𝑡𝑖𝑝𝑜𝑖𝑠𝑒 = 0,001𝑘𝑔/𝑚/𝑠)
𝜌 = 929 kg/m3
a) Cálculo de número de potência e a potência.
𝑅𝑒 =
𝜌𝑁𝐷2
𝜇
→ 𝑅𝑒 =
929×90
60
⁄ 𝑟𝑎𝑑/𝑠×0,612
0,01𝑘𝑔
𝑚
/𝑠
= 5,2 × 104
𝑁𝑃𝑜 {
𝑅𝑒
𝑇𝑖𝑝𝑜 𝑑𝑒 𝑎𝑔𝑖𝑡𝑎𝑑𝑜𝑟
Para acharmos o número de potência, vamos recorrer ao diagrama abaixo, mas também é
possível calcular usando a sua formula. Mas como não temos a potência, teremos que usar o
diagrama. Os procedimentos para fazer a leitura no diagrama, são os mesmos usados na leitura
dos parâmetros da seleção dos britadores.
𝑁𝑃𝑜 {
𝑅𝑒 = 5,2 × 104
𝑇𝑖𝑝𝑜 𝑑𝑒 𝑎𝑔𝑖𝑡𝑎𝑑𝑜𝑟 (𝑓𝑙𝑎𝑡 𝑠𝑖𝑥 − 𝑏𝑙𝑎𝑑𝑒 𝑡𝑢𝑟𝑏𝑖𝑛𝑒) 𝑁𝑢𝑚𝑒𝑟𝑜 1 𝑛𝑜 𝑑𝑖𝑎𝑔𝑟𝑎𝑚𝑎
= 4,8 ≈ 5
59
Raúl F. Raúl, 2019
𝑊 =
𝜕𝑤
𝜕𝑡
= 𝑃 = 𝑁𝑃𝑜 ∙ 𝑁3
∙ 𝐷5
∙ 𝜌
𝑃 = 5 ∙ (
90
60
𝑟𝑎𝑑
𝑠
)
3
∙ 0,615
∙ 929 = 1324,1 𝑊𝑎𝑡𝑡𝑠
b) A potência no caso da mudança de viscosidade
𝑅𝑒 =
𝜌𝑁𝐷2
𝜇
→ 𝑅𝑒 =
929×90
60
⁄ 𝑟𝑎𝑑/𝑠×0,612
100𝑘𝑔
𝑚
/𝑠
= 5,18 ≈ 5,2
Com este valor de Reinhold, O número de potência é igual a 15 na tabela.
Logo, 𝑃 = 3 𝑣𝑒𝑧𝑒𝑠 𝑎 𝑝𝑟𝑖𝑚𝑒𝑖𝑟𝑎 𝑝𝑜𝑡ê𝑛𝑐𝑖𝑎 = 3972.3 𝑊𝑎𝑡𝑡𝑠
2. Considere o mesmo sistema e agitador do exercício anterior. Deseja-se fazer o “scale-up”
desse sistema para um com volume três vezes maior, segundo dois critérios: a) mantendo a
mesma condição de transporte de massa; b) mantendo a mesma condição de escoamento.
a) mantendo a mesma condição de transporte de massa, isto significa manter a mesma relação
𝑃
𝑉
⁄ .
𝑁2
𝑁1
= (
1
𝑅
)
𝑛
= (
𝐷2
𝐷1
)
𝑛
𝑛 =
2
3
𝑉1 = 𝐴 ∙ ℎ =
𝜋𝑑2
4
∙ ℎ 𝑠𝑎𝑏𝑒𝑛𝑑𝑜 𝑞𝑢𝑒 𝑇 = 𝑍 𝑙𝑜𝑔𝑜 𝑑 = ℎ → 𝑑2
= 𝑑 → 𝑑2
∙ 𝑑 = 0 → 𝑑3
= 0
𝑉1 =
𝜋
4
∙ 𝑑3
=
𝜋
4
∙ 1,833
= 4,8 𝑚3
𝑆𝑎𝑏𝑒 𝑠𝑒 𝑞𝑢𝑒 𝑉2 = 3 ∙ 𝑉1 = 3 ∙ 4,8
𝑅 =
𝑉2
𝑉1
=
3∙4,8
4,8
= 3
𝑁2
𝑁1
= (
1
𝑅
)
𝑛
=
𝑁2
90𝑟𝑝𝑚
= (
1
3
)
2
3
= 𝑁2 = 43,26 𝑟𝑝𝑚
b) mantendo a mesma condição de escoamento 𝑛 = 1
𝑁2
𝑁1
= (
1
𝑅
)
𝑛
=
𝑁2
90𝑟𝑝𝑚
= (
1
3
)
1
= 𝑁2 = 30 𝑟𝑝𝑚
3. O “overflow“ de um hidrociclone deve ser condicionado em um tanque. O tanque tem
diâmetro de 3 m, chicanas, e profundidade de 3 m. O impelidor é do tipo “pitched blade, de 90
60
Raúl F. Raúl, 2019
cm de diâmetro, 45 cm acima do fundo. Qual é a potência requerida? 𝜌 = 3,145𝑔/𝑐𝑚3
,𝐶𝑣 =
15,3 %,𝑑 = 150 𝜇𝑚.
Dados
T = 3 m
C = 45 cm = 0.45 m
D = 90 cm = 0.90 m
𝜌 = 3,145 𝑔/𝑐𝑚3
𝐶𝑣 = 15,3
𝑑 = 150 𝜇𝑚
1 − 𝜀 = 0.153 → 𝜀 = 0.847
𝑇/𝐷 = 30/9 = 3.3333333333333333
𝐶/𝑇 = 0.45/3 = 0.15
𝑉𝜃 = √4/3𝑔𝑑50
∆𝜌
𝐶𝐷𝜌𝑙
= 𝑉𝜃 = √4/3 ∙ 9,81 ∙ 0,000150
2145
0,44∙1000
= 0,0977𝑚/𝑠
𝑃
𝑉
⁄ = 0,092 ∙ 𝑔 ∙ 𝑇/𝐷 ∙ 𝑉𝜃 ∙ √(
1−𝜖
𝜖
) ∙ ∆𝜌 ∙ 𝑒5,3∙
𝐶
𝑇
𝑃
𝑉
⁄ = 0,092 ∙ 9,81 ∙ 3,33 ∙ 0,0977 ∙ √(
0,153
0,847
) ∙ 2145 ∙ 𝑒5,3∙0,15
= 592,17 𝑊
𝑚3
⁄
𝑉 =
𝜋
4
∙ 𝑑3
=
𝜋
4
∙ 33
= 21,20 𝑚3
[𝑊
𝑚3
⁄ × 𝑚3
]
𝑃 = 592,17 𝑊
𝑚3
⁄ × 21,20 𝑚3
= 12557,40 𝑊𝑎𝑡𝑡𝑠 = 12,55740 𝐾𝑊
4. Um sistema de agitação de laboratório (volume = 10 litros) opera a 150 rpm (agitador
turbina) e com potência de agitação de 100 W. O tempo adequado para a mistura é de 30
minutos. Deseja-se fazer o “scale-up” para um tanque de 100 litros, com geometria similar, e,
obviamente, com mistura adequada. Avalie as seguintes situações: a) Mantendo-se a mesma
relação potência/volume, que a do laboratório, qual o tempo necessário e a rotação N; b)
61
Raúl F. Raúl, 2019
Mantendo-se o tempo em 30 minutos, qual a rotação N e a relação Potência/volume. Considere
a condição de regime turbulento.
Dados
𝑉1 = 10𝑙 𝑒 𝑉2 = 100𝑙
𝑁1 = 150 𝑟𝑝𝑚
𝑃 = 100𝑊
𝑡1 = 30 𝑚𝑖𝑛
a) Mantendo-se a mesma relação potência/volume, que a do laboratório, qual o tempo
necessário e a rotação N.
𝑛 =
2
3
𝑡2
𝑡1
= (
𝐷2
𝐷1
)
11
18
Sem nenhuma informação sobre Z, então assume se que Z=T
1𝑙 = 10−3
𝑚3
𝑉1 = 0,01 𝑚3
𝑉2 = 0,01 𝑚3
𝑉1 = 𝐴 ∙ ℎ =
𝜋𝑑2
4
∙ ℎ = 𝑉 =
𝜋
4
𝑑3
𝑑 = √
𝑉4
𝜋
3
{
𝑑1 = √
𝑉4
𝜋
3
= 0,23𝑚
𝑑2 = √
𝑉4
𝜋
3
= 0,50𝑚
𝑅 =
𝑉2
𝑉1
=
0,1
0,01
= 10
Tempo
𝑡2
𝑡1
= (
𝐷2
𝐷1
)
11
18
=
𝑡2
30
= (
0,50
0,23
)
11
18
= 𝑡2 = 48,21 𝑚𝑖𝑛 ≈ 49 𝑚𝑖𝑛
Rotação
62
Raúl F. Raúl, 2019
𝑁2
𝑁1
= (
1
𝑅
)
𝑛
=
𝑁2
90𝑟𝑝𝑚
= (
1
10
)
2
3
= 𝑁2 = 32,31 𝑟𝑝𝑚
Mantendo-se o tempo em 30 minutos, qual a rotação N e a relação Potência/volume. Considere
a condição de regime turbulento.
𝑃2
𝑉2
𝑃1
𝑉1
= (
𝐷2
𝐷1
)
11
4
5.7. Espessamento
1. O overflow de um hidrociclone deve ser espessado em um sedimentador contínuo.
𝑄𝐴=1017𝑚3
/ℎ,
𝐶𝐴=236𝑘𝑔/𝑚3
𝐶=265𝑘𝑔/𝑚3
, 𝐶𝑒 = 550
𝑑𝑖𝑎𝑚𝑒𝑡𝑟𝑜 𝑑𝑎 𝑝𝑎𝑟𝑡í𝑐𝑢𝑙𝑎 100𝜇𝑚.𝐷𝑒𝑛𝑠𝑖𝑑𝑎𝑑𝑒 𝑑𝑜 𝑠𝑜𝑙𝑖𝑑𝑜 é 𝑑𝑒 1.8 𝑔/𝑚3
Tempo de residência na zona de compressão 1.25h. viscosidade da polpa a 25 graus celsius é
de 1cp.
Determine:
a) A área mínima do espessador.
b) Diâmetro do espessador.
c) Profundidade do espessador.
Para a resolução deste exercício vamos usar o método de Roberts.
Dados
𝑄𝐴=1017𝑚3
/ℎ,
𝐶𝐴=236𝑘𝑔/𝑚3
𝐶=265𝑘𝑔/𝑚3
, 𝐶𝑒 = 550
𝜌𝑠 = 1,8 𝑔/𝑚3
𝑡 = 1,25ℎ
𝜇 = 1𝑐𝑝 = 0,001
63
Raúl F. Raúl, 2019
𝑉𝑡 =
𝑔∙𝑑𝑝
2(𝜌𝑠−𝜌𝑙)
18𝜇
=
9,81∙0,00012(1800−1000)
18∙0,001
= 4,3 × 10−3
𝑚/ℎ
𝑆𝑚𝑖𝑛 =
𝑄𝐴𝐶𝐴(
1
𝐶𝐶
−
1
𝐶𝐸
)
𝜇𝐶
=
1017∙236(
1
265
−
1
550
)
4,3×10−3
= 1836,15𝑚2
𝐷 = √
4𝐴
𝜋
= √
4∙1836,15
𝜋
= 48 𝑚
𝐻 = 𝑄𝐴(𝑡𝑢 − 𝑡𝑐)
𝐶𝐴
𝑆∙𝜌𝑠
= 1017 ∙ 1,25
236
1836,15∙1800
= 0,09 𝑚
𝐻2 = 0,072 ∙ 𝐷 = 0,072 ∙ 48 = 3,4 𝑚
𝐻3 = 0,5 𝑚
𝐻𝑡𝑜𝑡𝑎𝑙 = 4,04 𝑚
5.8. Peneiramento
1. Você deseja dimensionar uma peneira vibratória industrial para ser alimentada com 280 t/h
de minério com distribuição granulométrica dada por:
Tabela 14: Distribuição granulométrica do exercício de peneiramento.
Abertura de
peneira
(mm)
12,5 9,5 6,3 4,75 2,38
Passante
(%)
100,0 82,5 45,3 12,9 7,2
Fonte: JAIME. C, 2019.
A peneira industrial tem abertura de 4,75 mm e irá operar a uma inclinação de 20 graus em
relação à horizontal. O diâmetro de fio (de aço) é 2 mm. A peneira irá operar com aspersão de
água. A massa específica aparente do minério é de 1650 kg/m3
.
a) Qual a abertura efetiva da peneira?
b) Qual a percentagem de área aberta da peneira?
c) Qual a área da peneira que deverá ser usada?
Dados
ℎ = 4,75𝑚𝑚
64
Raúl F. Raúl, 2019
𝜃 = 20°
𝑑𝑤 = 2𝑚𝑚
𝑇 = 𝐴𝐵𝐶𝐷𝐸𝐹𝐺 ∙ 𝐴𝑃
𝐴 = 12,13 ∙ ℎ𝑡0,32
− 10,3 para ℎ𝑡 < 51𝑚𝑚
𝐴 = 0,34ℎ𝑡 + 14,41 para ℎ𝑡 ≥ 51𝑚𝑚
ℎ𝑡 = (4,75 + 2)𝑐𝑜𝑠20 − 2 = 4,341𝑚𝑚
𝐴 = 0,34 ∙ 4,342 + 14,41 = 14,88 para ℎ𝑡 ≥ 51𝑚𝑚
% da área aberta (𝐴𝐴)
𝐴𝐴 = 21,5 log10 4,75 + 37 = 34,033
𝐵 = 1,6 − 1,2[1 − 0,11] = 0,532
𝐶 = 0,7 + 01,2 ∙ 0,07 = 0,784
𝑇 = 1,26 ∙ ℎ𝑡 → 𝐷 = 1,1 − 0,1 ∙ 𝐸 {
→⟶⟶ 𝑆𝑒𝑐𝑜 𝐸 = 0
𝐻𝑢𝑚𝑖𝑑𝑜 {
𝐸 = 1𝑃 𝑠𝑒 𝑇 ≤ 1
𝐸 = 1,5 + 0,25𝑇 𝑠𝑒 𝑇 ≤ 2
𝐸 = 2,5𝑝44 𝑠𝑒 𝑇 ≤ 6
E para húmido
𝐸 = 2,5𝑝44 𝑠𝑒 𝑇 ≤ 6
12,9 − − − − − −4,75
44 − − − − − − − 𝑦
45,3 − − − − − −6,3
𝑦 =
31,1×1,55
32,4
+ 4,78 = 6,21
𝐸 = 2,5 × 6,21 𝑠𝑒 𝑇 ≤ 6
𝐷 = 1,1 − 0,1 ∙ 2,5 ∙ 6,21 = 0,45
𝐹 =
𝜌
1600
=
1650
1600
= 1,03
𝐺 = 0,975[1 − 𝑃(1,25ℎ𝑡) + 𝑃(0,75ℎ𝑡)]0,511
65
Raúl F. Raúl, 2019
𝑃(1,25ℎ𝑡) = 𝑃(5,42) = 0,054
𝑃(0,75ℎ𝑡) = 𝑃(3,25) = 0,032
𝐺 = 0,975[(1 − 0,054) + 0,032]0,511
= 0,976
𝐴𝑃 =
280
15,88×0,532×0,784×0,85×2,5×1,03×0,978
= 19,78𝑚2
5.9. Lista de exercícios
1. Uma bateria de 20 ciclones, de 10 polegadas opera a pressão de 3,5bar; com sólidos de
densidade 3500𝑘𝑔/𝑚3
e com uma polpa de 70% de a água em volume, na alimentação.
a) Especificar o tamanho de separação.
b) A taxa de produção da polpa por turno. Considere duração do turno de 8h.
c) A taxa de produção de sólidos por turno.
d) Consumo de água por turno.
Dados
D = 10in
P = 3.5 bar
𝜌𝑠 = 3500𝑘𝑔/𝑚3
= 3.5 𝑡/𝑚3
𝐶𝑝 = 70% 𝑑𝑒 á𝑔𝑢𝑎 𝑒𝑚 𝑣𝑜𝑙𝑢𝑚𝑒 (30% 𝑑𝑒 𝑠ó𝑙𝑖𝑑𝑜𝑠)
Tamanho de separação
𝑆 = 𝑆𝑏 ∙ 𝐶1 ∙ 𝐶2 ∙ 𝐶3
𝑆𝑏 = 10𝑖𝑛 𝑛𝑎 𝑡𝑎𝑏𝑒𝑙𝑎 = 52𝜇𝑚
𝐶1 (𝑝𝑒𝑠𝑜 𝑒𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑜) = 0,8
𝐶2(𝑃𝑟𝑒𝑠𝑠𝑎𝑜) = 0,62
𝐶3 (% de sólidos em volume) = 6,5
𝑆 = 𝑆𝑏52 ∙ 0,8 ∙ 0,62 ∙ 6,5 = 167,64𝜇𝑚
Taxa de produção de polpa/turno
66
Raúl F. Raúl, 2019
1 𝑡𝑢𝑟𝑛𝑜 = 8ℎ𝑜𝑟𝑎𝑠
𝑇𝑎𝑥𝑎 𝑑𝑒 𝑝𝑟𝑜𝑑𝑢çã𝑜 {
𝑃𝑟𝑒𝑠𝑠ã𝑜
𝐷𝑖â𝑚𝑒𝑡𝑟𝑜
= 450𝐺𝑃𝑀
450𝐺𝑃𝑀 = 102,27 𝑚3
/ℎ
102,27
𝑚3
ℎ
× 8ℎ
𝑡𝑢𝑟𝑛𝑜
⁄ × 20 𝑐𝑖𝑐𝑙𝑜𝑛𝑒𝑠 = 16363,63
𝑚3
𝑡𝑢𝑟𝑛𝑜
Taxa de produção de sólidos por turno
Taxa de polpa vezes a % sólidos
16363,63
𝑚3
𝑡𝑢𝑟𝑛𝑜
× 0,3 = 4909,09
𝑚3
𝑡𝑢𝑟𝑛𝑜
4909,09
𝑚3
𝑡𝑢𝑟𝑛𝑜
×
3,5𝑡
𝑚3
= 17181,81𝑡/𝑡𝑢𝑟𝑛𝑜
Consumo de água
Taxa de polpa vezes a % de água
16363,63
𝑚3
𝑡𝑢𝑟𝑛𝑜
× 0,7 = 11454,54
𝑚3
𝑡𝑢𝑟𝑛𝑜
2. Estime o número mínimo de hidrociclones que você usaria em uma bateria de classificação
para separar produto grosso do fino a um tamanho de corte na faixa de 80 a 100 micrómetros.
A percentagem de sólidos (em peso) da alimentação é de 25% e a taxa alimentação de sólidos
que devera ser processada é de 1200𝑡/ℎ, a massa especifica de minério é de 2800𝑘𝑔/𝑚3
e
considere que os hidrociclones operariam aproximadamente 10psi.
a) Especifique a potência de cada hidrociclone.
Dados Primeiro passo: achar a média do diâmetro da partícula.
𝑑𝑝 = 80 𝑎 100𝜇𝑚 𝑑50 =
80+100
2
= 90𝜇𝑚
%
𝑆𝑤
𝐶𝑠𝑤
= 25% Segundo passo: selecionar um ciclone que está dentro da média de
diâmetro da partícula calculada.
𝑇 = 1200𝑡/ℎ Com média do diâmetro da partícula igual a 90𝜇𝑚 temos 𝐷20 =
60 𝑎 120𝜇𝑚
67
Raúl F. Raúl, 2019
𝜌𝑚𝑖𝑛 = 2800𝑘𝑔/𝑚3
Terceiro passo: No mesmo ciclone selecionado,
achar a vazão que depende de diâmetro da partícula e pressão.
𝑃 = 10𝑝𝑠𝑖 vazão = {
𝑑50 = 90𝜇𝑚
pressão = 10psi
= 600𝐺𝑃𝑀
𝑃𝑜𝑡 =?
600𝐺𝑃𝑀 =
136,36𝑚3
ℎ
𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒 𝑎 𝑣𝑎𝑧ã𝑜 𝑚á𝑠𝑠𝑖𝑐𝑎
𝑁ℎ𝑖𝑑 =? 𝜌 =
𝑚
𝑉
= 𝑉 =
𝑚
𝜌
=
1200𝑡/ℎ
2,8𝑡/𝑚3
= 428,6
𝑚3
ℎ
𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒 𝑎 𝑣𝑎𝑧ã𝑜 𝑣𝑜𝑙𝑢𝑚é𝑡𝑟𝑖𝑐𝑎
Quarto passo: achar o número de hidrociclones.
𝑁ℎ𝑖𝑑 =
𝑉
𝑄
=
428,6
136,36
= 3,2 para o número de hidrociclones, admite se um número inteiro que para
este caso pode ser 3 ou 4 hidrociclones.
𝐷𝑖â𝑚𝑒𝑡𝑟𝑜 = 20 𝑃 =
𝑃(𝐾𝑃𝑎)∙𝑄(𝑣𝑜𝑙𝑢𝑚𝑒)
3600
=
68,94∙428,6
3600
= 8,20 𝐾𝑃𝑎
3. Estime a potência demandada, usando a equação de Bond, na moagem de 250𝑡/ℎ de minério
considerando que o índice de trabalho de 15,5𝑘𝑤ℎ/𝑡 𝑒 80% da alimentação é passante em
5𝑚𝑚, e que se deseja atingir uma granulometria de 80% passante em 150 micrómetro.
Dados
𝑇 = 250𝑡/ℎ
𝑊𝑖 = 15,5𝑘𝑤ℎ/𝑡
𝑃80 = 150𝜇𝑚
𝐹80 = 5𝑚𝑚 = 5000𝜇𝑚
Usando a equação de Bond.
𝐸 = 10 ∙ 𝑊𝑖 (
1
√𝑃80
−
1
√𝐹80
)
𝐸 = 10 ∙ 15,5 (
1
√150
−
1
√5000
)
𝐸 = 10,46𝐾𝑊
68
Raúl F. Raúl, 2019
4. Uma célula de flotação mecânica é utilizada para a flotação de silicatos em polpa de calcário
e apresenta volume total de 42,5𝑚3
. O rotor tipo estrela apresenta diâmetro de 990mm e opera
a N =130rpm. A velocidade de ar medida na entrada do duto de admissão (D =10in) foi de
5,15 𝑚/𝑠. Determine os números adimensionais de bombeamento do ar, Potência, Reynolds e
Froude, dados: 𝑔 = 9.81𝑚/𝑠2
; 𝜇𝑝𝑜𝑙𝑝𝑎 = 0,0035𝑃𝑎. 𝑠; 𝜌𝑝𝑜𝑙𝑝𝑎 = 1530 𝑘𝑔/
𝑚3
, 𝑐𝑜𝑟𝑟𝑒𝑛𝑡𝑒 = 224𝐴; 𝑡𝑒𝑛𝑠ã𝑜 = 332𝑉, 𝑒𝑓𝑖𝑐𝑖ê𝑛𝑐𝑖𝑎 𝑑𝑜 𝑚𝑜𝑡𝑜𝑟 =
0,77 𝑒 𝑓𝑎𝑡𝑜𝑟 𝑑𝑒 𝑝𝑜𝑡ê𝑛𝑐𝑖𝑎 = 0,9
Dados
𝑉𝑡 = 42,5𝑚3
𝑔 = 9.81𝑚/𝑠2
Rotor tipo estrela com 𝐷 = 990 𝑚𝑚 𝜇𝑝𝑜𝑙𝑝𝑎 = 0,0035𝑃𝑎. 𝑠
N =130rpm 𝜌𝑝𝑜𝑙𝑝𝑎 = 1530 𝑘𝑔/𝑚3
𝐷𝑡𝑢𝑏𝑜 = 10𝑖𝑛 = 0,254𝑚 𝐼 = 224𝐴
𝑣 = 5,15 𝑚/𝑠 𝑈 = 332𝑉
ƞ = 77% 𝐹𝑃 = 0,9
Primeiro passo
𝐷𝑡𝑢𝑏𝑜 = 10𝑖𝑛 = 0,254𝑚 𝑄𝑔 = 𝐴𝑣 𝐴 =
𝜋𝐷2
4
𝑣 = 5,15 𝑚/𝑠 𝑄𝑔 =
𝜋𝐷2
4
𝑣 =
𝜋(0,254)2
4
∙ 5,15 = 0,26𝑚3
/𝑠
Segundo passo
𝑄𝑔 = 0,26𝑚3
/𝑠 𝑁𝑄 =
𝑄𝑔
𝑁𝐷3
=
0,26𝑚3/𝑠
(
130
60
)𝑟𝑝𝑚∙0,993
=0,122
N=130rpm
𝐷 = 990𝑚𝑚 = 0,99𝑚
Terceiro passo
Para achar o número de potência, primeiro devemos calcular a potência ativa.
𝑈 = 332𝑉 𝑃 = √3 ∙ 𝑈 ∙ 𝐼 ∙ 𝑐𝑜𝑠𝜃 ou 𝑃 = √3 ∙ 𝑈 ∙ 𝐼 ∙ ƞ ∙ 𝐹𝑃
69
Raúl F. Raúl, 2019
𝐼 = 224𝐴 𝑃 = √3 ∙ 332 ∙ 224 ∙ 0,77 ∙ 0,9
𝐹𝑃 = 0,9 𝑝 = 89264,744 𝑊𝑎𝑡𝑡𝑠
ƞ = 77%
Com a potência ativa calculada, podemos achar o número de potência.
𝐷 = 990𝑚𝑚 = 0,99𝑚 𝑁𝑝 =
𝑃
𝑁3∙𝐷5∙𝜌
𝜌𝑝𝑜𝑙𝑝𝑎 = 1530
𝑘𝑔
𝑚3
𝑁𝑝 =
89264,744 𝑊𝑎𝑡𝑡𝑠
(
130
60
)
3
∙0,995∙1530
N =130rpm 𝑁𝑝 = 6,03
Quarto passo
N =130rpm 𝑅𝑒 =
𝑁∙𝐷2∙𝜌
𝜇
𝜌𝑝𝑜𝑙𝑝𝑎 = 1530
𝑘𝑔
𝑚3
𝑅𝑒 =
(
130
60
)∙0,992∙1530
0,0035
𝐷 = 990𝑚𝑚 = 0,99𝑚 𝑅𝑒 = 928294,7143
𝜇𝑝𝑜𝑙𝑝𝑎 = 0,0035𝑃𝑎. 𝑠
Quinto passo
𝑔 = 9.81𝑚/𝑠2
𝐹
𝑟 =
𝑁2∙𝐷
𝑔
𝐷 = 990𝑚𝑚 = 0,99𝑚 𝐹
𝑟 =
(
130
60
)
2
∙0,99
9,81
= 0,4737
𝑁 = 130𝑟𝑝𝑚
5. Estime o diâmetro e altura de um espessador contínuo industrial a partir dos dados de
sedimentação em proveta abaixo, dados: 𝑄𝐴 = 80𝑚3
/ℎ; 𝐶𝐴 = 313𝑔/𝑙; 𝐶𝑂𝐹 = 141,5𝑔/𝑙;
𝐶𝑈𝐹 = 784,1𝑔/𝑙; 𝐶𝑚 = 44% e se 𝐶𝐴 = 𝐶𝑂.
Para a resolução deste exercício, primeiro deve se construir o gráfico de altura (cm) em função
do tempo (min) a partir dos dados de sedimentação em proveta.
70
Raúl F. Raúl, 2019
Tabela 15: Dados de sedimentação em proveta.
Altura (cm) Tempo (min)
40 0
35 7,73
30 16,3
25 22,68
20 29,13
15 36,25
10 44,0
5 (Zc) 61,27 (tc)
2 120,0
1,8 240,0
Fonte: JAIME. C, 2019.
Figura 21: Representação gráfica dos dados de sedimentação em proveta (Autor, 2019).
A partir do gráfico temos:
Zic=12 cm
Zc=5 cm
71
Raúl F. Raúl, 2019
Tc=61,27 min
Tu=103 min
Segundo passo: calcular a área do espessador
𝜇𝐶 =
𝑍𝑖𝑐−𝑍𝑐
𝜃𝑐
𝐶𝐶 =
𝐶0∙𝑍0
𝑍𝑖𝑐
𝜇𝐶 =
12−5
61,27
= 0,116
𝑐𝑚
𝑚𝑖𝑛
= 0,06 𝑐𝑚/ℎ 𝐶𝐶 =
40∙313
12
= 1043,33 𝑔/𝑙
𝑆𝑚𝑖𝑛 =
𝑄𝐴𝐶𝐴(
1
𝐶𝐶
−
1
𝐶𝐸
)
𝜇𝐶
=
80∙313(
1
1043,3
−
1
784,1
)
0,06
= 132,23𝑚2
Diâmetro do espessador
𝐷 = √
4𝐴
𝜋
= √
4∙132,23
𝜋
= 12,97 𝑚
Altura do espessador
𝐻𝑐 =
𝑄𝐴
𝐴∙𝐶𝑚
(𝑡𝑢 − 𝑡𝑐)
1
60
= 𝐻𝑐 =
80
132,23∙0,44
(103 − 61,27)
1
60
= 0,95 𝑚
𝐻2 = 0,073𝐷 = 0,073 ∙ 12,97 = 0,94 𝑚
𝐻3 = 0,5 𝑚 𝑉𝑎𝑙𝑜𝑟 𝑝𝑎𝑑𝑟𝑜𝑛𝑖𝑧𝑎𝑑𝑜
𝐻𝑡𝑜𝑡𝑎𝑙 = 𝐻𝑐 + 𝐻2 + 𝐻3
𝐻𝑡𝑜𝑡𝑎𝑙 = 0,95 = 0,94 + 0,5 = 2,39 𝑚
𝐻𝑃𝑎𝑟𝑡𝑒 𝑐𝑖𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎 = 2,39 − 0,5 = 1,89 𝑚
Note: Se a altura da parte cilíndrica for superior a 1,5 𝑚, adota se maior área para diminuir a
altura do espessador.
6. Estime a potência do motor necessário para girar um moinho de bolas que opera a seco com
descarga por transborde, medindo 4,1 m de diâmetro (interno) por 6 m de comprimento. O
moinho opera a uma velocidade de 16 RPM e com 32% de enchimento.
Dados
Moinho de bolas
Opera a seco com descarga por transbordo
72
Raúl F. Raúl, 2019
D = 4.1 m Primeiro passo: achar a %Ncr
L = 6 m 𝑁𝑐𝑟 =
42,3
√𝐷
=
42,3
√4,1
= 20,89
N=16 rpm %𝑁𝑐𝑟 =
𝑁
𝑁𝑐𝑟
× 100%
J = 32% %𝑁𝑐𝑟 =
16𝑟𝑝𝑚
20,89
× 100% = 76,58%
A seguir vamos para a tabela para acharmos os valores dos parâmetros 𝐾𝑠𝑝 e 𝐾𝑙.
𝐾𝑠𝑝 {
%𝑁𝑐𝑟 = 76,58%
𝑀𝑜𝑖𝑛ℎ𝑜 𝑑𝑒 𝑏𝑜𝑙𝑎𝑠
= 0,188
𝐾𝑙 {
𝐽 = 32%
𝑀𝑜𝑖𝑛ℎ𝑜 𝑑𝑒 𝑏𝑜𝑙𝑎𝑠
= 4,51
𝐾𝑚𝑡 é um fator para o tipo de moinho.
Para este que opera a seco com descarga por transbordo, 𝐾𝑚𝑡 = 1,25.
𝑃 = 8,44 ∙ 𝐷𝑚
2,5
∙ 𝐿 ∙ 𝐾𝑚𝑡 ∙ 𝐾𝐿 ∙ 𝐾𝑆𝑃
𝑃 = 8,44 ∙ 4,12,5
∙ 6 ∙ 1,25 ∙ 4,51 ∙ 0,188
𝑃 = 304,47 𝐾𝑊
7. Calcule a massa de minério, em quilogramas, necessária para executar um ensaio de moagem
em um moinho de laboratório cilíndrico, que mede 45,5 cm de diâmetro e 30,5 de comprimento
e que operará a um grau de enchimento de 35% de bolas e com 100% dos vazios preenchidos.
Considere que a massa específica do minério é de 2,8 g por centímetro cúbico.
Dados
Massa do minério = ? Primeiro vamos calcular o volume do moinho
D = 45.5 cm 𝑉 = 𝐴 × ℎ 𝐴 =
𝜋𝑑2
4
𝑉 =
𝜋𝑑2
4
× ℎ
L = 30.5 cm 𝑉 =
𝜋𝑑2
4
× ℎ = 49592,10 𝑐𝑚3
J = 35% a seguir vamos calcular o volume do minério.
100% de vazios preenchidos 𝑉minério = 𝑉𝑀𝑜𝑖𝑛ℎ𝑜 × 𝐽
𝜌𝑀𝑖𝑛é𝑟𝑖𝑜=2.8g/𝑐𝑚3
𝑉minério = 49592,10 × 0,35 = 17357,2 𝑐𝑚3
73
Raúl F. Raúl, 2019
E por último vamos calcular a massa do minério conforme o pedido do exercício.
𝜌minério =
𝑚minério
𝑉minério
𝑚minério = 𝜌minério × 𝑉minério
𝑚minério =
2.8g
𝑐𝑚3
× 17357,2 𝑐𝑚3
= 48600,25 𝑔
5.10. Teste 2 (10/05/2019)
1. Selecione o britador de mandíbulas necessário para realizar a britagem de 400 t/h de
minério de Zn (de densidade aparente de 2.7𝑡/m3
), com distribuição granulométrica
dada por:
Figura 22: Distribuição granulométrica do exercício de britagem (JAIME. C, 2019).
O índice de trabalho do minério é de 7 𝐾𝑊ℎ𝑟/𝑡𝑜𝑛, e o teor de argila é de 5.5%, sendo que a
umidade é aproximadamente 5%. Você deseja trabalhar normalmente a uma abertura de
posição fechada de 5 polegadas, se possível. Caso o britador selecionado não atender, indique
como você procederia na iteração a seguir, sem precisar refazer os cálculos.
Dados
Taxa=400t/h 𝐴 = 0,636 ∙ 2,7 = 1,71
𝜌𝑎 = 2,7𝑡/𝑚3
𝐵 = 1,56 ∙ 𝑒(−0,0306∙7)
= 1.02
74
Raúl F. Raúl, 2019
𝑊𝑖 = 7 𝐾𝑊ℎ𝑟/𝑡𝑜𝑛 𝐴𝐴 =
𝑇𝑏
0,8
= 87,5𝑐𝑚
Argila = 5,5% Modelo 12090C
Umidade = 5% 𝐴𝑃𝐴 = 5’’ + 1’’ = 6𝑖𝑛 = 15,24𝑐𝑚
APF = 5”
𝐹𝑎𝑐𝑡𝑜𝑟 𝐶 𝑑𝑒𝑝𝑒𝑛𝑑𝑒 𝑑𝑒 {
𝑃 (
15,24
2
) = 7,62𝑐𝑚
70
80
× 100% = 87,5%
→ {
𝑃(7,62 𝑐𝑚)
87,5%
→ {
22%
87,5%
→ 𝐶 = 0,78
𝐹𝑎𝑡𝑜𝑟 𝐷 𝑑𝑒𝑝𝑒𝑛𝑑𝑒 𝑑𝑒 {
𝐴𝑃𝐹 = 5𝑖𝑛
𝑇𝑒𝑜𝑟 𝑑𝑒 𝑎𝑟𝑔𝑖𝑙𝑎 = 5,5% (𝑣𝑎𝑚𝑜𝑠 𝑢𝑠𝑎𝑟 𝑜 𝑔𝑟á𝑓𝑖𝑐𝑜 𝐵)
𝑇𝑒𝑜𝑟 𝑑𝑒 ℎ𝑢𝑚𝑖𝑑𝑎𝑑𝑒 = 5%
→ 𝐷 = 0,84
𝑄𝑡 =
90+140
2
= 115 𝑚3
/ℎ
𝑄 = 115
𝑚3
ℎ
∙ 1,71 ∙ 1.2592 ∙ 0,78 ∙ 0,84 = 162,92 𝑚3
/ℎ
𝑄 = 162,92
𝑚3
ℎ
× 2,7
𝑡
𝑚3 = 439,89 𝑡/ℎ
5.11. Exame normal 2015 (agitação e mistura)
1. O overflow de um hidrociclone deve ser condicionado em um tanque. O tanque tem diâmetro
de 2.7 m, chicanas e profundidade de 2.7 m. o impelidor é do tipo pitched blade. Qual é a
potência requerida? 𝜌𝑠=2.6𝑔/𝑐𝑚3
, vazão da polpa no overflow 227.5𝑚3
/ℎ, 45.5𝑚3
/ℎ de sólidos,
diâmetro de corte é de 0.120mm
Dados
𝑇 = 2,7 𝑚 %𝑠ó𝑙(𝑣𝑜𝑙𝑢𝑚𝑒) =
𝑉𝑠
𝑉𝑝
× 100%
𝑍 = 2,7 𝑚 %𝑠ó𝑙(𝑣𝑜𝑙𝑢𝑚𝑒) =
45,5
227,5
× 100%
Impelidor pitched blade %𝑠ó𝑙(𝑣𝑜𝑙𝑢𝑚𝑒) = 20%
𝜌𝑠 =
2,6𝑔
𝑐𝑚3 = 2600𝑘𝑔/𝑚3
1 − 𝜖 = 20%
𝑄𝑝 = 227,5 𝑚3
/ℎ 𝜖 = 80%
𝑄𝑠 = 45,5 𝑚3
/ℎ
75
Raúl F. Raúl, 2019
𝑑50 = 0,120 𝑚𝑚 = 0,000120𝑚
𝑉𝜃 = √
4
3
𝑔𝑑50 ∙
∆𝜌
𝐶𝐷∙𝜌𝑙
= 𝑉𝜃 = √
4
3
9,81 ∙ 0,000120 ∙
1600
0,44∙1000
= 0,075𝑚/𝑠
𝑁𝑎 𝑡𝑎𝑏𝑒𝑙𝑎 𝑡𝑒𝑚𝑜𝑠 𝑎𝑠 𝑠𝑒𝑔𝑢𝑖𝑛𝑡𝑒𝑠 𝑟𝑒𝑙𝑎çõ𝑒𝑠 {
𝑇
𝐷
= 3
𝐶
𝑇
0,33
𝑃
𝑉
⁄ = 0,092 ∙ 𝑔 ∙
𝑇
𝐷
∙ 𝑉𝜃 ∙ √(
1−𝜀
𝜀
) ∙ ∆𝜌 ∙ 𝑒5,3∙
𝐶
𝑇
𝑃
𝑉
⁄ = 0,092 ∙ 9,81 ∙ 3 ∙ 0,075 ∙ √(
0,2
0,8
) ∙ 1600 ∙ 𝑒5,3∙0,33
𝑃
𝑉
⁄ = 933,9 𝑤
𝑚3
⁄
𝑉 = 𝐴 × ℎ 𝐴 =
𝜋𝑑2
4
𝑉 =
𝜋
4
× 𝑑3
=
𝜋
4
× 2,73
= 15,4 𝑚3
𝑃 = 933,9 𝑤
𝑚3
⁄ × 15,4 𝑚3
= 14437,15 𝑊𝑎𝑡𝑡𝑠 = 14,43715𝐾𝑊
5.12. Exame normal (22/05/2019)
1. Os dados coletados de uma amostragem do overflow de um hidrociclone de 10 polegadas de
diâmetro, em operação na Vale Moçambique, obteve se as análises granulométricas do fluxo
de OF (curva real), bem como as vazões de sólidos e água. A massa especifica dos sólidos é de
2,7𝑡/𝑚3
. O UF apresenta 2.2 t/h de sólidos e 1,2𝑚3
/ℎ de água. O OF 2.8 t/h de sólidos e
23,8𝑚3
/ℎ de água.
a) Determine o 𝑑50 das curvas.
b) Calcule a imperfeição e eficiência do hidrociclone.
c) Estime qual a pressão de operação que o hidrociclone deve estar operando.
d) Estime a potência que deve estar sendo consumida pelo hidrociclone.
e) Você é um integrante da equipa de engenheiros da empresa, apresente as prováveis causas
do problema e soluções.
Assuma a especificação do produto dada pela curva padrão.
76
Raúl F. Raúl, 2019
Figura 23: Curvas de partição de uma amostra de Overflow de hidrociclone (JAIME. C, 2019).
a) 𝑑50 das curvas
𝑑50 = 300𝜇𝑚 𝑐𝑢𝑟𝑣𝑎 𝑟𝑒𝑎𝑙
𝑑50 = 85𝜇𝑚 𝑐𝑢𝑟𝑣𝑎 𝑝𝑎𝑑𝑟ã𝑜
b) Imperfeição e eficiência
Dados
𝑑75 = 500𝜇𝑚 𝐼 =
𝑑75−𝑑25
2𝑑50
× 100% ƞ = 100% − 𝐼
𝑑50 = 300𝜇𝑚 𝐼 =
300−160
2∙300
× 100% ƞ = 100% − 56%
𝑑25 = 160𝜇𝑚 𝐼 = 56% ƞ = 44%
c) Pressão
Dados
𝐷 = 10𝑖𝑛
𝑂𝐹 = 2,8𝑡/ℎ 𝑒 23,8𝑚3
/ℎ 𝑑𝑒 á𝑔𝑢𝑎
77
Raúl F. Raúl, 2019
𝑈𝐹 = 2,2𝑡/ℎ 𝑒 1,2𝑚3
/ℎ 𝑑𝑒 á𝑔𝑢𝑎
𝜌 = 2,7𝑡/𝑚3
OF UF
𝑉 =
𝑚
𝜌
=
2,8𝑡/ℎ
2,7𝑡/𝑚3 = 1,037𝑚3
/ℎ 𝑉 =
𝑚
𝜌
=
2,2𝑡/ℎ
2,7𝑡/𝑚3 = 0,81𝑚3
/ℎ
𝑄𝑂𝐹 = 𝑉𝑠ó𝑙𝑖𝑑𝑜𝑠 + 𝑉á𝑔𝑢𝑎 𝑄𝑈𝐹 = 𝑉𝑠ó𝑙𝑖𝑑𝑜𝑠 + 𝑉á𝑔𝑢𝑎
𝑄𝑂𝐹 = 1,037𝑚3
/ℎ + 23,8𝑚3
/ℎ 𝑄𝑈𝐹 = 0,81𝑚3
/ℎ + 1,2𝑚3
/ℎ
𝑄𝑂𝐹 = 24,83𝑚3
/ℎ 𝑄𝑈𝐹 = 2,014𝑚3
/ℎ
𝑄𝑡𝑜𝑡𝑎𝑙 = 𝑄𝑂𝐹 + 𝑄𝑈𝐹
𝑄𝑡𝑜𝑡𝑎𝑙 = 26,84𝑚3
/ℎ
𝑄 = 9,5 × 10−3
× √𝑃 × 𝐷2
√𝑃 =
𝑄
9,5×10−3×√𝑃×𝐷2
𝑃 = (
𝑄
9,5×10−3×𝐷2
)
2
𝑃 = (
26,84
9,5×10−3×25,42
)
2
𝑃 = 19,17 𝐾𝑃𝑎
d) Potência
𝑃 =
𝑃(𝐾𝑃𝑎)×𝑄
3600
=
19,17×26,84
3600
= 0,14𝐾𝑊
5.13. Exame normal 2019 C/N
Dados
𝐹80 = 2,5 𝑚𝑚 𝐸 = 10𝑊𝑖 (
1
√𝑃80
−
1
√𝐹80
)
𝑃80 = 75 𝜇𝑚 𝐸 = 10 ∙ 12 (
1
√75
−
1
√2500
)
𝑄 = 230𝑡/ℎ 𝐸 = 1,98
𝑊𝑖 = 12𝐾𝑊ℎ/𝑡 𝑃 = 𝑇 × 𝐸
78
Raúl F. Raúl, 2019
𝐿 = 𝐷 = 1,25 𝑚 𝑃 = 230 × 1,98
Moagem a húmido 𝑃 = 455 𝐾𝑊
Descarga por diafragma
𝐽 = 28%
%𝑁𝑐𝑟 = 77% 𝑁𝑎𝑠 𝑡𝑎𝑏𝑒𝑙𝑎𝑠 {
𝐾𝑚𝑡 = 1,3
𝐾𝑙 = 4,02
𝐾𝑠𝑝 = 0,2
𝜌 = 2,7𝑡/𝑚3
𝑃 = 8,44 ∙ 𝐷𝑚
2,5
∙ 𝐿 ∙ 𝐾𝑚𝑡 ∙ 𝐾𝐿 ∙ 𝐾𝑆𝑃
No enunciado diz se que o diâmetro (D) do moinho é igual ao comprimento (L) do moinho.
𝐷 = 𝐿 = √
𝑃
8,44∙𝐾𝑚𝑡∙𝐾𝐿∙𝐾𝑆𝑃
3,5
→ 𝐷 = 𝐿 = √
445
8,44∙1,3∙4,02∙0,2
3,5
= 3,30𝑚
Dados
𝑑50 = 40 𝑎 50 𝜇𝑚 𝑑50 =
40+50
2
𝐶𝑤 = 20% 𝑑50 = 45
𝑇 = 90𝑡/ℎ Modelo 𝐷 − 4 = 𝑄 = 28 𝐺𝑃𝑀 = 6,44𝑚3
/ℎ
𝜌 = 1,6𝑡/𝑚3
𝑉 =
𝑚
𝜌
=
90
1,6
= 56,25 𝑚3
/ℎ
𝑃 = 10𝑝𝑠𝑖 𝑁ℎ𝑖𝑑 =
𝑉
𝑄
=
56,25
6,44
= 8,73 ≈ 9 ℎ𝑖𝑑𝑟𝑜𝑐𝑖𝑐𝑙𝑜𝑛𝑒𝑠
6. FILTRAÇÃO
É a operação unitária na qual se separa uma mistura sólido fluído em suspensão através da
passagem do fluído, por uma barreira ou meio poroso, chamado filtro, com pequenos orifícios,
onde retém as partículas sólidas contidas na mistura.
Parâmetros que influenciam no processo de filtragem
 A temperatura da polpa;
 A viscosidade;
Ispt selecção de maquinaria

