SlideShare a Scribd company logo
1 of 11
Matematik Babylon
Daripada Wikipedia, ensiklopedia bebas.
Lompat ke: pandu arah, cari
                     Jika anda ingin membantu, sumbangan anda dialu-alukan.

                      Rencana ini sedang diusahakan oleh: BukanTeamBiasa
                      Catatan: Penggunaan templat ini adalah tidak digalakkan.




Batu bersurat tanah liat Babylon YBC 7289 dengan anotasi. Pepenjuru menggambarkan
anggaran punca kuasa dua 2 dalam empat angka perenam-puluhan, yang sekitar enam angka
perpuluhan.
1 + 24/60 + 51/602 + 10/603 = 1.41421296...

Matematik Babylon merujuk kepada matematik orang Mesopotamia (Iraq silam), dari
zaman awal Sumeria hingga ke kejatuhan Babylon pada 539 SM. Berbeza dengan
kekurangan sumber untuk Matematik Mesir, ilmu matematik Babylon boleh dirujuk dari 400
batu bersurat tanah liat yang ditemui sejak 1850-an. Ditulis dalam tulisan pepaku, batu
bersurat tersebut ditulis sementara tanah liat masih lembab, dan dibakar keras dalam sebuah
ketuhar atau oleh kepanasan matahari. Kebanyakan batu bersurat tersebut bertarikh dari 1800
hingga ke 1600 SM, dan meliputi topik yang termasuk pecahan, algebra, kuadratik dan kuasa
tiga, teorem Pythagoras, dan pengiraan tigaan Pythagoras dan mungkin juga fungsi
trigonometri (sila lihat Plimpton 322). Batu bersurat Babylon YBC 7289 memberikan suatu
penganggaran      tepat kepada hampir enam tempat perpuluhan.

Isi kandungan
[sorokkan]

       1 Bilangan Babylon
       2 Matematik Sumer (3000-2300 SM)
       3 Matematik Babylon Lama (2000-1600 SM)
          o 3.1 Aritmetik
          o 3.2 Algebra
o   3.3 Geometri
           o   3.4 Trigonometri
           o   3.5 Plimpton 322
       4 Matematik Babylon di Alexandria
       5 Matematik Islam di Mesopotamia
       6 Lihat juga
       7 Nota
       8 Rujukan
       9 Pautan luar



[sunting] Bilangan Babylon
       Rencana utama: Bilangan Babylon

Sistem matematik Babylon adalah sexagesimal (asas-60) sistem bilangan. Dari ini kita
melihat kegunaan hari moden 60 saat dalam satu minit, 60 minit dalam satu jam, dan 360
(60×6) darjah dalam sebuah bulatan. Orang Babylon dapat membuat kemajuan yang hebat
dalam matematik berdasarkan dua alasan. Pertama, nombor 60 adalah suatua Bilangan
Highly composite, mempunyai pembahagian 2, 3, 4, 5, 6, 10, 12, 15, 20, dan 30, pengiraan
mudah dengan pecahan. Tambahan lagi, tidak seperti orang Mesir dan Rom, orang Babylon
dan India mempunyai suatu sistem letak-nilai yang bear, di mana digit ditulis di column kiri
mewakili nilai-nilai yang lebih besar (seperti dalam sistem asas sepuluh kita: 734 = 7×100 +
3×10 + 4×1).

[sunting] Matematik Sumer (3000-2300 SM)
Bukti terawal matematik tulisan melatar belakang ke Sumer yang silam, yang membinakan
peradaban di Mesopotamia. mereka membangunkan sistem kompleks metrologi dari 3000
SM. Dari 2600 SM selanjutnya, orang Sumer menulis jadual perdaraban pada batu bersurat
tanah liat dan menguruskan dengan latihan geometri dan masalah pembahagian. Kesan-kesan
terawal bilangan Babylon juga melatar belakang ke jangka ini.[1]

[sunting] Matematik Babylon Lama (2000-1600 SM)
Zaman Babylon Lama adalah tempoh yang mana kebanyakan batu bersurat tanah liat
mengenai asalnya matematik Babylon, dan oleh kerana itulah matematik Mesopotamia
umumnya digelar matematik Babylon. Sesetengah batu bersurat tanah liat mengandungi
senarai dan jadual, yang lain mengandungi dan jawapan yang dikerjakan.

[sunting] Aritmetik

Orang Babylon menggunakan kegunaan lebsar pada jadual pra-kiraan untuk membantu
dengan aritmetik. Contohnya, dua batu bersurat didapati di Senkerah di Euphrates pada 1854,
bermula dari 2000 SM, memberikan senarai-senarai persegi bilangan ke atas 59 dan cubes
bilangan ke atas 32. Orang Babylon menggunakan senarai-senarai persegi bersamaan dengan
persamaan
untuk memudahkan perdaraban.

Orang Babylon tidak mempunyai suatu algoritma untuk bahagi panjang. Daripada itu mereka
berasaskan kaedah mereka ternyatanya bahawa




bersama dengan sebuah jadual reciprocals. Bilangan yang hanyalah faktor perdana adalah 2,
3 atau 5 (digelar sebagai 5-smooth atau bilangan sering) mempunyai finite reciprocals dalam
notasi sexagesimal, dan jadual-jadual dengan senarai-senarai extensive pada reciprocals ini
telah ditemukan.

Resiprokal seperti 1/7, 1/11, 1/13, dll. tidak mempunyai pewakilan finite pada notasi
sexagesimal. Untuk mengira 1/13 atau untuk membahagikan sebuah nombor dengan 13 orang
Babylon akan menggunakan suatu anggaran seperti




[sunting] Algebra

Dan juga pengiraan aritmetik, ahli matematik Babylon juga mengembang kaedah algebra
pada penyelesaian persamaa. Sekali lagi, ini berasaskan jadual pra-kiraan.

Untuk menyelesai suatu persamaan kuadratik orang Babylon essentially menggunakan
rumusan kuadratik piawai. Mereka menganggapkan persamaan kuadratik pada bentuk



di mana sini b dan c tidak seharusnya integer, tetapi c adalah sentiasa positif. Mereka
mengetahui bahawa suatu jawapan ke bentuk persamaan ini adalah




dan mereka akan menggunakan meja segi empat mereka dengan cara terbalik untuk mencari
akar persegi. Mereka sentiasa menggunakan akar positif kerana ini masuk akal ketika
menyelesaikan masalah "benar". Masalah-masalah jenis ini termasuk mencari dimensi sebuah
segi empat tepat diberikan ruang ini dan jumlah yang mana panjangnya melebihi lebarnya.
Jadual nilai n3+n2 telah digunakan untuk menyelesai sesetengah persamaan kubik.
Contohnya, anggapkan persamaan



'''Pendaraban persamaan oleh''' a2 dan dibahagikan dengan b3 memberikan




Menggantikan y = ax/b memberikan




yang dapat sekarang diselesai dengan melihat n3+n2 table untuk mendapatkan nilai terdekat
ke sudut tangan kanan. Orang Babylon accomplished ini tanpa notasi algebra, menunjukkan
suatu pendalaman remarkable pada kefahaman. Meskipun, mereka tidak mempunyai suatu
kaedah untuk menyelesaikan persamaan kubik.

