SlideShare a Scribd company logo
Page 1 of 8
Qlik’s CTO on Why the Cloud Data
Diaspora Forces Businesses
To Rethink their Analytics Strategies
Transcript of a discussion on why new ways of thinking are demanded if comprehensive analysis of
relevant data can become practical across a multi- and hybrid-cloud deployments world.
Listen to the podcast. Find it on iTunes. Download the transcript. Sponsor: Qlik.
Dana Gardner: Hi, this is Dana Gardner, Principal Analyst at Interarbor Solutions, and you’re
listening to BriefingsDirect. Our next business intelligence (BI) trends discussion explores the
impact of dispersed data in a multicloud world.
Gaining control over far-flung and disparate data has been a decades’ old struggle, but now as
hybrid and public clouds join the mix of legacy and distributed digital architectures, new ways of
thinking are demanded if comprehensive analysis of relevant data is going to become practical.
Stay with us now as we examine the latest strategies for making the best use of data
integration, data catalogs and indices, as well highly portable data analytics platforms.
To learn more about closing the analysis gap between data and multiple -- and most probably
changeable -- cloud models, we are now joined by Mike Potter, Chief Technology Officer (CTO)
at Qlik. Welcome, Mike.
Mike Potter: Hi, I’m glad to be here.
Gardner: Mike, businesses are adopting cloud computing for
very good reasons. The growth over the past decade has been
strong and accelerating. What have been some of the -- if not
unintentional -- complicating factors for gaining a comprehensive
data analysis strategy amid this cloud computing complexity?
Potter: The biggest thing is recognizing that it’s all about where
data lives and where it's being created. Obviously, historically
most data have been generated on-premises. So, there is a
strong pull there, but you are seeing more and more cases now
where data is born in the cloud and spends its whole lifetime in
the cloud.
And so now the use cases are different because you have a combination of those two worlds,
on-premises and cloud. To add further complexity, data is now being born in different cloud
providers. Not only are you dealing with having some data and legacy systems on-premises, but
you may have to reconcile that you have data in Amazon, Google, or Microsoft.
Our whole strategy around multicloud and hybrid cloud architectures is being able to deploy Qlik
where the data lives. It allows you to leave the data where it is, but gives you options so that if
Potter
Page 2 of 8
you need to move the data, we can support the use cases on-premises to cloud or across cloud
providers.
Gardner: And you haven’t just put on the patina of cloud-first or software as a service (Saas) -
first. You have rearchitected and repositioned a lot of what your products and technologies do.
Tell us about being “SaaS-first” as a strategy.
Scaling the clouds
Potter: We began our journey about 2.5 years ago, when we started converting our monolith
architecture into a microservices-based architecture. That journey struck to the core of the
whole product.
Qlik’s heritage was a Windows Server architecture. We had to rethink a lot of things. As part of
that we made a big bet 1.5 years ago on containerization, using Docker and Kubernetes. And
that’s really paid off for us. It has put us ahead of the technology curve in many respects. When
we did our initial release of our multicloud product in June 2018, I had conversations with
customers who didn’t know what Kubernetes was.
One enterprise customer had an infrastructure team who had set up an environment to
provision Kubernetes cluster environments, but we were only the second vendor that required
one, so we were ahead of the game quite a bit.
Gardner: How does using a managed container platform like Kubernetes help you in a
multicloud world?
Potter: The single biggest thing is it allows you to scale and manage workloads at a much finer
grain of detail through auto-scaling capabilities provided by orchestration environments such as
Kubernetes.
More importantly it allows you to manage your
costs. One of the biggest advantages of a
microservice-based architecture is that you can
scale up and scale down to a much finer grain.
For most on-premises, server-based, monolith
architectures, customers have to buy
infrastructure for peak levels of workload. We
can scale up and scale down those workloads -
- basically on the fly -- and give them a lot more
control over their infrastructure budget. It allows
them to meet the needs of their customers
when they need it.
Gardner: Another aspect of the cloud evolution over the past decade is that no one enterprise
is like any other. They have usually adopted cloud in different ways.
Has Qlik’s multicloud analytics approach come with the advantage of being able to deal with any
of those different topologies, enterprise by enterprise, to help them each uniquely attain more of
a total data strategy?
For most on-premises, server-
based, monolith architectures,
customers have to buy infrastructure
for peak levels of workload. We can
scale up and scale down those
workloads – basically on the fly –
and give them a lot more control
over their infrastructure budget.
Page 3 of 8
Potter: Yes, I think so. The thing we want to focus on is, rather than dictate the cloud strategy –
often the choice of our competitors -- we want to support your cloud strategy as you need it. We
recognize that a customer may not want to be on just one cloud provider. They don’t want to
lock themselves in. And so we need to accommodate that.
There may be very valid reasons why they are regionalized, from a data sovereignty
perspective, and we want to accommodate that.
There will always be on-premises requirements, and we want to accommodate that.
The reality is that, for quite a while, you are not going to see much convergence around cloud
providers as you are going to see around microservices architectures, containers, and the way
they are managed and orchestrated.
Gardner: And there is another variable in the mix over the next years -- and that’s the edge. We
have an uncharted, immature environment at the edge. But already we are hearing that a
private cloud at the edge is entirely feasible. Perhaps containers will be working there.
At Qlik, how are you anticipating edge computing, and how will that jibe with the multicloud
approach?
Running at the edge
Potter: One of the key features of our platform architecture is not only can we run on-premises
or in any cloud at scale, we can run on an edge device. We can take our core analytics engine
and deploy it on a device or machine running at the edge. This enables a new opportunity,
which is taking analytics itself to the edge.
A lot of Internet of Things (IoT) implementations are geared toward collecting data at the sensor,
transferring it to a central location to be processed, and then analyzing it all there. What we
want to do is push the analytics problem out to the edge so that the analytic data feeds can be
processed at the edge. Then only the analytics events are transmitted back for central