More Related Content

What's hot

Apresentação TCC - Sistemas de Informação
Apresentação TCC - Sistemas de Informação Apresentação TCC - Sistemas de Informação
Apresentação TCC - Sistemas de Informação Fernando Almeida
 
Aula de Contabilidade Basica.ppt
Aula de Contabilidade Basica.pptAula de Contabilidade Basica.ppt
Aula de Contabilidade Basica.pptPedro Luis Moraes
 
01 materiais
01 materiais01 materiais
01 materiaisTom Souto
 
Aula de Preparação de Cardápios.
Aula de Preparação de  Cardápios.Aula de Preparação de  Cardápios.
Aula de Preparação de Cardápios.Roberta Braga
 
Fundamentos da contabilidade
Fundamentos da contabilidadeFundamentos da contabilidade
Fundamentos da contabilidadeCalculos Na Veia
 
Fator de correção de alimentos
Fator de correção de alimentosFator de correção de alimentos
Fator de correção de alimentosJose Boulos
 
Gerenciamento de Processos de Negócio - BPM: O modelo de gestão do Século XXI
Gerenciamento de Processos de Negócio - BPM: O modelo de gestão do Século XXIGerenciamento de Processos de Negócio - BPM: O modelo de gestão do Século XXI
Gerenciamento de Processos de Negócio - BPM: O modelo de gestão do Século XXICRA-BA
 
Manufatura Digital
Manufatura Digital Manufatura Digital
Manufatura Digital Raihsa
 
Gestão de custos terminologia básica livre
Gestão de custos   terminologia básica livreGestão de custos   terminologia básica livre
Gestão de custos terminologia básica livreHaralan Mucelini
 
Plano+de+gerenciamento+da+qualidade
Plano+de+gerenciamento+da+qualidadePlano+de+gerenciamento+da+qualidade
Plano+de+gerenciamento+da+qualidadeleopaiva217101
 
Exercicios resolvidos contabilidade esaf
Exercicios resolvidos contabilidade   esafExercicios resolvidos contabilidade   esaf
Exercicios resolvidos contabilidade esafcontacontabil
 
DRE - Demonstração do Resultado do Exercício
DRE - Demonstração  do Resultado do ExercícioDRE - Demonstração  do Resultado do Exercício
DRE - Demonstração do Resultado do ExercícioWandick Rocha de Aquino
 
Controladoria estratégica e orçamentaria
Controladoria estratégica e orçamentariaControladoria estratégica e orçamentaria
Controladoria estratégica e orçamentariaAlexandre Pereira
 

What's hot (20)

Apresentação TCC - Sistemas de Informação
Apresentação TCC - Sistemas de Informação Apresentação TCC - Sistemas de Informação
Apresentação TCC - Sistemas de Informação
 
Aula de Contabilidade Basica.ppt
Aula de Contabilidade Basica.pptAula de Contabilidade Basica.ppt
Aula de Contabilidade Basica.ppt
 
Elementos de contabilidade
Elementos de contabilidadeElementos de contabilidade
Elementos de contabilidade
 
Balancetes.pdf
Balancetes.pdfBalancetes.pdf
Balancetes.pdf
 
Livro pericia
Livro periciaLivro pericia
Livro pericia
 
01 materiais
01 materiais01 materiais
01 materiais
 
Apostila custos industriais
Apostila custos industriais Apostila custos industriais
Apostila custos industriais
 
Apostila vii eva e mva
Apostila vii   eva e mvaApostila vii   eva e mva
Apostila vii eva e mva
 
Gerenciamento de Projetos - Aula03 - Termo de abertura, EAP e cronograma
Gerenciamento de Projetos - Aula03 - Termo de abertura, EAP e cronogramaGerenciamento de Projetos - Aula03 - Termo de abertura, EAP e cronograma
Gerenciamento de Projetos - Aula03 - Termo de abertura, EAP e cronograma
 
Aula de Preparação de Cardápios.
Aula de Preparação de  Cardápios.Aula de Preparação de  Cardápios.
Aula de Preparação de Cardápios.
 