[sunting] Geometri

The Babylonians may have known the general rules for measuring areas and volumes. They
measured the circumference of a circle as three times the diameter and the area as one-twelfth
the square of the circumference, which would be correct if π is estimated as 3. The volume of
a cylinder was taken as the product of the base and the height, however, the volume of the
frustum of a cone or a square pyramid was incorrectly taken as the product of the height and
half the sum of the bases. The Pythagorean theorem was also known to the Babylonians.
Also, there was a recent discovery in which a tablet used π as 3 and 1/8. The Babylonians are
also known for the Babylonian mile, which was a measure of distance equal to about seven
miles today. This measurement for distances eventually was converted to a time-mile used for
measuring the travel of the Sun, therefore, representing time.[2]

[sunting] Trigonometri

The ancient Babylonians had known of theorems on the ratios of the sides of similar triangles
for many centuries, but they lacked the concept of an angle measure and consequently,
studied the sides of triangles were studied instead.[3]

The Babylonian astronomers kept detailed records on the rising and setting of stars, the
motion of the planets, and the solar and lunar eclipses, all of which required familiarity with
angular distances measured on the celestial sphere.[4]

There is also evidence that the Babylonians first used trigonometric functions, based on a
table of numbers written on the Babylonian cuneiform tablet, Plimpton 322 (circa 1900 BC),
which can be interpreted as a trigonometric table of secants.[5]

[sunting] Plimpton 322
Rencana utama: Plimpton 322

In each row of the Plimpton 322 tablet, the number in the second column can be interpreted
as the shortest side s of a right triangle, and the number in the third column can be interpreted
as the hypotenuse d of the triangle. The number in the first column is either the fraction    or
   , where l denotes the longest side of the same right triangle. However, scholars differ on
how these numbers were generated and why the Babylonians would have been interested in
such tables.

Neugebauer (1951) argued for a number-theoretic interpretation, pointing out that this table
provides a list of (pairs of numbers from) Pythagorean triples. For instance, line 11 of the
table can be interpreted as describing a triangle with short side 3/4 and hypotenuse 5/4,
forming the side:hypotenuse ratio of the familiar (3,4,5) right triangle. If p and q are two
coprime numbers, then                                  form a Pythagorean triple, and all
Pythagorean triples can be formed in this way. For instance, line 11 can be generated by this
formula with p = 1 and q = 1/2. As Neugebauer argues, each line of the tablet can be
generated by a pair (p,q) that are both regular numbers, integer divisors of a power of 60.
This property of p and q being regular leads to a denominator that is regular, and therefore to
a finite sexagesimal representation for the fraction in the first column. Neugebauer's
explanation is the one followed e.g. by Conway and Guy (1996). However, as Robson points
out, Neugebauer's theory fails to explain how the values of p and q were chosen: there are 92
pairs of coprime regular numbers up to 60, and only 15 entries in the table. In addition, it
does not explain why the table entries are in the order they are listed in, nor what the numbers
in the first column were used for.

Joyce (1995) provides a trigonometric explanation: the values of the first column can be
interpreted as the squared cosine or tangent (depending on the missing digit) of the angle
opposite the short side of the right triangle described by each row, and the rows are sorted by
these angles in roughly one-degree increments. However, Robson argues on linguistic
grounds that this theory is "conceptually anachronistic": it depends on too many other ideas
not present in the record of Babylonian mathematics from that time.

Robson (2001,2002), based on prior work by Bruins (1949,1955) and others, instead takes an
approach that in modern terms would be characterized as algebraic, though she describes it in
concrete geometric terms and argues that the Babylonians would also have interpreted this
approach geometrically. Robson bases her interpretation on another tablet, YBC 6967, from
roughly the same time and place.[6] This tablet describes a method for solving what we would
nowadays describe as quadratic equations of the form                   , by steps (described in
geometric terms) in which the solver calculates a sequence of intermediate values v1 = c/2, v2
= v12, v3 = 1 + v2, and v4 = v31/2, from which one can calculate x = v4 + v1 and 1/x = v4 - v1.
Robson argues that the columns of Plimpton 322 can be interpreted as the following values,
for regular number values of x and 1/x in numerical order: v3 in the first column, v1 = (x -
1/x)/2 in the second column, and v4 = (x + 1/x)/2 in the third column. In this interpretation, x
and 1/x would have appeared on the tablet in the broken-off portion to the left of the first
column. For instance, row 11 of Plimpton 322 can be generated in this way for x = 2. Thus,
the tablet can be interpreted as giving a sequence of worked-out exercises of the type solved
by the method from tablet YBC 6967. It could, Robson suggests, have been used by a teacher
as a problem set to assign to students.
Since the rediscovery of the Babylonian civilization, it has become apparent that Greek and
Hellenistic mathematicians and astronomers, and in particular Hipparchus, borrowed a lot
from the Chaldeans.

Franz Xaver Kugler demonstrated in his book Die Babylonische Mondrechnung ("The
Babylonian lunar computation", Freiburg im Breisgau, 1900) the following: Ptolemy had
stated in his Almagest IV.2 that Hipparchus improved the values for the Moon's periods
known to him from "even more ancient astronomers" by comparing eclipse observations
made earlier by "the Chaldeans", and by himself. However Kugler found that the periods that
Ptolemy attributes to Hipparchus had already been used in Babylonian ephemerides,
specifically the collection of texts nowadays called "System B" (sometimes attributed to
Kidinnu). Apparently Hipparchus only confirmed the validity of the periods he learned from
the Chaldeans by his newer observations.

It is clear that Hipparchus (and Ptolemy after him) had an essentially complete list of eclipse
observations covering many centuries. Most likely these had been compiled from the "diary"
tablets: these are clay tablets recording all relevant observations that the Chaldeans routinely
made. Preserved examples date from 652 BC to AD 130, but probably the records went back
as far as the reign of the Babylonian king Nabonassar: Ptolemy starts his chronology with the
first day in the Egyptian calendar of the first year of Nabonassar, i.e., 26 February 747 BC.

This raw material by itself must have been hard to use, and no doubt the Chaldeans
themselves compiled extracts of e.g., all observed eclipses (some tablets with a list of all
eclipses in a period of time covering a saros have been found). This allowed them to
recognise periodic recurrences of events. Among others they used in System B (cf. Almagest
IV.2):

       223 (synodic) months = 239 returns in anomaly (anomalistic month) = 242 returns in
       latitude (draconic month). This is now known as the saros period which is very useful
       for predicting eclipses.
       251 (synodic) months = 269 returns in anomaly
       5458 (synodic) months = 5923 returns in latitude
       1 synodic month = 29;31:50:08:20 days (sexagesimal; 29.53059413… days in
       decimals = 29 days 12 hours 44 min 3⅓ s)

The Babylonians expressed all periods in synodic months, probably because they used a
lunisolar calendar. Various relations with yearly phenomena led to different values for the
length of the year.

Similarly various relations between the periods of the planets were known. The relations that
Ptolemy attributes to Hipparchus in Almagest IX.3 had all already been used in predictions
found on Babylonian clay tablets.