processing, which obviously has a huge impact from a data-scale perspective.
But more importantly, it creates a new opportunity to have the analytic context be very
immediate in the field, where the point of occurrence is. So if you are sitting there on a sensor
and you are doing analytics on the sensor, not only can you benefit at the sensor, you can send
the analytics data back to the central point, where it can be analyzed as well.
Gardner: It’s auspicious, the way that Qlik’s catalog, indexing, and abstracting out the
information about where data is approach can now be used really well in an edge environment.
Potter: Most definitely. Our entire data strategy is intricately linked with our architectural
strategy in that respect, yes.
Gardner: Analytics and being data-driven across an organization is the way of the future. It
makes sense to not cede that core competency of being good at analytics to a cloud provider or
to a vendor. The people, process, and tribal knowledge about analytics seems essential.
Page 4 of 8
Do you agree with that, and how does Qlik’s strategy align with keeping the core competency of
analytics of, by, and for each and every enterprise?
Potter: Analytics is a specialization organizationally within all of our customers, and that’s not
going to go away. What we want to do is parlay that into a broader discussion. So our focus is
enabling three key strategies now.
It's about enabling the analytics strategy, as we always have, but broadening the conversation
to enabling the data strategy. More importantly, we want to close the organizational,
technological, and priority gaps to foster creating an integrated data and analytics strategy.
By doing that, we can create what I describe as a raw-
to-ready analytics platform based on trust, because we
own the process of the data from source to analysis,
and that not only makes the analytics better, it
promotes the third part of our strategy, which is around
data literacy. That’s about creating a trusted
environment in which people can interact with their
data and do the analysis that they want to do without
having to be data scientists or data experts.
So owning that whole end-to-end architecture is what we are striving to reach.
Gardner: As we have seen in other technology maturation trend curves, applying automation to
the problem frees up the larger democratization process. More people can consume these
services. How does automation work in the next few years when it comes to analytics? Are we
going to start to see more artificial intelligence (AI) applied to the problem?
Automated, intelligent analytics
Potter: Automating those environments is an inevitability, not only from the standpoint of how
the data is collected, but in how the data is pushed through a data operations process. More
importantly, automating enables on the other end, too, by embedding artificial and machine
learning (ML) techniques all the way along that value chain -- from the point of source to the
point of consumption.
Gardner: How does AI play a role in the automation and the capability to leverage data across
the entire organization?
Potter: How we perform analytics within an analytic system is going to evolve. It’s going to be
more conversational in nature, and less about just consuming a dashboard and looking for an
insight into a visualization.
The analytics system itself will be an active member of that process, where the conversation is
not only with the analytics system but the analytics system itself can initiate the conversation by
identifying insights based on context and on other feeds. Those can come from the collective
intelligence of the people you work with, or even from people not involved in the process.
We own the process of the
data from source to analysis,
and that not only makes the
analytics better, it promotes
the third part of our strategy,
which is around data literacy.
Page 5 of 8
Gardner: I have been at some events where robotic process automation (RPA) has been a key
topic. It seems to me that there is this welling opportunity to use AI with RPA, but it’s a separate
track from what's going on with BI, analytics, and the traditional data warehouse approach.
Do you see an opportunity for what’s going on with AI and use of RPA? Can what Qlik is doing
with the analytics and data assimilation problem come together with RPA? Would a process be
able to leverage analytic information, and vice versa?
Potter: It gets back to the idea of pushing analytics to the edge, because an edge isn’t just a
device-level integration. It can be the edge of a process. It can be the edge of not only a human
process, but an automated business process. The notion of being able to embed analytics deep
into those processes is already being done. Process analytics is an important field.
But the newer idea is that analytics is in service of the process, as opposed to the other way
around. The world is getting away from analytics being a separate activity, done by a separate
group, and as a separate act. It is as commonplace as getting a text message, right?
Gardner: For the organization to get to that nirvana of total analytics as a common strategy, this
needs to be part of what the IT organization is doing, with full stack architecture and evolution.
So AIOps and DataOps also getting closer over time.
How does DataOps in your thinking relate to what the larger IT enterprise architects are doing,
and why should they be thinking about data more?
Optimizing data pipelines
Potter: That’s a really good question. From my perspective, when I get a chance to talk to data
teams, I ask a simple question: “You have this data lake. Is it meeting the analytic requirements
of your organization?”
And often I don’t get very good answers. And a big reason why is because what motivates and
prioritizes the data team is the storage and management of data, not necessarily the analytics.
And often those priorities conflict with the priorities of the analytics team.
What we are trying to do with the Qlik integrated data and analytic strategy is to create data
pipelines optimized for analytics, and data operations optimized for analytics. And our
investments and our acquisitions in Attunity and Podium are about taking that process and
focusing on the raw-to-ready part of the data operations.
Gardner: Mike, we have been talking at a fairly abstract level, but can you share any use cases
where leading-edge organizations recognize the intrinsic relationship between DataOps and
enterprise architecture? Can you describe some examples or use cases where they get it, and
what it gets for them?
Potter: One of our very large enterprise customers deals in medical devices and related
products and services. They realized an essential need to have an integrated strategy. And one
of the challenges they have, like most organizations, is how to not only overcome the
technology part but also the organizational, cultural, and change-management aspects as well.
Page 6 of 8
They recognized the business has a need for data, and IT has data. If you intersect that, how
much of that data is actually a good fit? How much data does IT have that isn't needed? How