Fundamentos da contabilidade
Fundamentos da contabilidadeFundamentos da contabilidade
Fundamentos da contabilidade
 
Fator de correção de alimentos
Fator de correção de alimentosFator de correção de alimentos
Fator de correção de alimentos
 
Gerenciamento de Processos de Negócio - BPM: O modelo de gestão do Século XXI
Gerenciamento de Processos de Negócio - BPM: O modelo de gestão do Século XXIGerenciamento de Processos de Negócio - BPM: O modelo de gestão do Século XXI
Gerenciamento de Processos de Negócio - BPM: O modelo de gestão do Século XXI
 
Manufatura Digital
Manufatura Digital Manufatura Digital
Manufatura Digital
 
Gestão de custos terminologia básica livre
Gestão de custos   terminologia básica livreGestão de custos   terminologia básica livre
Gestão de custos terminologia básica livre
 
Plano+de+gerenciamento+da+qualidade
Plano+de+gerenciamento+da+qualidadePlano+de+gerenciamento+da+qualidade
Plano+de+gerenciamento+da+qualidade
 
Exercicios resolvidos contabilidade esaf
Exercicios resolvidos contabilidade   esafExercicios resolvidos contabilidade   esaf
Exercicios resolvidos contabilidade esaf
 
Apuracão de Custos e Inventários
Apuracão de Custos e InventáriosApuracão de Custos e Inventários
Apuracão de Custos e Inventários
 
DRE - Demonstração do Resultado do Exercício
DRE - Demonstração  do Resultado do ExercícioDRE - Demonstração  do Resultado do Exercício
DRE - Demonstração do Resultado do Exercício
 
Controladoria estratégica e orçamentaria
Controladoria estratégica e orçamentariaControladoria estratégica e orçamentaria
Controladoria estratégica e orçamentaria
 

Similar to Ispt selecção de maquinaria

1987 army-corps-wetlands-delineation-manual
1987 army-corps-wetlands-delineation-manual1987 army-corps-wetlands-delineation-manual
1987 army-corps-wetlands-delineation-manualJA Larson
 
Shipboard training manual
Shipboard training manualShipboard training manual
Shipboard training manualgclme
 
Seismic Tomograhy for Concrete Investigation
Seismic Tomograhy for Concrete InvestigationSeismic Tomograhy for Concrete Investigation
Seismic Tomograhy for Concrete InvestigationAli Osman Öncel
 
Donhauser - 2012 - Jump Variation From High-Frequency Asset Returns
Donhauser - 2012 - Jump Variation From High-Frequency Asset ReturnsDonhauser - 2012 - Jump Variation From High-Frequency Asset Returns
Donhauser - 2012 - Jump Variation From High-Frequency Asset ReturnsBrian Donhauser
 
Optimization of an Energy-Generating Turnstile
Optimization of an Energy-Generating TurnstileOptimization of an Energy-Generating Turnstile
Optimization of an Energy-Generating TurnstileWayne Smith
 
The gage block handbook
The gage block handbookThe gage block handbook
The gage block handbookgoyito13
 
Final Thesis - Mitch Slack 17220213
Final Thesis - Mitch Slack 17220213Final Thesis - Mitch Slack 17220213
Final Thesis - Mitch Slack 17220213Mitch Slack
 
Electrónica: Estudio de diseño y construcción de una reductora con cambio de ...
Electrónica: Estudio de diseño y construcción de una reductora con cambio de ...Electrónica: Estudio de diseño y construcción de una reductora con cambio de ...
Electrónica: Estudio de diseño y construcción de una reductora con cambio de ...SANTIAGO PABLO ALBERTO
 
Fluid mechanics lectur notes
Fluid mechanics lectur notesFluid mechanics lectur notes
Fluid mechanics lectur notesisminci
 
Lower Bound methods for the Shakedown problem of WC-Co composites
Lower Bound methods for the Shakedown problem of WC-Co compositesLower Bound methods for the Shakedown problem of WC-Co composites
Lower Bound methods for the Shakedown problem of WC-Co compositesBasavaRaju Akula
 

Similar to Ispt selecção de maquinaria (20)

1987 army-corps-wetlands-delineation-manual
1987 army-corps-wetlands-delineation-manual1987 army-corps-wetlands-delineation-manual
1987 army-corps-wetlands-delineation-manual
 
thesis
thesisthesis
thesis
 
Shipboard training manual
Shipboard training manualShipboard training manual
Shipboard training manual
 
QUOVADIS_NUM1_AMJ_2010
QUOVADIS_NUM1_AMJ_2010QUOVADIS_NUM1_AMJ_2010
QUOVADIS_NUM1_AMJ_2010
 
Seismic Tomograhy for Concrete Investigation
Seismic Tomograhy for Concrete InvestigationSeismic Tomograhy for Concrete Investigation
Seismic Tomograhy for Concrete Investigation
 
Analytical-Chemistry
Analytical-ChemistryAnalytical-Chemistry
Analytical-Chemistry
 
Donhauser - 2012 - Jump Variation From High-Frequency Asset Returns
Donhauser - 2012 - Jump Variation From High-Frequency Asset ReturnsDonhauser - 2012 - Jump Variation From High-Frequency Asset Returns
Donhauser - 2012 - Jump Variation From High-Frequency Asset Returns
 
Optimization of an Energy-Generating Turnstile
Optimization of an Energy-Generating TurnstileOptimization of an Energy-Generating Turnstile
Optimization of an Energy-Generating Turnstile
 
PhD_Thesis_J_R_Richards
PhD_Thesis_J_R_RichardsPhD_Thesis_J_R_Richards
PhD_Thesis_J_R_Richards
 
thesis_lmd
thesis_lmdthesis_lmd
thesis_lmd
 
The gage block handbook
The gage block handbookThe gage block handbook
The gage block handbook
 
General physics
General physicsGeneral physics
General physics
 
02whole
02whole02whole
02whole
 
ThesisJoshua
ThesisJoshuaThesisJoshua
ThesisJoshua
 
Design Final Report
Design Final ReportDesign Final Report
Design Final Report
 
thesis
thesisthesis
thesis
 
Final Thesis - Mitch Slack 17220213
Final Thesis - Mitch Slack 17220213Final Thesis - Mitch Slack 17220213
Final Thesis - Mitch Slack 17220213
 
Electrónica: Estudio de diseño y construcción de una reductora con cambio de ...
Electrónica: Estudio de diseño y construcción de una reductora con cambio de ...Electrónica: Estudio de diseño y construcción de una reductora con cambio de ...
Electrónica: Estudio de diseño y construcción de una reductora con cambio de ...
 
Fluid mechanics lectur notes
Fluid mechanics lectur notesFluid mechanics lectur notes
Fluid mechanics lectur notes
 
Lower Bound methods for the Shakedown problem of WC-Co composites
Lower Bound methods for the Shakedown problem of WC-Co compositesLower Bound methods for the Shakedown problem of WC-Co composites
Lower Bound methods for the Shakedown problem of WC-Co composites
 

Recently uploaded

UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...ranjana rawat
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 

Recently uploaded (20)

UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 

Ispt selecção de maquinaria

  • 1. DIVISÃO DE ENGENHARIA CURSO DE LINCENCIATURA EM ENGENHARIA DE PROCESSAMENTO MINERAL Disciplina: Selecção de maquinaria. 3° Ano Notas de aulas e exercícios resolvidos . Raúl Fernando Raúl Tete, 2021
  • 2. Índice 1. TRANSFERÊNCIA DE MASSA ......................................................................................5 1.1. Transportador de correia .............................................................................................5 1.1.1. Dimensionamento e produtividade ......................................................................5 1.2. Bombeamento de água e polpas..................................................................................6 1.2.1. Tubulações e acessórios.......................................................................................6 1.2.2. Etapas para a cálculo e escolha da bomba ...........................................................8 2. LEIS DE FRAGMENTAÇÃO.........................................................................................11 2.1. Britagem e moagem ..................................................................................................11 2.1.1. Dimensionamento de britadores ........................................................................12 2.2. Moagem.....................................................................................................................13 2.2.1. Moagem convencional.......................................................................................13 2.2.2. Potência vs grau de enchimento.........................................................................15 2.2.3. Potência vs %Ncr...............................................................................................16 3. CLASSIFICAÇÃO...........................................................................................................17 3.1. Dimensionamento de peneira....................................................................................17 3.2. Seleção e dimensionamento de Ciclone e Hidrociclone ...........................................21 3.3. Espessamento ............................................................................................................22 3.3.1. Método de Coe & Clevenger .............................................................................24 3.3.2. Método de Kynch...............................................................................................25 3.3.3. Método de Roberts.............................................................................................25 3.3.4. Método de Talmadge & Fitch............................................................................25 4. AGITAÇÃO E MISTURA...............................................................................................26 4.1. Scale-up.........................................................................................................................27 5. VAMOS PRATICAR!......................................................................................................29 5.1. Banda transportadora.................................................................................................29 5.2. Bombas de água ............................................................................................................30
  • 3. 5.2. Fórmula de Forcheimmer Bresse ..............................................................................38 5.3. Bombas de polpa.......................................................................................................46 5.4. Britagem........................................................................................................................52 5.5. Moagem.........................................................................................................................56 5.6. Agitação e mistura (Exercícios de Paiva) .....................................................................58 5.7. Espessamento ................................................................................................................62 5.8. Peneiramento.................................................................................................................63 5.9. Lista de exercícios.........................................................................................................65 5.10. Teste 2 (10/05/2019) ...................................................................................................73 5.11. Exame normal 2015 (agitação e mistura)....................................................................74 5.12. Exame normal (22/05/2019)........................................................................................75 5.13. Exame normal 2019 C/N.............................................................................................77 6. FILTRAÇÃO....................................................................................................................78 7. ACKNOWLEDGEMENTS..............................................................................................79 8. REFERÊNCIAS BIBLIOGRÁFICAS .............................................................................79 Índice de figuras Figura 1: Acopolamento de tubos por Cachimbo (A) e Falnge (B) (CHAVES, 2002).............7 Figura 2: Pipe rack (CHAVES, 2002). ......................................................................................7 Figura 3: Válvula de mangote (CHAVES, 2002). .....................................................................7 Figura 4: Manómetro de polpas (CHAVES, 2002). ..................................................................8 Figura 5: Válvula de Taylor (CHAVES, 2002). ........................................................................8 Figura 6: Potência consumida por um moinho em função do grau de enchimento (TAVARES. L, 2012)....................................................................................................................................16 Figura 7: Efeito da velocidade de rotação na potência de moinhos (TAVARES. L, 2012). ...16 Figura 8: Classificador mecânico-helicoidal. ..........................................................................21 Figura 9: Acondicionador e impelidor para agitação e mistura (PAIVA. J, 2014). ................26 Figura 10: Scale-up do acondicionador e impelidor (PAIVA. J, 2014)...................................28 Figura 11: Esquema do bombeamento de água (1)..................................................................30 Figura 12: Esquema do bombeamento de água (2)..................................................................32
  • 4. Figura 13: Esquema de bombeamento (3). ..............................................................................34 Figura 14: Diagrama de Mood para determinação do fator de atrito.......................................35 Figura 15: Esquema de bombeamento de água (4)..................................................................41 Figura 16: Tabela de Comprimentos Equivalentes em conexões, para cálculos de Perdas Localizadas. .............................................................................................................................44 Figura 17: Tabela de Perda de Carga em Tubulações de PVC, Galvanizado e Ferro Fundido (Para Cada 100 m de Tubos)....................................................................................................45 Figura 18: Diagrama do fator C para britadores (CHAVES, 2002). .......................................54 Figura 19: Diagrama do fator D para britadores (CHAVES, 2002). .......................................55 Figura 20: Diagrama de 𝐾𝑆𝑃 e 𝐾𝑙 para moinhos (CHAVES, 2002)......................................57 Figura 21: Representação gráfica dos dados de sedimentação em proveta (Autor, 2019). .....70 Figura 22: Distribuição granulométrica do exercício de britagem (JAIME. C, 2019). ...........73 Figura 23: Curvas de partição de uma amostra de Overflow de hidrociclone (JAIME. C, 2019). ..................................................................................................................................................76 Índice de tabelas Tabela 1: Diferenças entre o bombeamento de água e polpa.....................................................9 Tabela 2: Rugosidade de alguns materiais...............................................................................10 Tabela 3: Fator B x % material retido......................................................................................19 Tabela 4: Fator C v eficiência da separação . ..........................................................................19 Tabela 5: Fator D x % material menor que a metade da tela...................................................19 Tabela 6: Fator E x malha da tela para materiais molhados (humidade superior a 10%)........20 Tabela 7: Fator F x deck de peneiramento...............................................................................20 Tabela 8: Comprimento equivalente........................................................................................36 Tabela 9: Perdas de carga localizadas......................................................................................36 Tabela 10: Valores para as variáveis K e velocidade da fórmula de Bresse............................39 Tabela 11: Diâmetros de tubulações com conexões ................................................................42 Tabela 12: Cálculo da compatibilidade do diâmetro a partir do Excel....................................49 Tabela 13: Distribuição granulométrica do exercício de britagem..........................................53 Tabela 14: Distribuição granulométrica do exercício de peneiramento. .................................63 Tabela 15: Dados de sedimentação em proveta.......................................................................70
  • 5. 5 Raúl F. Raúl, 2019 1. TRANSFERÊNCIA DE MASSA 1.1. Transportador de correia 1.1.1. Dimensionamento e produtividade 𝑄 = 3600 ∙ 𝐹𝑡𝑚 ∙ 𝐶 ∙ 𝑉 ∙ 𝛾 a velocidade é variável (1.1.1) C é o coeficiente da instalação 𝐹𝑡𝑚 = 𝑏 ∙ ℎ 2 = 𝐵1 ∙ 𝐵1 2 ⁄ ∙ 𝑡𝑔𝜇 2 (1.1.2) 𝑡𝑔𝜇 = ℎ 𝐵1 2 ⁄ (1.1.3) 𝐹𝑡𝑚 = 𝐵1 2 4 ∙ 𝑡𝑔𝜇 (1.1.4) 𝐵1 = 0,9𝐵 − 0,05 𝑚 (1.1.5) 𝑄 = 3600 ∙ 𝐵1 2 4 ∙ 𝑡𝑔𝜇 ∙ 𝐶 ∙ 𝑉 ∙ 𝛾 (1.1.6) 𝑄 = 𝐾 ∙ 𝐵1 2 ∙ 𝐶 ∙ 𝑉 ∙ 𝛾 (1.1.7) 𝐾 = 900 ∙ 𝑡𝑔𝜇 𝑝𝑎𝑟𝑎 𝑐𝑜𝑟𝑟𝑒𝑖𝑎𝑠 𝑝𝑙𝑎𝑛𝑎𝑠  Potência do motor 𝑁 = 𝑁0 𝜇𝑚 [𝐾𝑊] (1.1.8)  Potência de tambor motriz ou árvore motor
  • 6. 6 Raúl F. Raúl, 2019 𝑁0 = 𝑊0 ∙ 𝑣 1000 [𝐾𝑊] (1.1.9) 𝑊0 é a força de tração V é a velocidade 𝑊0 = 𝐾0(𝑊 𝑐 + 𝑊 𝑣) (1.1.10) 𝐾0 = 1,20 − 1,50  No ramo de carga 𝑊 𝑐 = (𝑞 + 𝑞𝑐) ∙ 𝑐𝑜𝑠𝛽 + 𝑞′ 𝑟 ∙ 𝐿 ∙ 𝑤 ± (𝑞 + 𝑞𝑐) ∙ 𝐿 ∙ 𝑠𝑒𝑛𝛽 (1.1.11) Quando se trata de correia horizontal 𝑐𝑜𝑠𝛽e 𝑠𝑒𝑛𝛽 = 0  No ramo de retorno 𝑊 𝑐 = 𝑞𝑐 ∙ 𝑐𝑜𝑠𝛽 + 𝑞′ 𝑟 ∙ 𝐿 ∙ 𝑤 ± 𝑞𝑐 ∙ 𝐿 ∙ 𝑠𝑒𝑛𝛽 (1.1.12) 1.2. Bombeamento de água e polpas 1.2.1. Tubulações e acessórios As tubulações são de ferro fundido ou aço, flangeado ou com acoplamento rápido. outros materiais como fibra de vidros, polímeros de engenharia, cimento amianto, tubos revestidos internamente, etc. estão começando a ser utilizados. A boa prática aconselha instalar, dentro da usina, apenas tubulações horizontais e verticais. quando acontece a interrupção no bombeamento, cessando o escoamento, os sólidos sedimentam imediatamente. Nas tubulações horizontais fica livre a parte superior da secção do tubo, de modo que, retomado o escoamento, a turbulência se encarrega de colocar os sólidos sedimentados em suspensão. Nas tubulações verticais, os sólidos se depositam na extremidade inferior do tubo, sendo acessíveis através do flange do cachimbo.
  • 7. 7 Raúl F. Raúl, 2019 Figura 1: Acopolamento de tubos por Cachimbo (A) e Falnge (B) (CHAVES, 2002). Como critério de projecto industrial, sempre que possível, vários tubos devem ser reunidos num feixe de tubos paralelos, com um suporte único e passando todos pelo mesmo percurso. isto facilita a identificação das tubulações, a sua manutenção e racionaliza o peojecto. o arranjo mostrado na figura 2 é chamado de pipe rack. Figura 2: Pipe rack (CHAVES, 2002). A figura 3 mostra uma válvula de mangote, de uso típico em bombeamento de polpas. É impossível utilizar válvulas com elementos metálicos em contacto com a polpa, o que exclui a maioria dos tipos utilizados para água. Figura 3: Válvula de mangote (CHAVES, 2002). Os manómetros utilizados em linhas de polpa são separados do contacto com a polpa por um diafragma flexível, que transmite as pressões e impede a passagem dos sólidos. (A) (B)
  • 8. 8 Raúl F. Raúl, 2019 Figura 4: Manómetro de polpas (CHAVES, 2002). É muito comum a instalação de uma bomba de reserva, quando o bombeamento em questão seja crítico para a operação do circuito. a passagem rápida de uma bomba para a outra pode ser ajudada pela válvula de Taylor, mostrada na figura 5, que é autoexplicativa. Figura 5: Válvula de Taylor (CHAVES, 2002). 1.2.2. Etapas para a cálculo e escolha da bomba i. Calcular a vazão requerida; ii. Calcular o diâmetro da tubulação; iii. Encontrar a altura da sucção; iv. Encontrara a altura do recalque; v. Encontrar o comprimento da sucção; vi. Encontrar o comprimento do recalque; vii. Encontrar o comprimento total da tubulação; viii. Encontrar a perda de carga por comprimento do tubo; ix. Encontrar a perda de carga nas conexões; x. Encontrar a perda de carga total no sistema da tubulação; xi. Encontrar a ATM (altura manométrica total).
  • 9. 9 Raúl F. Raúl, 2019 A tabela 1 ilustra algumas diferenças no bombeamento dos dois fluídos diferentes. Tabela 1: Diferenças entre o bombeamento de água e polpa. Bombas de água Bombas de polpas Variedades de roletes Variedades de roletes Vazões elevadas Vazões elevadas Alta eficiência Baixa eficiência Cargas elevadas Cargas pequenas Fonte: Autor, 2019. Balanço de energia 𝑃1 𝜌 + 1 2 𝛼𝑉1 2 + 𝑔 ∙ ℎ1 + 𝑤 = 𝑃2 𝜌 + 1 2 𝛼𝑉2 2 + 𝑔 ∙ ℎ2 + ∑ 𝐹 1 2 𝛼𝑉1 2 + 𝑔 ∙ ℎ1 + 𝑤 = 1 2 𝛼𝑉2 2 + 𝑔 ∙ ℎ2 + ∫ 𝑑𝑃 𝜌 𝑃2 𝑃1 + ∑ 𝐹 ∑ 𝐹 = 𝐹𝑡𝑢𝑏𝑜 𝑟𝑒𝑐𝑡𝑜 + 𝐹𝑠𝑎𝑖𝑑𝑎 + 𝐹𝑒𝑛𝑡𝑟𝑎𝑑𝑎 + 𝐹𝑣á𝑙𝑣𝑢𝑙𝑎 (1.2.1) 𝐹 = 𝑓 ∙ 𝐿 𝐷 ∙ 𝑣2 2𝑔 (1.2.2) 𝒇 𝑝𝑜𝑑𝑒 𝑠𝑒𝑟 𝑜𝑏𝑡𝑖𝑑𝑜 𝑎 𝑝𝑎𝑟𝑡𝑖𝑟 𝑑𝑒 { 𝐷𝑖𝑎𝑔𝑟𝑎𝑚𝑎 𝑑𝑒 𝑓𝑢𝑛𝑛𝑖𝑛𝑔 𝐹 = 4 ∙ 𝑓 ∙ 𝐿 𝐷 ∙ 𝑣2 2 𝐷𝑖𝑎𝑔𝑟𝑎𝑚𝑎 𝑑𝑒 𝑀𝑜𝑜𝑑 𝐹 = 𝑓 ∙ 𝐿 𝐷 ∙ 𝑣2 2𝑔 𝑅 = 𝜌 ∙ 𝑣 ∙ 𝐷 𝜇 (1.2.3) Escoamento laminar: 𝑅𝑒 < 2000 𝑅𝑒 = 16 𝑓 (1.2.4) Escoamento turbulento: 𝑅𝑒 < 4000 𝑓 = 0,25 [𝑙𝑜𝑔 ( 𝜀 𝐷 3,7 + 5,74 𝑅𝑒0,9)] 2 (1.2.5)
  • 10. 10 Raúl F. Raúl, 2019 A tabela 2 mostra o valor da rugosidade para determinados materiais Tabela 2: Rugosidade de alguns materiais. Material Rugosidade 𝜺 (𝒎𝒆𝒕𝒓𝒐𝒔) Plástico 3.0 × 10−7 Aço 4.5 × 10−5 Ferro galvanizado 1.5 × 10−4 Concreto 1.2 × 10−4 Fonte: CHAVES, 2002.  Velocidade de escoamento 𝑣 = 𝑄 𝐴 ⟺ 𝑣 = 4𝑄 𝜋𝐷2 (1.2.6) Onde: Q é a vazão do escoamento; D é o diâmetro.  Velocidade crítica (VL) 𝑉𝐿 = 𝐹𝐿√2𝑔𝐷 𝜌𝑠 − 𝜌𝑙 𝜌𝑙 (1.2.7) 𝐹𝐿 𝑑𝑒𝑝𝑒𝑛𝑑𝑒 𝑑𝑒 { 𝑑50 𝑇𝑖𝑝𝑜 𝑑𝑒 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝐶𝑣𝑠 = %𝑠ó𝑙 (𝑉 𝑉 ⁄ ) 𝑉 = 𝑉𝐿 + (0,3 𝑎 0,5) 𝑚/𝑠 (1.2.8) Se igualarmos a velocidade de escoamento com a velocidade limite, temos: 𝑉 = 𝑉𝐿
  • 11. 11 Raúl F. Raúl, 2019 4𝑄 𝜋𝐷2 = 𝐹𝐿√2𝑔𝐷 𝜌𝑠 − 𝜌𝑙 𝜌𝑙 (1.2.9)  Perdas de carga ẘ = 𝑔(ℎ2 − ℎ1) + ∑ 𝐹 (1.2.10) 𝑤 = 𝑄 ∙ 𝜌 (1.2.11)  Potência hidráulica 𝑃ℎ𝑖𝑑 = 𝑤 ∙ ẘ (1.2.12)  Potência real 𝑃𝑟𝑒𝑎𝑙 = 𝑃ℎ𝑖𝑑 𝜂 (1.2.13) 2. LEIS DE FRAGMENTAÇÃO 2.1. Britagem e moagem 𝐶𝑜𝑚𝑝𝑜𝑟𝑡𝑎𝑚𝑒𝑛𝑡𝑜 𝑚𝑒𝑐â𝑛𝑖𝑐𝑜 𝑑𝑎𝑠 𝑟𝑜𝑐ℎ𝑎𝑠 { 𝑅𝑜𝑐ℎ𝑎𝑠 𝑒𝑙á𝑠𝑡𝑖𝑐𝑎𝑠 𝑅𝑜𝑐ℎ𝑎𝑠 𝑖𝑛𝑒𝑙á𝑠𝑡𝑖𝑐𝑎𝑠 (𝑃𝑙á𝑠𝑡𝑖𝑐𝑎𝑠) As rochas elásticas demandam menor energia; As inelásticas demandam maior energia; As visco-elásticos podem se comportar como elásticas dependendo da velocidade do impacto e a temperatura. Materiais plásticos têm maior tenacidade; Materiais elásticos têm maior dureza; A tenacidade e a dureza são inversamente proporcionais. As partículas finas demandam maior energia porque tem maior superfície de contacto.
