SlideShare a Scribd company logo
1 of 31
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›
Semiconductor Diodes
 Introduction
 Diodes
 Electrical Properties of Solids
 Semiconductors
 pn Junctions
 Semiconductor Diodes
 Special-Purpose Diodes
 Diode Circuits
Chapter 19
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›
Introduction
 This course adopts a top-down approach to the
subject and so far we have taken a ‘black-box’ view
of active components (such as op-amps)
 It is now time to look ‘inside the box’
– we will start by looking at diodes and semiconductors
– then progress to transistors
– later we will look at more detailed aspects of circuit
design
19.1
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›
Diodes
 An ideal diode passing electricity in one direction
but not the other
19.2
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›
 One application of diodes is in rectification
– the example below shows a half-wave rectifier
 In practice, no real diode has ideal characteristics but
semiconductor pn junctions make good diodes
 To understand such devices we need to look at some
properties of materials
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›
Electrical Properties of Solids
 Conductors
– e.g. copper or aluminium
– have a cloud of free electrons (at all temperatures
above absolute zero). If an electric field is applied
electrons will flow causing an electric current
 Insulators
– e.g. polythene
– electrons are tightly bound to atoms so few can break
free to conduct electricity
19.3
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›
 Semiconductors
– e.g. silicon or germanium
– at very low temperatures these have the properties of
insulators
– as the material warms up some electrons break free
and can move about, and it takes on the properties of
a conductor - albeit a poor one
– however, semiconductors have several properties that
make them distinct from conductors and insulators
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›
Semiconductors
 Pure semiconductors
– thermal vibration results in some bonds being broken
generating free electrons which move about
– these leave behind holes which accept electrons from
adjacent atoms and therefore also move about
– electrons are negative charge carriers
– holes are positive charge carriers
 At room temperatures there are few charge carriers
– pure semiconductors are poor conductors
– this is intrinsic conduction
19.4
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›
 Doping
– the addition of small amounts of impurities drastically
affects its properties
– some materials form an excess of electrons and
produce an n-type semiconductor
– some materials form an excess of holes and produce a
p-type semiconductor
– both n-type and p-type materials have much greater
conductivity than pure semiconductors
– this is extrinsic conduction
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›
 The dominant charge carriers in a doped semiconductor
(e.g. electrons in n-type material) are called majority
charge carriers. Other type are minority charge carriers
 The overall doped material is electrically neutral
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›
pn Junctions
 When p-type and n-type materials are joined this
forms a pn junction
– majority charge carriers on each side diffuse across
the junction where they combine with (and remove)
charge carriers of the opposite polarity
– hence around the junction there are few free charge
carriers and we have a depletion layer (also called a
space-charge layer)
19.5
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›
 The diffusion of positive
charge in one direction and
negative charge in the
other produces a charge
imbalance
– this results in a potential
barrier across the junction
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›
 Potential barrier
– the barrier opposes the flow of majority charge carriers
and only a small number have enough energy to
surmount it
 this generates a small diffusion current
– the barrier encourages the flow of minority carriers and
any that come close to it will be swept over
 this generates a small drift current
– for an isolated junction these two currents must
balance each other and the net current is zero
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›
 Forward bias
– if the p-type side is made positive with respect to the
n-type side the height of the barrier is reduced
– more majority charge carriers have sufficient energy to
surmount it
– the diffusion current therefore increases while the drift
current remains the same
– there is thus a net current flow across the junction
which increases with the applied voltage
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›
 Reverse bias
– if the p-type side is made negative with respect to the
n-type side the height of the barrier is increased
– the number of majority charge carriers that have
sufficient energy to surmount it rapidly decreases
– the diffusion current therefore vanishes while the drift
current remains the same
– thus the only current is a small leakage current caused
by the (approximately constant) drift current
– the leakage current is usually negligible (a few nA)
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›
 Currents in a pn junction
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›
 Forward and reverse currents
– pn junction current is given approximately by
– where I is the current, e is the electronic charge, V is
the applied voltage, k is Boltzmann’s constant, T is the
absolute temperature and  (Greek letter eta) is a
constant in the range 1 to 2 determined by the junction
material
– for most purposes we can assume  = 1