much of the remaining need is unfulfilled by IT? That's the problem we need to close in on.
Gardner: Businesses need to be thinking at the C-suite level about outcomes. Are there some
examples where you can tie together such strategic business outcomes back to the total data
approach, to using enterprise architecture and DataOps?
Data decision-making, democratized
Potter: The biggest ones center on end-to-end governance of data for analytics, the ability to
understand where the data comes from, and building trust in the data inside the organization so
that decisions can be made, and those decisions have traceability back to results.
The other aspect of building such an integrated system is a total cost of ownership (TCO)
opportunity, because you are no longer expending energy managing data that isn't relevant to
adding value to the organization. You can make a lot more intelligent choices about how you
use data and how you actually measure the impact that the data can have.
Gardner: On the topic of data literacy, how do you see the behavior of an organization -- the
culture of an organization -- shifting? How do we get the chicken-and-egg relationship going
between the data services that provide analytics and the consumers to start a virtuous positive
adoption pattern?
Potter: One of the biggest puzzles a lot of IT organizations face is around adoption and
utilization. They build a data lake and they don't know why people aren’t using it.
For me, there are a couple of elements to the problem. One is what I call data elitism. When you
think about data literacy and you compare it to literacy in the pre-industrial age, the people who
had the books were the people who were rich and had power. So church and state, that kind of
thing. It wasn't until technology created, through the printing press, a democratization of literacy
that you started to see interesting behavior. Those with the books, those with the power, tried to
subvert reading in the general population. They made it illegal. Some argue that the French
Revolution was, in part, caused by rising rates of literacy.
If you flash-forward this analogy to today in data literacy, you have the same notion of elitism.
Data is only allowed to be accessed by the senior levels of the organization. It can only be
controlled by IT.
Ironically, the most data-enabled organizations are typically oriented to the Millennials or
younger users. But they are in the wrong part of the organizational chart to actually take
advantage of that. They are not allowed to see the data they could use to do their jobs.
The opportunity from a
democratization-of-data
perspective is understanding the
value of data for every individual
and allowing that data to be made
available in a trusted environment.
The opportunity from a democratization-of-data
perspective is understanding the value of data
for every individual and allowing that data to be
made available in a trusted environment.
Page 7 of 8
That’s where this end-to-end process becomes so important.
Gardner: How do we make the economics of analytics an accelerant to that adoption and the
democratization of data? I’ll use another historical analogy, the Model T and assembly line.
They didn't sell Model Ts nearly to the degree they thought until they paid their own people
enough to afford one.
Is there a way of looking at that and saying, “Okay, we need to create an economic environment
where analytics is paid for-on-demand, it's fit-for-purpose, it's consumption-oriented.” Wouldn’t
that market effect help accelerate the adoption of analytics as a total enterprise cultural activity?
Think positive data culture
Potter: That’s a really interesting thought. The consumerization of analytics is a product of
accessibility and of cost. When you build a positive data culture in an organization, data needs
to be as readily accessible as email. From that perspective, turning it into a cost model might be
a way to accomplish it. It's about a combination of leadership, of just going there and making
occur at the grassroots level, where the value it presents is clear.
And, again, I reemphasize this idea of needing a positive data culture.
Gardner: Any added practical advice for organizations? We have been looking at what will be
happening and what to anticipate. But what should an enterprise do now to be in an
advantageous position to execute a “positive data culture”?
Potter: The simplest advice is to know that
technology is not the biggest hurdle; it's change
management, culture, and leadership. When you
think about the data strategy integrated with the
analytics strategy, that means looking at how you
are organized and prioritized around that
combined strategy.
Finally, when it comes to a data literacy strategy, define how you are going to enable your
organization to see data as a positive asset to doing their jobs. The leadership should
understand that data translates into value and results. It's a tool, not a weapon.
Gardner: I’m afraid we’ll have to leave it there. You have been listening to a sponsored
BriefingsDirect discussion on the impact of dispersed data in a multicloud world. And we have
learned about the latest strategies for making the best use of data across an entire organization
-- technically, in process terms, as well as culturally.
So a big thank you to our guest, Mike Potter, Chief Technology Officer at Qlik.
Potter: Thank you. It was great to be here.
Gardner: And thank you as well to our audience for joining this BriefingsDirect business
intelligence trends discussion. I’m Dana Gardner, Principal Analyst at Interarbor Solutions, your
host throughout this series of Qlik-sponsored BriefingsDirect interviews.
Technology is not the biggest
hurdle [in creating a positive data
culture]; it’s change management,
culture, and leadership.
Page 8 of 8
Thanks again for listening. Please pass this along to your IT community, and do come back next
time.
Listen to the podcast. Find it on iTunes. Download the transcript. Sponsor: Qlik.
Transcript of a discussion on why new ways of thinking are demanded if comprehensive analysis of
relevant data can become practical across a multi- and hybrid-cloud deployments world. Copyright
Interarbor Solutions, LLC, 2005-2019. All rights reserved.
You may also be interested in:
• How real-time data streaming and integration set the stage for AI-driven DataOps
• How a Business Matchmaker Application Helps SMBs Impacted by Natural Disasters Gain New
Credit
• The New Procurement Advantage-How Business Networks Generate Multi-Party Ecosystem
Solutions
• How Data-Driven Business Networks Help Close the Digital Transformation Gap
• Building the Intelligent Enterprise with Strategic Procurement and Analytics
• How SMBs impacted by natural disasters gain new credit thanks to a finance matchmaker app
• The new procurement advantage: How business networks generate multi-party ecosystem
solutions
• SAP Ariba's chief data scientist on how ML and dynamic processes build an intelligent enterprise
• SAP Ariba’s President Barry Padgett on building the intelligent enterprise