  • 12. 12 Raúl F. Raúl, 2019 Isso pode ser verificado nas seguintes relações entre potência e área de contacto: ↓ 𝑃 = 𝐹 ↑ 𝐴 Quanto maior for a área de contacto, menor será a potência e vice-versa. ↓ 𝜎 = 𝐹 ↑ 𝐴 O mesmo acontece com a tensão, quanto maior for a área de contacto, menor será a tensão e vice-versa. Na operação dos britadores, tem como parâmetro importante a controlar se que é a potência de operação. 𝐶𝑟𝑖𝑡é𝑟𝑖𝑜 𝑑𝑒 𝑠𝑒𝑙𝑒𝑐çã𝑜 𝑑𝑒 𝑏𝑟𝑖𝑡𝑎𝑑𝑜𝑟𝑒𝑠 { 𝑅𝑒𝑐𝑒𝑝çã𝑜 𝐶𝑎𝑝𝑎𝑐𝑖𝑑𝑎𝑑𝑒 2.1.1. Dimensionamento de britadores 𝑄 = 𝑄𝑡 ∙ 𝐴 ∙ 𝐵 ∙ 𝐶 ∙ 𝐷 (2.1.1) 𝐴 = 0,636 ∙ 𝜌𝑎𝑝𝑎𝑟𝑒𝑛𝑡𝑒 (2.1.2) 𝐵 = 1,56 ∙ 𝑒(−0,0306∙𝑊𝑖) (2.1.3) 𝐹𝑎𝑐𝑡𝑜𝑟 𝐶 𝑑𝑒𝑝𝑒𝑛𝑑𝑒 𝑑𝑒 { 𝑃 ( 𝐴𝑃𝐴 2 ) = 𝑥% 𝑇𝑏 𝐴𝐴 𝐴𝐴 = 𝑇𝑏 0,8 , 𝑜𝑛𝑑𝑒 𝑇𝑏 𝑒ℎ 𝑜 𝑡𝑎𝑚𝑎𝑛ℎ𝑜 𝑑𝑜 𝑏𝑙𝑜𝑐𝑜 𝑒 𝐴𝐴 𝑒ℎ 𝑎 𝑎𝑏𝑒𝑟𝑡𝑢𝑟𝑎 𝑑𝑜 𝑏𝑟𝑖𝑡𝑎𝑑𝑜𝑟 𝐴𝑃𝐴 = 𝐴𝑃𝐹 + 𝑀𝑄 (2.1.4) APA é a abertura na posição aberta APF é a abertura na posição fechada (𝐸𝑛𝑐𝑜𝑛𝑡𝑟𝑎 𝑠𝑒 𝑛𝑜 𝑚𝑜𝑑𝑒𝑙𝑜 𝑒𝑠𝑐𝑜𝑙ℎ𝑖𝑑𝑜) MQ é o movimento do queixo (𝐸𝑛𝑐𝑜𝑛𝑡𝑟𝑎 𝑠𝑒 𝑛𝑜 𝑚𝑜𝑑𝑒𝑙𝑜 𝑒𝑠𝑐𝑜𝑙ℎ𝑖𝑑𝑜)
  • 13. 13 Raúl F. Raúl, 2019 𝐹𝑎𝑐𝑡𝑜𝑟 𝐷 𝑑𝑒𝑝𝑒𝑛𝑑𝑒 𝑑𝑒 { 𝐴𝑃𝐹 𝑇𝑒𝑜𝑟 𝑑𝑒 𝑎𝑟𝑔𝑖𝑙𝑎 𝑇𝑒𝑜𝑟 𝑑𝑒 ℎ𝑢𝑚𝑖𝑑𝑎𝑑𝑒 Vazão teórica 𝑄𝑡 é encontrada na tabela depois de selecionar o britador e faz se a média dos dois valores. Vazão mássica 𝑤 = 𝑄 ∙ 𝜌𝑎𝑝𝑎𝑟𝑒𝑛𝑡𝑒 (2.1.5) Note: Quando a vazão mássica for menor que a quantidade alimentada quer dizer o britador selecionado não satisfaz a produção logo deve se mudar o britador ou por outro lado pode mudar o APF até conseguir satisfazer. 2.2. Moagem 2.2.1. Moagem convencional A ƞ de moagem é de 10 a 15% e a outra percentagem é de gasto de energia. 𝑅𝑒𝑔𝑖𝑚𝑒𝑠 𝑑𝑒 𝑜𝑝𝑒𝑟𝑎çã𝑜 𝑑𝑒 𝑚𝑜𝑖𝑛ℎ𝑜𝑠 { 𝑐𝑎𝑠𝑐𝑎𝑡𝑎 𝑐𝑎𝑡𝑎𝑟𝑎𝑡𝑎 (𝑀𝑎𝑖𝑠 𝑟𝑖𝑔𝑜𝑟𝑜𝑠𝑜) 𝑐𝑒𝑛𝑡𝑟𝑖𝑓𝑢𝑔𝑜 (𝐹 𝑔 = 𝐹𝐶𝑒𝑛𝑡𝑟í𝑓𝑢𝑔𝑎) 𝐹 𝑔 = 𝑚𝑔 (2.2.1) 𝐹 𝑐 = 𝑚 ∙ 𝑤2 ∙ 𝑟 𝑟 = 𝑑 2 (2.2.2) 𝐹 𝑐 = 𝑚 ∙ 𝑤2 ∙ 𝑑 2 𝑚𝑔 = 𝑚 ∙ 𝑤2 ∙ 𝑟 Cortando massa com massa, temos: 𝑔 = 𝑤2 ∙ 𝑟 𝑤2 = 𝑔 𝑟 ⟹ 𝑔 𝑑 2 𝑤 = √ 2𝑔 𝑑 𝑟𝑎𝑑 𝑠 ⁄ essa unidade deve ser convertida de 𝑟𝑎𝑑 𝑠 ⁄ para 𝑟𝑝𝑚.
  • 14. 14 Raúl F. Raúl, 2019 1 𝑟𝑜𝑡 → 2𝜋𝑟𝑎𝑑 𝑤 = √ 2𝑔 𝑑 ∙ 1 2𝜋 𝑟𝑜𝑡 𝑠 ⁄ 𝑦 = 1 𝑟𝑎𝑑 𝑤 = √ 2∙0,81 𝑑 ∙ 1 2𝜋 𝑟𝑜𝑡 𝑠 ⁄ 𝑦 = 1𝑟𝑜𝑡∙1 𝑟𝑎𝑑 2𝜋𝑟𝑎𝑑 𝑤 = 0,70497 √𝑑 𝑟𝑜𝑡 𝑠 ⁄ ∙ 60𝑠 𝑚𝑖𝑛 ⁄ 𝑦 = 1 2𝜋 𝑟𝑜𝑡 𝑤 = 42,3 √𝑑 𝑟𝑜𝑡 𝑚𝑖𝑛 ⁄ 𝑁𝑐 = 42,3 √𝑑 𝑟. 𝑝. 𝑚 (𝑉𝑒𝑙𝑜𝑐𝑖𝑑𝑎𝑑𝑒 𝑐𝑟í𝑡𝑖𝑐𝑎) (2.2.3) Note: Nos moinhos é recomendado a operação abaixo desta velocidade. (𝑠𝑒 𝑎 𝑜𝑝𝑒𝑟𝑎çã𝑜 𝑒𝑠𝑡𝑖𝑣𝑒𝑟 𝑎𝑐𝑖𝑚𝑎 𝑑𝑒𝑠𝑡𝑎 𝑣𝑒𝑙𝑜𝑐𝑖𝑑𝑎d𝑒, 𝑎𝑠 𝑏𝑜𝑙𝑎𝑠 𝑒𝑠𝑡𝑎𝑟ã𝑜 𝑛𝑎𝑠 𝑝𝑎𝑟𝑒𝑑𝑒𝑠). Para cada equipamento tem sua velocidade crítica onde nas bombas de polpa recomenda se a operação acima da sua velocidade crítica.  Potência do moinho 𝑃 = 8,44 ∙ 𝐷𝑚 2,5 ∙ 𝐿 ∙ 𝐾𝑚𝑡 ∙ 𝐾𝐿 ∙ 𝐾𝑆𝑃 (2.2.4) 𝑃 = 𝑇 ∙ 𝐸 (2.2.5) Onde: T é a raxa de alimentação (𝑡 ℎ ⁄ ); E é a energia especifica (𝐾𝑊 ∙ ℎ 𝑡 ⁄ ); 𝐷𝑚 é o diâmetro do moinho; L é o comprimento do moinho; 𝐾𝑚𝑡 é factor de carregamento; 𝐾𝑙 é o factor que depende do tipo de moinho; 𝐾𝑠𝑝 é o factor de velocidade;
  • 15. 15 Raúl F. Raúl, 2019 𝐾𝑚𝑡 = 1,0 para moinhos de bola a úmido com descarga por transborde. 𝐾𝑚𝑡 = 1,3 para moinhos de bolas e de barras a úmido, com descarga de grade ou periférica. 𝐾𝑚𝑡 = 1,25 para moinhos que operam a seco. Segundo o Bond, a energia especifica é dada por: 𝐸 = 10 ∙ 𝑊𝑖 ( 1 √𝑃80 − 1 √𝐹80 ) (2.2.6) √𝑃80 e √𝐹80 são os tamanhos representativos do produto e da alimentação do moinho, respetivamente, em micrómetros. 𝑊𝑖 é a energia específica (energia por unidade de massa) necessária para cominuir um material de uma granulometria muito grosseira. ↓ 𝑃 = 2𝜋𝑁 ∙ 𝑇𝑞 ↓ (2.2.7) 𝑇𝑞 = 𝐹 𝑔 ∙ 𝑑 (2.2.8) Onde: N é o número de rotações; 𝑇𝑞 é o torque. Podemos notar a relação entre o torque e a potência na equação acima, onde as duas grandezas são directamente proporcionais. 2.2.2. Potência vs grau de enchimento O efeito do grau de enchimento essencialmente se deve ao deslocamento do centro de gravidade e da massa da carga. À medida que aumenta a carga, o centro de gravidade do moinho se desloca para o centro. A potência consumida é aproximadamente simétrica em torno do valor de 50% (Figura 6).
  • 16. 16 Raúl F. Raúl, 2019 Figura 6: Potência consumida por um moinho em função do grau de enchimento (TAVARES. L, 2012). 2.2.3. Potência vs %Ncr Na prática, observa-se que o expoente 2,5 de 𝐷𝑚 varia entre 2,3 ate 3. O efeito da variação da velocidade de rotação do moinho é mostrado graficamente na figura 7. O efeito da velocidade de rotação do moinho se da por dois efeitos: o valor de N e o deslocamento do centro de gravidade com a velocidade. O centro de gravidade inicialmente se desloca do eixo para a periferia do tubo com o aumento da velocidade, mas à medida que a velocidade crítica se aproxima, o centro de gravidade se move de volta na direção do centro do moinho, uma vez que uma proporção cada vez maior. Figura 7: Efeito da velocidade de rotação na potência de moinhos (TAVARES. L, 2012).
  • 17. 17 Raúl F. Raúl, 2019  Tamanho de bolas  Moinhos de D maior usam bolas menores;  Moinhos de D menor usam bolas maiores. 𝑑𝑚á𝑥 = 1,171𝐹 80 1 2 ( 𝑊𝑖 ∙ 𝜌𝑠 %𝑁𝑐 ∙ 𝐷𝑚 1 2 ) 0,34 (2.2.9) 3. CLASSIFICAÇÃO 𝑇𝑖𝑝𝑜𝑠 𝑑𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑑𝑜𝑟𝑒𝑠 { 𝑃𝑛𝑒𝑢𝑚á𝑡𝑖𝑐𝑜𝑠 𝐻𝑖𝑑𝑟á𝑢𝑙𝑖𝑐𝑜𝑠 𝑀𝑒𝑐â𝑛𝑖𝑐𝑜𝑠 Adota se os classificadores pneumáticos dos hidráulicos porque a velocidade de sedimentação das partículas no ar é maior que na água. 3.1. Dimensionamento de peneira As peneiras são peças vitais e críticas em qualquer usina de beneficiamento. Assim sendo, todo cuidado deve ser tomado na seleção de peneiras para que sejam de tamanho e tipo adequado. Os dados necessários para seleção e dimensionamento de equipamentos são: a) Características do material a ser peneirado, tais como: densidade e umidade; forma das partículas; tamanho máximo da alimentação; presença de materiais argilosos; distribuição granulométrica; densidade e umidade; temperatura, entre outros; b) Capacidade; c) Faixas de separação do produto; d) Eficiência desejada; e) Tipo de serviço; lavagem classificação final, classificação intermediária, etc. f) Limitação ou não de espaço e peso; g) Grau de conhecimento do material e do produto desejado. No dimensionamento das peneiras, existem várias fórmulas diferentes que são mencionados abaixo. Para este artigo, o autor não detalhou todas, mas sim levou em consideração uma delas que é a da Smith Engeneering Works.  Fórmula de bauman (empírica);  Fórmula de Westerfield;
  • 18. 18 Raúl F. Raúl, 2019  Fórmula da Smith Engineering Works;  Manual de faço.  Fórmula da Smith Engineering Works 𝐴𝑝 = 𝑃 𝐴𝐵𝐶𝐷𝐸𝐹𝐺 (3.1.1) 𝐴𝑝 = Área de tela (𝑚2) 𝑃 = Quantidade de material passante na tela (𝑡 ℎ ⁄ ); 𝐴 = Capacidade da tela [ (𝑡 ℎ ⁄ ) 𝑚2 ⁄ ]; 𝐵 = Fator relativo à % de material retido na tela; 𝐶 = Fator relativo à eficiência desejada para o peneiramento; 𝐷 = Fator relativo à % de material menor que a metade da malha; 𝐸 = Fator relativo à umidade do material; 𝐹 = Fator relativo ao deck em consideração. Esta formula é válida para peneiras inclinadas. o manual recomendava aumentar a capacidade unitária em 40% quando se desejasse usar peneiras horizontais. para grelhas vibratórias, a formula, segundo o manual, poderia ser aplicada se se considerasse um aumento de capacidade de cerca de 40% e uma perda de eficiência de 15% em relação à peneira vibratória.  Factor A 𝐴 = 12,13 ∙ ℎ𝑡0,32 − 10,3 para ℎ𝑡 < 51𝑚𝑚 (3.1.2) 𝐴 = 0,34ℎ𝑡 + 14,41 para ℎ𝑡 ≥ 51𝑚𝑚 (3.1.3) ℎ𝑡 = (ℎ + 𝑑𝑤)𝑐𝑜𝑠𝜃 − 𝑑𝑤 (3.1.4) % da área aberta (𝐴𝐴) 𝐴𝐴 = 21,5 log10 ℎ + 37 (3.1.5)
  • 19. 19 Raúl F. Raúl, 2019 ℎ é a abertura da malha (𝑚𝑚) 𝐴𝑛 = 12,13 ∙ ℎ𝑡0,32 − 10,3 (3.1.6)  Fator B 𝐵 = 1,6 − 1,2[1 − 𝑃(ℎ𝑡)] (3.1.7) Tabela 3: Fator B x % material retido. % 10 20 30 40 50 60 70 80 85 90 92 94 96 98 100 B 1,05 1,01 0,98 0,95 0,90 0,86 0,80 0,70 0,64 0,55 0,50 0,44 0,34 0,30 - Fonte: CHAVES, 2002.  Fator C 𝐶 = 0,7 + 01,2 ∙ 𝑃 ( ℎ𝑡 2 ) (3.1.8) Tabela 4: Fator C v eficiência da separação . Eficiência (%) 60 70 75 80 85 90 92 94 96 98 C 2,1 1,7 1,55 1,40 1,25 1,10 1,05 1,00 0,95 0,90 Fonte: CHAVES, 2002.  Fator D O fator D depende do fator E. 𝑇 = 1,26 ∙ ℎ𝑡 → 𝐷 = 1,1 − 0,1 ∙ 𝐸 { →⟶⟶ 𝑆𝑒𝑐𝑜 𝐸 = 0 𝐻𝑢𝑚𝑖𝑑𝑜 { 𝐸 = 1𝑃 𝑠𝑒 𝑇 ≤ 1 𝐸 = 1,5 + 0,25𝑇 𝑠𝑒 𝑇 ≤ 2 𝐸 = 2,5𝑝44 𝑠𝑒 𝑇 ≤ 6 Tabela 5: Fator D x % material menor que a metade da tela. % < 𝒎𝒆𝒊𝒂 𝒎𝒂𝒍𝒉𝒂 10 20 30 40 50 60 70 80 90 100 D 0,55 0,75 0,80 1,0 1,2 1,4 1,8 2,2 3,0 Fonte: CHAVES, 2002.
  • 20. 20 Raúl F. Raúl, 2019 Tabela 6: Fator E x malha da tela para materiais molhados (humidade superior a 10%). Malha - 20# +20#- 1/𝟑𝟐" +1/32- 1/𝟏𝟔" +1/16- 5/𝟖" +1/8- 3/𝟏𝟔" +3/16- 5/𝟏𝟔" +5/16- 3/𝟖" +3/8- 1/𝟐" Malha (mm) 0,8 0,8-1,6 1,6-3,2 3,2-4,8 4,8-7,9 7,9-9,5 9,5- 12,7 E 1,0 1,25 1,50 1,75 1,90 2,10 2,25 2,5 Fonte: CHAVES, 2002.  Fator F 𝐹 = 𝜌 1600 (3.1.9) Tabela 7: Fator F x deck de peneiramento. Nível superior 𝟐° 𝟑° 𝟒° F 1,0 0,9 0,75 0,6 Fonte: CHAVES, 2002.  Fator G 𝐺 = 0,975[1 − 𝑃(1,25ℎ𝑡) + 𝑃(0,75ℎ𝑡)]0,511 fator de meia size. (3.1.10) Variáveis operacionais do ciclone A variável principal no ciclone é a pressão. Vortex no ciclone É colocado para impedir que o material tenha um caminho curto ou o material pode sair logo no overflow. Variáveis operacionais ↑𝑉𝑜𝑟𝑡𝑒𝑥 𝑓𝑖𝑛𝑑𝑒𝑟−−−−−↑𝑑50 ↑𝐴𝑝𝑒𝑥−−−−−−−−−↓𝑑50 ↑𝑃𝑟𝑒𝑠𝑠ã𝑜−−−−−−−−↓𝑑50 ↑𝑉𝑎𝑧ã𝑜−−−−−−−−−↓𝑑50
  • 21. 21 Raúl F. Raúl, 2019 ↑𝜌𝑠ó𝑙−−−−−−−−−−↓𝑑50 ↑%𝑠ó𝑙−−−−−−−−−↓𝑑50 Separador/classificador helicoidal/espiral Figura 8: Classificador mecânico-helicoidal. Variáveis operacionais ↑𝑄−−−↑𝑑50 ↑𝑁𝑐−−−↑𝑑50 ↑𝐴𝑙𝑡𝑢𝑟𝑎 𝑑𝑜 𝑡𝑎𝑛𝑞𝑢𝑒−−−↓𝑑50 ↑𝐷𝑖𝑙𝑢𝑖çã𝑜 𝑑𝑎 𝑝𝑜𝑙𝑝𝑎−−−↑𝑑50 Deve se:  Aumentar a vazão;  Aumentar a velocidade de rotação da espiral;  Aumentar a diluição da polpa e  Diminuir a altura do tanque. 3.2. Seleção e dimensionamento de Ciclone e Hidrociclone Associação de ciclones
  • 22. 22 Raúl F. Raúl, 2019 Note: Nunca se deve instalar um ciclone frente da alimentação porque a alimentação irá para o único ciclone consequentemente terá menor probabilidade de distribuição da alimentação. Número de hidrociclones 𝑁ℎ𝑖𝑑 = 𝑉 𝑄 (3.2.1) Onde: Q = é dada na tabela pela pressão e diâmetro (𝑚3 ℎ ⁄ ) 𝑉 → 𝑉 = 𝑚 𝜌 [𝑚3 ℎ ⁄ ] (3.2.2) Ciclone 𝑆 = 𝑆𝑏 ∙ 𝐶1 ∙ 𝐶2 ∙ 𝐶3 (3.2.3) A fórmula acima é valida apenas para um ciclone com uma bateria, no caso aparecer ligado mais de uma bateria a fórmula fica: 𝑆 = 𝑆𝑏 ∙ 𝐶1 ∙ 𝐶2 ∙ 𝐶3 ∙ 𝑁 (3.2.4) Onde: 𝑆𝑏: separação básica achada pelo diâmetro do ciclone 𝐶1: Factor correção pela densidade ou peso especifico em 𝑔 𝑐𝑚2 ⁄ 𝐶2: Factor correção pela pressão em Psi 𝐶3: Factor correção pela concentração de sólidos em volume N: Número de bateria dos ciclones 3.3. Espessamento 𝑇𝑖𝑝𝑜𝑠 𝑑𝑒 𝑒𝑠𝑝𝑒𝑠𝑠𝑎𝑑𝑜𝑟𝑒𝑠 { 𝑙𝑎𝑚𝑖𝑛𝑎𝑟𝑒𝑠 𝐶𝑜𝑛𝑣𝑒𝑛𝑐𝑖𝑜𝑛𝑎𝑖𝑠 { 𝐶𝑜𝑙𝑢𝑛𝑎𝑠 𝑃𝑜𝑛𝑡𝑒𝑠 𝐶𝑎𝑖𝑥ã
  • 23. 23 Raúl F. Raúl, 2019 Arraste hidrodinâmico é quando o espessador opera em regime turbulento, por isso adota se o feedwell que reduz o fluxo da alimentação para que seja de regime laminar. Rack/Raspador gira numa velocidade necessária para não gerar turbulência que dificultará a sedimentação das partículas.  Zonas de alimentação e Clarificação Zona crítica- Os sólidos ocupam espaço e a água sobe. Zona de compressão- os sólidos se compactam. Para aumentar a velocidade de sedimentação das partículas usa se coagulantes ou floculantes.  Velocidades Regime laminar 𝑉𝑇 = 𝑔 ∙ 𝑑𝑃 2(𝜌𝑠 − 𝜌𝑙) 18𝜇 (3.3.1) Regime turbulento 𝑉𝑇 = √ 4𝑔 ∙ 𝑑𝑃(𝜌𝑠 − 𝜌𝑙) 3𝐶𝐷𝜌𝑙 (3.3.2) Onde: 𝑉𝑇 = velocidade terminal da partícula (𝑚 𝑠 ⁄ ); 𝜌𝑠ó𝑙= densidade do solido, ( 𝑘𝑔 𝑚3 ⁄ ); 𝜌 = densidade do liquido, ( 𝑘𝑔 𝑚3 ⁄ ); 𝑔 = aceleração da gravidade, (𝑚 𝑠2 ⁄ ); 𝑑𝑝 = diâmetro da partícula, 𝑚. 𝜇 = viscosidade cinemática ( 𝑘𝑔 𝑚 ∙ 𝑠 ⁄ )  Área
  • 24. 24 Raúl F. Raúl, 2019 𝑆𝑚𝑖𝑛 = 𝑄𝐴𝐶𝐴 ( 1 𝐶𝐶 − 1 𝐶𝐸 ) 𝜇 (3.3.3) 𝜇𝐶 = 𝑍𝑖𝑐 − 𝑍𝑐 𝑄 (3.3.4) 𝐶𝐶 = 𝐶0 ∙ 𝑍0 𝜃 (3.3.5)  Altura 𝐻 = 𝑉 𝑆 ou 𝐻 = 𝑄𝐴𝐶𝐴 𝑆∙𝜌𝑠 (𝑇𝐸 − 𝑇𝐶) 𝜌𝑠−𝜌 𝜌𝑚−𝜌 (3.3.6)  Volume do espessador 𝑉 = 𝑄𝐴𝐶𝐴 𝜌𝑠 (𝑇𝐸 − 𝑇𝐶) 𝜌𝑠 − 𝜌 𝜌𝑚 − 𝜌 (3.3.7)  Volume do sólido 𝑉 𝑠 = 𝑄𝐴𝐶𝐴 𝜌𝑠 (𝑇𝐸 − 𝑇𝐶) (3.3.8) 3.3.1. Método de Coe & Clevenger 𝑆 = 𝑄𝐴𝐶𝐴 ( 1 𝐶 − 1 𝐶𝐸 ) 𝜇 (3.3.1.1) 𝜇 = 𝑄 − 𝑄𝐸 𝑆 (3.3.1.2)
  • 25. 25 Raúl F. Raúl, 2019 3.3.2. Método de Kynch 𝑆 = 𝑄𝐴𝐶𝐴 ( 1 𝐶 − 1 𝐶𝐸 ) 𝜇 (3.3.2.1) 𝜇 = 𝑍𝑖 − 𝑍 𝜃 (3.3.2.2) 3.3.3. Método de Roberts 𝑆𝑚𝑖𝑛 = 𝑄𝐴𝐶𝐴 ( 1 𝐶𝐶 − 1 𝐶𝐸 ) 𝜇𝐶 (3.3.3.1) 𝐶𝐶 = 𝐶0 ∙ 𝑍0 𝑍𝑖𝑐 (3.3.3.2) 𝜇𝐶 = 𝑍𝑖𝑐 − 𝑍𝑐 𝜃𝑐 (3.3.3.3) 3.3.4. Método de Talmadge & Fitch 𝑆𝑚𝑖𝑛 = 𝑄𝐴𝐶𝐴 ( 1 𝐶𝐶 − 1 𝐶𝐸 ) 𝜇𝐶 (3.3.4.1) 𝐶𝐶 = 𝐶0 ∙ 𝑍0 𝑍𝑖𝑐 (3.3.4.2) 𝜇𝐶 = 𝑍𝑖𝑐 − 𝑍𝑐 𝜃𝑐 (3.3.4.3) Onde: Vazão mássica do sólido: 𝑄𝐴𝐶𝐴 (t/h); Vazão volumétrica do sólido: 𝑄𝐴𝐶𝐴/ 𝜌𝑠ó𝑙 𝑚3 ℎ ⁄ ;
  • 26. 26 Raúl F. Raúl, 2019 Tempo de residência do sólido na zona de compressão: 𝑇𝐸 − 𝑇𝐶; 𝑍𝐸 = 𝑍 = altura da interface (m); 𝜃 = tempo; 𝑍𝑖 = altura inicial da suspensão (m); 𝐶𝐸= especificada para a lama espessada; 𝐶0 = concentração inicial da suspensão (𝑡 𝑚3 ⁄ ). 4. AGITAÇÃO E MISTURA Os termos agitação e mistura são geralmente utilizados para operações nas quais um líquido é forçado mecanicamente ao escoamento em um tanque. A rigor, esta definição é a de agitação, sendo o conceito de mistura aplicado à operação de propiciar a mistura de duas ou mais fases diferentes: líquido-líquido, líquido-gás, líquido- sólido e sólido-sólido. Figura 9: Acondicionador e impelidor para agitação e mistura (PAIVA. J, 2014). 𝑍 = 𝑇 𝐷 = 𝐶
  • 27. 27 Raúl F. Raúl, 2019 𝑇 = 3𝐷 𝑇 = 12𝐵 𝑅𝑒 = 𝜌𝑁𝐷2 𝜇 (4.1) 𝑁𝑃𝑜 = 𝑃 𝜌𝑁3𝐷5 (4.2)  Potência para completa dispersão 𝑃 𝑉 ⁄ = 0,092 ∙ 𝑔 ∙ 𝑇 𝐷 ∙ 𝑉𝜃 ∙ √( 1−𝜀 𝜀 ) ∙ ∆𝜌 ∙ 𝑒5,3∙ 𝐶 𝑇 [𝑊 𝑚3 ⁄ ] (4.3) Parâmetros 𝑇 𝐷 = 𝑇 𝐶 = 3 𝐶 𝑇 = 0,33 𝑔 = 9,81 𝑚 𝑠2 ⁄ 𝜀 = 1 − %𝑠ó𝑙 𝑒𝑚 𝑣𝑜𝑙𝑢𝑚𝑒 𝑉𝜃 = √ 4 3 𝑔𝑑50 ∙ ∆𝜌 𝐶𝐷 ∙ 𝜌𝑙 (4.4)  Volume do cilindro 𝑉 = 𝐴 × ℎ 𝐴 = 𝜋𝑑2 4 𝑉 = 𝜋𝑑2 4 × ℎ (4.5) [𝑊 𝑚3 ⁄ × 𝑚3 ] 𝑃 𝑉 ⁄ = [ 𝑊𝑎𝑡𝑡𝑠 𝑚3 ] → 𝑃 = 𝑊 𝑚3 ⁄ × 𝑚3 (4.6) 4.1. Scale-up Consiste na ampliação da escala laboratorial para escala industrial.
  • 28. 28 Raúl F. Raúl, 2019 Figura 10: Scale-up do acondicionador e impelidor (PAIVA. J, 2014). Tanque cilíndrico com Z = T Volumes dos tanques 𝑉1e 𝑉2 𝑅 = 𝑇2 𝑇1 = ( 𝑉2 𝑉1 ) 1 3 (4.1.1) 𝐷2 = 𝑅 ∙ 𝐷1 (4.1.2) 𝐶2 = 𝑅 ∙ 𝐶1 (4.1.3) 𝑇2 = 𝑅 ∙ 𝑇1 (4.1.4) A razão (𝑅) pode ser obtida a partir do volume ou de diâmetro. Para diâmetro 𝐷 = 𝐷2 𝐷1 (4.1.5) Para volume 𝑅 = 𝑉2 𝑉1 𝑉2 = 3𝑉1 (4.1.6)
  • 29. 29 Raúl F. Raúl, 2019 Rotação 𝑁2 𝑁1 = ( 1 𝑅 ) 𝑛 = ( 𝐷2 𝐷1 ) 𝑛 (4.1.7) 𝒏 corresponde aos valores dados para materiais segundo os seus objetivos. 5. VAMOS PRATICAR! Nesta parte de resolução de exercícios, é importante ter todas as tabelas e os diagramas de todos os equipamentos com conhecimentos básicos para as suas leituras (leitura dos valores tabelados) pois este artigo não contém todas as tabelas e os diagramas. 5.1. Banda transportadora 1. Determinar os parâmetros básicos de um transportador de correia, a carga a transportar é carvão mineral com densidade de 1.6 𝑡 𝑚3 ⁄ , produtividade de 240 𝑡/ℎ, comprimento do transportador 280𝑚, ângulo e inclinação da instalação 5 graus, talude dinâmico da carga 15 grau, o peso unitário e de atrito dos roletes 1.2 e 0.03 respetivamente. Adoptar 𝑙′=1𝑚; 𝑙′′=2.6𝑚 S = 20 graus, K = 470, 𝐺′𝑟=120 𝑘𝑔, 𝐺′′𝑟=50 𝑘𝑔, V =3.05 m/s e a eficiência do equipamento é de 70%. 𝑄 = 𝐶 𝜌 → 240 𝑡/ℎ 1,6𝑡 𝑚3 ⁄ = 150 𝑚3 ℎ ⁄ 𝐵1 = √ 150 470∙𝑡𝑔15∙1∙3∙5∙1,6 = 0,5 𝐵 = 0,5+0,05 0,9 = 0,61𝑚 𝑞 = 𝑔𝑄 3,6𝑉 = 9,81∙150 3,6∙3,05 = 133,87𝑁/𝑚 𝑞′ 𝑟 = 𝑔𝐺′𝑟 𝑙′ = 9,81∙120 1 = 1176𝑁/𝑚 𝑞′ ′𝑟 = 𝑔𝐺′′𝑟 𝑙′′ = 9,81∙50 2,6 = 188,48𝑁/𝑚 𝑊 𝑐 = (𝑞 + 𝑞𝑐) ∙ 𝑐𝑜𝑠𝛽 + 𝑞′ 𝑟 ∙ 𝐿 ∙ 𝑤 ± (𝑞 + 𝑞𝑐) ∙ 𝐿 ∙ 𝑠𝑒𝑛𝛽 𝑊 𝑐 = (133,87 + 1,2) ∙ 𝑐𝑜𝑠5 + 11763 ∙ 280 ∙ 0,03 + (133,87) ∙ 280 ∙ 𝑠𝑒𝑛5 = 10172,48 𝑊 𝑐 = 𝑞𝑐 ∙ 𝑐𝑜𝑠𝛽 + 𝑞′ 𝑟 ∙ 𝐿 ∙ 𝑤 ± 𝑞𝑐 ∙ 𝐿 ∙ 𝑠𝑒𝑛𝛽