 1
exp
ηkT
eV
I
I s
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›
 Thus
at room temperature e/kT ~ 40 V-1
 If V > +0.1 V
 If V < -0.1 V
– IS is the reverse saturation current







 1
exp
kT
eV
I
I s
 
V
I
kT
eV
I
I s
s 40
exp
exp 







  s
s I
I
I 


 1
0
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›
Semiconductor Diodes
 Forward and reverse currents
19.6
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›
 Silicon diodes
– generally have a turn-on voltage of about 0.5 V
– generally have a conduction voltage of about 0.7 V
– have a breakdown voltage that depends on their
construction
 perhaps 75 V for a small-signal diode
 perhaps 400 V for a power device
– have a maximum current that depends on their
construction
 perhaps 100 mA for a small-signal diode
 perhaps many amps for a power device
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›
 Turn-on and breakdown voltages for a silicon device
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›
Special-Purpose Diodes
 Light-emitting diodes
– discussed earlier when we looked at light actuators
19.7
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›
 Zener diodes
– uses the relatively constant
reverse breakdown voltage
to produce a voltage
reference
– breakdown voltage is called
the Zener voltage, VZ
– output voltage of circuit
shown is equal to VZ despite
variations in input voltage V
– a resistor is used to limit
the current in the diode
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›
 Schottky diodes
– formed by the junction between a layer of metal
(e.g. aluminium) and a semiconductor
– action relies only on majority charge carriers
– much faster in operation than a pn junction diode
– has a low forward voltage drop of about 0.25 V
– used in the design of high-speed logic gates
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›
 Tunnel diodes
– high doping levels produce
a very thin depletion layer
which permits ‘tunnelling’
of charge carriers
– results in a characteristic
with a negative resistance
region
– used in high-frequency oscillators, where they can be
used to ‘cancel out’ resistance in passive components
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›
 Varactor diodes
– a reversed-biased diode has two conducting regions
separated by an insulating depletion region
– this structure resembles a capacitor
– variations in the reverse-bias voltage change the width
of the depletion layer and hence the capacitance
– this produces a voltage-dependent capacitor
– these are used in applications such as automatic
tuning circuits
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›
Diode Circuits
 Half-wave rectifier
– peak output
voltage is equal to
the peak input
voltage minus the
conduction voltage
of the diode
– reservoir capacitor
used to produce a
steadier output
19.8
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›
 Full-wave rectifier
– use of a diode
bridge reduces
the time for which
the capacitor has
to maintain the
output voltage
and thus reduced
the ripple voltage
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›
 Signal rectifier
– used to demodulate
full amplitude
modulated signals
(full-AM)
– also known as an
envelope detector
– found in a wide range
of radio receivers from
crystal sets to
superheterodynes
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›
 Signal clamping
– a simple form of
signal conditioning
– circuits limit the
excursion of the
voltage waveform
– can use a
combination of
signal and Zener
diodes
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›
 Catch diode
– used when switching
inductive loads
– the large back e.m.f.
can cause problems
such as arcing in switches
– catch diodes provide a low impedance path across
the inductor to dissipate the stored energy
– the applied voltage reverse-biases the diode which
therefore has no effect
– when the voltage is removed the back e.m.f. forward
biases the diode which then conducts
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›
Key Points
 Diodes allow current to flow in only one direction
 At low temperatures semiconductors act like insulators
 At higher temperatures they begin to conduct
 Doping of semiconductors leads to the production of p-type
and n-type materials
 A junction between p-type and n-type semiconductors has
the properties of a diode
 Silicon semiconductor diodes approximate the behaviour of
ideal diodes but have a conduction voltage of about 0.7 V
 There are also a wide range of special purpose diodes
 Diodes are used in a range of applications

More Related Content

Similar to Chap19.ppt

EC8353 EDC unit1
EC8353 EDC unit1EC8353 EDC unit1
EC8353 EDC unit1elakkia8
 
Diode data sheet for alarm type project
Diode data sheet for alarm type projectDiode data sheet for alarm type project
Diode data sheet for alarm type projectmegha agrawal
 
Introduction to Semiconductor Materials and devices
Introduction to Semiconductor Materials and devicesIntroduction to Semiconductor Materials and devices
Introduction to Semiconductor Materials and devicesArunbhaarat S
 