More Related Content

What's hot

How Global Data Availability Accelerates Collaboration And Delivers Business ...
How Global Data Availability Accelerates Collaboration And Delivers Business ...How Global Data Availability Accelerates Collaboration And Delivers Business ...
How Global Data Availability Accelerates Collaboration And Delivers Business ...
Dana Gardner
 
Choice, Consistency, Confidence Keys to Improving Services' Performance throu...
Choice, Consistency, Confidence Keys to Improving Services' Performance throu...Choice, Consistency, Confidence Keys to Improving Services' Performance throu...
Choice, Consistency, Confidence Keys to Improving Services' Performance throu...
Dana Gardner
 
Welcome to Your Compact, Data-Driven, Generator-Free Data Center Future
Welcome to Your Compact, Data-Driven, Generator-Free Data Center FutureWelcome to Your Compact, Data-Driven, Generator-Free Data Center Future
Welcome to Your Compact, Data-Driven, Generator-Free Data Center Future
Abaram Network Solutions
 
Shifting Risks and IT Complexities Create Demands for New Enterprise Security...
Shifting Risks and IT Complexities Create Demands for New Enterprise Security...Shifting Risks and IT Complexities Create Demands for New Enterprise Security...
Shifting Risks and IT Complexities Create Demands for New Enterprise Security...
Booz Allen Hamilton
 
Data Lake-based Approaches to Regulatory-Driven Technology Challenges
Data Lake-based Approaches to Regulatory-Driven Technology ChallengesData Lake-based Approaches to Regulatory-Driven Technology Challenges
Data Lake-based Approaches to Regulatory-Driven Technology Challenges
Booz Allen Hamilton
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
ijceronline
 
The ABCs of Big Data
The ABCs of Big DataThe ABCs of Big Data
The ABCs of Big Data
The Marketing Distillery
 
Big Data LDN 2017: Deep Learning Demystified
Big Data LDN 2017: Deep Learning DemystifiedBig Data LDN 2017: Deep Learning Demystified
Big Data LDN 2017: Deep Learning Demystified
Matt Stubbs
 
One Page Blockchain Theme Proposal For Distributed Ledger Presentation Report...
One Page Blockchain Theme Proposal For Distributed Ledger Presentation Report...One Page Blockchain Theme Proposal For Distributed Ledger Presentation Report...
One Page Blockchain Theme Proposal For Distributed Ledger Presentation Report...
SlideTeam
 
Big Data LDN 2017: The New Dominant Companies Are Running on Data
Big Data LDN 2017: The New Dominant Companies Are Running on DataBig Data LDN 2017: The New Dominant Companies Are Running on Data
Big Data LDN 2017: The New Dominant Companies Are Running on Data
Matt Stubbs
 
Microsoft cloud migration and modernization playbook 031819 (1) (2)
Microsoft cloud migration and modernization playbook 031819 (1) (2)Microsoft cloud migration and modernization playbook 031819 (1) (2)
Microsoft cloud migration and modernization playbook 031819 (1) (2)
didicadoida
 
Overview of big data in cloud computing
Overview of big data in cloud computingOverview of big data in cloud computing
Overview of big data in cloud computing
Viet-Trung TRAN
 
Hortonworks & IBM solutions
Hortonworks & IBM solutionsHortonworks & IBM solutions
Hortonworks & IBM solutions
Thiago Santiago
 
Big Data LDN 2017: Machine Learning: What Works And What They Won’t Tell You
Big Data LDN 2017: Machine Learning: What Works And What They Won’t Tell YouBig Data LDN 2017: Machine Learning: What Works And What They Won’t Tell You
Big Data LDN 2017: Machine Learning: What Works And What They Won’t Tell You
Matt Stubbs
 
Why the future of the cloud is open
Why the future of the cloud is openWhy the future of the cloud is open
Why the future of the cloud is open
Abhishek Sood
 
Future of big data nick kabra speaker compendium march 2013
Future of big data nick kabra speaker compendium march 2013Future of big data nick kabra speaker compendium march 2013
Future of big data nick kabra speaker compendium march 2013
nkabra
 
Big Data on Public Cloud
Big Data on Public CloudBig Data on Public Cloud
Big Data on Public Cloud
IMC Institute
 
Multi-Cloud-Datenintegration mit Datenvirtualisierung
Multi-Cloud-Datenintegration mit DatenvirtualisierungMulti-Cloud-Datenintegration mit Datenvirtualisierung
Multi-Cloud-Datenintegration mit Datenvirtualisierung
Denodo
 
Dex cloud business plan presentation
Dex cloud business plan presentationDex cloud business plan presentation
Dex cloud business plan presentation
Sanjaya Panigrahi
 
Whitebook on Big Data
Whitebook on Big DataWhitebook on Big Data
Whitebook on Big Data
Viren Aul
 

What's hot (20)

How Global Data Availability Accelerates Collaboration And Delivers Business ...
How Global Data Availability Accelerates Collaboration And Delivers Business ...How Global Data Availability Accelerates Collaboration And Delivers Business ...
How Global Data Availability Accelerates Collaboration And Delivers Business ...
 