  • 30. 30 Raúl F. Raúl, 2019 𝑊 𝑐 = 1,2 ∙ 𝑐𝑜𝑠5 + 188,46 ∙ 280 ∙ 0,03 − 1,2 ∙ 280 ∙ 𝑠𝑒𝑛5 = 1563,82 𝑁 = 𝑁0 𝜇𝑚 = 𝑁0 0,7 𝑁0 = 𝑊0∙𝑉 1000 = 𝑊0 500 𝑊0 = 𝑊0(𝑊 𝑣 + 𝑊 𝑐) = 14083,56 𝑁0 = 42,954858 𝐾𝑊 5.2. Bombas de água 1. Água a 20 graus celsius é bombeada de um tanque para outro em uma ponta superior de vazão de 5×10−3 𝑚3 ℎ ⁄ . a tubulação tem D = 4in, sendo de acho. A eficiência da bomba é de 65%. Calcule a potência (KW), necessária para a primeira bomba (A) considere as perdas na entrada 0.26𝐽/𝐾𝑔 e na saída 0.102, perda de carga na válvula = 0.20. Figura 11: Esquema do bombeamento de água (1). Dados 𝑇 = 20 𝑔𝑟𝑎𝑢𝑠 𝑐𝑒𝑙𝑠𝑖𝑢𝑠 = 𝜇 = 1𝑐𝑝 = 0,001 𝑃𝑎 ∙ 𝑠 𝑄 = 5 × 10−3 𝑚3 ℎ ⁄ 𝐷 = 4𝑖𝑛 = 0,102𝑚
  • 31. 31 Raúl F. Raúl, 2019 Ƞ = 65% 𝐹𝐸𝑛𝑡𝑟𝑎𝑑𝑎 = 0,26 𝐽/𝑘𝑔 𝐹𝑆𝑎𝑖𝑑𝑎 = 0,102 𝐽/𝑘𝑔 𝐹𝑉𝑎𝑙𝑣𝑢𝑙𝑎 = 0,20 Cotovelos de 90 graus são 2 Material de aço, logo a sua 𝜖 = 4,6 × 10−5 a rugosidade encontra se na tabela para cada material 𝜌𝐻2𝑂 = 1000 𝑘𝑔 𝑚3 ⁄ Para a resolução deste exercício assim como os outros da mesma natureza e necessário ter auxilio das tabelas de perdas de carga, de velocidades e de seleção de bombas. 𝑄 = 𝐴 ∙ 𝑉 𝑉 = 4∙5×10−3𝑚3 ℎ ⁄ 𝜋∙0,1022𝑚 = 0,62𝑚/𝑠 𝑅𝑒 = 1000∙0,62∙0,102 0,001 = 63240 ≈ 6,3 × 104 correspondente ao regime turbulento Rugosidade relativa 𝜖 𝐷 = 4,6×10−5 0,102 = 4,4 × 10−4 ≈ 0,0005 𝑙𝑜𝑔𝑜 𝑓 = 0,005 𝐹𝑐𝑜𝑡 = 4 ∙ 𝑓 ∙ 𝐿 𝐷 ∙ 𝑣2 2 𝐿 𝐷 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒 𝑎𝑜 𝑐𝑜𝑚𝑝𝑟𝑖𝑚𝑒𝑛𝑡𝑜 (𝐿𝑒) 𝑞𝑢𝑒 é 𝑒𝑛𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑜 𝑛𝑎 𝑡𝑎𝑏𝑒𝑙𝑎. 𝐹𝑐𝑜𝑡 = 4 ∙ 0,005(2 ∙ 35) 0,622 2 = 0,27𝐽/𝑘𝑔 𝐹𝑟𝑒𝑐𝑡𝑜 = 4 ∙ 𝑓 ∙ 𝐿 𝐷 ∙ 𝑣2 2 Neste caso, o 𝐿 corresponde ao somatório de todas as distancias nas quais o fluído vai percorrer logo 𝛴𝐿 = 125𝑚 𝐹𝑟𝑒𝑐𝑡𝑜 = 4 ∙ 0,005 ∙ 125 0,102 ∙ 0,622 2 = 4,004 𝐽/𝑘𝑔
  • 32. 32 Raúl F. Raúl, 2019 ∑ 𝐹 = 𝐹𝑡𝑢𝑏𝑜 𝑟𝑒𝑐𝑡𝑜 + 𝐹𝑠𝑎𝑖𝑑𝑎 + 𝐹𝑒𝑛𝑡𝑟𝑎𝑑𝑎 + 𝐹𝑣𝑎𝑙𝑣𝑢𝑙𝑎 + 𝐹𝑐𝑜𝑡 ∑ 𝐹 = 4,004 + 0,102 + 0,26 + 0,20 + 0,27 = 4,73 ẘ = 𝑔(ℎ2 − ℎ1) + ∑ 𝐹 ẘ = 9,81(15 − 1,5) + 4,73 = 626,417 𝐽. 𝑘𝑔 𝑤 = 𝑄 ∙ 𝜌 = 5 × 10−3 ∙ 1000 = 5𝑘𝑔/𝑠 𝑃ℎ𝑖𝑑 = 𝑤 ∙ ẘ 𝑃ℎ𝑖𝑑 = 5𝑘𝑔 𝑠 ∙ 626,417 𝐽. 𝑘𝑔 = 3132,08 𝐽/𝑠 𝑃𝑟𝑒𝑎𝑙 = 𝑃ℎ𝑖𝑑 𝜂 = 3132,08 𝐽/𝑠 0,65 = 4818,59 𝑊𝑎𝑡𝑡𝑠 = 4,81859 𝐾𝑊𝑎𝑡𝑡𝑠 Exercício 2 Figura 12: Esquema do bombeamento de água (2). Dados 𝑇 = 20 𝑔𝑟𝑎𝑢𝑠 𝑐𝑒𝑙𝑠𝑖𝑢𝑠 = 𝜇 = 1𝑐𝑝 = 0,001 𝑃𝑎 ∙ 𝑠 𝑄 = 0,025 𝑚3 ℎ ⁄
  • 33. 33 Raúl F. Raúl, 2019 𝐷 = 4𝑖𝑛 = 0,102𝑚 Ƞ = 65% 𝐹𝐸𝑛𝑡𝑟𝑎𝑑𝑎 = 0,26 𝐽/𝑘𝑔 𝐹𝑆𝑎𝑖𝑑𝑎 = 0,102 𝐽/𝑘𝑔 𝐹𝑉𝑎𝑙𝑣𝑢𝑙𝑎 = 0,20 Cotovelos de 90 graus = 1 Material de aço, logo a sua 𝜖 = 4,6 × 10−5 a rugosidade encontra se na tabela para cada material 𝜌𝐻2𝑂 = 1000 𝑘𝑔 𝑚3 ⁄ 𝑄 = 𝐴 ∙ 𝑉 𝑉 = 4∙0,025𝑚3 ℎ ⁄ 𝜋∙0,1022𝑚 = 3,05𝑚/𝑠 𝑅𝑒 = 1000∙3,05∙0,102 0,001 = 31110 ≈ 3,1 × 105 𝜖 𝐷 = 4,6×10−5 0,102 = 4,4 × 10−4 ≈ 0,0005 𝑙𝑜𝑔𝑜 𝑓 = 0,005 𝐹𝑐𝑜𝑡 = 4 ∙ 𝑓 ∙ 𝐿 𝐷 ∙ 𝑣2 2 𝐿 𝐷 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒 𝑎𝑜 𝑐𝑜𝑚𝑝𝑟𝑖𝑚𝑒𝑛𝑡𝑜 (𝐿𝑒) 𝑞𝑢𝑒 é 𝑒𝑛𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑜 𝑛𝑎 𝑡𝑎𝑏𝑒𝑙𝑎. 𝐹𝑐𝑜𝑡 = 4 ∙ 0,005(17 + 35) 3,052 2 = 4,83𝐽/𝑘𝑔 𝐹𝑟𝑒𝑐𝑡𝑜 = 4 ∙ 𝑓 ∙ 𝐿 𝐷 ∙ 𝑣2 2 𝐹𝑟𝑒𝑐𝑡𝑜 = 4 ∙ 0,005 ∙ 350 0,102 ∙ 3,052 2 = 319,20 𝐽/𝑘𝑔 ∑ 𝐹 = 𝐹𝑡𝑢𝑏𝑜 𝑟𝑒𝑐𝑡𝑜 + 𝐹𝑠𝑎𝑖𝑑𝑎 + 𝐹𝑒𝑛𝑡𝑟𝑎𝑑𝑎 + 𝐹𝑣𝑎𝑙𝑣𝑢𝑙𝑎 + 𝐹𝑐𝑜𝑡 ∑ 𝐹 = 319,20 + 0,102 + 0,26 + 0,20 + 4,83 = 324,59 𝐽/𝑘𝑔 ∆ℎ = 580 − 560 = 20 ẘ = 9,81(20 + 5) + 324,59 = 569,84 𝑊𝑎𝑡𝑡𝑠
  • 34. 34 Raúl F. Raúl, 2019 𝑤 = 𝑄 ∙ 𝜌 = 0,025 ∙ 1000 = 25𝑘𝑔/𝑠 𝑃ℎ𝑖𝑑 = 𝑤 ∙ ẘ 𝑃ℎ𝑖𝑑 = 25𝑘𝑔 𝑠 ∙ 569,84 𝐽. 𝑘𝑔 = 14246 𝐽/𝑠 𝑃𝑟𝑒𝑎𝑙 14246 𝐽/𝑠 0,65 = 21916,92 𝑊𝑎𝑡𝑡𝑠 = 21,91692 𝐾𝑊𝑎𝑡𝑡𝑠 3. Exercício Considere o sistema baixo com um tubo de diâmetro nominal de 3 polegadas na área de sucção e uma vazão mássica de 56,19kg/s. a massa especifica do fluído newtoniano é de 0.891g/cm3 e viscosidade de 59cP. Considerando as tubulações (com curvas), válvula gaveta aberta, determine a ATM da sucção e da descarga. Considerar a entrada do sistema (sistema do tanque) e a expansão na saída da tubulação. A região de descarga possui diâmetro nominal de 1 ½ polegadas. Figura 13: Esquema de bombeamento (3). Dados de todo sistema Joelhos de 90 graus rosqueados Válvula do tipo gaveta aberta Rugosidade das tubulações: 𝜀 = 0,04 𝑚𝑚 𝐷 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 { 1 1 2 ′′ = 0,038 𝑚 (𝑒𝑥𝑡𝑒𝑟𝑛𝑜)𝑐𝑜𝑚 𝑒𝑠𝑝𝑒𝑠𝑠𝑢𝑟𝑎 𝑑𝑜 𝑡𝑢𝑏𝑜 = 1,5 𝑚𝑚 3′′ = 88,90 𝑚𝑚 𝑒 𝑒𝑠𝑝𝑒𝑠𝑠𝑢𝑟𝑎 = 4,05 𝑚𝑚 O exercício pede a determinação de ATM em partes (sucção e descarga). Determinação de perdas de carga por atrito na sucção Bombeamento de um fluído Newtoniano.
  • 35. 35 Raúl F. Raúl, 2019 Dados gerais dados da sucção Fluído newtoniano 𝐷𝑁 = 3′′ 𝑚 ̇ = 56,19 𝑘𝑔/𝑠 𝐷𝑒 = 88,9 × 10−3 𝑚 𝜌 = 891𝑘𝑔/𝑚3 𝑒 = 4,05 × 10−3 𝑚 𝜇 == 59 × 10−3 𝑃𝑎. 𝑠 𝐷𝑖 = 𝐷𝑒 − 2𝑒 = 80,8 × 10−3 𝑚 Cálculo da velocidade 𝐴 = 𝜋𝐷𝑖2 4 = 𝜋×(80,8×10−3) 2 4 = 5,127 × 10−3 𝑚2 𝑄 = 𝑚 ̇ 𝜌 = 56,19 891 = 6,300 × 10−3 𝑚3 /𝑠 𝑣 = 𝑄 𝐴 = 6,300×10−3 5,127×10−3 = 12,298 𝑚/𝑠 𝑅𝑒 = 𝜌𝑣𝐷 𝜇 = 891∙12,298∙80,8×10−3 59×10−3 = 15007,33 ≈ 1,5 × 104 𝜀 𝐷 = 0,04×10−3 80,8×10−3 = 0,0005 Com este valor, vamos para o diagrama de Mood para achar o fator de atrito. Figura 14: Diagrama de Mood para determinação do fator de atrito.
  • 36. 36 Raúl F. Raúl, 2019 Acessórios 1 joelho de 90 graus rosqueado Válvula do tipo gaveta aberta Tabela 8: Comprimento equivalente. Tabela 9: Perdas de carga localizadas. 𝐿 = 3 + 0,3 = 3,3𝑚 da tubulação da sucção. 𝐿𝑒𝑞 = 2,83 + 0,457 + 3,3 = 6,587 𝑚 Sabe se que 𝑓𝐹𝑎𝑛𝑛𝑖𝑛𝑔 = 𝑓𝐷𝑎𝑟𝑐𝑦 4 = 0,016 4 = 0,004 ∆𝑃 𝜌 2𝑓𝐹 𝐿𝑒𝑞 𝐷 ∙ 𝑣2 = 2 ∙ 0,004 ∙ 6,587 80,8×10−3 ∙ (12,2989)2 = 98,63 𝑚2 /𝑠2 ∆𝑃 𝜌 = 178,80 𝑚2 /𝑠2 Vamos dividir pela gravidade para termos o valor em metros. ℎ𝑓𝑠 = ∆𝑃 𝜌𝑔 = 98,63 𝑚2/𝑠2 9,81 𝑚/𝑠2 = 10,054 𝑚
  • 37. 37 Raúl F. Raúl, 2019 Na descarga vamos usar o método do coeficiente de perda de carga localizada (𝑘𝑓). ℎ = 𝑘𝑓 𝑣2 2𝑔 Sem nenhuma informação sobre a forma do tudo na saída, o 𝑘𝑓 = 0,5 Bordas retas. ℎ = 0,5 12,2982 2∙9,81 = 3,854 𝑚 ℎ𝑓𝑠 = 10,054 + 3,854 = 13,9088 𝑚 Considerando todas as parcelas de energia antes da bomba (balanço de energia). 𝐻𝑠 = 𝑃𝑠 𝛾 + 𝑧𝑠 − ℎ𝑓𝑠 𝑃 = 𝑝𝑟𝑒𝑠𝑠ã𝑜 𝑎𝑡𝑚𝑜𝑠𝑓é𝑟𝑖𝑐𝑎 𝑒𝑚 𝑝𝑎𝑠𝑐𝑎𝑙 𝐻𝑠 = 101325𝑃𝑎 891∙9,81 + 150 − 13,9088 = 147,683 𝑚 ATM da sucção ATM na descarga Dados gerais Dados da sucção Fluído newtoniano 𝐷𝑁 = 1 1 2 ′′ 𝑚 ̇ = 56,19 𝑘𝑔/𝑠 𝐷𝑒 = 0,0381𝑚 𝜌 = 891𝑘𝑔/𝑚3 𝑒 = 1,5 × 10−3 𝑚 𝜇 == 59 × 10−3 𝑃𝑎. 𝑠 𝐷𝑖 = 𝐷𝑒 − 2𝑒 = 0,035𝑚 𝑣 = 𝑄 𝐴 = 65 𝑚/𝑠 𝑅𝑒 = 34507,35 ≈ 3,5 × 104
  • 38. 38 Raúl F. Raúl, 2019 𝜀 𝐷 = 0,0011 Vamos achar o fator de atrito no diagrama de Mood 𝑓𝐷 = 0,025 Comprimento equivalente 3 joelhos de 90 graus = 3,84 𝑚 𝐿 = 28𝑚 𝐿𝑒𝑞 = 32,34𝑚 Expansão na descarga ∆𝑃 𝜌 = 48824,56 𝑚2 /𝑠2 𝑘𝑓 = 1 ℎ𝑓𝑑 = 4977,02𝑚 ℎ𝑓𝑑 = 216,49𝑚 Balanço de energia ℎ𝐷 = 𝑃𝑠 𝛾 + 𝑧𝑠 − ℎ𝑓𝑠 = 101325 891∙𝑔 + (150 + 15 − 0,3) + 5193,5 ℎ𝐷 = 5369,4 𝑚 𝐴𝑇𝑀𝑡𝑜𝑡𝑎𝑙 = ℎ𝐷 − ℎ𝑠 𝐴𝑇𝑀𝑡𝑜𝑡𝑎𝑙 = 5369,4 − 147,683 = 5221,717 𝑚 O nosso valor de ATM é muito elevado porque a nossa velocidade na descarga é grande. Sabemos que quando maior for a velocidade, maior também serão as perdas de cargas. A velocidade e as perdas de cargas são diretamente proporcionais. 5.2. Fórmula de Forcheimmer Bresse O próximo exercício é um pouco diferente dos exercícios já resolvidos na sala pois ele traz nos uma novidade que é o uso da fórmula de Bresse para o cálculo do diâmetro da tubulação sem precisar fazer as iterações como nos exercícios anteriores e esta fórmula é usada quando o enunciado te dá o tempo do funcionamento seja por turno ou por horas diárias ou anuais. Antes de começar com a resolução do exercício, vamos abordar um pouco sobre a fórmula de Bresse só para sabermos onde e quando é que podemos usar. A fórmula de Bresse é expressa pela equação: 𝐷 = 𝐾√𝑄
  • 39. 39 Raúl F. Raúl, 2019 Onde: 𝐷 =diâmetro económico (𝑚); 𝐾 = coeficiente variável, função dos custos de investimento e de operação; 𝑄 = vazão de bombeamento (𝑚3 /𝑠). A fórmula de Bresse tem se mostrado de grande utilidade prática. O coeficiente 𝐾 tem sido objeto de vários estudos. O valor de 𝐾 depende de variáveis tais como: custo médio do conjunto elevatório, inclusive despesas de operação e manutenção, custo médio da tubulação, inclusive despesas de transporte, assentamento e conservação, peso específico do fluído, rendimento global do conjunto elevatório, etc. Cabe ao projetista eleger convenientemente o valor de 𝐾. Na realidade, escolher o valor de 𝐾 equivale fixar a velocidade. Ao explicitar a variável 𝑄 da fórmula de Bresse e aplicando-se na equação da continuidade, tem-se que: 𝑣 = 4 𝜋𝐾2 Através desta expressão organizou-se a tabela 10, que apresenta valores de K e de velocidade. Geralmente a velocidade média das instalações situa-se entre 0,6 𝑒 2,4 𝑚/𝑠. As maiores velocidades são utilizadas em instalações que funcionam apenas algumas horas por dia. Tabela 10: Valores para as variáveis K e velocidade da fórmula de Bresse. Valor de K Velocidade (m/s) Valor de K Velocidade (m/s) 0,75 2,26 1,10 1,05 0,80 1,99 1,20 0,88 0,85 1,76 1,30 0,75 0,90 1,57 1,40 0,65 1,00 1,27 𝐷𝑟 = 𝐾√𝑁𝑈 4 ∙ √𝑄 (Forcheimmer Bresse) 𝐷𝑟 = 0,9𝑄0,45 (EUA) 𝐷𝑟 = 𝐾 ( 𝑁𝑈∙𝑒 𝑓 ) 0,54 𝑄0,46 (França)
  • 40. 40 Raúl F. Raúl, 2019 𝐷𝑟 = 1,3 ∙ (𝑁𝑈) 1 4√𝑄 (Para pouco funcionamento) 𝐷𝑟 = 1,46𝑋0,25 √𝑄 (Forcheimmer Bresse) 𝐷𝑟 = 1,3𝑇0,25 √𝑄 (ABNT) 𝑵𝑼 = 𝑻 é o numero de horas de trabalho de instalação por dia dividido por 24; X é o numero de horas de trabalho de instalação por ano dividido por 8760; 𝒆 é o custo de energia elétrica; 𝒇 é o custo do material do conduto em Kg; K é o coeficiente (1,55 para 24h e 1,35 para 10h). Exercício 4 Uma empresa de transporte possui uma lavação de camiões (car wash) e filtra água do rio que fica próximo da empresa, armazenando em um reservatório de 120 mil litros de água filtrada. Para este processo, precisa se comprar uma bomba que seja acionada as 09:30min e desligada as 14:45min com o reservatório cheio. Este processo acontecerá a cada três dias e será considerada a instalação de tubos de aço comercial. Você é o engenheiro contratado da empresa para este dimensionamento, verifique qual modelo da bomba é o mais adequado para esta linha de bombeamento.
  • 41. 41 Raúl F. Raúl, 2019 Figura 15: Esquema de bombeamento de água (4). Dados ∆𝑉 = 120 000 𝑙 = 120 𝑚3
  • 42. 42 Raúl F. Raúl, 2019 ∆𝑡 = 14: 45 − 09: 30 = 05: 15𝑚𝑖𝑛 = 5,25ℎ Logo para a equação de Bresse, o 𝑋 = 𝑁𝑈 é igual a 5,25ℎ Material metálico-aço comercial Primeiro passo: Calcular a vazão requerida. 𝑄𝑟 = ∆𝑉 ∆𝑡 = 120 5,25 = 22,857 𝑚3 ℎ = 0,00635𝑚3 /𝑠 Segundo passo: Calcular diâmetro da tubulação. Dados 𝑁𝑈 = 5,25ℎ 𝑄𝑟 = 0,00635𝑚3 /𝑠 𝐷𝑟 = 1,3(𝑁𝑈) 1 4√𝑄𝑟 𝐷𝑟 = 1,3 ( 5,25 24 ) 1 4 √0,00635 𝐷𝑟 = 0,070842 𝑚 = 70,842 𝑚𝑚 Com este diâmetro calculado, vamos para a tabela dos diâmetros de tubulações com conexões disponíveis no mercado. Tabela 11: Diâmetros de tubulações com conexões 𝒊𝒏 3 4′′ ⁄ 1′′ 1 1 4′′ ⁄ 1 1 2′′ ⁄ 2′′ 21 2′′ ⁄ 3′′ 4′′ 5′′ 𝒎𝒎 19,05 25,4 31,75 38,1 50,8 63,5 76,2 101,6 127 Na tabela 11, vamos escolher o diâmetro maior ou igual ao diâmetro calculado e nesse caso temos diâmetro de 3′′ correspondendo 76,2 𝑚𝑚. Terceiro passo: Encontrar a altura da sucção. Sabemos que a altura da sucção é a diferença de altura entre o nível dinâmico da captação e o bocal de sucção da bomba. Na altura de sucção não é levado em consideração a altura abaixo do nível do fluído.
  • 43. 43 Raúl F. Raúl, 2019 ℎ𝑠 = 6,25 + 1,17 − 1,33 + 0,55 ℎ𝑠 = 6,64 𝑚. 𝑐. 𝑎 Quarto passo: Encontrar a altura de recalque A altura de recalque é a diferença de altura entre o bocal da sucção da bomba e o ponto de maior elevação do fluído até o destino final da instalação. ℎ𝑟 = 0,15 + 5,63 + 2,80 + 13,85 + 2,15 ℎ𝑟 = 24,58 𝑚. 𝑐. 𝑎 Quinto passo: Encontrar o comprimento da sucção. É a extensão linear em metros de tubo utilizados na instalação desde o injector ate o bocal de entrada da bomba. 𝐿𝑠 = 1,15 + 6,25 + 1,90 + 1,20 + 1,33 + 1,41 + 0,70 + 2,85 𝐿𝑠 = 16,79 𝑚 Sexto passo: Encontrar o comprimento de recalque. É a extensão linear em metros de tubo utilizados na instalação, desde a saída da bomba até o ponto final da instalação. 𝐿𝑟 = 5,63 + 4,63 + 7,23 + 13,85 + 3,55 + 3,70 + 1,66 + 1,85 + 1,75 𝐿𝑟 = 43,58 𝑚 Sétimo passo: Encontrar o comprimento total da tubulação. = ∑ 𝐿𝑠 𝑒 𝐿𝑟 𝐿𝑡 = 16,79 + 43,58 = 60,37𝑚 Oitavo passo: perda de carga por comprimento do tudo. Esta perda de carga por comprimento do tubo é igual ao comprimento total da tubulação. 𝐽𝐿 = 60,37 𝑚 Nono passo: Encontrar a perda de carga nas conexões. É o atrito exercido na parede interna das conexões.
  • 44. 44 Raúl F. Raúl, 2019 Esta perda de carga é achada na tabela de perda de carga por conexões. Figura 16: Tabela de Comprimentos Equivalentes em conexões, para cálculos de Perdas Localizadas. Válvula de pé com crivo 1 × 22 𝑚 = 22 𝑚 Válvula de retenção 1 × 8 𝑚 = 8 𝑚 Registro de gaveta 1 × 0,5 𝑚 = 0,5 𝑚 Luva de redução 3 × 0,78 𝑚 = 2,34 𝑚 União 7 × 0,02 𝑚 = 0,14 𝑚 Curva de 45 graus 10 × 0,6 𝑚 = 6 𝑚 Curva de 90 graus 4 × 1,3 𝑚 = 5,2 𝑚 ∑ 22 + 8 + 0,5 + 2,34 + 0,14 + 6 + 5,2 = 44,18 𝑚 Décimo passo: Encontrar a perda de carga total no sistema de tubulação. Para esta etapa, vamos usar a tabela de perda de carga percentual onde precisaremos de diâmetro, vazão e tipo de material. Em casos de não encontrar a vazão igual à vazão calculada, recomenda se a escolha do valor maior. Se a tabela a seguir não estiver bem visível, sugiro que baixe uma com visibilidade melhor.
  • 45. 45 Raúl F. Raúl, 2019 Figura 17: Tabela de Perda de Carga em Tubulações de PVC, Galvanizado e Ferro Fundido (Para Cada 100 m de Tubos). 𝑓𝐽 = 3% = 0,03 𝐽𝑇 = (𝐽𝐶𝑜𝑛𝑒𝑥𝑜𝑒𝑠 + 𝐽𝑇𝑢𝑏𝑢𝑙𝑎𝑐𝑎𝑜)𝑓𝐽 𝐽𝑇 = (44,18 + 60,37)0,03 𝐽𝑇 = 3,1365 𝑚. 𝑐. 𝑎 Por último: Encontrar a altura manométrica 𝐴𝑇𝑀 = ℎ𝑠 + ℎ𝑟 + 𝐽𝑇 𝐴𝑇𝑀 = 6,64 + 24,58 + 3,1365 𝐴𝑇𝑀 = 34,3565 𝑚. 𝑐. 𝑎 Conhecendo a ATM e a vazão, podemos ir para os ábacos disponíveis e escolhermos a bomba qualificada para esta linha de bombeamento.
  • 46. 46 Raúl F. Raúl, 2019 5.3. Bombas de polpa Exercício 1. Dados 𝑑50 = 0,3𝑚𝑚 𝑚𝑠ó𝑙 = 13,2 𝑡/ℎ %𝑠ó𝑙 = 9,4 𝜌𝑠ó𝑙 = 3𝑡/𝑚3 Para a resolução dos exercícios sobre bombeamento de popas, temos os seguintes passos por seguir: Primeiro passo: Características da polpa %𝑠ó𝑙 = 𝑚𝑠ó𝑙 𝑚𝑝𝑜𝑙𝑝𝑎 × 100% 𝑚𝑝𝑜𝑙𝑝𝑎 = 𝑚𝑠ó𝑙 %𝑠ó𝑙 = 13,2 9,4 = 140,42 𝑡/ℎ 𝑃𝑜𝑙𝑝𝑎 = 𝑠ó𝑙𝑖𝑑𝑜 + á𝑔𝑢𝑎 → á𝑔𝑢𝑎 = 𝑝𝑜𝑙𝑝𝑎 − 𝑠ó𝑙𝑖𝑑𝑜 → 𝐻2𝑂 = 140,42 − 13,2 = 127,2 𝑡/ℎ 𝑄𝑃 = 𝑄𝑠ó𝑙 + 𝑄𝐻2𝑂 { 𝐻2𝑂 = 𝑚𝐻2𝑂 𝜌𝐻2𝑂 = 127,2 1 = 127,2 𝑚3 /ℎ 𝑄𝑠ó𝑙 = 𝑚𝑠ó𝑙 𝜌𝑠ó𝑙 = 13,2 3 = 4,4 𝑚3 /ℎ 𝑄𝑃 = 𝑄𝑠ó𝑙 + 𝑄𝐻2𝑂 = 127,2 + 4,4 = 131,6 𝑚3 /ℎ 𝐶𝑣𝑠 = %𝑠ó𝑙(𝑉 𝑉 ⁄ ) = 𝑄𝑠ó𝑙 𝑄𝑃 × 100% = 4,4 𝑚3/ℎ 131,6 𝑚3/ℎ = 3,34% 𝜌𝑝𝑜𝑙𝑝𝑎 = 𝑚𝑝𝑜𝑙𝑝𝑎 𝑄𝑃 = 140,42 𝑡/ℎ 131,6 𝑚3/ℎ = 1,06 𝑡 ∙ (𝑚3)−1 Segundo passo: cálculo de velocidades 𝑉𝐿 = 𝐹𝐿 ∙ √2𝑔𝑑 ∆𝜌 𝜌𝑙 Nas velocidades, nem sempre nos dão o diâmetro exato nos enunciados, nesse caso obriga-nos a fazer iterações até encontrar o diâmetro equivalente. Mas existe uma forma de encontrar o diâmetro máximo em que, em alguns casos pode ser exatamente o diâmetro equivalente ou
  • 47. 47 Raúl F. Raúl, 2019 pode não ser. Ao verificar se que esse diâmetro encontrado pela expressão do Eng. Jean não é equivalente, fará se as iterações, mas diminuindo o diâmetro encontrado pela a expressão que o Eng propôs. Ele igualou as duas velocidades V = VL e insolou o diâmetro. 4𝑄 𝜋𝐷2 = 𝐹𝐿 ∙ √2𝑔𝑑 ∆𝜌 𝜌𝑙 4𝑄 𝜋𝐷2∙𝐹𝐿 = √2𝑔𝑑 ∆𝜌 𝜌𝑙 ( 4𝑄 𝜋𝐷2∙𝐹𝐿 ) 2 = (√2𝑔𝑑 ∆𝜌 𝜌𝑙 ) 2 ( 4𝑄 𝜋𝐷2∙𝐹𝐿 ) 2 = √2𝑔𝑑 ∆𝜌 𝜌𝑙 𝐷 = √ 4𝑄2𝜌𝑙 𝜋2𝐷2∙𝐹𝐿2𝑔(𝜌𝑠−𝜌𝑙) 5 E é importante lembrar ou saber que a velocidade de bombeamento de uma polpa heterogénea deve atender duas exigências diferentes e independentes:  Ela deve ser suficiente grande para produzir a turbulência necessária para manter os sólidos em suspensão.  Ela deve ser menor possível para produzir o atrito com as paredes do tubo e consequentemente, reduzir a perda de carga. 𝐹𝐿 𝑑𝑒𝑝𝑒𝑛𝑑𝑒 𝑑𝑒 { 𝑑50 𝑇𝑖𝑝𝑜 𝑑𝑒 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑒 𝐶𝑣𝑠 = %𝑠ó𝑙(𝑉 𝑉 ⁄ ) 𝐹𝐿 𝑑𝑒𝑝𝑒𝑛𝑑𝑒 𝑑𝑒 { 𝑑50 = 0,3𝑚𝑚 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑒 = 1,1 𝑛𝑎 𝑡𝑎𝑏𝑒𝑙𝑎 𝐶𝑣𝑠 = %𝑠ó𝑙(𝑉 𝑉 ⁄ ) = 3,34% 𝑉𝐿 = 1,1 ∙ √2 ∙ 9,81𝐷 3−1,06 1,06 A partir da substituição feita na equação acima, é recomendável que se reduza a expressão para facilitar nas iterações. 𝑉𝐿 = 6,6 ∙ √𝐷 expressão reduzida