Basic Electronics UNIt1 PPT
Basic Electronics UNIt1 PPTBasic Electronics UNIt1 PPT
Basic Electronics UNIt1 PPTPraveen Kunda
 
Type of pn junction & rectifiers plus Transistor
Type of pn junction & rectifiers plus TransistorType of pn junction & rectifiers plus Transistor
Type of pn junction & rectifiers plus TransistorMuhammad Adeel Shakir
 
Physics of LEDs
Physics of LEDsPhysics of LEDs
Physics of LEDsTan Kim
 
BEEIE UNIT IV PPT.ppt
BEEIE UNIT IV PPT.pptBEEIE UNIT IV PPT.ppt
BEEIE UNIT IV PPT.pptDEEBIKAR2
 
Analog circuits-lab-possible-viva-questions
Analog circuits-lab-possible-viva-questionsAnalog circuits-lab-possible-viva-questions
Analog circuits-lab-possible-viva-questionspadmajasiva
 
BASIC ELECTRONICS on physics for teaching grade 12
BASIC ELECTRONICS on physics for teaching grade 12BASIC ELECTRONICS on physics for teaching grade 12
BASIC ELECTRONICS on physics for teaching grade 12JerryOgugo
 
Electronics and Communication Engineering
Electronics and Communication EngineeringElectronics and Communication Engineering
Electronics and Communication EngineeringEkeeda
 
EEEE-CIVIL ppt unit 1,2,3.pptx
EEEE-CIVIL ppt unit 1,2,3.pptxEEEE-CIVIL ppt unit 1,2,3.pptx
EEEE-CIVIL ppt unit 1,2,3.pptxChanduNayak9
 
BE UNIT 1 PPT.ppt
BE UNIT 1 PPT.pptBE UNIT 1 PPT.ppt
BE UNIT 1 PPT.pptashok kumar
 
PN JUNCTION DIODE CONSTRUCTION AND VI CHARACTERISTICS
PN JUNCTION DIODE CONSTRUCTION AND VI CHARACTERISTICSPN JUNCTION DIODE CONSTRUCTION AND VI CHARACTERISTICS
PN JUNCTION DIODE CONSTRUCTION AND VI CHARACTERISTICSShobanaS19
 
Types of Diodes Advantages and disadvantages, LE
Types of Diodes Advantages and disadvantages, LETypes of Diodes Advantages and disadvantages, LE
Types of Diodes Advantages and disadvantages, LEMusab Hussain
 

Similar to Chap19.ppt (20)

EC8353 EDC unit1
EC8353 EDC unit1EC8353 EDC unit1
EC8353 EDC unit1
 
Diode data sheet for alarm type project
Diode data sheet for alarm type projectDiode data sheet for alarm type project
Diode data sheet for alarm type project
 
Introduction to Semiconductor Materials and devices
Introduction to Semiconductor Materials and devicesIntroduction to Semiconductor Materials and devices
Introduction to Semiconductor Materials and devices
 
Basic Electronics UNIt1 PPT
Basic Electronics UNIt1 PPTBasic Electronics UNIt1 PPT
Basic Electronics UNIt1 PPT
 
CSE-AE.pptx
CSE-AE.pptxCSE-AE.pptx
CSE-AE.pptx
 
Type of pn junction & rectifiers plus Transistor
Type of pn junction & rectifiers plus TransistorType of pn junction & rectifiers plus Transistor
Type of pn junction & rectifiers plus Transistor
 
Physics of LEDs
Physics of LEDsPhysics of LEDs
Physics of LEDs
 
BEEIE UNIT IV PPT.ppt
BEEIE UNIT IV PPT.pptBEEIE UNIT IV PPT.ppt
BEEIE UNIT IV PPT.ppt
 
Semiconductor diodes
Semiconductor diodesSemiconductor diodes
Semiconductor diodes
 
Analog circuits-lab-possible-viva-questions
Analog circuits-lab-possible-viva-questionsAnalog circuits-lab-possible-viva-questions
Analog circuits-lab-possible-viva-questions
 