All this knowledge was transferred to the Greeks probably shortly after the conquest by
Alexander the Great (331 BC). According to the late classical philosopher Simplicius (early
6th century AD), Alexander ordered the translation of the historical astronomical records
under supervision of his chronicler Callisthenes of Olynthus, who sent it to his uncle
Aristotle. It is worth mentioning here that although Simplicius is a very late source, his
account may be reliable. He spent some time in exile at the Sassanid (Persian) court, and may
have accessed sources otherwise lost in the West. It is striking that he mentions the title
tèresis (Greek: guard) which is an odd name for a historical work, but is in fact an adequate
translation of the Babylonian title massartu meaning "guarding" but also "observing".
Anyway, Aristotle's pupil Callippus of Cyzicus introduced his 76-year cycle, which improved
upon the 19-year Metonic cycle, about that time. He had the first year of his first cycle start at
the summer solstice of 28 June 330 BC (Julian proleptic date), but later he seems to have
counted lunar months from the first month after Alexander's decisive battle at Gaugamela in
fall 331 BC. So Callippus may have obtained his data from Babylonian sources and his
calendar may have been anticipated by Kidinnu. Also it is known that the Babylonian priest
known as Berossus wrote around 281 BC a book in Greek on the (rather mythological)
history of Babylonia, the Babyloniaca, for the new ruler Antiochus I; it is said that later he
founded a school of astrology on the Greek island of Kos. Another candidate for teaching the
Greeks about Babylonian astronomy/astrology was Sudines who was at the court of Attalus I
Soter late in the 3rd century BC.

In any case, the translation of the astronomical records required profound knowledge of the
cuneiform script, the language, and the procedures, so it seems likely that it was done by
some unidentified Chaldeans. Now, the Babylonians dated their observations in their
lunisolar calendar, in which months and years have varying lengths (29 or 30 days; 12 or 13
months respectively). At the time they did not use a regular calendar (such as based on the
Metonic cycle like they did later), but started a new month based on observations of the New
Moon. This made it very tedious to compute the time interval between events.

What Hipparchus may have done is transform these records to the Egyptian calendar, which
uses a fixed year of always 365 days (consisting of 12 months of 30 days and 5 extra days):
this makes computing time intervals much easier. Ptolemy dated all observations in this
calendar. He also writes that "All that he (=Hipparchus) did was to make a compilation of the
planetary observations arranged in a more useful way" (Almagest IX.2). Pliny states
(Naturalis Historia II.IX(53)) on eclipse predictions: "After their time (=Thales) the courses
of both stars (=Sun and Moon) for 600 years were prophesied by Hipparchus, …". This
seems to imply that Hipparchus predicted eclipses for a period of 600 years, but considering
the enormous amount of computation required, this is very unlikely. Rather, Hipparchus
would have made a list of all eclipses from Nabonasser's time to his own.

Other traces of Babylonian practice in Hipparchus' work are:

       first Greek known to divide the circle in 360 degrees of 60 arc minutes.
       first consistent use of the sexagesimal number system.
       the use of the unit pechus ("cubit") of about 2° or 2½°.
       use of a short period of 248 days = 9 anomalistic months.

[sunting] Matematik Babylon di Alexandria
Maklumat terperinci: Matematik Greek dan Astronomi Babylon

Sewaktu zaman Hellen, astronomi Babylon dan matematik exerted suatu pengaruh hebat pada
ahli matematik Alexandria, di Mesir Ptolemy dan Mesir Rom. Ini adalah terutamanya
apparent dalam astronomi dan karya matematik Hipparchus, Ptolemy, Hero dari Alexandria,
dan Diophantus. Dalam kes Diophantus, pengaruh Babylon adalah sangat kuat dalam
Arithmeticanya yang sesetengah sarjana telah argued bahawa beliau sendiri mungkin adalah
seorang Babylon Hellen.[7] Pengaruh Babylon kuat pada karya Hero telah membawakan ke
spekulasi bahwa beliau adalah seorang Phoenicia.[8]

[sunting] Matematik Islam di Mesopotamia
       Rencana utama: Matematik Islam dan Senarai tokoh Iraq

Selepas penaklukan Islam Mesopotamia Farsi, daerah Mesopotamia yang digelar "Iraq"
dalam bahasa Arab. Di bawah khilafah Abbasid, ibu negara Empayar Arab adalah Baghdad,
yang dibina di Iraq sewaktu abad ke-8. Dari abad ke-8 hingga ke-13, sering digelar "Zaman
Keemasan Islam", Iraq/Mesopotamia sekali lagi menjadi pusat aktiviti matematik. Banyak
para ahli matematik pada waktu itu adalah aktif di Iraq, termasuk Muḥ ammad ibn Mūsā al-
Khwārizmī (Algoritmi), Al-Abbās ibn Said al-Jawharī, 'Abd al-Hamīd ibn Turk, Al-Kindi
(Alkindus), Hunayn ibn Ishaq (Johannitius), adik-beradik lelaki Banū Mūsā, keluarga Thābit
ibn Qurra, Muhammad ibn Jābir al-Harrānī al-Battānī (Albatenius), the Brethren of Purity,
Al-Saghani, Abū Sahl al-Qūhī, Ibn Sahl, Abu Nasr Mansur ibn Iraq, Ibn al-Haytham
(Alhazen), Ibn Tahir al-Baghdadi, dan Ibn Yahyā al-Maghribī al-Samaw'al. Altiviti
matematik berakhir di Iraq/Mesopotamia selepas sack of Baghdad pada 1258.

[sunting] Lihat juga
Templat:Mathematics portal Templat:ANE portal

       Babylonia
       Sejarah matematik
       Astronomi Babylon

[sunting] Nota
   1. ↑ Duncan J. Melville (2003). Third Millennium Chronology, Third Millennium
      Mathematics. St. Lawrence University.
   2. ↑ Eves, Chapter 2.
   3. ↑ Boyer (1991). bab: “Greek Trigonometry and Mensuration”, ', 158-159.
   4. ↑ Maor, Eli (1998), Trigonometric Delights, Princeton University Press, ISBN
      0691095418
   5. ↑ Joseph, pp. 383-4
   6. ↑ Neugebauer, O.; Sachs, A. J. (1945). Mathematical Cuneiform Texts, American
      Oriental Series, vol. 29, text Ua, New Haven: American Oriental Society and the
      American Schools of Oriental Research.
   7. ↑ D. M. Burton (1991, 1995), History of Mathematics, Dubuque, IA (Wm.C. Brown
      Publishers):

       "Diophantos was most likely a Hellenized Babylonian."

   8. ↑ Boyer (1968 [1991]). bab: “Greek Trigonometry and Mensuration”, A History of
      Mathematics, 171-2.:
Sekurang-kurangnya dari hari Iskandar Agung berhampiran dengan dunia klasik,
        tidak diserbasalahkan bahwa adanya antarahubungan di antara Greece dan
        Mesopotamia, dan ia kelihatan bahawa jelas bahawa geometri aritmetik dan algebra
        berlanjut untuk memberikan considerable pengaruh dalam dunia Hellen. Aspek ini
        pada matematik, contohnya, kelihatan sangat kuat pada Heron dari Alexandria (fl. ca.
        A.D. 100) bahawa Heron sekali dahulu dianggap seorang Mesir atau Phoenicia
        daripada orang Greece. Sekarang ia difikir bahawa Heron menggambarkan sejenis
        matematik telah lama berada di Greece tetapi tidak dapat mendapatkan seorang
        pewakilan di kalangan tokoh-tokoh hebat - kecuali mungkin digambarkan oleh
        Ptolemy di Tetrabiblos.