Choice, Consistency, Confidence Keys to Improving Services' Performance throu...
Choice, Consistency, Confidence Keys to Improving Services' Performance throu...Choice, Consistency, Confidence Keys to Improving Services' Performance throu...
Choice, Consistency, Confidence Keys to Improving Services' Performance throu...
 
Welcome to Your Compact, Data-Driven, Generator-Free Data Center Future
Welcome to Your Compact, Data-Driven, Generator-Free Data Center FutureWelcome to Your Compact, Data-Driven, Generator-Free Data Center Future
Welcome to Your Compact, Data-Driven, Generator-Free Data Center Future
 
Shifting Risks and IT Complexities Create Demands for New Enterprise Security...
Shifting Risks and IT Complexities Create Demands for New Enterprise Security...Shifting Risks and IT Complexities Create Demands for New Enterprise Security...
Shifting Risks and IT Complexities Create Demands for New Enterprise Security...
 
Data Lake-based Approaches to Regulatory-Driven Technology Challenges
Data Lake-based Approaches to Regulatory-Driven Technology ChallengesData Lake-based Approaches to Regulatory-Driven Technology Challenges
Data Lake-based Approaches to Regulatory-Driven Technology Challenges
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
The ABCs of Big Data
The ABCs of Big DataThe ABCs of Big Data
The ABCs of Big Data
 
Big Data LDN 2017: Deep Learning Demystified
Big Data LDN 2017: Deep Learning DemystifiedBig Data LDN 2017: Deep Learning Demystified
Big Data LDN 2017: Deep Learning Demystified
 
One Page Blockchain Theme Proposal For Distributed Ledger Presentation Report...
One Page Blockchain Theme Proposal For Distributed Ledger Presentation Report...One Page Blockchain Theme Proposal For Distributed Ledger Presentation Report...
One Page Blockchain Theme Proposal For Distributed Ledger Presentation Report...
 
Big Data LDN 2017: The New Dominant Companies Are Running on Data
Big Data LDN 2017: The New Dominant Companies Are Running on DataBig Data LDN 2017: The New Dominant Companies Are Running on Data
Big Data LDN 2017: The New Dominant Companies Are Running on Data
 
Microsoft cloud migration and modernization playbook 031819 (1) (2)
Microsoft cloud migration and modernization playbook 031819 (1) (2)Microsoft cloud migration and modernization playbook 031819 (1) (2)
Microsoft cloud migration and modernization playbook 031819 (1) (2)
 
Overview of big data in cloud computing
Overview of big data in cloud computingOverview of big data in cloud computing
Overview of big data in cloud computing
 
Hortonworks & IBM solutions
Hortonworks & IBM solutionsHortonworks & IBM solutions
Hortonworks & IBM solutions
 
Big Data LDN 2017: Machine Learning: What Works And What They Won’t Tell You
Big Data LDN 2017: Machine Learning: What Works And What They Won’t Tell YouBig Data LDN 2017: Machine Learning: What Works And What They Won’t Tell You
Big Data LDN 2017: Machine Learning: What Works And What They Won’t Tell You
 
Why the future of the cloud is open
Why the future of the cloud is openWhy the future of the cloud is open
Why the future of the cloud is open
 
Future of big data nick kabra speaker compendium march 2013
Future of big data nick kabra speaker compendium march 2013Future of big data nick kabra speaker compendium march 2013
Future of big data nick kabra speaker compendium march 2013
 
Big Data on Public Cloud
Big Data on Public CloudBig Data on Public Cloud
Big Data on Public Cloud
 
Multi-Cloud-Datenintegration mit Datenvirtualisierung
Multi-Cloud-Datenintegration mit DatenvirtualisierungMulti-Cloud-Datenintegration mit Datenvirtualisierung
Multi-Cloud-Datenintegration mit Datenvirtualisierung
 
Dex cloud business plan presentation
Dex cloud business plan presentationDex cloud business plan presentation
Dex cloud business plan presentation
 
Whitebook on Big Data
Whitebook on Big DataWhitebook on Big Data
Whitebook on Big Data
 

Similar to Qlik’s CTO on Why the Cloud Data Diaspora Forces Businesses To Rethink their Analytics Strategies

How Containers are Becoming The New Basic Currency For Pay as You Go Hybrid IT
How Containers are Becoming The New Basic Currency For Pay as You Go Hybrid ITHow Containers are Becoming The New Basic Currency For Pay as You Go Hybrid IT
How Containers are Becoming The New Basic Currency For Pay as You Go Hybrid IT
Dana Gardner
 
New Strategies Emerge to Stem the Costly Downside of Today’s Unwieldly Cloud ...
New Strategies Emerge to Stem the Costly Downside of Today’s Unwieldly Cloud ...New Strategies Emerge to Stem the Costly Downside of Today’s Unwieldly Cloud ...
New Strategies Emerge to Stem the Costly Downside of Today’s Unwieldly Cloud ...
Dana Gardner
 
How Consistent Data Services Deliver Simplicity, Compatibility, And Lower Cost
How Consistent Data Services Deliver Simplicity, Compatibility, And Lower CostHow Consistent Data Services Deliver Simplicity, Compatibility, And Lower Cost
How Consistent Data Services Deliver Simplicity, Compatibility, And Lower Cost
Dana Gardner
 