  • 48. 48 Raúl F. Raúl, 2019 As iterações no Excel são mais fáceis e rápidas, mas é pena que o docente não ira permitir o uso de qualquer dispositivo eletrónico com exceção da maquina calculadora durante a realização dos testes. Para este caso, o autor irá mostrar as duas formas: calculando manualmente e com Excel. 𝟏𝒂 𝒊𝒕𝒆𝒓𝒂çã𝒐 𝐷 = 4𝑖𝑛 = 102𝑚𝑚 = 0,102𝑚 𝑉𝐿 = 6,6 ∙ √0,102 = 2,1 𝑚/𝑠 𝑉𝑟 = 𝑉𝐿 + (0,3 𝑎 0,5) 𝑉𝑟 = 2,1 + (0,3 𝑎 0,5) 𝑉𝑟 = 2,4 𝑎 2,6 m/s 𝑄𝑝𝑜𝑙𝑝𝑎 = 131,6 𝑚3 ℎ × 1000𝑙 3600𝑠 = 36,6 𝑙/𝑠 𝑉𝑒𝑠𝑐𝑜𝑎𝑚𝑒𝑛𝑡𝑜 = 1273∙𝑄 (𝑙 𝑠 ⁄ ) 𝑑(𝑚𝑚) 2 𝑉𝑒𝑠𝑐𝑜𝑎𝑚𝑒𝑛𝑡𝑜 = 1273∙36,6 1022 = 4,5 𝑚/𝑠 Note: A velocidade de escoamento não está no intervalo da velocidade crítica, em outras palavras, o diâmetro escolhido não é equivalente. 𝟐𝒂 𝒊𝒕𝒆𝒓𝒂çã𝒐 𝐷 = 5𝑖𝑛 = 127𝑚𝑚 = 0,127𝑚 𝑉𝐿 = 6,6 ∙ √0,127 = 2,4 𝑚/𝑠 𝑉𝑟 = 2,4 + (0,3 𝑎 0,5) 𝑉𝑟 = 2,7 𝑎 2,9 m/s 𝑉𝑒𝑠𝑐𝑜𝑎𝑚𝑒𝑛𝑡𝑜 = 1273∙36,6 1272 = 2,9 𝑚/𝑠 Verifica se que com este diâmetro, a velocidade de escoamento satisfaz a meta do projeto ou a velocidade de escoamento é compatível com a velocidade crítica.  Iterações a partir do Excel
  • 49. 49 Raúl F. Raúl, 2019 Na construção da tabela 12, baseou-se nas fórmulas já conhecidas para cálculos de velocidades para bombeamento de polpa. Na tabela 12 temos diâmetro em metros, milímetros e polegadas, colocou se essas todas unidades para facilitar nos cálculos, visto que no cálculo da velocidade limite usamos diâmetro em metros e no cálculo da velocidade de escoamento usamos diâmetro em milímetros. Na mesma tabela temos dois resultados isso porque a lógica matemática (a velocidade de escoamento é compatível se ela estiver dentro do intervalo da velocidade crítica “0,3 𝑎 0,5”) da velocidade de escoamento estava dando erros durante as operações no Excel, foi por isso que temos dois resultados em que a primeira baseia-se na velocidade crítica abaixo (a sua lógica é: se a velocidade de escoamento for maior ou igual a velocidade crítica abaixo, o diâmetro é compatível e se não for, é incompatível) e o outro resultado baseia-se na velocidade crítica acima (a sua lógica é: se a velocidade de escoamento for menor ou igual a velocidade crítica acima, o diâmetro é compatível e se não, é incompatível). A partir desses dois resultados fez se o cruzamento para achar onde é que temos “compatível”, “compatível” e temos o nosso resultado que corresponde ao diâmetro de 5 𝑖𝑛. Tabela 12: Cálculo da compatibilidade do diâmetro a partir do Excel. D(in) D(mm) D(m) VL Vabaixo Vacima Vescoamento Resultado Resultado 1.00 25.40 0.03 1.05 1.35 1.65 72.13 Incompantível Compatível 2.00 50.80 0.05 1.49 1.79 2.09 18.03 Incompantível Compatível 3.00 76.20 0.08 1.82 2.12 2.42 8.01 Incompantível Compatível 4.00 101.60 0.10 2.10 2.40 2.70 4.51 Incompantível Compatível 5.00 127.00 0.13 2.35 2.65 2.95 2.89 Compatível Compatível 6.00 152.40 0.15 2.57 2.87 3.17 2.00 Compatível Incompantível 7.00 177.80 0.18 2.78 3.08 3.38 1.47 Compatível Incompantível 8.00 203.20 0.20 2.97 3.27 3.57 1.13 Compatível Incompantível 9.00 228.60 0.23 3.15 3.45 3.75 0.89 Compatível Incompantível 10.00 254.00 0.25 3.32 3.62 3.92 0.72 Compatível Incompantível Fonte: Autor, 2021 D 𝑖𝑛 diâmetro em polegadas; D 𝑚𝑚 diâmetro em milímetros; D 𝑚 diâmetro em metros; VL velocidade limite; 𝑉𝐴𝑏𝑎𝑖𝑥𝑜 velocidade critica (𝑉𝐿 + 0,3);
  • 50. 50 Raúl F. Raúl, 2019 𝑉𝐴𝑐𝑖𝑚𝑎 velocidade critica (𝑉𝐿 + 0,5). Terceiro passo: cálculo das perdas de carga Carga geométrica −1,5 + 11,5 − 2 = 8 𝑚𝑐𝑝 Carga distribuída 𝐸𝑠𝑡𝑎 𝑑𝑒𝑝𝑒𝑛𝑑𝑒 𝑑𝑒 { Velocidade de escoamento Diâmetro Na tabela, o valor encontrado é dividido por 100, isto é, a cada 100𝑚 há perda de carga. 𝐶𝑜𝑚 𝑒𝑠𝑡𝑎 𝑣𝑒𝑙𝑜𝑐𝑖𝑑𝑎𝑑𝑒 𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑟𝑜, 𝑜 𝑣𝑎𝑙𝑜𝑟 𝑑𝑒 ƻ = 8 𝑚. 𝑐. 𝑎 { 𝑣 = 2,9𝑚/𝑠 𝐷 = 127𝑚𝑚 ƻ = 8 𝑚𝑐𝑎 100 Carga distribuída 𝑍 = 𝐿 ∙ ƻ 𝐿 = 11,5 + 80 + 2 = 93,5 𝑚 𝑍 = 93,5 𝑚 ∙ 8 𝑚𝑐𝑎 100 = 7,5 𝑚𝑐𝑎 Carga localizada Perdas de carga nas pequenas partes como nas válvulas que depende do diâmetro. No enunciado temos uma válvula de mangote e duas de cotovelos 4d, com esta informação podemos buscar os valores correspondentes na tabela. 𝐷 { uma válvula de mangote → 1 × 2,9 m equivalente = 2,9 𝐷𝑢𝑎𝑠 válvulas de cotovelos 4d → 2 × 1,9 m equivalente = 3,8 (𝐶𝑜𝑚𝑝𝑟𝑖𝑚𝑒𝑛𝑡𝑜 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑒) Le = 2,9 + 3,8 = 6,7 m equivalente Z′ = 𝐿𝑒 × ƻ Z′ = 6,7𝑚 × 8 𝑚𝑐𝑎 100 = 0,5 𝑚𝑐𝑎 Carga total É o somatório de todas as cargas 𝐶𝑎𝑟𝑔𝑎 𝑔𝑒𝑜𝑚é𝑡𝑟𝑖𝑐𝑎 + 𝑐𝑎𝑟𝑔𝑎 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢í𝑑𝑎 + 𝑐𝑎𝑟𝑔𝑎 𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑑𝑎 8 𝑚𝑐𝑝 + 7,5 𝑚𝑐𝑎 + 0,5 𝑚𝑐𝑎 =?
  • 51. 51 Raúl F. Raúl, 2019 Perceba que não se pode somar (𝑚. 𝑐. 𝑝) metros coluna de polpa com (𝑚. 𝑐. 𝑎 )metros coluna de água. Então recorre se para o diagrama de cave para converter 𝑚. 𝑐. 𝑝 em 𝑚. 𝑐. 𝑎. 𝐻𝑅 = 𝐸𝑅 = 𝐴𝑙𝑡𝑢𝑟𝑎 𝑚.𝑐.𝑝 𝐴𝑙𝑡𝑢𝑟𝑎 𝑚.𝑐.𝑎 𝐸𝑅𝑜𝑢 𝐻𝑅 𝑑𝑒𝑝𝑒𝑛𝑑𝑒 𝑑𝑒 { 𝑑50 %𝑠ó𝑙 𝑒𝑚 𝑝𝑒𝑠𝑜 𝜌𝑠ó𝑙 𝐴𝑙𝑡𝑢𝑟𝑎 𝑚. 𝑐. 𝑎 = 𝐴𝑙𝑡𝑢𝑟𝑎 𝑚.𝑐.𝑝 𝐸𝑅 = 8 0,95 = 8,4 𝑚𝑐𝑎 Agora pode se efetuar a soma das cargas. 𝐶𝑎𝑟𝑔𝑎𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑔𝑒𝑜𝑚é𝑡𝑟𝑖𝑐𝑎 + 𝐶𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢í𝑑𝑎 + 𝐶𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑑𝑎 𝐶𝑎𝑟𝑔𝑎𝑡𝑜𝑡𝑎𝑙 = 8,4 + 7,5 + 0,5 = 16,4 𝑚𝑐𝑎 𝐴𝑇𝑀 = 𝑤 𝑔 → 𝑤 = 𝑔(∆ℎ) + ∑ 𝐹 𝐴𝑇𝑀 = ∑ 𝐹 𝐴𝑇𝑀 = 16,4 𝑚×1 𝑓𝑡 0,3048 𝑚 = 53,80 𝑓𝑡 𝑃𝑎𝑟𝑎 𝑠𝑒𝑙𝑒𝑐𝑖𝑜𝑛𝑎𝑟 𝑜𝑢 𝑒𝑠𝑐𝑜𝑙ℎ𝑒𝑟 𝑎 𝑏𝑜𝑚𝑏𝑎, 𝑡𝑒𝑚𝑜 𝑞𝑢𝑒 𝑡𝑒𝑟 { 𝐴𝑇𝑀 (𝑓𝑡) 𝑉𝑎𝑧ã𝑜 ( 𝐺𝑎𝑙õ𝑒𝑠 𝑚𝑖𝑛 ) Para ter esses dois parâmetros nas respetivas unidades, faremos as conversões. 1𝑓𝑡 = 0,3048 𝑚 1 𝑚3 ℎ ⁄ = 4,4 Galões/min 𝑦 = 3,17 𝑚 131,6 𝑚3 ℎ ⁄ = 𝑦 𝑦 = 10,40𝑓𝑡 𝑦 = 579,04Galões/min 3. Exercício Um tanque de 4𝑓𝑡 de altura e 3𝑓𝑡 de diâmetro está completo com água e aberto para atmosfera. O tanque é esvaziado por um orifício em sua base de 0.5𝑖𝑛 e a sua velocidade de jacto obedece 𝑉 = √2𝑔ℎ. Determine o tempo necessário para que o tanque esvazie. 𝑉 = √2𝑔ℎ
  • 52. 52 Raúl F. Raúl, 2019 𝑑𝑣 𝑑𝑡 = −𝑣𝑎 𝐴𝑑𝑣 𝑑𝑡 = −𝑣𝑎 𝐴𝑑𝑣 𝑑𝑡 = −𝑎√2𝑔ℎ 𝐴 𝑎 𝑑ℎ √2𝑔ℎ = −𝑑𝑡 𝐴 𝑎 ∫ 𝑑ℎ √2𝑔ℎ = − ∫ 𝑑𝑡 𝐴 𝑎√2𝑔ℎ ∫ 𝑑ℎ √ℎ = − ∫ 𝑑𝑡 𝐴 𝑎√2𝑔ℎ ∫ 𝑑ℎ √ℎ ℎ1 ℎ2 = − ∫ 𝑡 𝑡1 𝑡2 A partir da tabela das propriedades de integrais, teremos: 𝐴 𝑎√2𝑔ℎ [(2√ℎ1) − (2√ℎ2)] = −(𝑡1 − 𝑡2) 𝐴 𝑎√2𝑔ℎ 2(√ℎ1) = 𝑡2 𝐴 𝑎 √ 2ℎ 𝑔 = 𝑡 Note que: 𝑎 = 𝜋𝐷𝑎 2 4 𝐴 𝑎 = 𝜋𝐷𝑇 2 4 𝜋𝐷𝑎 2 4 𝐴 = 𝜋𝐷𝑇 2 4 𝐴 𝑎 = 𝐷𝑇 2 𝐷𝑎 2 𝐷𝑇 2 𝐷𝑎 2 √ 2ℎ 𝑔 = 𝑡 5.4. Britagem 1. Escolha o britador de mandíbulas necessário para realizar a britagem primária de 650 𝑡/ℎ de minério de cobre (de densidade aparente de 2,3 𝑡/𝑚3 ), com a distribuição granulométrica dada por:
  • 53. 53 Raúl F. Raúl, 2019 Tabela 13: Distribuição granulométrica do exercício de britagem. Peneira (cm) 50 35 25 17,5 12,5 10 7,5 5 3,5 Passante (%) 100 98,2 89,9 71,6 53,6 38,2 28,7 22,4 18,1 Fonte: JAIME. C, 2019. O índice de trabalho do minério é 14 𝑘𝑊 − ℎ𝑟/𝑡𝑜𝑛, e o teor de argila é 6%, sendo que a umidade é aproximadamente 8%. 𝑄 = 𝑄𝑡 ∙ 𝐴 ∙ 𝐵 ∙ 𝐶 ∙ 𝐷 𝐴 = 0,636 ∙ 2,3 = 1,41 𝐵 = 1,56 ∙ 𝑒(−0,0306∙14) = 1.02 𝐴𝐴 = 𝑇𝑏 0,8 , 𝑜𝑛𝑑𝑒 𝑇𝑏 𝑒ℎ 𝑜 𝑡𝑎𝑚𝑎𝑛ℎ𝑜 𝑑𝑜 𝑏𝑙𝑜𝑐𝑜 𝑒 𝐴𝐴 𝑒ℎ 𝑎 𝑎𝑏𝑒𝑟𝑡𝑢𝑟𝑎 𝑑𝑜 𝑏𝑟𝑖𝑡𝑎𝑑𝑜𝑟 𝐴𝐴 = 𝑇𝑏 0,8 = 62,5𝑐𝑚 com este valor encontrado podemos selecionar um britador que tenha uma abertura igual ou acima deste valor na tabela. Na tabela, o primeiro valor (100) representa largura e o segundo (80𝐶) representa a abertura. Modelo 10080C 𝐴𝑃𝐴 = 𝐴𝑃𝐹 + 𝑀𝑄 = 4 + 1 = 5𝑖𝑛 = 12,7𝑐𝑚 𝐹𝑎𝑐𝑡𝑜𝑟 𝐶 𝑑𝑒𝑝𝑒𝑛𝑑𝑒 𝑑𝑒 { 𝑃 ( 12,7 2 ) = 6,35𝑐𝑚 50 80 × 100% = 62,5% Agora precisamos encontrar a percentagem que corresponde a 6.35 𝑐𝑚 na tabela. De uma forma, é possível achar se construir um gráfico em função da distribuição dada, mas como sendo candidato para engenharia evite dar muitas voltas e faça logo interpolação dos dados da distribuição e encontre os valores. 5𝑐𝑚 − − − − − −22,4% 6,35𝑐𝑚 − − − − − 𝑦 7,5𝑐𝑚 − − − − − 28,7%
  • 54. 54 Raúl F. Raúl, 2019 6,35𝑐𝑚 − 5𝑐𝑚 7,5𝑐𝑚 − 5 = 𝑦 − 22,4% 28,7𝑐𝑚 − 22,7% → 𝑦 = 25,55% Com estes valores 𝐶 = (62.5% 𝑒 25.55%) vamos para tabela de fator C e achar o valor. No diagrama abaixo, entra se com a percentagem de alimentação no eixo das abcissas e faz se uma recta de baixo para cima ate intercetar as curvas das percentagens da relação entre tamanho de bloco máximo de material e a abertura de entrada do britador e depois de intercetar, no mesmo ponto de interceção vai fazer uma reta (de direita para esquerda) paralela ao eixo das abcissas até intercetar o eixo vertical onde fará a litura do valor de C. Figura 18: Diagrama do fator C para britadores (CHAVES, 2002). 𝐶 = (62.5% 𝑒 25.55%) = 1.3 𝐹𝑎𝑡𝑜𝑟 𝐷 𝑑𝑒𝑝𝑒𝑛𝑑𝑒 𝑑𝑒 { 𝐴𝑃𝐹 = 4 𝑇𝑒𝑜𝑟 𝑑𝑒 𝑎𝑟𝑔𝑖𝑙𝑎 = 6% (𝑣𝑎𝑚𝑜𝑠 𝑢𝑠𝑎𝑟 𝑜 𝑔𝑟á𝑓𝑖𝑐𝑜 𝐵) 𝑇𝑒𝑜𝑟 𝑑𝑒 ℎ𝑢𝑚𝑖𝑑𝑎𝑑𝑒 ≈ 8%
  • 55. 55 Raúl F. Raúl, 2019 Figura 19: Diagrama do fator D para britadores (CHAVES, 2002). Para leitura do valor de D, os procedimentos são os mesmos aplicados para o valor de C, mas aqui tem que tomar muita atenção pois temos dois grupos de curvas de humidade que são A e B. Vazão teórica 𝑄𝑡 = 90+140 2 = 115 𝑚3 /ℎ 𝑄 = 115 𝑚3 ℎ ∙ 1,41 ∙ 1.02 ∙ 1,3 ∙ 0,83 = 178,45 𝑚3 /ℎ 𝑄 = 178,45 𝑚3 ℎ × 2,3 𝑡 𝑚3 = 410,45 𝑡/ℎ Note: Com 𝐴𝑃𝐹 = 4𝑖𝑛, o resultado não é satisfatória para a produção recomendada, neste caso, devemos tentar com ostros APFs e se não deu certo, vamos trocar o modelo. Vamos tentar com 𝐴𝑃𝐹 = 6𝑖𝑛 𝑄 = 𝑄𝑡 ∙ 𝐴 ∙ 𝐵 ∙ 𝐶 ∙ 𝐷 𝐴 = 0,636 ∙ 2,3 = 1,41 𝐵 = 1,56 ∙ 𝑒(−0,0306∙14) = 1.02 𝐴𝑃𝐴 = 𝐴𝑃𝐹 + 𝑀𝑄 = 6 + 1 = 5𝑖𝑛 = 17,78𝑐𝑚 𝐹𝑎𝑐𝑡𝑜𝑟 𝐶 𝑑𝑒𝑝𝑒𝑛𝑑𝑒 𝑑𝑒 { 𝑃 ( 17,77 2 ) = 8,89𝑐𝑚 𝑛𝑎 𝑡𝑎𝑏𝑒𝑙𝑎 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑚 34% 50 80 × 100% = 62,5% Logo o 𝐶 = 1,38
  • 56. 56 Raúl F. Raúl, 2019 𝐹𝑎𝑡𝑜𝑟 𝐷 𝑑𝑒𝑝𝑒𝑛𝑑𝑒 𝑑𝑒 { 𝐴𝑃𝐹 = 6 𝑇𝑒𝑜𝑟 𝑑𝑒 𝑎𝑟𝑔𝑖𝑙𝑎 = 6% (𝑣𝑎𝑚𝑜𝑠 𝑢𝑠𝑎𝑟 𝑜 𝑔𝑟á𝑓𝑖𝑐𝑜 𝐵) 𝑇𝑒𝑜𝑟 𝑑𝑒 ℎ𝑢𝑚𝑖𝑑𝑎𝑑𝑒 ≈ 8% Logo o 𝐷 = 0,9 𝑄𝑡 = 140+200 2 = 170 𝑚3 /ℎ 𝑄 = 170 𝑚3 ℎ ∙ 1,41 ∙ 1.02 ∙ 1,38 ∙ 0,9 = 314,42 𝑚3 /ℎ 𝑄 = 314,42 𝑚3 ℎ × 2,3 𝑡 𝑚3 = 723,18 𝑡/ℎ Note: Com 𝐴𝑃𝐹 = 6𝑖𝑛, o resultado é satisfatório. E só é satisfatória se a vazão calculada for maior ou igual a vazão desejada. 5.5. Moagem 1. Escolha o diâmetro do moinho necessário para a moagem de um minério com 𝑊𝑖 = 17,0 𝑘𝑊ℎ/𝑡, a uma taxa de alimentação nova de 320 𝑡/ℎ em circuito fechado em um moinho com descarga por transborde que opera a úmido. O grau de enchimento a ser usado é de 30% e a o moinho opera a 75% da velocidade crítica. A alimentação tem 80% passante em 6,7 𝑚𝑚 e o produto final deverá ter 80% passante em 120 micrómetros. A princípio, considere um moinho com comprimento igual ao diâmetro. Dados 𝑊𝑖 = 17,0 𝑘𝑊ℎ/𝑡 𝑇 = 320𝑡/ℎ Descarga por transbordo %𝑁 = 75% 𝐽 = 30% 𝐹80 = 6,7𝑚𝑚 = 6700𝜇𝑚 𝑃80 = 120𝜇𝑚 L=𝐷𝑚 𝐾𝑚𝑡 = 1 𝑝𝑎𝑟𝑎 𝑚𝑜𝑖𝑛ℎ𝑜𝑠 𝑑𝑒 𝑏𝑜𝑙𝑎𝑠 𝑎 ú𝑚𝑖𝑑𝑜 𝑐𝑜𝑚 𝑑𝑒𝑠𝑐𝑎𝑟𝑔𝑎 𝑝𝑜𝑟 𝑡𝑟𝑎𝑛𝑠𝑏𝑜𝑟𝑑𝑜
  • 57. 57 Raúl F. Raúl, 2019 Figura 20: Diagrama de 𝐾𝑆𝑃 e 𝐾𝑙 para moinhos (CHAVES, 2002). 𝐾𝑙 = { 𝑇𝑖𝑝𝑜 𝑑𝑒 𝑚𝑜𝑖𝑛ℎ𝑜 (𝑀𝑜𝑖𝑛ℎ𝑜 𝑑𝑒 𝑏𝑜𝑙𝑎𝑠) 𝐺𝑟𝑎𝑢 𝑑𝑒 𝑒𝑛𝑐ℎ𝑖𝑚𝑒𝑛𝑡𝑜 (𝐽 = 30%) = 4,44 𝐾𝑆𝑃 = { 𝑇𝑖𝑝𝑜 𝑑𝑒 𝑚𝑜𝑖𝑛ℎ𝑜 (𝑀𝑜𝑖𝑛ℎ𝑜 𝑑𝑒 𝑏𝑜𝑙𝑎𝑠) %𝑛𝐶𝑅 = 75% = 0,198 𝐸 = 10 ∙ 𝑊𝑖 ( 1 √𝑃80 − 1 √𝐹80 ) 𝐸 = 10 ∙ 17 ( 1 √120 − 1 √6700 ) = 13,44𝐾 𝑊 𝑃 = 𝐸 × 𝑇 = 13,44 ∙ 320 = 4301,42 𝐾𝑊 𝑃 = 8,44 ∙ 𝐷𝑚 2,5 ∙ 𝐿 ∙ 𝐾𝑚𝑡 ∙ 𝐾𝐿 ∙ 𝐾𝑆𝑃 No exercício diz se que o diâmetro (D) do moinho é igual ao comprimento (L) do moinho. 𝐷 = √ 𝑃 8,44∙𝐾𝑚𝑡∙𝐾𝐿∙𝐾𝑆𝑃 3,5 → 𝐷 = √ 𝑃 8,44∙𝐾𝑚𝑡∙𝐾𝐿∙𝐾𝑆𝑃 3,5 = 6,17𝑚𝑚 Pela ordem da organização deste artigo, era suposto seguir o capitulo de ciclones e hidrociclones nesta parte, mas veremos a resolução dos exercícios sobre esse tema na ficha de exercício no final do artigo.
  • 58. 58 Raúl F. Raúl, 2019 5.6. Agitação e mistura (Exercícios de Paiva) 1. Um tanque de 1,83 m de diâmetro contendo 4 chicanas é mantido sob agitação. O agitador é do tipo “flat six-blade turbine” com diâmetro 0,61 m e rotação de 90 rpm. A largura da chicana é de 0,15 m e T = Z. Propriedades do fluído: μ = 10 cP e 𝜌 = 929 kg/m3 . a) calcule o número de potência e a potência. b) a potência, no caso de um líquido com viscosidade de 100.000 cP. c) compare os resultados. Dados Z = 1,83 O agitador é do tipo “flat six-blade turbine” D = 0.61 m N = 90 rpm B = 0.15 m T = Z μ = 10 cP 1cp (𝐶𝑒𝑛𝑡𝑖𝑝𝑜𝑖𝑠𝑒 = 0,001𝑘𝑔/𝑚/𝑠) 𝜌 = 929 kg/m3 a) Cálculo de número de potência e a potência. 𝑅𝑒 = 𝜌𝑁𝐷2 𝜇 → 𝑅𝑒 = 929×90 60 ⁄ 𝑟𝑎𝑑/𝑠×0,612 0,01𝑘𝑔 𝑚 /𝑠 = 5,2 × 104 𝑁𝑃𝑜 { 𝑅𝑒 𝑇𝑖𝑝𝑜 𝑑𝑒 𝑎𝑔𝑖𝑡𝑎𝑑𝑜𝑟 Para acharmos o número de potência, vamos recorrer ao diagrama abaixo, mas também é possível calcular usando a sua formula. Mas como não temos a potência, teremos que usar o diagrama. Os procedimentos para fazer a leitura no diagrama, são os mesmos usados na leitura dos parâmetros da seleção dos britadores. 𝑁𝑃𝑜 { 𝑅𝑒 = 5,2 × 104 𝑇𝑖𝑝𝑜 𝑑𝑒 𝑎𝑔𝑖𝑡𝑎𝑑𝑜𝑟 (𝑓𝑙𝑎𝑡 𝑠𝑖𝑥 − 𝑏𝑙𝑎𝑑𝑒 𝑡𝑢𝑟𝑏𝑖𝑛𝑒) 𝑁𝑢𝑚𝑒𝑟𝑜 1 𝑛𝑜 𝑑𝑖𝑎𝑔𝑟𝑎𝑚𝑎 = 4,8 ≈ 5
  • 59. 59 Raúl F. Raúl, 2019 𝑊 = 𝜕𝑤 𝜕𝑡 = 𝑃 = 𝑁𝑃𝑜 ∙ 𝑁3 ∙ 𝐷5 ∙ 𝜌 𝑃 = 5 ∙ ( 90 60 𝑟𝑎𝑑 𝑠 ) 3 ∙ 0,615 ∙ 929 = 1324,1 𝑊𝑎𝑡𝑡𝑠 b) A potência no caso da mudança de viscosidade 𝑅𝑒 = 𝜌𝑁𝐷2 𝜇 → 𝑅𝑒 = 929×90 60 ⁄ 𝑟𝑎𝑑/𝑠×0,612 100𝑘𝑔 𝑚 /𝑠 = 5,18 ≈ 5,2 Com este valor de Reinhold, O número de potência é igual a 15 na tabela. Logo, 𝑃 = 3 𝑣𝑒𝑧𝑒𝑠 𝑎 𝑝𝑟𝑖𝑚𝑒𝑖𝑟𝑎 𝑝𝑜𝑡ê𝑛𝑐𝑖𝑎 = 3972.3 𝑊𝑎𝑡𝑡𝑠 2. Considere o mesmo sistema e agitador do exercício anterior. Deseja-se fazer o “scale-up” desse sistema para um com volume três vezes maior, segundo dois critérios: a) mantendo a mesma condição de transporte de massa; b) mantendo a mesma condição de escoamento. a) mantendo a mesma condição de transporte de massa, isto significa manter a mesma relação 𝑃 𝑉 ⁄ . 𝑁2 𝑁1 = ( 1 𝑅 ) 𝑛 = ( 𝐷2 𝐷1 ) 𝑛 𝑛 = 2 3 𝑉1 = 𝐴 ∙ ℎ = 𝜋𝑑2 4 ∙ ℎ 𝑠𝑎𝑏𝑒𝑛𝑑𝑜 𝑞𝑢𝑒 𝑇 = 𝑍 𝑙𝑜𝑔𝑜 𝑑 = ℎ → 𝑑2 = 𝑑 → 𝑑2 ∙ 𝑑 = 0 → 𝑑3 = 0 𝑉1 = 𝜋 4 ∙ 𝑑3 = 𝜋 4 ∙ 1,833 = 4,8 𝑚3 𝑆𝑎𝑏𝑒 𝑠𝑒 𝑞𝑢𝑒 𝑉2 = 3 ∙ 𝑉1 = 3 ∙ 4,8 𝑅 = 𝑉2 𝑉1 = 3∙4,8 4,8 = 3 𝑁2 𝑁1 = ( 1 𝑅 ) 𝑛 = 𝑁2 90𝑟𝑝𝑚 = ( 1 3 ) 2 3 = 𝑁2 = 43,26 𝑟𝑝𝑚 b) mantendo a mesma condição de escoamento 𝑛 = 1 𝑁2 𝑁1 = ( 1 𝑅 ) 𝑛 = 𝑁2 90𝑟𝑝𝑚 = ( 1 3 ) 1 = 𝑁2 = 30 𝑟𝑝𝑚 3. O “overflow“ de um hidrociclone deve ser condicionado em um tanque. O tanque tem diâmetro de 3 m, chicanas, e profundidade de 3 m. O impelidor é do tipo “pitched blade, de 90
  • 60. 60 Raúl F. Raúl, 2019 cm de diâmetro, 45 cm acima do fundo. Qual é a potência requerida? 𝜌 = 3,145𝑔/𝑐𝑚3 ,𝐶𝑣 = 15,3 %,𝑑 = 150 𝜇𝑚. Dados T = 3 m C = 45 cm = 0.45 m D = 90 cm = 0.90 m 𝜌 = 3,145 𝑔/𝑐𝑚3 𝐶𝑣 = 15,3 𝑑 = 150 𝜇𝑚 1 − 𝜀 = 0.153 → 𝜀 = 0.847 𝑇/𝐷 = 30/9 = 3.3333333333333333 𝐶/𝑇 = 0.45/3 = 0.15 𝑉𝜃 = √4/3𝑔𝑑50 ∆𝜌 𝐶𝐷𝜌𝑙 = 𝑉𝜃 = √4/3 ∙ 9,81 ∙ 0,000150 2145 0,44∙1000 = 0,0977𝑚/𝑠 𝑃 𝑉 ⁄ = 0,092 ∙ 𝑔 ∙ 𝑇/𝐷 ∙ 𝑉𝜃 ∙ √( 1−𝜖 𝜖 ) ∙ ∆𝜌 ∙ 𝑒5,3∙ 𝐶 𝑇 𝑃 𝑉 ⁄ = 0,092 ∙ 9,81 ∙ 3,33 ∙ 0,0977 ∙ √( 0,153 0,847 ) ∙ 2145 ∙ 𝑒5,3∙0,15 = 592,17 𝑊 𝑚3 ⁄ 𝑉 = 𝜋 4 ∙ 𝑑3 = 𝜋 4 ∙ 33 = 21,20 𝑚3 [𝑊 𝑚3 ⁄ × 𝑚3 ] 𝑃 = 592,17 𝑊 𝑚3 ⁄ × 21,20 𝑚3 = 12557,40 𝑊𝑎𝑡𝑡𝑠 = 12,55740 𝐾𝑊 4. Um sistema de agitação de laboratório (volume = 10 litros) opera a 150 rpm (agitador turbina) e com potência de agitação de 100 W. O tempo adequado para a mistura é de 30 minutos. Deseja-se fazer o “scale-up” para um tanque de 100 litros, com geometria similar, e, obviamente, com mistura adequada. Avalie as seguintes situações: a) Mantendo-se a mesma relação potência/volume, que a do laboratório, qual o tempo necessário e a rotação N; b)
  • 61. 61 Raúl F. Raúl, 2019 Mantendo-se o tempo em 30 minutos, qual a rotação N e a relação Potência/volume. Considere a condição de regime turbulento. Dados 𝑉1 = 10𝑙 𝑒 𝑉2 = 100𝑙 𝑁1 = 150 𝑟𝑝𝑚 𝑃 = 100𝑊 𝑡1 = 30 𝑚𝑖𝑛 a) Mantendo-se a mesma relação potência/volume, que a do laboratório, qual o tempo necessário e a rotação N. 𝑛 = 2 3 𝑡2 𝑡1 = ( 𝐷2 𝐷1 ) 11 18 Sem nenhuma informação sobre Z, então assume se que Z=T 1𝑙 = 10−3 𝑚3 𝑉1 = 0,01 𝑚3 𝑉2 = 0,01 𝑚3 𝑉1 = 𝐴 ∙ ℎ = 𝜋𝑑2 4 ∙ ℎ = 𝑉 = 𝜋 4 𝑑3 𝑑 = √ 𝑉4 𝜋 3 { 𝑑1 = √ 𝑉4 𝜋 3 = 0,23𝑚 𝑑2 = √ 𝑉4 𝜋 3 = 0,50𝑚 𝑅 = 𝑉2 𝑉1 = 0,1 0,01 = 10 Tempo 𝑡2 𝑡1 = ( 𝐷2 𝐷1 ) 11 18 = 𝑡2 30 = ( 0,50 0,23 ) 11 18 = 𝑡2 = 48,21 𝑚𝑖𝑛 ≈ 49 𝑚𝑖𝑛 Rotação
