
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
by Hristo Spassimirov Paskov
Founder and CEO, ThinkFast Mathematical Intelligence Corporations
Intel Software Innovator for Artificial Intelligence
Machine learning has revolutionized the technological landscape and its success has inspired the collection of vast amounts of data aimed at answering ever deeper questions and solving increasingly harder problems. Continuing this success critically relies on the existence of machine learning paradigms that can perform sophisticated analyses at the data scales required by modern data sets and that reduce development cycle times by improving ease of use. The evolution of machine learning paradigms shows a marked trend toward better addressing these desiderata and a convergence toward paradigms that blend “smooth” modeling techniques classically attributed to statistics with “combinatorial” elements traditionally studied in computer science.
These modern learning paradigms pose a new set of challenges that, when properly addressed, open an unexpected wealth of possibilities. I will discuss how ThinkFast is solving these challenges with fundamental advances in optimization that promote the interpretation of machine learning as a more classical database technology. These advances allow us to scale a variety of techniques to unprecedented data scales using commodity hardware. They also provide surprising insights into how modern techniques learn about data, including a characterization of the limits of what they can learn, and ultimately allow us to devise new, more powerful techniques that do not suffer from these limitations.
Be the first to like this
Be the first to comment