A New Status Quo for Data Centers --Seamless Communication From Core to Cloud...
A New Status Quo for Data Centers --Seamless Communication From Core to Cloud...A New Status Quo for Data Centers --Seamless Communication From Core to Cloud...
A New Status Quo for Data Centers --Seamless Communication From Core to Cloud...
Dana Gardner
 
Data Sovereignty, Security, and Performance Panacea: Why Mastercard Sets the ...
Data Sovereignty, Security, and Performance Panacea: Why Mastercard Sets the ...Data Sovereignty, Security, and Performance Panacea: Why Mastercard Sets the ...
Data Sovereignty, Security, and Performance Panacea: Why Mastercard Sets the ...
Dana Gardner
 
How the Journey to Modern Data Management is Paved with an Inclusive Edge-to-...
How the Journey to Modern Data Management is Paved with an Inclusive Edge-to-...How the Journey to Modern Data Management is Paved with an Inclusive Edge-to-...
How the Journey to Modern Data Management is Paved with an Inclusive Edge-to-...
Dana Gardner
 
Legacy IT Evolves: How Cloud Choices Like Microsoft Azure Can Conquer the VMw...
Legacy IT Evolves: How Cloud Choices Like Microsoft Azure Can Conquer the VMw...Legacy IT Evolves: How Cloud Choices Like Microsoft Azure Can Conquer the VMw...
Legacy IT Evolves: How Cloud Choices Like Microsoft Azure Can Conquer the VMw...
Dana Gardner
 
VMblog - 2018 Containers Predictions from 16 Industry Experts
VMblog - 2018 Containers Predictions from 16 Industry ExpertsVMblog - 2018 Containers Predictions from 16 Industry Experts
VMblog - 2018 Containers Predictions from 16 Industry Experts
vmblog
 
Open Group Cloud Panel Forecasts Transition Phase for Enterprise IT Architecture
Open Group Cloud Panel Forecasts Transition Phase for Enterprise IT ArchitectureOpen Group Cloud Panel Forecasts Transition Phase for Enterprise IT Architecture
Open Group Cloud Panel Forecasts Transition Phase for Enterprise IT Architecture
Dana Gardner
 
AI in Business - Key drivers and future value
AI in Business - Key drivers and future valueAI in Business - Key drivers and future value
AI in Business - Key drivers and future value
APPANION
 
Telecom Clouds crossing borders, Chet Golding, Zefflin Systems
Telecom Clouds crossing borders, Chet Golding, Zefflin SystemsTelecom Clouds crossing borders, Chet Golding, Zefflin Systems
Telecom Clouds crossing borders, Chet Golding, Zefflin Systems
Sriram Subramanian
 
Citrix and HPE Team to Make Sense of the Core-Cloud-Edge Architecture
Citrix and HPE Team to Make Sense of the Core-Cloud-Edge ArchitectureCitrix and HPE Team to Make Sense of the Core-Cloud-Edge Architecture
Citrix and HPE Team to Make Sense of the Core-Cloud-Edge Architecture
Dana Gardner
 
Converged Infrastructure Approach Paves Way for Improved Data Center Producti...
Converged Infrastructure Approach Paves Way for Improved Data Center Producti...Converged Infrastructure Approach Paves Way for Improved Data Center Producti...
Converged Infrastructure Approach Paves Way for Improved Data Center Producti...
Dana Gardner
 
10 Tech Trends for 2014
10 Tech Trends for 201410 Tech Trends for 2014
10 Tech Trends for 2014
Peak 10
 
TierPoint White Paper_When_Virtualization_Meets_Infrastructure_2015
TierPoint White Paper_When_Virtualization_Meets_Infrastructure_2015TierPoint White Paper_When_Virtualization_Meets_Infrastructure_2015
TierPoint White Paper_When_Virtualization_Meets_Infrastructure_2015
sllongo3
 
Data Mesh 101
Data Mesh 101Data Mesh 101
Data Mesh 101
ChrisFord803185
 
What is next for cloud computing?
What is next for cloud computing?What is next for cloud computing?
What is next for cloud computing?
Ahmed Banafa
 
Internet of Things (IoT) Outlook Survey
Internet of Things (IoT) Outlook SurveyInternet of Things (IoT) Outlook Survey
Internet of Things (IoT) Outlook Survey
John Clark
 
Dark Side of Cloud Adoption: People and Organizations Unable to Adapt and Imp...
Dark Side of Cloud Adoption: People and Organizations Unable to Adapt and Imp...Dark Side of Cloud Adoption: People and Organizations Unable to Adapt and Imp...
Dark Side of Cloud Adoption: People and Organizations Unable to Adapt and Imp...
Dana Gardner
 
Cloud Computing Without The Hype An Executive Guide (1.00 Slideshare)
Cloud Computing Without The Hype   An Executive Guide (1.00 Slideshare)Cloud Computing Without The Hype   An Executive Guide (1.00 Slideshare)
Cloud Computing Without The Hype An Executive Guide (1.00 Slideshare)
Lustratus REPAMA
 

Similar to Qlik’s CTO on Why the Cloud Data Diaspora Forces Businesses To Rethink their Analytics Strategies (20)

How Containers are Becoming The New Basic Currency For Pay as You Go Hybrid IT
How Containers are Becoming The New Basic Currency For Pay as You Go Hybrid ITHow Containers are Becoming The New Basic Currency For Pay as You Go Hybrid IT
How Containers are Becoming The New Basic Currency For Pay as You Go Hybrid IT
 
New Strategies Emerge to Stem the Costly Downside of Today’s Unwieldly Cloud ...
New Strategies Emerge to Stem the Costly Downside of Today’s Unwieldly Cloud ...New Strategies Emerge to Stem the Costly Downside of Today’s Unwieldly Cloud ...
New Strategies Emerge to Stem the Costly Downside of Today’s Unwieldly Cloud ...
 