BASIC ELECTRONICS on physics for teaching grade 12
BASIC ELECTRONICS on physics for teaching grade 12BASIC ELECTRONICS on physics for teaching grade 12
BASIC ELECTRONICS on physics for teaching grade 12
 
8. semiconductors.rr
8. semiconductors.rr8. semiconductors.rr
8. semiconductors.rr
 
Vivalab
VivalabVivalab
Vivalab
 
power electronics
power electronicspower electronics
power electronics
 
Electronics and Communication Engineering
Electronics and Communication EngineeringElectronics and Communication Engineering
Electronics and Communication Engineering
 
EEEE-CIVIL ppt unit 1,2,3.pptx
EEEE-CIVIL ppt unit 1,2,3.pptxEEEE-CIVIL ppt unit 1,2,3.pptx
EEEE-CIVIL ppt unit 1,2,3.pptx
 
BE UNIT 1 PPT.ppt
BE UNIT 1 PPT.pptBE UNIT 1 PPT.ppt
BE UNIT 1 PPT.ppt
 
PN JUNCTION DIODE CONSTRUCTION AND VI CHARACTERISTICS
PN JUNCTION DIODE CONSTRUCTION AND VI CHARACTERISTICSPN JUNCTION DIODE CONSTRUCTION AND VI CHARACTERISTICS
PN JUNCTION DIODE CONSTRUCTION AND VI CHARACTERISTICS
 
Semiconductor diodes
Semiconductor diodesSemiconductor diodes
Semiconductor diodes
 
Types of Diodes Advantages and disadvantages, LE
Types of Diodes Advantages and disadvantages, LETypes of Diodes Advantages and disadvantages, LE
Types of Diodes Advantages and disadvantages, LE
 

More from diriba chali

More from diriba chali (8)

EMFTAll2
EMFTAll2EMFTAll2
EMFTAll2
 
complete-notes-on-vector-analysis.pdf
complete-notes-on-vector-analysis.pdfcomplete-notes-on-vector-analysis.pdf
complete-notes-on-vector-analysis.pdf
 
EMF
EMFEMF
EMF
 
lecture-3_transistors.pptx
lecture-3_transistors.pptxlecture-3_transistors.pptx
lecture-3_transistors.pptx
 
Phy107Fall06Lect01.ppt
Phy107Fall06Lect01.pptPhy107Fall06Lect01.ppt
Phy107Fall06Lect01.ppt
 
12377224.ppt
12377224.ppt12377224.ppt
12377224.ppt
 
unit-2.pdf
unit-2.pdfunit-2.pdf
unit-2.pdf
 
chapter2.pdf
chapter2.pdfchapter2.pdf
chapter2.pdf
 

Recently uploaded

Guwahati Escorts Service Girl ^ 9332606886, WhatsApp Anytime Guwahati
Guwahati Escorts Service Girl ^ 9332606886, WhatsApp Anytime GuwahatiGuwahati Escorts Service Girl ^ 9332606886, WhatsApp Anytime Guwahati
Guwahati Escorts Service Girl ^ 9332606886, WhatsApp Anytime Guwahatimeghakumariji156
 
Call Girls Chikhali Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Chikhali Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Chikhali Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Chikhali Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
Abort pregnancy in research centre+966_505195917 abortion pills in Kuwait cyt...
Abort pregnancy in research centre+966_505195917 abortion pills in Kuwait cyt...Abort pregnancy in research centre+966_505195917 abortion pills in Kuwait cyt...
Abort pregnancy in research centre+966_505195917 abortion pills in Kuwait cyt...drmarathore
 
Just Call Vip call girls Berhampur Escorts ☎️9352988975 Two shot with one gir...
Just Call Vip call girls Berhampur Escorts ☎️9352988975 Two shot with one gir...Just Call Vip call girls Berhampur Escorts ☎️9352988975 Two shot with one gir...
Just Call Vip call girls Berhampur Escorts ☎️9352988975 Two shot with one gir...gajnagarg
 
Just Call Vip call girls Begusarai Escorts ☎️9352988975 Two shot with one gir...
Just Call Vip call girls Begusarai Escorts ☎️9352988975 Two shot with one gir...Just Call Vip call girls Begusarai Escorts ☎️9352988975 Two shot with one gir...
Just Call Vip call girls Begusarai Escorts ☎️9352988975 Two shot with one gir...gajnagarg
 