[sunting] Rujukan
        Berriman, A. E., The Babylonian quadratic equation (1956).
        Boyer, C. B., A History of Mathematics, 2nd ed. rev. by Uta C. Merzbach. New York:
        Wiley, (1989) ISBN 0-471-09763-2 (1991 pbk ed. ISBN 0-471-54397-7).
        Joseph, G. G., The Crest of the Peacock, Princeton University Press (October 15,
        2000), ISBN 0-691-00659-8.
        Joyce, David E. (1995). Plimpton 322.
        http://aleph0.clarku.edu/~djoyce/mathhist/plimpnote.html.
        Neugebauer, O., "Exact Sciences of Antiquity", Dover (1969).
        O'Connor, J. J. and Robertson, E. F., "An overview of Babylonian mathematics",
        MacTutor History of Mathematics, (December 2000).
        Robson, Eleanor (2001). "Neither Sherlock Holmes nor Babylon: a reassessment of
        Plimpton 322". Historia Math. 28 (3): 167–206. doi:10.1006/hmat.2001.2317.
        Templat:MathSciNet.
        Eleanor Robson, Words and pictures: New light on Plimpton 322, The American
        Mathematical Monthly. Washington: Feb 2002. Vol. 109, Iss. 2; pg. 105
        Toomer, G. J., Hipparchus and Babylonian Astronomy, (1981).

[sunting] Pautan luar
        Babylonian Mathematics, with particular emphasis on Pythagorean triples.
        Photographs of YBC 7289, taken by Bill Casselman at the Yale Babylonian
        Collection

Diambil daripada "http://ms.wikipedia.org/wiki/Matematik_Babylon"
Kategori: Matematik Babylon | Sejarah matematik

Alatan peribadi

        Log masuk / buka akaun

Ruang nama

        Rencana
        Perbincangan

Kelainan
Rupa

         Baca
         Sunting
         Lihat sejarah

Tindakan

         Sunting puncak

Cari




Pandu arah

         Laman Utama
         Tinjau
         Hal semasa
         Rencana rawak

Perhubungan

         Tentang Wikipedia
         Portal masyarakat
         Perubahan terkini
         Hubungi kami
         Menderma
         Bantuan
         Kedai Kopi

Cetak/eksport

         Cipta buku
         Muat turun sebagai PDF
         Versi boleh cetak

Alatan

         Pautan ke laman ini
         Perubahan berkaitan
         Laman khas
         Pautan kekal
         Petik laman ini

Bahasa lain

         Deutsch
         English
         Italiano
Русский
Svenska

Laman ini diubah buat kali terakhir pada 13:36, 10 November 2008.
Teks disediakan dengan Lesen Creative Commons Pengiktirafan/Perkongsian Serupa;
terma-terma tambahan mungkin terpakai. Lihat Terma-Terma Penggunaan untuk
butiran lanjut.

Dasar privasi
Perihal Wikipedia
Penafian
Paparan Mudah Alih

More Related Content

What's hot

Pythagorean theorem
Pythagorean theoremPythagorean theorem
Pythagorean theoremSEV VARGHESE
 
The Earliest Applications Of Linear Algebra
The Earliest Applications Of Linear AlgebraThe Earliest Applications Of Linear Algebra
The Earliest Applications Of Linear AlgebraSami Ullah
 
Apostila 1º bimestre completa
Apostila 1º bimestre completaApostila 1º bimestre completa
Apostila 1º bimestre completaantoniodasilva66
 
Medieval mathemathecians
Medieval mathematheciansMedieval mathemathecians
Medieval mathematheciansjaisreenivasan
 
Ancient Indian Mathematics - Report-1
Ancient Indian Mathematics - Report-1Ancient Indian Mathematics - Report-1
Ancient Indian Mathematics - Report-1Muhammed Sobhy
 
Core sub math_att_4pythagoreantheorem
Core sub math_att_4pythagoreantheoremCore sub math_att_4pythagoreantheorem
Core sub math_att_4pythagoreantheoremSatyam Gupta
 
17th century mathematics (napier, mersenne, descartes, fermat, & pascal)
17th century mathematics (napier, mersenne, descartes, fermat, & pascal)17th century mathematics (napier, mersenne, descartes, fermat, & pascal)
17th century mathematics (napier, mersenne, descartes, fermat, & pascal)Geraldine Cachero
 
PPTs FOR 9TH CLASS COORDINATE GEOMETRY INTRODUCTION C
PPTs FOR 9TH CLASS COORDINATE GEOMETRY INTRODUCTION CPPTs FOR 9TH CLASS COORDINATE GEOMETRY INTRODUCTION C
PPTs FOR 9TH CLASS COORDINATE GEOMETRY INTRODUCTION CRAMBABU SIRIPURAPU
 
Historia de la_trigonometria_y_sus_aplic
Historia de la_trigonometria_y_sus_aplicHistoria de la_trigonometria_y_sus_aplic
Historia de la_trigonometria_y_sus_aplicTITO ARGUELLO NUÑEZ
 
Three dimensional space dfs-new
Three dimensional space  dfs-newThree dimensional space  dfs-new
Three dimensional space dfs-newFarhana Shaheen
 
Brahmagupta
BrahmaguptaBrahmagupta
BrahmaguptaSijiSS
 

What's hot (18)

Pythagorean theorem
Pythagorean theoremPythagorean theorem
Pythagorean theorem
 
The Earliest Applications Of Linear Algebra
The Earliest Applications Of Linear AlgebraThe Earliest Applications Of Linear Algebra
The Earliest Applications Of Linear Algebra
 
A Project on Pi
A Project on PiA Project on Pi
A Project on Pi
 
Apostila 1º bimestre completa
Apostila 1º bimestre completaApostila 1º bimestre completa
Apostila 1º bimestre completa
 
Medieval mathemathecians
Medieval mathematheciansMedieval mathemathecians
Medieval mathemathecians
 
Ancient Indian Mathematics - Report-1
Ancient Indian Mathematics - Report-1Ancient Indian Mathematics - Report-1
Ancient Indian Mathematics - Report-1
 
Core sub math_att_4pythagoreantheorem
Core sub math_att_4pythagoreantheoremCore sub math_att_4pythagoreantheorem
Core sub math_att_4pythagoreantheorem
 
Hari love sachin
Hari love sachinHari love sachin
Hari love sachin
 
Maths ppt.....7766
Maths ppt.....7766Maths ppt.....7766
Maths ppt.....7766
 
17th century mathematics (napier, mersenne, descartes, fermat, & pascal)
17th century mathematics (napier, mersenne, descartes, fermat, & pascal)17th century mathematics (napier, mersenne, descartes, fermat, & pascal)
17th century mathematics (napier, mersenne, descartes, fermat, & pascal)
 
Gupta1973c
Gupta1973cGupta1973c
Gupta1973c
 
PPTs FOR 9TH CLASS COORDINATE GEOMETRY INTRODUCTION C
PPTs FOR 9TH CLASS COORDINATE GEOMETRY INTRODUCTION CPPTs FOR 9TH CLASS COORDINATE GEOMETRY INTRODUCTION C
PPTs FOR 9TH CLASS COORDINATE GEOMETRY INTRODUCTION C
 