  • 62. 62 Raúl F. Raúl, 2019 𝑁2 𝑁1 = ( 1 𝑅 ) 𝑛 = 𝑁2 90𝑟𝑝𝑚 = ( 1 10 ) 2 3 = 𝑁2 = 32,31 𝑟𝑝𝑚 Mantendo-se o tempo em 30 minutos, qual a rotação N e a relação Potência/volume. Considere a condição de regime turbulento. 𝑃2 𝑉2 𝑃1 𝑉1 = ( 𝐷2 𝐷1 ) 11 4 5.7. Espessamento 1. O overflow de um hidrociclone deve ser espessado em um sedimentador contínuo. 𝑄𝐴=1017𝑚3 /ℎ, 𝐶𝐴=236𝑘𝑔/𝑚3 𝐶=265𝑘𝑔/𝑚3 , 𝐶𝑒 = 550 𝑑𝑖𝑎𝑚𝑒𝑡𝑟𝑜 𝑑𝑎 𝑝𝑎𝑟𝑡í𝑐𝑢𝑙𝑎 100𝜇𝑚.𝐷𝑒𝑛𝑠𝑖𝑑𝑎𝑑𝑒 𝑑𝑜 𝑠𝑜𝑙𝑖𝑑𝑜 é 𝑑𝑒 1.8 𝑔/𝑚3 Tempo de residência na zona de compressão 1.25h. viscosidade da polpa a 25 graus celsius é de 1cp. Determine: a) A área mínima do espessador. b) Diâmetro do espessador. c) Profundidade do espessador. Para a resolução deste exercício vamos usar o método de Roberts. Dados 𝑄𝐴=1017𝑚3 /ℎ, 𝐶𝐴=236𝑘𝑔/𝑚3 𝐶=265𝑘𝑔/𝑚3 , 𝐶𝑒 = 550 𝜌𝑠 = 1,8 𝑔/𝑚3 𝑡 = 1,25ℎ 𝜇 = 1𝑐𝑝 = 0,001
  • 63. 63 Raúl F. Raúl, 2019 𝑉𝑡 = 𝑔∙𝑑𝑝 2(𝜌𝑠−𝜌𝑙) 18𝜇 = 9,81∙0,00012(1800−1000) 18∙0,001 = 4,3 × 10−3 𝑚/ℎ 𝑆𝑚𝑖𝑛 = 𝑄𝐴𝐶𝐴( 1 𝐶𝐶 − 1 𝐶𝐸 ) 𝜇𝐶 = 1017∙236( 1 265 − 1 550 ) 4,3×10−3 = 1836,15𝑚2 𝐷 = √ 4𝐴 𝜋 = √ 4∙1836,15 𝜋 = 48 𝑚 𝐻 = 𝑄𝐴(𝑡𝑢 − 𝑡𝑐) 𝐶𝐴 𝑆∙𝜌𝑠 = 1017 ∙ 1,25 236 1836,15∙1800 = 0,09 𝑚 𝐻2 = 0,072 ∙ 𝐷 = 0,072 ∙ 48 = 3,4 𝑚 𝐻3 = 0,5 𝑚 𝐻𝑡𝑜𝑡𝑎𝑙 = 4,04 𝑚 5.8. Peneiramento 1. Você deseja dimensionar uma peneira vibratória industrial para ser alimentada com 280 t/h de minério com distribuição granulométrica dada por: Tabela 14: Distribuição granulométrica do exercício de peneiramento. Abertura de peneira (mm) 12,5 9,5 6,3 4,75 2,38 Passante (%) 100,0 82,5 45,3 12,9 7,2 Fonte: JAIME. C, 2019. A peneira industrial tem abertura de 4,75 mm e irá operar a uma inclinação de 20 graus em relação à horizontal. O diâmetro de fio (de aço) é 2 mm. A peneira irá operar com aspersão de água. A massa específica aparente do minério é de 1650 kg/m3 . a) Qual a abertura efetiva da peneira? b) Qual a percentagem de área aberta da peneira? c) Qual a área da peneira que deverá ser usada? Dados ℎ = 4,75𝑚𝑚
  • 64. 64 Raúl F. Raúl, 2019 𝜃 = 20° 𝑑𝑤 = 2𝑚𝑚 𝑇 = 𝐴𝐵𝐶𝐷𝐸𝐹𝐺 ∙ 𝐴𝑃 𝐴 = 12,13 ∙ ℎ𝑡0,32 − 10,3 para ℎ𝑡 < 51𝑚𝑚 𝐴 = 0,34ℎ𝑡 + 14,41 para ℎ𝑡 ≥ 51𝑚𝑚 ℎ𝑡 = (4,75 + 2)𝑐𝑜𝑠20 − 2 = 4,341𝑚𝑚 𝐴 = 0,34 ∙ 4,342 + 14,41 = 14,88 para ℎ𝑡 ≥ 51𝑚𝑚 % da área aberta (𝐴𝐴) 𝐴𝐴 = 21,5 log10 4,75 + 37 = 34,033 𝐵 = 1,6 − 1,2[1 − 0,11] = 0,532 𝐶 = 0,7 + 01,2 ∙ 0,07 = 0,784 𝑇 = 1,26 ∙ ℎ𝑡 → 𝐷 = 1,1 − 0,1 ∙ 𝐸 { →⟶⟶ 𝑆𝑒𝑐𝑜 𝐸 = 0 𝐻𝑢𝑚𝑖𝑑𝑜 { 𝐸 = 1𝑃 𝑠𝑒 𝑇 ≤ 1 𝐸 = 1,5 + 0,25𝑇 𝑠𝑒 𝑇 ≤ 2 𝐸 = 2,5𝑝44 𝑠𝑒 𝑇 ≤ 6 E para húmido 𝐸 = 2,5𝑝44 𝑠𝑒 𝑇 ≤ 6 12,9 − − − − − −4,75 44 − − − − − − − 𝑦 45,3 − − − − − −6,3 𝑦 = 31,1×1,55 32,4 + 4,78 = 6,21 𝐸 = 2,5 × 6,21 𝑠𝑒 𝑇 ≤ 6 𝐷 = 1,1 − 0,1 ∙ 2,5 ∙ 6,21 = 0,45 𝐹 = 𝜌 1600 = 1650 1600 = 1,03 𝐺 = 0,975[1 − 𝑃(1,25ℎ𝑡) + 𝑃(0,75ℎ𝑡)]0,511
  • 65. 65 Raúl F. Raúl, 2019 𝑃(1,25ℎ𝑡) = 𝑃(5,42) = 0,054 𝑃(0,75ℎ𝑡) = 𝑃(3,25) = 0,032 𝐺 = 0,975[(1 − 0,054) + 0,032]0,511 = 0,976 𝐴𝑃 = 280 15,88×0,532×0,784×0,85×2,5×1,03×0,978 = 19,78𝑚2 5.9. Lista de exercícios 1. Uma bateria de 20 ciclones, de 10 polegadas opera a pressão de 3,5bar; com sólidos de densidade 3500𝑘𝑔/𝑚3 e com uma polpa de 70% de a água em volume, na alimentação. a) Especificar o tamanho de separação. b) A taxa de produção da polpa por turno. Considere duração do turno de 8h. c) A taxa de produção de sólidos por turno. d) Consumo de água por turno. Dados D = 10in P = 3.5 bar 𝜌𝑠 = 3500𝑘𝑔/𝑚3 = 3.5 𝑡/𝑚3 𝐶𝑝 = 70% 𝑑𝑒 á𝑔𝑢𝑎 𝑒𝑚 𝑣𝑜𝑙𝑢𝑚𝑒 (30% 𝑑𝑒 𝑠ó𝑙𝑖𝑑𝑜𝑠) Tamanho de separação 𝑆 = 𝑆𝑏 ∙ 𝐶1 ∙ 𝐶2 ∙ 𝐶3 𝑆𝑏 = 10𝑖𝑛 𝑛𝑎 𝑡𝑎𝑏𝑒𝑙𝑎 = 52𝜇𝑚 𝐶1 (𝑝𝑒𝑠𝑜 𝑒𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑜) = 0,8 𝐶2(𝑃𝑟𝑒𝑠𝑠𝑎𝑜) = 0,62 𝐶3 (% de sólidos em volume) = 6,5 𝑆 = 𝑆𝑏52 ∙ 0,8 ∙ 0,62 ∙ 6,5 = 167,64𝜇𝑚 Taxa de produção de polpa/turno
  • 66. 66 Raúl F. Raúl, 2019 1 𝑡𝑢𝑟𝑛𝑜 = 8ℎ𝑜𝑟𝑎𝑠 𝑇𝑎𝑥𝑎 𝑑𝑒 𝑝𝑟𝑜𝑑𝑢çã𝑜 { 𝑃𝑟𝑒𝑠𝑠ã𝑜 𝐷𝑖â𝑚𝑒𝑡𝑟𝑜 = 450𝐺𝑃𝑀 450𝐺𝑃𝑀 = 102,27 𝑚3 /ℎ 102,27 𝑚3 ℎ × 8ℎ 𝑡𝑢𝑟𝑛𝑜 ⁄ × 20 𝑐𝑖𝑐𝑙𝑜𝑛𝑒𝑠 = 16363,63 𝑚3 𝑡𝑢𝑟𝑛𝑜 Taxa de produção de sólidos por turno Taxa de polpa vezes a % sólidos 16363,63 𝑚3 𝑡𝑢𝑟𝑛𝑜 × 0,3 = 4909,09 𝑚3 𝑡𝑢𝑟𝑛𝑜 4909,09 𝑚3 𝑡𝑢𝑟𝑛𝑜 × 3,5𝑡 𝑚3 = 17181,81𝑡/𝑡𝑢𝑟𝑛𝑜 Consumo de água Taxa de polpa vezes a % de água 16363,63 𝑚3 𝑡𝑢𝑟𝑛𝑜 × 0,7 = 11454,54 𝑚3 𝑡𝑢𝑟𝑛𝑜 2. Estime o número mínimo de hidrociclones que você usaria em uma bateria de classificação para separar produto grosso do fino a um tamanho de corte na faixa de 80 a 100 micrómetros. A percentagem de sólidos (em peso) da alimentação é de 25% e a taxa alimentação de sólidos que devera ser processada é de 1200𝑡/ℎ, a massa especifica de minério é de 2800𝑘𝑔/𝑚3 e considere que os hidrociclones operariam aproximadamente 10psi. a) Especifique a potência de cada hidrociclone. Dados Primeiro passo: achar a média do diâmetro da partícula. 𝑑𝑝 = 80 𝑎 100𝜇𝑚 𝑑50 = 80+100 2 = 90𝜇𝑚 % 𝑆𝑤 𝐶𝑠𝑤 = 25% Segundo passo: selecionar um ciclone que está dentro da média de diâmetro da partícula calculada. 𝑇 = 1200𝑡/ℎ Com média do diâmetro da partícula igual a 90𝜇𝑚 temos 𝐷20 = 60 𝑎 120𝜇𝑚
  • 67. 67 Raúl F. Raúl, 2019 𝜌𝑚𝑖𝑛 = 2800𝑘𝑔/𝑚3 Terceiro passo: No mesmo ciclone selecionado, achar a vazão que depende de diâmetro da partícula e pressão. 𝑃 = 10𝑝𝑠𝑖 vazão = { 𝑑50 = 90𝜇𝑚 pressão = 10psi = 600𝐺𝑃𝑀 𝑃𝑜𝑡 =? 600𝐺𝑃𝑀 = 136,36𝑚3 ℎ 𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒 𝑎 𝑣𝑎𝑧ã𝑜 𝑚á𝑠𝑠𝑖𝑐𝑎 𝑁ℎ𝑖𝑑 =? 𝜌 = 𝑚 𝑉 = 𝑉 = 𝑚 𝜌 = 1200𝑡/ℎ 2,8𝑡/𝑚3 = 428,6 𝑚3 ℎ 𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒 𝑎 𝑣𝑎𝑧ã𝑜 𝑣𝑜𝑙𝑢𝑚é𝑡𝑟𝑖𝑐𝑎 Quarto passo: achar o número de hidrociclones. 𝑁ℎ𝑖𝑑 = 𝑉 𝑄 = 428,6 136,36 = 3,2 para o número de hidrociclones, admite se um número inteiro que para este caso pode ser 3 ou 4 hidrociclones. 𝐷𝑖â𝑚𝑒𝑡𝑟𝑜 = 20 𝑃 = 𝑃(𝐾𝑃𝑎)∙𝑄(𝑣𝑜𝑙𝑢𝑚𝑒) 3600 = 68,94∙428,6 3600 = 8,20 𝐾𝑃𝑎 3. Estime a potência demandada, usando a equação de Bond, na moagem de 250𝑡/ℎ de minério considerando que o índice de trabalho de 15,5𝑘𝑤ℎ/𝑡 𝑒 80% da alimentação é passante em 5𝑚𝑚, e que se deseja atingir uma granulometria de 80% passante em 150 micrómetro. Dados 𝑇 = 250𝑡/ℎ 𝑊𝑖 = 15,5𝑘𝑤ℎ/𝑡 𝑃80 = 150𝜇𝑚 𝐹80 = 5𝑚𝑚 = 5000𝜇𝑚 Usando a equação de Bond. 𝐸 = 10 ∙ 𝑊𝑖 ( 1 √𝑃80 − 1 √𝐹80 ) 𝐸 = 10 ∙ 15,5 ( 1 √150 − 1 √5000 ) 𝐸 = 10,46𝐾𝑊
  • 68. 68 Raúl F. Raúl, 2019 4. Uma célula de flotação mecânica é utilizada para a flotação de silicatos em polpa de calcário e apresenta volume total de 42,5𝑚3 . O rotor tipo estrela apresenta diâmetro de 990mm e opera a N =130rpm. A velocidade de ar medida na entrada do duto de admissão (D =10in) foi de 5,15 𝑚/𝑠. Determine os números adimensionais de bombeamento do ar, Potência, Reynolds e Froude, dados: 𝑔 = 9.81𝑚/𝑠2 ; 𝜇𝑝𝑜𝑙𝑝𝑎 = 0,0035𝑃𝑎. 𝑠; 𝜌𝑝𝑜𝑙𝑝𝑎 = 1530 𝑘𝑔/ 𝑚3 , 𝑐𝑜𝑟𝑟𝑒𝑛𝑡𝑒 = 224𝐴; 𝑡𝑒𝑛𝑠ã𝑜 = 332𝑉, 𝑒𝑓𝑖𝑐𝑖ê𝑛𝑐𝑖𝑎 𝑑𝑜 𝑚𝑜𝑡𝑜𝑟 = 0,77 𝑒 𝑓𝑎𝑡𝑜𝑟 𝑑𝑒 𝑝𝑜𝑡ê𝑛𝑐𝑖𝑎 = 0,9 Dados 𝑉𝑡 = 42,5𝑚3 𝑔 = 9.81𝑚/𝑠2 Rotor tipo estrela com 𝐷 = 990 𝑚𝑚 𝜇𝑝𝑜𝑙𝑝𝑎 = 0,0035𝑃𝑎. 𝑠 N =130rpm 𝜌𝑝𝑜𝑙𝑝𝑎 = 1530 𝑘𝑔/𝑚3 𝐷𝑡𝑢𝑏𝑜 = 10𝑖𝑛 = 0,254𝑚 𝐼 = 224𝐴 𝑣 = 5,15 𝑚/𝑠 𝑈 = 332𝑉 ƞ = 77% 𝐹𝑃 = 0,9 Primeiro passo 𝐷𝑡𝑢𝑏𝑜 = 10𝑖𝑛 = 0,254𝑚 𝑄𝑔 = 𝐴𝑣 𝐴 = 𝜋𝐷2 4 𝑣 = 5,15 𝑚/𝑠 𝑄𝑔 = 𝜋𝐷2 4 𝑣 = 𝜋(0,254)2 4 ∙ 5,15 = 0,26𝑚3 /𝑠 Segundo passo 𝑄𝑔 = 0,26𝑚3 /𝑠 𝑁𝑄 = 𝑄𝑔 𝑁𝐷3 = 0,26𝑚3/𝑠 ( 130 60 )𝑟𝑝𝑚∙0,993 =0,122 N=130rpm 𝐷 = 990𝑚𝑚 = 0,99𝑚 Terceiro passo Para achar o número de potência, primeiro devemos calcular a potência ativa. 𝑈 = 332𝑉 𝑃 = √3 ∙ 𝑈 ∙ 𝐼 ∙ 𝑐𝑜𝑠𝜃 ou 𝑃 = √3 ∙ 𝑈 ∙ 𝐼 ∙ ƞ ∙ 𝐹𝑃
  • 69. 69 Raúl F. Raúl, 2019 𝐼 = 224𝐴 𝑃 = √3 ∙ 332 ∙ 224 ∙ 0,77 ∙ 0,9 𝐹𝑃 = 0,9 𝑝 = 89264,744 𝑊𝑎𝑡𝑡𝑠 ƞ = 77% Com a potência ativa calculada, podemos achar o número de potência. 𝐷 = 990𝑚𝑚 = 0,99𝑚 𝑁𝑝 = 𝑃 𝑁3∙𝐷5∙𝜌 𝜌𝑝𝑜𝑙𝑝𝑎 = 1530 𝑘𝑔 𝑚3 𝑁𝑝 = 89264,744 𝑊𝑎𝑡𝑡𝑠 ( 130 60 ) 3 ∙0,995∙1530 N =130rpm 𝑁𝑝 = 6,03 Quarto passo N =130rpm 𝑅𝑒 = 𝑁∙𝐷2∙𝜌 𝜇 𝜌𝑝𝑜𝑙𝑝𝑎 = 1530 𝑘𝑔 𝑚3 𝑅𝑒 = ( 130 60 )∙0,992∙1530 0,0035 𝐷 = 990𝑚𝑚 = 0,99𝑚 𝑅𝑒 = 928294,7143 𝜇𝑝𝑜𝑙𝑝𝑎 = 0,0035𝑃𝑎. 𝑠 Quinto passo 𝑔 = 9.81𝑚/𝑠2 𝐹 𝑟 = 𝑁2∙𝐷 𝑔 𝐷 = 990𝑚𝑚 = 0,99𝑚 𝐹 𝑟 = ( 130 60 ) 2 ∙0,99 9,81 = 0,4737 𝑁 = 130𝑟𝑝𝑚 5. Estime o diâmetro e altura de um espessador contínuo industrial a partir dos dados de sedimentação em proveta abaixo, dados: 𝑄𝐴 = 80𝑚3 /ℎ; 𝐶𝐴 = 313𝑔/𝑙; 𝐶𝑂𝐹 = 141,5𝑔/𝑙; 𝐶𝑈𝐹 = 784,1𝑔/𝑙; 𝐶𝑚 = 44% e se 𝐶𝐴 = 𝐶𝑂. Para a resolução deste exercício, primeiro deve se construir o gráfico de altura (cm) em função do tempo (min) a partir dos dados de sedimentação em proveta.
  • 70. 70 Raúl F. Raúl, 2019 Tabela 15: Dados de sedimentação em proveta. Altura (cm) Tempo (min) 40 0 35 7,73 30 16,3 25 22,68 20 29,13 15 36,25 10 44,0 5 (Zc) 61,27 (tc) 2 120,0 1,8 240,0 Fonte: JAIME. C, 2019. Figura 21: Representação gráfica dos dados de sedimentação em proveta (Autor, 2019). A partir do gráfico temos: Zic=12 cm Zc=5 cm
  • 71. 71 Raúl F. Raúl, 2019 Tc=61,27 min Tu=103 min Segundo passo: calcular a área do espessador 𝜇𝐶 = 𝑍𝑖𝑐−𝑍𝑐 𝜃𝑐 𝐶𝐶 = 𝐶0∙𝑍0 𝑍𝑖𝑐 𝜇𝐶 = 12−5 61,27 = 0,116 𝑐𝑚 𝑚𝑖𝑛 = 0,06 𝑐𝑚/ℎ 𝐶𝐶 = 40∙313 12 = 1043,33 𝑔/𝑙 𝑆𝑚𝑖𝑛 = 𝑄𝐴𝐶𝐴( 1 𝐶𝐶 − 1 𝐶𝐸 ) 𝜇𝐶 = 80∙313( 1 1043,3 − 1 784,1 ) 0,06 = 132,23𝑚2 Diâmetro do espessador 𝐷 = √ 4𝐴 𝜋 = √ 4∙132,23 𝜋 = 12,97 𝑚 Altura do espessador 𝐻𝑐 = 𝑄𝐴 𝐴∙𝐶𝑚 (𝑡𝑢 − 𝑡𝑐) 1 60 = 𝐻𝑐 = 80 132,23∙0,44 (103 − 61,27) 1 60 = 0,95 𝑚 𝐻2 = 0,073𝐷 = 0,073 ∙ 12,97 = 0,94 𝑚 𝐻3 = 0,5 𝑚 𝑉𝑎𝑙𝑜𝑟 𝑝𝑎𝑑𝑟𝑜𝑛𝑖𝑧𝑎𝑑𝑜 𝐻𝑡𝑜𝑡𝑎𝑙 = 𝐻𝑐 + 𝐻2 + 𝐻3 𝐻𝑡𝑜𝑡𝑎𝑙 = 0,95 = 0,94 + 0,5 = 2,39 𝑚 𝐻𝑃𝑎𝑟𝑡𝑒 𝑐𝑖𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎 = 2,39 − 0,5 = 1,89 𝑚 Note: Se a altura da parte cilíndrica for superior a 1,5 𝑚, adota se maior área para diminuir a altura do espessador. 6. Estime a potência do motor necessário para girar um moinho de bolas que opera a seco com descarga por transborde, medindo 4,1 m de diâmetro (interno) por 6 m de comprimento. O moinho opera a uma velocidade de 16 RPM e com 32% de enchimento. Dados Moinho de bolas Opera a seco com descarga por transbordo
  • 72. 72 Raúl F. Raúl, 2019 D = 4.1 m Primeiro passo: achar a %Ncr L = 6 m 𝑁𝑐𝑟 = 42,3 √𝐷 = 42,3 √4,1 = 20,89 N=16 rpm %𝑁𝑐𝑟 = 𝑁 𝑁𝑐𝑟 × 100% J = 32% %𝑁𝑐𝑟 = 16𝑟𝑝𝑚 20,89 × 100% = 76,58% A seguir vamos para a tabela para acharmos os valores dos parâmetros 𝐾𝑠𝑝 e 𝐾𝑙. 𝐾𝑠𝑝 { %𝑁𝑐𝑟 = 76,58% 𝑀𝑜𝑖𝑛ℎ𝑜 𝑑𝑒 𝑏𝑜𝑙𝑎𝑠 = 0,188 𝐾𝑙 { 𝐽 = 32% 𝑀𝑜𝑖𝑛ℎ𝑜 𝑑𝑒 𝑏𝑜𝑙𝑎𝑠 = 4,51 𝐾𝑚𝑡 é um fator para o tipo de moinho. Para este que opera a seco com descarga por transbordo, 𝐾𝑚𝑡 = 1,25. 𝑃 = 8,44 ∙ 𝐷𝑚 2,5 ∙ 𝐿 ∙ 𝐾𝑚𝑡 ∙ 𝐾𝐿 ∙ 𝐾𝑆𝑃 𝑃 = 8,44 ∙ 4,12,5 ∙ 6 ∙ 1,25 ∙ 4,51 ∙ 0,188 𝑃 = 304,47 𝐾𝑊 7. Calcule a massa de minério, em quilogramas, necessária para executar um ensaio de moagem em um moinho de laboratório cilíndrico, que mede 45,5 cm de diâmetro e 30,5 de comprimento e que operará a um grau de enchimento de 35% de bolas e com 100% dos vazios preenchidos. Considere que a massa específica do minério é de 2,8 g por centímetro cúbico. Dados Massa do minério = ? Primeiro vamos calcular o volume do moinho D = 45.5 cm 𝑉 = 𝐴 × ℎ 𝐴 = 𝜋𝑑2 4 𝑉 = 𝜋𝑑2 4 × ℎ L = 30.5 cm 𝑉 = 𝜋𝑑2 4 × ℎ = 49592,10 𝑐𝑚3 J = 35% a seguir vamos calcular o volume do minério. 100% de vazios preenchidos 𝑉minério = 𝑉𝑀𝑜𝑖𝑛ℎ𝑜 × 𝐽 𝜌𝑀𝑖𝑛é𝑟𝑖𝑜=2.8g/𝑐𝑚3 𝑉minério = 49592,10 × 0,35 = 17357,2 𝑐𝑚3
  • 73. 73 Raúl F. Raúl, 2019 E por último vamos calcular a massa do minério conforme o pedido do exercício. 𝜌minério = 𝑚minério 𝑉minério 𝑚minério = 𝜌minério × 𝑉minério 𝑚minério = 2.8g 𝑐𝑚3 × 17357,2 𝑐𝑚3 = 48600,25 𝑔 5.10. Teste 2 (10/05/2019) 1. Selecione o britador de mandíbulas necessário para realizar a britagem de 400 t/h de minério de Zn (de densidade aparente de 2.7𝑡/m3 ), com distribuição granulométrica dada por: Figura 22: Distribuição granulométrica do exercício de britagem (JAIME. C, 2019). O índice de trabalho do minério é de 7 𝐾𝑊ℎ𝑟/𝑡𝑜𝑛, e o teor de argila é de 5.5%, sendo que a umidade é aproximadamente 5%. Você deseja trabalhar normalmente a uma abertura de posição fechada de 5 polegadas, se possível. Caso o britador selecionado não atender, indique como você procederia na iteração a seguir, sem precisar refazer os cálculos. Dados Taxa=400t/h 𝐴 = 0,636 ∙ 2,7 = 1,71 𝜌𝑎 = 2,7𝑡/𝑚3 𝐵 = 1,56 ∙ 𝑒(−0,0306∙7) = 1.02
  • 74. 74 Raúl F. Raúl, 2019 𝑊𝑖 = 7 𝐾𝑊ℎ𝑟/𝑡𝑜𝑛 𝐴𝐴 = 𝑇𝑏 0,8 = 87,5𝑐𝑚 Argila = 5,5% Modelo 12090C Umidade = 5% 𝐴𝑃𝐴 = 5’’ + 1’’ = 6𝑖𝑛 = 15,24𝑐𝑚 APF = 5” 𝐹𝑎𝑐𝑡𝑜𝑟 𝐶 𝑑𝑒𝑝𝑒𝑛𝑑𝑒 𝑑𝑒 { 𝑃 ( 15,24 2 ) = 7,62𝑐𝑚 70 80 × 100% = 87,5% → { 𝑃(7,62 𝑐𝑚) 87,5% → { 22% 87,5% → 𝐶 = 0,78 𝐹𝑎𝑡𝑜𝑟 𝐷 𝑑𝑒𝑝𝑒𝑛𝑑𝑒 𝑑𝑒 { 𝐴𝑃𝐹 = 5𝑖𝑛 𝑇𝑒𝑜𝑟 𝑑𝑒 𝑎𝑟𝑔𝑖𝑙𝑎 = 5,5% (𝑣𝑎𝑚𝑜𝑠 𝑢𝑠𝑎𝑟 𝑜 𝑔𝑟á𝑓𝑖𝑐𝑜 𝐵) 𝑇𝑒𝑜𝑟 𝑑𝑒 ℎ𝑢𝑚𝑖𝑑𝑎𝑑𝑒 = 5% → 𝐷 = 0,84 𝑄𝑡 = 90+140 2 = 115 𝑚3 /ℎ 𝑄 = 115 𝑚3 ℎ ∙ 1,71 ∙ 1.2592 ∙ 0,78 ∙ 0,84 = 162,92 𝑚3 /ℎ 𝑄 = 162,92 𝑚3 ℎ × 2,7 𝑡 𝑚3 = 439,89 𝑡/ℎ 5.11. Exame normal 2015 (agitação e mistura) 1. O overflow de um hidrociclone deve ser condicionado em um tanque. O tanque tem diâmetro de 2.7 m, chicanas e profundidade de 2.7 m. o impelidor é do tipo pitched blade. Qual é a potência requerida? 𝜌𝑠=2.6𝑔/𝑐𝑚3 , vazão da polpa no overflow 227.5𝑚3 /ℎ, 45.5𝑚3 /ℎ de sólidos, diâmetro de corte é de 0.120mm Dados 𝑇 = 2,7 𝑚 %𝑠ó𝑙(𝑣𝑜𝑙𝑢𝑚𝑒) = 𝑉𝑠 𝑉𝑝 × 100% 𝑍 = 2,7 𝑚 %𝑠ó𝑙(𝑣𝑜𝑙𝑢𝑚𝑒) = 45,5 227,5 × 100% Impelidor pitched blade %𝑠ó𝑙(𝑣𝑜𝑙𝑢𝑚𝑒) = 20% 𝜌𝑠 = 2,6𝑔 𝑐𝑚3 = 2600𝑘𝑔/𝑚3 1 − 𝜖 = 20% 𝑄𝑝 = 227,5 𝑚3 /ℎ 𝜖 = 80% 𝑄𝑠 = 45,5 𝑚3 /ℎ
  • 75. 75 Raúl F. Raúl, 2019 𝑑50 = 0,120 𝑚𝑚 = 0,000120𝑚 𝑉𝜃 = √ 4 3 𝑔𝑑50 ∙ ∆𝜌 𝐶𝐷∙𝜌𝑙 = 𝑉𝜃 = √ 4 3 9,81 ∙ 0,000120 ∙ 1600 0,44∙1000 = 0,075𝑚/𝑠 𝑁𝑎 𝑡𝑎𝑏𝑒𝑙𝑎 𝑡𝑒𝑚𝑜𝑠 𝑎𝑠 𝑠𝑒𝑔𝑢𝑖𝑛𝑡𝑒𝑠 𝑟𝑒𝑙𝑎çõ𝑒𝑠 { 𝑇 𝐷 = 3 𝐶 𝑇 0,33 𝑃 𝑉 ⁄ = 0,092 ∙ 𝑔 ∙ 𝑇 𝐷 ∙ 𝑉𝜃 ∙ √( 1−𝜀 𝜀 ) ∙ ∆𝜌 ∙ 𝑒5,3∙ 𝐶 𝑇 𝑃 𝑉 ⁄ = 0,092 ∙ 9,81 ∙ 3 ∙ 0,075 ∙ √( 0,2 0,8 ) ∙ 1600 ∙ 𝑒5,3∙0,33 𝑃 𝑉 ⁄ = 933,9 𝑤 𝑚3 ⁄ 𝑉 = 𝐴 × ℎ 𝐴 = 𝜋𝑑2 4 𝑉 = 𝜋 4 × 𝑑3 = 𝜋 4 × 2,73 = 15,4 𝑚3 𝑃 = 933,9 𝑤 𝑚3 ⁄ × 15,4 𝑚3 = 14437,15 𝑊𝑎𝑡𝑡𝑠 = 14,43715𝐾𝑊 5.12. Exame normal (22/05/2019) 1. Os dados coletados de uma amostragem do overflow de um hidrociclone de 10 polegadas de diâmetro, em operação na Vale Moçambique, obteve se as análises granulométricas do fluxo de OF (curva real), bem como as vazões de sólidos e água. A massa especifica dos sólidos é de 2,7𝑡/𝑚3 . O UF apresenta 2.2 t/h de sólidos e 1,2𝑚3 /ℎ de água. O OF 2.8 t/h de sólidos e 23,8𝑚3 /ℎ de água. a) Determine o 𝑑50 das curvas. b) Calcule a imperfeição e eficiência do hidrociclone. c) Estime qual a pressão de operação que o hidrociclone deve estar operando. d) Estime a potência que deve estar sendo consumida pelo hidrociclone. e) Você é um integrante da equipa de engenheiros da empresa, apresente as prováveis causas do problema e soluções. Assuma a especificação do produto dada pela curva padrão.
  • 76. 76 Raúl F. Raúl, 2019 Figura 23: Curvas de partição de uma amostra de Overflow de hidrociclone (JAIME. C, 2019). a) 𝑑50 das curvas 𝑑50 = 300𝜇𝑚 𝑐𝑢𝑟𝑣𝑎 𝑟𝑒𝑎𝑙 𝑑50 = 85𝜇𝑚 𝑐𝑢𝑟𝑣𝑎 𝑝𝑎𝑑𝑟ã𝑜 b) Imperfeição e eficiência Dados 𝑑75 = 500𝜇𝑚 𝐼 = 𝑑75−𝑑25 2𝑑50 × 100% ƞ = 100% − 𝐼 𝑑50 = 300𝜇𝑚 𝐼 = 300−160 2∙300 × 100% ƞ = 100% − 56% 𝑑25 = 160𝜇𝑚 𝐼 = 56% ƞ = 44% c) Pressão Dados 𝐷 = 10𝑖𝑛 𝑂𝐹 = 2,8𝑡/ℎ 𝑒 23,8𝑚3 /ℎ 𝑑𝑒 á𝑔𝑢𝑎
  • 77. 77 Raúl F. Raúl, 2019 𝑈𝐹 = 2,2𝑡/ℎ 𝑒 1,2𝑚3 /ℎ 𝑑𝑒 á𝑔𝑢𝑎 𝜌 = 2,7𝑡/𝑚3 OF UF 𝑉 = 𝑚 𝜌 = 2,8𝑡/ℎ 2,7𝑡/𝑚3 = 1,037𝑚3 /ℎ 𝑉 = 𝑚 𝜌 = 2,2𝑡/ℎ 2,7𝑡/𝑚3 = 0,81𝑚3 /ℎ 𝑄𝑂𝐹 = 𝑉𝑠ó𝑙𝑖𝑑𝑜𝑠 + 𝑉á𝑔𝑢𝑎 𝑄𝑈𝐹 = 𝑉𝑠ó𝑙𝑖𝑑𝑜𝑠 + 𝑉á𝑔𝑢𝑎 𝑄𝑂𝐹 = 1,037𝑚3 /ℎ + 23,8𝑚3 /ℎ 𝑄𝑈𝐹 = 0,81𝑚3 /ℎ + 1,2𝑚3 /ℎ 𝑄𝑂𝐹 = 24,83𝑚3 /ℎ 𝑄𝑈𝐹 = 2,014𝑚3 /ℎ 𝑄𝑡𝑜𝑡𝑎𝑙 = 𝑄𝑂𝐹 + 𝑄𝑈𝐹 𝑄𝑡𝑜𝑡𝑎𝑙 = 26,84𝑚3 /ℎ 𝑄 = 9,5 × 10−3 × √𝑃 × 𝐷2 √𝑃 = 𝑄 9,5×10−3×√𝑃×𝐷2 𝑃 = ( 𝑄 9,5×10−3×𝐷2 ) 2 𝑃 = ( 26,84 9,5×10−3×25,42 ) 2 𝑃 = 19,17 𝐾𝑃𝑎 d) Potência 𝑃 = 𝑃(𝐾𝑃𝑎)×𝑄 3600 = 19,17×26,84 3600 = 0,14𝐾𝑊 5.13. Exame normal 2019 C/N Dados 𝐹80 = 2,5 𝑚𝑚 𝐸 = 10𝑊𝑖 ( 1 √𝑃80 − 1 √𝐹80 ) 𝑃80 = 75 𝜇𝑚 𝐸 = 10 ∙ 12 ( 1 √75 − 1 √2500 ) 𝑄 = 230𝑡/ℎ 𝐸 = 1,98 𝑊𝑖 = 12𝐾𝑊ℎ/𝑡 𝑃 = 𝑇 × 𝐸
  • 78. 78 Raúl F. Raúl, 2019 𝐿 = 𝐷 = 1,25 𝑚 𝑃 = 230 × 1,98 Moagem a húmido 𝑃 = 455 𝐾𝑊 Descarga por diafragma 𝐽 = 28% %𝑁𝑐𝑟 = 77% 𝑁𝑎𝑠 𝑡𝑎𝑏𝑒𝑙𝑎𝑠 { 𝐾𝑚𝑡 = 1,3 𝐾𝑙 = 4,02 𝐾𝑠𝑝 = 0,2 𝜌 = 2,7𝑡/𝑚3 𝑃 = 8,44 ∙ 𝐷𝑚 2,5 ∙ 𝐿 ∙ 𝐾𝑚𝑡 ∙ 𝐾𝐿 ∙ 𝐾𝑆𝑃 No enunciado diz se que o diâmetro (D) do moinho é igual ao comprimento (L) do moinho. 𝐷 = 𝐿 = √ 𝑃 8,44∙𝐾𝑚𝑡∙𝐾𝐿∙𝐾𝑆𝑃 3,5 → 𝐷 = 𝐿 = √ 445 8,44∙1,3∙4,02∙0,2 3,5 = 3,30𝑚 Dados 𝑑50 = 40 𝑎 50 𝜇𝑚 𝑑50 = 40+50 2 𝐶𝑤 = 20% 𝑑50 = 45 𝑇 = 90𝑡/ℎ Modelo 𝐷 − 4 = 𝑄 = 28 𝐺𝑃𝑀 = 6,44𝑚3 /ℎ 𝜌 = 1,6𝑡/𝑚3 𝑉 = 𝑚 𝜌 = 90 1,6 = 56,25 𝑚3 /ℎ 𝑃 = 10𝑝𝑠𝑖 𝑁ℎ𝑖𝑑 = 𝑉 𝑄 = 56,25 6,44 = 8,73 ≈ 9 ℎ𝑖𝑑𝑟𝑜𝑐𝑖𝑐𝑙𝑜𝑛𝑒𝑠 6. FILTRAÇÃO É a operação unitária na qual se separa uma mistura sólido fluído em suspensão através da passagem do fluído, por uma barreira ou meio poroso, chamado filtro, com pequenos orifícios, onde retém as partículas sólidas contidas na mistura. Parâmetros que influenciam no processo de filtragem  A temperatura da polpa;  A viscosidade;