Just Call Vip call girls Bhiwandi Escorts ☎️9352988975 Two shot with one girl...
Just Call Vip call girls Bhiwandi Escorts ☎️9352988975 Two shot with one girl...Just Call Vip call girls Bhiwandi Escorts ☎️9352988975 Two shot with one girl...
Just Call Vip call girls Bhiwandi Escorts ☎️9352988975 Two shot with one girl...gajnagarg
 
SM-N975F esquematico completo - reparación.pdf
SM-N975F esquematico completo - reparación.pdfSM-N975F esquematico completo - reparación.pdf
SM-N975F esquematico completo - reparación.pdfStefanoBiamonte1
 
Sector 18, Noida Call girls :8448380779 Model Escorts | 100% verified
Sector 18, Noida Call girls :8448380779 Model Escorts | 100% verifiedSector 18, Noida Call girls :8448380779 Model Escorts | 100% verified
Sector 18, Noida Call girls :8448380779 Model Escorts | 100% verifiedDelhi Call girls
 
Just Call Vip call girls chhindwara Escorts ☎️9352988975 Two shot with one gi...
Just Call Vip call girls chhindwara Escorts ☎️9352988975 Two shot with one gi...Just Call Vip call girls chhindwara Escorts ☎️9352988975 Two shot with one gi...
Just Call Vip call girls chhindwara Escorts ☎️9352988975 Two shot with one gi...gajnagarg
 
Just Call Vip call girls daman Escorts ☎️9352988975 Two shot with one girl (d...
Just Call Vip call girls daman Escorts ☎️9352988975 Two shot with one girl (d...Just Call Vip call girls daman Escorts ☎️9352988975 Two shot with one girl (d...
Just Call Vip call girls daman Escorts ☎️9352988975 Two shot with one girl (d...gajnagarg
 
Point of Care Testing in clinical laboratory
Point of Care Testing in clinical laboratoryPoint of Care Testing in clinical laboratory
Point of Care Testing in clinical laboratoryoyebolasonuga14
 
一比一原版(Otago毕业证书)奥塔哥理工学院毕业证成绩单学位证靠谱定制
一比一原版(Otago毕业证书)奥塔哥理工学院毕业证成绩单学位证靠谱定制一比一原版(Otago毕业证书)奥塔哥理工学院毕业证成绩单学位证靠谱定制
一比一原版(Otago毕业证书)奥塔哥理工学院毕业证成绩单学位证靠谱定制uodye
 
Call Girls Pimple Saudagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Pimple Saudagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Pimple Saudagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Pimple Saudagar Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
Abortion Pill for sale in Riyadh ((+918761049707) Get Cytotec in Dammam
Abortion Pill for sale in Riyadh ((+918761049707) Get Cytotec in DammamAbortion Pill for sale in Riyadh ((+918761049707) Get Cytotec in Dammam
Abortion Pill for sale in Riyadh ((+918761049707) Get Cytotec in Dammamahmedjiabur940
 

Recently uploaded (20)

Guwahati Escorts Service Girl ^ 9332606886, WhatsApp Anytime Guwahati
Guwahati Escorts Service Girl ^ 9332606886, WhatsApp Anytime GuwahatiGuwahati Escorts Service Girl ^ 9332606886, WhatsApp Anytime Guwahati
Guwahati Escorts Service Girl ^ 9332606886, WhatsApp Anytime Guwahati
 
Critical Commentary Social Work Ethics.pptx
Critical Commentary Social Work Ethics.pptxCritical Commentary Social Work Ethics.pptx
Critical Commentary Social Work Ethics.pptx
 
Call Girls Chikhali Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Chikhali Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Chikhali Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Chikhali Call Me 7737669865 Budget Friendly No Advance Booking
 
Abort pregnancy in research centre+966_505195917 abortion pills in Kuwait cyt...
Abort pregnancy in research centre+966_505195917 abortion pills in Kuwait cyt...Abort pregnancy in research centre+966_505195917 abortion pills in Kuwait cyt...
Abort pregnancy in research centre+966_505195917 abortion pills in Kuwait cyt...
 