How Consistent Data Services Deliver Simplicity, Compatibility, And Lower Cost
How Consistent Data Services Deliver Simplicity, Compatibility, And Lower CostHow Consistent Data Services Deliver Simplicity, Compatibility, And Lower Cost
How Consistent Data Services Deliver Simplicity, Compatibility, And Lower Cost
 
A New Status Quo for Data Centers --Seamless Communication From Core to Cloud...
A New Status Quo for Data Centers --Seamless Communication From Core to Cloud...A New Status Quo for Data Centers --Seamless Communication From Core to Cloud...
A New Status Quo for Data Centers --Seamless Communication From Core to Cloud...
 
Data Sovereignty, Security, and Performance Panacea: Why Mastercard Sets the ...
Data Sovereignty, Security, and Performance Panacea: Why Mastercard Sets the ...Data Sovereignty, Security, and Performance Panacea: Why Mastercard Sets the ...
Data Sovereignty, Security, and Performance Panacea: Why Mastercard Sets the ...
 
How the Journey to Modern Data Management is Paved with an Inclusive Edge-to-...
How the Journey to Modern Data Management is Paved with an Inclusive Edge-to-...How the Journey to Modern Data Management is Paved with an Inclusive Edge-to-...
How the Journey to Modern Data Management is Paved with an Inclusive Edge-to-...
 
Legacy IT Evolves: How Cloud Choices Like Microsoft Azure Can Conquer the VMw...
Legacy IT Evolves: How Cloud Choices Like Microsoft Azure Can Conquer the VMw...Legacy IT Evolves: How Cloud Choices Like Microsoft Azure Can Conquer the VMw...
Legacy IT Evolves: How Cloud Choices Like Microsoft Azure Can Conquer the VMw...
 
VMblog - 2018 Containers Predictions from 16 Industry Experts
VMblog - 2018 Containers Predictions from 16 Industry ExpertsVMblog - 2018 Containers Predictions from 16 Industry Experts
VMblog - 2018 Containers Predictions from 16 Industry Experts
 
Open Group Cloud Panel Forecasts Transition Phase for Enterprise IT Architecture
Open Group Cloud Panel Forecasts Transition Phase for Enterprise IT ArchitectureOpen Group Cloud Panel Forecasts Transition Phase for Enterprise IT Architecture
Open Group Cloud Panel Forecasts Transition Phase for Enterprise IT Architecture
 
AI in Business - Key drivers and future value
AI in Business - Key drivers and future valueAI in Business - Key drivers and future value
AI in Business - Key drivers and future value
 
Telecom Clouds crossing borders, Chet Golding, Zefflin Systems
Telecom Clouds crossing borders, Chet Golding, Zefflin SystemsTelecom Clouds crossing borders, Chet Golding, Zefflin Systems
Telecom Clouds crossing borders, Chet Golding, Zefflin Systems
 
Citrix and HPE Team to Make Sense of the Core-Cloud-Edge Architecture
Citrix and HPE Team to Make Sense of the Core-Cloud-Edge ArchitectureCitrix and HPE Team to Make Sense of the Core-Cloud-Edge Architecture
Citrix and HPE Team to Make Sense of the Core-Cloud-Edge Architecture
 
Converged Infrastructure Approach Paves Way for Improved Data Center Producti...
Converged Infrastructure Approach Paves Way for Improved Data Center Producti...Converged Infrastructure Approach Paves Way for Improved Data Center Producti...
Converged Infrastructure Approach Paves Way for Improved Data Center Producti...
 
10 Tech Trends for 2014
10 Tech Trends for 201410 Tech Trends for 2014
10 Tech Trends for 2014
 
TierPoint White Paper_When_Virtualization_Meets_Infrastructure_2015
TierPoint White Paper_When_Virtualization_Meets_Infrastructure_2015TierPoint White Paper_When_Virtualization_Meets_Infrastructure_2015
TierPoint White Paper_When_Virtualization_Meets_Infrastructure_2015
 
Data Mesh 101
Data Mesh 101Data Mesh 101
Data Mesh 101
 
What is next for cloud computing?
What is next for cloud computing?What is next for cloud computing?
What is next for cloud computing?
 
Internet of Things (IoT) Outlook Survey
Internet of Things (IoT) Outlook SurveyInternet of Things (IoT) Outlook Survey
Internet of Things (IoT) Outlook Survey
 
Dark Side of Cloud Adoption: People and Organizations Unable to Adapt and Imp...
Dark Side of Cloud Adoption: People and Organizations Unable to Adapt and Imp...Dark Side of Cloud Adoption: People and Organizations Unable to Adapt and Imp...
Dark Side of Cloud Adoption: People and Organizations Unable to Adapt and Imp...
 