Historia de la_trigonometria_y_sus_aplic
Historia de la_trigonometria_y_sus_aplicHistoria de la_trigonometria_y_sus_aplic
Historia de la_trigonometria_y_sus_aplic
 
Three dimensional space dfs-new
Three dimensional space  dfs-newThree dimensional space  dfs-new
Three dimensional space dfs-new
 
Brahmagupta
BrahmaguptaBrahmagupta
Brahmagupta
 
Gupta1974i
Gupta1974iGupta1974i
Gupta1974i
 
Nishita ''
Nishita ''Nishita ''
Nishita ''
 
şErife özder
şErife özderşErife özder
şErife özder
 

Similar to Sistem bilangn babylonia

METHOD OF BABYLONIANS
METHOD OF BABYLONIANSMETHOD OF BABYLONIANS
METHOD OF BABYLONIANSGRACE qUIMAT
 
The Mesopotamian culture is often called Babylonian, after the lar.docx
The Mesopotamian culture is often called Babylonian, after the lar.docxThe Mesopotamian culture is often called Babylonian, after the lar.docx
The Mesopotamian culture is often called Babylonian, after the lar.docxoreo10
 
HISTORY-OF-MATHEMATICS (2).pptx
HISTORY-OF-MATHEMATICS (2).pptxHISTORY-OF-MATHEMATICS (2).pptx
HISTORY-OF-MATHEMATICS (2).pptxRoseM20
 
History of geometry
History of geometryHistory of geometry
History of geometryPRABIR DATTA
 
JOURNEY OF MATHS OVER A PERIOD OF TIME..................................
JOURNEY OF MATHS OVER A PERIOD OF TIME..................................JOURNEY OF MATHS OVER A PERIOD OF TIME..................................
JOURNEY OF MATHS OVER A PERIOD OF TIME..................................Pratik Sidhu
 
Contributions of indian mathematics
Contributions of indian mathematicsContributions of indian mathematics
Contributions of indian mathematicskethisainadh
 
history in math_1.pptx
history in math_1.pptxhistory in math_1.pptx
history in math_1.pptxBethyOnam
 
history of trigonometry
history of trigonometry history of trigonometry
history of trigonometry Daisy Joy
 
Yash group Maths PPT for class IX
Yash group  Maths PPT for class IXYash group  Maths PPT for class IX
Yash group Maths PPT for class IXYash Jangra
 

Similar to Sistem bilangn babylonia (20)

METHOD OF BABYLONIANS
METHOD OF BABYLONIANSMETHOD OF BABYLONIANS
METHOD OF BABYLONIANS
 
H.math
H.mathH.math
H.math
 
The Mesopotamian culture is often called Babylonian, after the lar.docx
The Mesopotamian culture is often called Babylonian, after the lar.docxThe Mesopotamian culture is often called Babylonian, after the lar.docx
The Mesopotamian culture is often called Babylonian, after the lar.docx
 
HISTORY-OF-MATHEMATICS (2).pptx
HISTORY-OF-MATHEMATICS (2).pptxHISTORY-OF-MATHEMATICS (2).pptx
HISTORY-OF-MATHEMATICS (2).pptx
 
History of geometry
History of geometryHistory of geometry
History of geometry
 
şErife özder
şErife özderşErife özder
şErife özder
 
şErife özder
şErife özderşErife özder
şErife özder
 
şerife özder
şerife özderşerife özder
şerife özder
 
şErife özder
şErife özderşErife özder
şErife özder
 
şErife özder
şErife özderşErife özder
şErife özder
 
History of trigonometry2
History of trigonometry2History of trigonometry2
History of trigonometry2
 
JOURNEY OF MATHS OVER A PERIOD OF TIME..................................
JOURNEY OF MATHS OVER A PERIOD OF TIME..................................JOURNEY OF MATHS OVER A PERIOD OF TIME..................................
JOURNEY OF MATHS OVER A PERIOD OF TIME..................................
 
Pythagorean theorem
Pythagorean theoremPythagorean theorem
Pythagorean theorem
 
Contributions of indian mathematics
Contributions of indian mathematicsContributions of indian mathematics
Contributions of indian mathematics
 
history in math_1.pptx
history in math_1.pptxhistory in math_1.pptx
history in math_1.pptx
 
history of trigonometry
history of trigonometry history of trigonometry
history of trigonometry
 
G5 trigonometry
G5 trigonometryG5 trigonometry
G5 trigonometry
 
Pythagoras thms..
Pythagoras   thms..Pythagoras   thms..
Pythagoras thms..
 
Hari love sachin
Hari love sachinHari love sachin
Hari love sachin
 
Yash group Maths PPT for class IX
Yash group  Maths PPT for class IXYash group  Maths PPT for class IX
Yash group Maths PPT for class IX
 

Recently uploaded

Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.arsicmarija21
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...jaredbarbolino94
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitolTechU
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 

Recently uploaded (20)

Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.
 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptx
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 