Just Call Vip call girls Berhampur Escorts ☎️9352988975 Two shot with one gir...
Just Call Vip call girls Berhampur Escorts ☎️9352988975 Two shot with one gir...Just Call Vip call girls Berhampur Escorts ☎️9352988975 Two shot with one gir...
Just Call Vip call girls Berhampur Escorts ☎️9352988975 Two shot with one gir...
 
Just Call Vip call girls Begusarai Escorts ☎️9352988975 Two shot with one gir...
Just Call Vip call girls Begusarai Escorts ☎️9352988975 Two shot with one gir...Just Call Vip call girls Begusarai Escorts ☎️9352988975 Two shot with one gir...
Just Call Vip call girls Begusarai Escorts ☎️9352988975 Two shot with one gir...
 
Just Call Vip call girls Bhiwandi Escorts ☎️9352988975 Two shot with one girl...
Just Call Vip call girls Bhiwandi Escorts ☎️9352988975 Two shot with one girl...Just Call Vip call girls Bhiwandi Escorts ☎️9352988975 Two shot with one girl...
Just Call Vip call girls Bhiwandi Escorts ☎️9352988975 Two shot with one girl...
 
SM-N975F esquematico completo - reparación.pdf
SM-N975F esquematico completo - reparación.pdfSM-N975F esquematico completo - reparación.pdf
SM-N975F esquematico completo - reparación.pdf
 
Sector 18, Noida Call girls :8448380779 Model Escorts | 100% verified
Sector 18, Noida Call girls :8448380779 Model Escorts | 100% verifiedSector 18, Noida Call girls :8448380779 Model Escorts | 100% verified
Sector 18, Noida Call girls :8448380779 Model Escorts | 100% verified
 
CHEAP Call Girls in Ashok Nagar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Ashok Nagar  (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICECHEAP Call Girls in Ashok Nagar  (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Ashok Nagar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
 
(ISHITA) Call Girls Service Aurangabad Call Now 8617697112 Aurangabad Escorts...
(ISHITA) Call Girls Service Aurangabad Call Now 8617697112 Aurangabad Escorts...(ISHITA) Call Girls Service Aurangabad Call Now 8617697112 Aurangabad Escorts...
(ISHITA) Call Girls Service Aurangabad Call Now 8617697112 Aurangabad Escorts...
 
CHEAP Call Girls in Hauz Quazi (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Hauz Quazi  (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICECHEAP Call Girls in Hauz Quazi  (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Hauz Quazi (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
 
(INDIRA) Call Girl Napur Call Now 8617697112 Napur Escorts 24x7
(INDIRA) Call Girl Napur Call Now 8617697112 Napur Escorts 24x7(INDIRA) Call Girl Napur Call Now 8617697112 Napur Escorts 24x7
(INDIRA) Call Girl Napur Call Now 8617697112 Napur Escorts 24x7
 
Just Call Vip call girls chhindwara Escorts ☎️9352988975 Two shot with one gi...
Just Call Vip call girls chhindwara Escorts ☎️9352988975 Two shot with one gi...Just Call Vip call girls chhindwara Escorts ☎️9352988975 Two shot with one gi...
Just Call Vip call girls chhindwara Escorts ☎️9352988975 Two shot with one gi...
 
Just Call Vip call girls daman Escorts ☎️9352988975 Two shot with one girl (d...
Just Call Vip call girls daman Escorts ☎️9352988975 Two shot with one girl (d...Just Call Vip call girls daman Escorts ☎️9352988975 Two shot with one girl (d...
Just Call Vip call girls daman Escorts ☎️9352988975 Two shot with one girl (d...
 
Point of Care Testing in clinical laboratory
Point of Care Testing in clinical laboratoryPoint of Care Testing in clinical laboratory
Point of Care Testing in clinical laboratory
 
一比一原版(Otago毕业证书)奥塔哥理工学院毕业证成绩单学位证靠谱定制
一比一原版(Otago毕业证书)奥塔哥理工学院毕业证成绩单学位证靠谱定制一比一原版(Otago毕业证书)奥塔哥理工学院毕业证成绩单学位证靠谱定制
一比一原版(Otago毕业证书)奥塔哥理工学院毕业证成绩单学位证靠谱定制
 
Call Girls Pimple Saudagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Pimple Saudagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Pimple Saudagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Pimple Saudagar Call Me 7737669865 Budget Friendly No Advance Booking
 
Abortion Pill for sale in Riyadh ((+918761049707) Get Cytotec in Dammam
Abortion Pill for sale in Riyadh ((+918761049707) Get Cytotec in DammamAbortion Pill for sale in Riyadh ((+918761049707) Get Cytotec in Dammam
Abortion Pill for sale in Riyadh ((+918761049707) Get Cytotec in Dammam
 
CHEAP Call Girls in Mayapuri (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Mayapuri  (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICECHEAP Call Girls in Mayapuri  (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Mayapuri (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
 