Sistem bilangn babylonia

  • 1. Matematik Babylon Daripada Wikipedia, ensiklopedia bebas. Lompat ke: pandu arah, cari Jika anda ingin membantu, sumbangan anda dialu-alukan. Rencana ini sedang diusahakan oleh: BukanTeamBiasa Catatan: Penggunaan templat ini adalah tidak digalakkan. Batu bersurat tanah liat Babylon YBC 7289 dengan anotasi. Pepenjuru menggambarkan anggaran punca kuasa dua 2 dalam empat angka perenam-puluhan, yang sekitar enam angka perpuluhan. 1 + 24/60 + 51/602 + 10/603 = 1.41421296... Matematik Babylon merujuk kepada matematik orang Mesopotamia (Iraq silam), dari zaman awal Sumeria hingga ke kejatuhan Babylon pada 539 SM. Berbeza dengan kekurangan sumber untuk Matematik Mesir, ilmu matematik Babylon boleh dirujuk dari 400 batu bersurat tanah liat yang ditemui sejak 1850-an. Ditulis dalam tulisan pepaku, batu bersurat tersebut ditulis sementara tanah liat masih lembab, dan dibakar keras dalam sebuah ketuhar atau oleh kepanasan matahari. Kebanyakan batu bersurat tersebut bertarikh dari 1800 hingga ke 1600 SM, dan meliputi topik yang termasuk pecahan, algebra, kuadratik dan kuasa tiga, teorem Pythagoras, dan pengiraan tigaan Pythagoras dan mungkin juga fungsi trigonometri (sila lihat Plimpton 322). Batu bersurat Babylon YBC 7289 memberikan suatu penganggaran tepat kepada hampir enam tempat perpuluhan. Isi kandungan [sorokkan] 1 Bilangan Babylon 2 Matematik Sumer (3000-2300 SM) 3 Matematik Babylon Lama (2000-1600 SM) o 3.1 Aritmetik o 3.2 Algebra
  • 2. o 3.3 Geometri o 3.4 Trigonometri o 3.5 Plimpton 322 4 Matematik Babylon di Alexandria 5 Matematik Islam di Mesopotamia 6 Lihat juga 7 Nota 8 Rujukan 9 Pautan luar [sunting] Bilangan Babylon Rencana utama: Bilangan Babylon Sistem matematik Babylon adalah sexagesimal (asas-60) sistem bilangan. Dari ini kita melihat kegunaan hari moden 60 saat dalam satu minit, 60 minit dalam satu jam, dan 360 (60×6) darjah dalam sebuah bulatan. Orang Babylon dapat membuat kemajuan yang hebat dalam matematik berdasarkan dua alasan. Pertama, nombor 60 adalah suatua Bilangan Highly composite, mempunyai pembahagian 2, 3, 4, 5, 6, 10, 12, 15, 20, dan 30, pengiraan mudah dengan pecahan. Tambahan lagi, tidak seperti orang Mesir dan Rom, orang Babylon dan India mempunyai suatu sistem letak-nilai yang bear, di mana digit ditulis di column kiri mewakili nilai-nilai yang lebih besar (seperti dalam sistem asas sepuluh kita: 734 = 7×100 + 3×10 + 4×1). [sunting] Matematik Sumer (3000-2300 SM) Bukti terawal matematik tulisan melatar belakang ke Sumer yang silam, yang membinakan peradaban di Mesopotamia. mereka membangunkan sistem kompleks metrologi dari 3000 SM. Dari 2600 SM selanjutnya, orang Sumer menulis jadual perdaraban pada batu bersurat tanah liat dan menguruskan dengan latihan geometri dan masalah pembahagian. Kesan-kesan terawal bilangan Babylon juga melatar belakang ke jangka ini.[1] [sunting] Matematik Babylon Lama (2000-1600 SM) Zaman Babylon Lama adalah tempoh yang mana kebanyakan batu bersurat tanah liat mengenai asalnya matematik Babylon, dan oleh kerana itulah matematik Mesopotamia umumnya digelar matematik Babylon. Sesetengah batu bersurat tanah liat mengandungi senarai dan jadual, yang lain mengandungi dan jawapan yang dikerjakan. [sunting] Aritmetik Orang Babylon menggunakan kegunaan lebsar pada jadual pra-kiraan untuk membantu dengan aritmetik. Contohnya, dua batu bersurat didapati di Senkerah di Euphrates pada 1854, bermula dari 2000 SM, memberikan senarai-senarai persegi bilangan ke atas 59 dan cubes bilangan ke atas 32. Orang Babylon menggunakan senarai-senarai persegi bersamaan dengan persamaan
  • 3. untuk memudahkan perdaraban. Orang Babylon tidak mempunyai suatu algoritma untuk bahagi panjang. Daripada itu mereka berasaskan kaedah mereka ternyatanya bahawa bersama dengan sebuah jadual reciprocals. Bilangan yang hanyalah faktor perdana adalah 2, 3 atau 5 (digelar sebagai 5-smooth atau bilangan sering) mempunyai finite reciprocals dalam notasi sexagesimal, dan jadual-jadual dengan senarai-senarai extensive pada reciprocals ini telah ditemukan. Resiprokal seperti 1/7, 1/11, 1/13, dll. tidak mempunyai pewakilan finite pada notasi sexagesimal. Untuk mengira 1/13 atau untuk membahagikan sebuah nombor dengan 13 orang Babylon akan menggunakan suatu anggaran seperti [sunting] Algebra Dan juga pengiraan aritmetik, ahli matematik Babylon juga mengembang kaedah algebra pada penyelesaian persamaa. Sekali lagi, ini berasaskan jadual pra-kiraan. Untuk menyelesai suatu persamaan kuadratik orang Babylon essentially menggunakan rumusan kuadratik piawai. Mereka menganggapkan persamaan kuadratik pada bentuk di mana sini b dan c tidak seharusnya integer, tetapi c adalah sentiasa positif. Mereka mengetahui bahawa suatu jawapan ke bentuk persamaan ini adalah dan mereka akan menggunakan meja segi empat mereka dengan cara terbalik untuk mencari akar persegi. Mereka sentiasa menggunakan akar positif kerana ini masuk akal ketika menyelesaikan masalah "benar". Masalah-masalah jenis ini termasuk mencari dimensi sebuah segi empat tepat diberikan ruang ini dan jumlah yang mana panjangnya melebihi lebarnya.
  • 4. Jadual nilai n3+n2 telah digunakan untuk menyelesai sesetengah persamaan kubik. Contohnya, anggapkan persamaan '''Pendaraban persamaan oleh''' a2 dan dibahagikan dengan b3 memberikan Menggantikan y = ax/b memberikan yang dapat sekarang diselesai dengan melihat n3+n2 table untuk mendapatkan nilai terdekat ke sudut tangan kanan. Orang Babylon accomplished ini tanpa notasi algebra, menunjukkan suatu pendalaman remarkable pada kefahaman. Meskipun, mereka tidak mempunyai suatu kaedah untuk menyelesaikan persamaan kubik. [sunting] Geometri The Babylonians may have known the general rules for measuring areas and volumes. They measured the circumference of a circle as three times the diameter and the area as one-twelfth the square of the circumference, which would be correct if π is estimated as 3. The volume of a cylinder was taken as the product of the base and the height, however, the volume of the frustum of a cone or a square pyramid was incorrectly taken as the product of the height and half the sum of the bases. The Pythagorean theorem was also known to the Babylonians. Also, there was a recent discovery in which a tablet used π as 3 and 1/8. The Babylonians are also known for the Babylonian mile, which was a measure of distance equal to about seven miles today. This measurement for distances eventually was converted to a time-mile used for measuring the travel of the Sun, therefore, representing time.[2] [sunting] Trigonometri The ancient Babylonians had known of theorems on the ratios of the sides of similar triangles for many centuries, but they lacked the concept of an angle measure and consequently, studied the sides of triangles were studied instead.[3] The Babylonian astronomers kept detailed records on the rising and setting of stars, the motion of the planets, and the solar and lunar eclipses, all of which required familiarity with angular distances measured on the celestial sphere.[4] There is also evidence that the Babylonians first used trigonometric functions, based on a table of numbers written on the Babylonian cuneiform tablet, Plimpton 322 (circa 1900 BC), which can be interpreted as a trigonometric table of secants.[5] [sunting] Plimpton 322