Chap19.ppt

  • 1. Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#› Semiconductor Diodes  Introduction  Diodes  Electrical Properties of Solids  Semiconductors  pn Junctions  Semiconductor Diodes  Special-Purpose Diodes  Diode Circuits Chapter 19
  • 2. Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#› Introduction  This course adopts a top-down approach to the subject and so far we have taken a ‘black-box’ view of active components (such as op-amps)  It is now time to look ‘inside the box’ – we will start by looking at diodes and semiconductors – then progress to transistors – later we will look at more detailed aspects of circuit design 19.1
  • 3. Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#› Diodes  An ideal diode passing electricity in one direction but not the other 19.2
  • 4. Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›  One application of diodes is in rectification – the example below shows a half-wave rectifier  In practice, no real diode has ideal characteristics but semiconductor pn junctions make good diodes  To understand such devices we need to look at some properties of materials
  • 5. Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#› Electrical Properties of Solids  Conductors – e.g. copper or aluminium – have a cloud of free electrons (at all temperatures above absolute zero). If an electric field is applied electrons will flow causing an electric current  Insulators – e.g. polythene – electrons are tightly bound to atoms so few can break free to conduct electricity 19.3
  • 6. Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›  Semiconductors – e.g. silicon or germanium – at very low temperatures these have the properties of insulators – as the material warms up some electrons break free and can move about, and it takes on the properties of a conductor - albeit a poor one – however, semiconductors have several properties that make them distinct from conductors and insulators
  • 7. Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#› Semiconductors  Pure semiconductors – thermal vibration results in some bonds being broken generating free electrons which move about – these leave behind holes which accept electrons from adjacent atoms and therefore also move about – electrons are negative charge carriers – holes are positive charge carriers  At room temperatures there are few charge carriers – pure semiconductors are poor conductors – this is intrinsic conduction 19.4
  • 8. Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›  Doping – the addition of small amounts of impurities drastically affects its properties – some materials form an excess of electrons and produce an n-type semiconductor – some materials form an excess of holes and produce a p-type semiconductor – both n-type and p-type materials have much greater conductivity than pure semiconductors – this is extrinsic conduction
  • 9. Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›  The dominant charge carriers in a doped semiconductor (e.g. electrons in n-type material) are called majority charge carriers. Other type are minority charge carriers  The overall doped material is electrically neutral
  • 10. Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#› pn Junctions  When p-type and n-type materials are joined this forms a pn junction – majority charge carriers on each side diffuse across the junction where they combine with (and remove) charge carriers of the opposite polarity – hence around the junction there are few free charge carriers and we have a depletion layer (also called a space-charge layer) 19.5
  • 11. Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›  The diffusion of positive charge in one direction and negative charge in the other produces a charge imbalance – this results in a potential barrier across the junction
  • 12. Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›  Potential barrier – the barrier opposes the flow of majority charge carriers and only a small number have enough energy to surmount it  this generates a small diffusion current – the barrier encourages the flow of minority carriers and any that come close to it will be swept over  this generates a small drift current – for an isolated junction these two currents must balance each other and the net current is zero
  • 13. Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›  Forward bias – if the p-type side is made positive with respect to the n-type side the height of the barrier is reduced – more majority charge carriers have sufficient energy to surmount it – the diffusion current therefore increases while the drift current remains the same – there is thus a net current flow across the junction which increases with the applied voltage
  • 14. Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›  Reverse bias – if the p-type side is made negative with respect to the n-type side the height of the barrier is increased – the number of majority charge carriers that have sufficient energy to surmount it rapidly decreases – the diffusion current therefore vanishes while the drift current remains the same – thus the only current is a small leakage current caused by the (approximately constant) drift current – the leakage current is usually negligible (a few nA)
  • 15. Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›  Currents in a pn junction
  • 16. Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›  Forward and reverse currents – pn junction current is given approximately by – where I is the current, e is the electronic charge, V is the applied voltage, k is Boltzmann’s constant, T is the absolute temperature and  (Greek letter eta) is a constant in the range 1 to 2 determined by the junction material – for most purposes we can assume  = 1         1 exp ηkT eV I I s
  • 17. Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›  Thus at room temperature e/kT ~ 40 V-1  If V > +0.1 V  If V < -0.1 V – IS is the reverse saturation current         1 exp kT eV I I s   V I kT eV I I s s 40 exp exp           s s I I I     1 0
  • 18. Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#› Semiconductor Diodes  Forward and reverse currents 19.6
  • 19. Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›  Silicon diodes – generally have a turn-on voltage of about 0.5 V – generally have a conduction voltage of about 0.7 V – have a breakdown voltage that depends on their construction  perhaps 75 V for a small-signal diode  perhaps 400 V for a power device – have a maximum current that depends on their construction  perhaps 100 mA for a small-signal diode  perhaps many amps for a power device
  • 20. Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›  Turn-on and breakdown voltages for a silicon device
  • 21. Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#› Special-Purpose Diodes  Light-emitting diodes – discussed earlier when we looked at light actuators 19.7
  • 22. Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›  Zener diodes – uses the relatively constant reverse breakdown voltage to produce a voltage reference – breakdown voltage is called the Zener voltage, VZ – output voltage of circuit shown is equal to VZ despite variations in input voltage V – a resistor is used to limit the current in the diode
  • 23. Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›  Schottky diodes – formed by the junction between a layer of metal (e.g. aluminium) and a semiconductor – action relies only on majority charge carriers – much faster in operation than a pn junction diode – has a low forward voltage drop of about 0.25 V – used in the design of high-speed logic gates
  • 24. Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›  Tunnel diodes – high doping levels produce a very thin depletion layer which permits ‘tunnelling’ of charge carriers – results in a characteristic with a negative resistance region – used in high-frequency oscillators, where they can be used to ‘cancel out’ resistance in passive components
  • 25. Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›  Varactor diodes – a reversed-biased diode has two conducting regions separated by an insulating depletion region – this structure resembles a capacitor – variations in the reverse-bias voltage change the width of the depletion layer and hence the capacitance – this produces a voltage-dependent capacitor – these are used in applications such as automatic tuning circuits
  • 26. Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#› Diode Circuits  Half-wave rectifier – peak output voltage is equal to the peak input voltage minus the conduction voltage of the diode – reservoir capacitor used to produce a steadier output 19.8
  • 27. Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›  Full-wave rectifier – use of a diode bridge reduces the time for which the capacitor has to maintain the output voltage and thus reduced the ripple voltage
  • 28. Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›  Signal rectifier – used to demodulate full amplitude modulated signals (full-AM) – also known as an envelope detector – found in a wide range of radio receivers from crystal sets to superheterodynes
  • 29. Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›  Signal clamping – a simple form of signal conditioning – circuits limit the excursion of the voltage waveform – can use a combination of signal and Zener diodes
  • 30. Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#›  Catch diode – used when switching inductive loads – the large back e.m.f. can cause problems such as arcing in switches – catch diodes provide a low impedance path across the inductor to dissipate the stored energy – the applied voltage reverse-biases the diode which therefore has no effect – when the voltage is removed the back e.m.f. forward biases the diode which then conducts
  • 31. Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 19.‹#› Key Points  Diodes allow current to flow in only one direction  At low temperatures semiconductors act like insulators  At higher temperatures they begin to conduct  Doping of semiconductors leads to the production of p-type and n-type materials  A junction between p-type and n-type semiconductors has the properties of a diode  Silicon semiconductor diodes approximate the behaviour of ideal diodes but have a conduction voltage of about 0.7 V  There are also a wide range of special purpose diodes  Diodes are used in a range of applications