  • 5. Rencana utama: Plimpton 322 In each row of the Plimpton 322 tablet, the number in the second column can be interpreted as the shortest side s of a right triangle, and the number in the third column can be interpreted as the hypotenuse d of the triangle. The number in the first column is either the fraction or , where l denotes the longest side of the same right triangle. However, scholars differ on how these numbers were generated and why the Babylonians would have been interested in such tables. Neugebauer (1951) argued for a number-theoretic interpretation, pointing out that this table provides a list of (pairs of numbers from) Pythagorean triples. For instance, line 11 of the table can be interpreted as describing a triangle with short side 3/4 and hypotenuse 5/4, forming the side:hypotenuse ratio of the familiar (3,4,5) right triangle. If p and q are two coprime numbers, then form a Pythagorean triple, and all Pythagorean triples can be formed in this way. For instance, line 11 can be generated by this formula with p = 1 and q = 1/2. As Neugebauer argues, each line of the tablet can be generated by a pair (p,q) that are both regular numbers, integer divisors of a power of 60. This property of p and q being regular leads to a denominator that is regular, and therefore to a finite sexagesimal representation for the fraction in the first column. Neugebauer's explanation is the one followed e.g. by Conway and Guy (1996). However, as Robson points out, Neugebauer's theory fails to explain how the values of p and q were chosen: there are 92 pairs of coprime regular numbers up to 60, and only 15 entries in the table. In addition, it does not explain why the table entries are in the order they are listed in, nor what the numbers in the first column were used for. Joyce (1995) provides a trigonometric explanation: the values of the first column can be interpreted as the squared cosine or tangent (depending on the missing digit) of the angle opposite the short side of the right triangle described by each row, and the rows are sorted by these angles in roughly one-degree increments. However, Robson argues on linguistic grounds that this theory is "conceptually anachronistic": it depends on too many other ideas not present in the record of Babylonian mathematics from that time. Robson (2001,2002), based on prior work by Bruins (1949,1955) and others, instead takes an approach that in modern terms would be characterized as algebraic, though she describes it in concrete geometric terms and argues that the Babylonians would also have interpreted this approach geometrically. Robson bases her interpretation on another tablet, YBC 6967, from roughly the same time and place.[6] This tablet describes a method for solving what we would nowadays describe as quadratic equations of the form , by steps (described in geometric terms) in which the solver calculates a sequence of intermediate values v1 = c/2, v2 = v12, v3 = 1 + v2, and v4 = v31/2, from which one can calculate x = v4 + v1 and 1/x = v4 - v1. Robson argues that the columns of Plimpton 322 can be interpreted as the following values, for regular number values of x and 1/x in numerical order: v3 in the first column, v1 = (x - 1/x)/2 in the second column, and v4 = (x + 1/x)/2 in the third column. In this interpretation, x and 1/x would have appeared on the tablet in the broken-off portion to the left of the first column. For instance, row 11 of Plimpton 322 can be generated in this way for x = 2. Thus, the tablet can be interpreted as giving a sequence of worked-out exercises of the type solved by the method from tablet YBC 6967. It could, Robson suggests, have been used by a teacher as a problem set to assign to students.
  • 6. Since the rediscovery of the Babylonian civilization, it has become apparent that Greek and Hellenistic mathematicians and astronomers, and in particular Hipparchus, borrowed a lot from the Chaldeans. Franz Xaver Kugler demonstrated in his book Die Babylonische Mondrechnung ("The Babylonian lunar computation", Freiburg im Breisgau, 1900) the following: Ptolemy had stated in his Almagest IV.2 that Hipparchus improved the values for the Moon's periods known to him from "even more ancient astronomers" by comparing eclipse observations made earlier by "the Chaldeans", and by himself. However Kugler found that the periods that Ptolemy attributes to Hipparchus had already been used in Babylonian ephemerides, specifically the collection of texts nowadays called "System B" (sometimes attributed to Kidinnu). Apparently Hipparchus only confirmed the validity of the periods he learned from the Chaldeans by his newer observations. It is clear that Hipparchus (and Ptolemy after him) had an essentially complete list of eclipse observations covering many centuries. Most likely these had been compiled from the "diary" tablets: these are clay tablets recording all relevant observations that the Chaldeans routinely made. Preserved examples date from 652 BC to AD 130, but probably the records went back as far as the reign of the Babylonian king Nabonassar: Ptolemy starts his chronology with the first day in the Egyptian calendar of the first year of Nabonassar, i.e., 26 February 747 BC. This raw material by itself must have been hard to use, and no doubt the Chaldeans themselves compiled extracts of e.g., all observed eclipses (some tablets with a list of all eclipses in a period of time covering a saros have been found). This allowed them to recognise periodic recurrences of events. Among others they used in System B (cf. Almagest IV.2): 223 (synodic) months = 239 returns in anomaly (anomalistic month) = 242 returns in latitude (draconic month). This is now known as the saros period which is very useful for predicting eclipses. 251 (synodic) months = 269 returns in anomaly 5458 (synodic) months = 5923 returns in latitude 1 synodic month = 29;31:50:08:20 days (sexagesimal; 29.53059413… days in decimals = 29 days 12 hours 44 min 3⅓ s) The Babylonians expressed all periods in synodic months, probably because they used a lunisolar calendar. Various relations with yearly phenomena led to different values for the length of the year. Similarly various relations between the periods of the planets were known. The relations that Ptolemy attributes to Hipparchus in Almagest IX.3 had all already been used in predictions found on Babylonian clay tablets. All this knowledge was transferred to the Greeks probably shortly after the conquest by Alexander the Great (331 BC). According to the late classical philosopher Simplicius (early 6th century AD), Alexander ordered the translation of the historical astronomical records under supervision of his chronicler Callisthenes of Olynthus, who sent it to his uncle Aristotle. It is worth mentioning here that although Simplicius is a very late source, his
  • 7. account may be reliable. He spent some time in exile at the Sassanid (Persian) court, and may have accessed sources otherwise lost in the West. It is striking that he mentions the title tèresis (Greek: guard) which is an odd name for a historical work, but is in fact an adequate translation of the Babylonian title massartu meaning "guarding" but also "observing". Anyway, Aristotle's pupil Callippus of Cyzicus introduced his 76-year cycle, which improved upon the 19-year Metonic cycle, about that time. He had the first year of his first cycle start at the summer solstice of 28 June 330 BC (Julian proleptic date), but later he seems to have counted lunar months from the first month after Alexander's decisive battle at Gaugamela in fall 331 BC. So Callippus may have obtained his data from Babylonian sources and his calendar may have been anticipated by Kidinnu. Also it is known that the Babylonian priest known as Berossus wrote around 281 BC a book in Greek on the (rather mythological) history of Babylonia, the Babyloniaca, for the new ruler Antiochus I; it is said that later he founded a school of astrology on the Greek island of Kos. Another candidate for teaching the Greeks about Babylonian astronomy/astrology was Sudines who was at the court of Attalus I Soter late in the 3rd century BC. In any case, the translation of the astronomical records required profound knowledge of the cuneiform script, the language, and the procedures, so it seems likely that it was done by some unidentified Chaldeans. Now, the Babylonians dated their observations in their lunisolar calendar, in which months and years have varying lengths (29 or 30 days; 12 or 13 months respectively). At the time they did not use a regular calendar (such as based on the Metonic cycle like they did later), but started a new month based on observations of the New Moon. This made it very tedious to compute the time interval between events. What Hipparchus may have done is transform these records to the Egyptian calendar, which uses a fixed year of always 365 days (consisting of 12 months of 30 days and 5 extra days): this makes computing time intervals much easier. Ptolemy dated all observations in this calendar. He also writes that "All that he (=Hipparchus) did was to make a compilation of the planetary observations arranged in a more useful way" (Almagest IX.2). Pliny states (Naturalis Historia II.IX(53)) on eclipse predictions: "After their time (=Thales) the courses of both stars (=Sun and Moon) for 600 years were prophesied by Hipparchus, …". This seems to imply that Hipparchus predicted eclipses for a period of 600 years, but considering the enormous amount of computation required, this is very unlikely. Rather, Hipparchus would have made a list of all eclipses from Nabonasser's time to his own. Other traces of Babylonian practice in Hipparchus' work are: first Greek known to divide the circle in 360 degrees of 60 arc minutes. first consistent use of the sexagesimal number system. the use of the unit pechus ("cubit") of about 2° or 2½°. use of a short period of 248 days = 9 anomalistic months. [sunting] Matematik Babylon di Alexandria Maklumat terperinci: Matematik Greek dan Astronomi Babylon Sewaktu zaman Hellen, astronomi Babylon dan matematik exerted suatu pengaruh hebat pada ahli matematik Alexandria, di Mesir Ptolemy dan Mesir Rom. Ini adalah terutamanya apparent dalam astronomi dan karya matematik Hipparchus, Ptolemy, Hero dari Alexandria,
  • 8. dan Diophantus. Dalam kes Diophantus, pengaruh Babylon adalah sangat kuat dalam Arithmeticanya yang sesetengah sarjana telah argued bahawa beliau sendiri mungkin adalah seorang Babylon Hellen.[7] Pengaruh Babylon kuat pada karya Hero telah membawakan ke spekulasi bahwa beliau adalah seorang Phoenicia.[8] [sunting] Matematik Islam di Mesopotamia Rencana utama: Matematik Islam dan Senarai tokoh Iraq Selepas penaklukan Islam Mesopotamia Farsi, daerah Mesopotamia yang digelar "Iraq" dalam bahasa Arab. Di bawah khilafah Abbasid, ibu negara Empayar Arab adalah Baghdad, yang dibina di Iraq sewaktu abad ke-8. Dari abad ke-8 hingga ke-13, sering digelar "Zaman Keemasan Islam", Iraq/Mesopotamia sekali lagi menjadi pusat aktiviti matematik. Banyak para ahli matematik pada waktu itu adalah aktif di Iraq, termasuk Muḥ ammad ibn Mūsā al- Khwārizmī (Algoritmi), Al-Abbās ibn Said al-Jawharī, 'Abd al-Hamīd ibn Turk, Al-Kindi (Alkindus), Hunayn ibn Ishaq (Johannitius), adik-beradik lelaki Banū Mūsā, keluarga Thābit ibn Qurra, Muhammad ibn Jābir al-Harrānī al-Battānī (Albatenius), the Brethren of Purity, Al-Saghani, Abū Sahl al-Qūhī, Ibn Sahl, Abu Nasr Mansur ibn Iraq, Ibn al-Haytham (Alhazen), Ibn Tahir al-Baghdadi, dan Ibn Yahyā al-Maghribī al-Samaw'al. Altiviti matematik berakhir di Iraq/Mesopotamia selepas sack of Baghdad pada 1258. [sunting] Lihat juga Templat:Mathematics portal Templat:ANE portal Babylonia Sejarah matematik Astronomi Babylon [sunting] Nota 1. ↑ Duncan J. Melville (2003). Third Millennium Chronology, Third Millennium Mathematics. St. Lawrence University. 2. ↑ Eves, Chapter 2. 3. ↑ Boyer (1991). bab: “Greek Trigonometry and Mensuration”, ', 158-159. 4. ↑ Maor, Eli (1998), Trigonometric Delights, Princeton University Press, ISBN 0691095418 5. ↑ Joseph, pp. 383-4 6. ↑ Neugebauer, O.; Sachs, A. J. (1945). Mathematical Cuneiform Texts, American Oriental Series, vol. 29, text Ua, New Haven: American Oriental Society and the American Schools of Oriental Research. 7. ↑ D. M. Burton (1991, 1995), History of Mathematics, Dubuque, IA (Wm.C. Brown Publishers): "Diophantos was most likely a Hellenized Babylonian." 8. ↑ Boyer (1968 [1991]). bab: “Greek Trigonometry and Mensuration”, A History of Mathematics, 171-2.:
  • 9. Sekurang-kurangnya dari hari Iskandar Agung berhampiran dengan dunia klasik, tidak diserbasalahkan bahwa adanya antarahubungan di antara Greece dan Mesopotamia, dan ia kelihatan bahawa jelas bahawa geometri aritmetik dan algebra berlanjut untuk memberikan considerable pengaruh dalam dunia Hellen. Aspek ini pada matematik, contohnya, kelihatan sangat kuat pada Heron dari Alexandria (fl. ca. A.D. 100) bahawa Heron sekali dahulu dianggap seorang Mesir atau Phoenicia daripada orang Greece. Sekarang ia difikir bahawa Heron menggambarkan sejenis matematik telah lama berada di Greece tetapi tidak dapat mendapatkan seorang pewakilan di kalangan tokoh-tokoh hebat - kecuali mungkin digambarkan oleh Ptolemy di Tetrabiblos. [sunting] Rujukan Berriman, A. E., The Babylonian quadratic equation (1956). Boyer, C. B., A History of Mathematics, 2nd ed. rev. by Uta C. Merzbach. New York: Wiley, (1989) ISBN 0-471-09763-2 (1991 pbk ed. ISBN 0-471-54397-7). Joseph, G. G., The Crest of the Peacock, Princeton University Press (October 15, 2000), ISBN 0-691-00659-8. Joyce, David E. (1995). Plimpton 322. http://aleph0.clarku.edu/~djoyce/mathhist/plimpnote.html. Neugebauer, O., "Exact Sciences of Antiquity", Dover (1969). O'Connor, J. J. and Robertson, E. F., "An overview of Babylonian mathematics", MacTutor History of Mathematics, (December 2000). Robson, Eleanor (2001). "Neither Sherlock Holmes nor Babylon: a reassessment of Plimpton 322". Historia Math. 28 (3): 167–206. doi:10.1006/hmat.2001.2317. Templat:MathSciNet. Eleanor Robson, Words and pictures: New light on Plimpton 322, The American Mathematical Monthly. Washington: Feb 2002. Vol. 109, Iss. 2; pg. 105 Toomer, G. J., Hipparchus and Babylonian Astronomy, (1981). [sunting] Pautan luar Babylonian Mathematics, with particular emphasis on Pythagorean triples. Photographs of YBC 7289, taken by Bill Casselman at the Yale Babylonian Collection Diambil daripada "http://ms.wikipedia.org/wiki/Matematik_Babylon" Kategori: Matematik Babylon | Sejarah matematik Alatan peribadi Log masuk / buka akaun Ruang nama Rencana Perbincangan Kelainan
  • 10. Rupa Baca Sunting Lihat sejarah Tindakan Sunting puncak Cari Pandu arah Laman Utama Tinjau Hal semasa Rencana rawak Perhubungan Tentang Wikipedia Portal masyarakat Perubahan terkini Hubungi kami Menderma Bantuan Kedai Kopi Cetak/eksport Cipta buku Muat turun sebagai PDF Versi boleh cetak Alatan Pautan ke laman ini Perubahan berkaitan Laman khas Pautan kekal Petik laman ini Bahasa lain Deutsch English Italiano
  • 11. Русский Svenska Laman ini diubah buat kali terakhir pada 13:36, 10 November 2008. Teks disediakan dengan Lesen Creative Commons Pengiktirafan/Perkongsian Serupa; terma-terma tambahan mungkin terpakai. Lihat Terma-Terma Penggunaan untuk butiran lanjut. Dasar privasi Perihal Wikipedia Penafian Paparan Mudah Alih