Cloud Computing Without The Hype An Executive Guide (1.00 Slideshare)
Cloud Computing Without The Hype   An Executive Guide (1.00 Slideshare)Cloud Computing Without The Hype   An Executive Guide (1.00 Slideshare)
Cloud Computing Without The Hype An Executive Guide (1.00 Slideshare)
 

Recently uploaded

Tirana Tech Meetup - Agentic RAG with Milvus, Llama3 and Ollama
Tirana Tech Meetup - Agentic RAG with Milvus, Llama3 and OllamaTirana Tech Meetup - Agentic RAG with Milvus, Llama3 and Ollama
Tirana Tech Meetup - Agentic RAG with Milvus, Llama3 and Ollama
Zilliz
 
Implementations of Fused Deposition Modeling in real world
Implementations of Fused Deposition Modeling  in real worldImplementations of Fused Deposition Modeling  in real world
Implementations of Fused Deposition Modeling in real world
Emerging Tech
 
How to build a generative AI solution A step-by-step guide (2).pdf
How to build a generative AI solution A step-by-step guide (2).pdfHow to build a generative AI solution A step-by-step guide (2).pdf
How to build a generative AI solution A step-by-step guide (2).pdf
ChristopherTHyatt
 
Advanced Techniques for Cyber Security Analysis and Anomaly Detection
Advanced Techniques for Cyber Security Analysis and Anomaly DetectionAdvanced Techniques for Cyber Security Analysis and Anomaly Detection
Advanced Techniques for Cyber Security Analysis and Anomaly Detection
Bert Blevins
 
Choose our Linux Web Hosting for a seamless and successful online presence
Choose our Linux Web Hosting for a seamless and successful online presenceChoose our Linux Web Hosting for a seamless and successful online presence
Choose our Linux Web Hosting for a seamless and successful online presence
rajancomputerfbd
 
find out more about the role of autonomous vehicles in facing global challenges
find out more about the role of autonomous vehicles in facing global challengesfind out more about the role of autonomous vehicles in facing global challenges
find out more about the role of autonomous vehicles in facing global challenges
huseindihon
 
Three New Criminal Laws in India 1 July 2024
Three New Criminal Laws in India 1 July 2024Three New Criminal Laws in India 1 July 2024
Three New Criminal Laws in India 1 July 2024
aakash malhotra
 
How to Build a Profitable IoT Product.pptx
How to Build a Profitable IoT Product.pptxHow to Build a Profitable IoT Product.pptx
How to Build a Profitable IoT Product.pptx
Adam Dunkels
 
Pigging Unit Lubricant Oil Blending Plant
Pigging Unit Lubricant Oil Blending PlantPigging Unit Lubricant Oil Blending Plant
Pigging Unit Lubricant Oil Blending Plant
LINUS PROJECTS (INDIA)
 
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
bhumivarma35300
 
Understanding Insider Security Threats: Types, Examples, Effects, and Mitigat...
Understanding Insider Security Threats: Types, Examples, Effects, and Mitigat...Understanding Insider Security Threats: Types, Examples, Effects, and Mitigat...
Understanding Insider Security Threats: Types, Examples, Effects, and Mitigat...
Bert Blevins
 
WPRiders Company Presentation Slide Deck
WPRiders Company Presentation Slide DeckWPRiders Company Presentation Slide Deck
WPRiders Company Presentation Slide Deck
Lidia A.
 
WhatsApp Image 2024-03-27 at 08.19.52_bfd93109.pdf
WhatsApp Image 2024-03-27 at 08.19.52_bfd93109.pdfWhatsApp Image 2024-03-27 at 08.19.52_bfd93109.pdf
WhatsApp Image 2024-03-27 at 08.19.52_bfd93109.pdf
ArgaBisma
 
The Role of IoT in Australian Mobile App Development - PDF Guide
The Role of IoT in Australian Mobile App Development - PDF GuideThe Role of IoT in Australian Mobile App Development - PDF Guide
The Role of IoT in Australian Mobile App Development - PDF Guide
Shiv Technolabs
 
Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...
Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...
Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...
maigasapphire
 
CHAPTER-8 COMPONENTS OF COMPUTER SYSTEM CLASS 9 CBSE
CHAPTER-8 COMPONENTS OF COMPUTER SYSTEM CLASS 9 CBSECHAPTER-8 COMPONENTS OF COMPUTER SYSTEM CLASS 9 CBSE
CHAPTER-8 COMPONENTS OF COMPUTER SYSTEM CLASS 9 CBSE
kumarjarun2010
 
Comparison Table of DiskWarrior Alternatives.pdf
Comparison Table of DiskWarrior Alternatives.pdfComparison Table of DiskWarrior Alternatives.pdf
Comparison Table of DiskWarrior Alternatives.pdf
Andrey Yasko
 
Recent Advancements in the NIST-JARVIS Infrastructure
Recent Advancements in the NIST-JARVIS InfrastructureRecent Advancements in the NIST-JARVIS Infrastructure
Recent Advancements in the NIST-JARVIS Infrastructure
KAMAL CHOUDHARY
 
Password Rotation in 2024 is still Relevant
Password Rotation in 2024 is still RelevantPassword Rotation in 2024 is still Relevant
Password Rotation in 2024 is still Relevant
Bert Blevins
 
How Social Media Hackers Help You to See Your Wife's Message.pdf
How Social Media Hackers Help You to See Your Wife's Message.pdfHow Social Media Hackers Help You to See Your Wife's Message.pdf
How Social Media Hackers Help You to See Your Wife's Message.pdf
HackersList
 

Recently uploaded (20)

Tirana Tech Meetup - Agentic RAG with Milvus, Llama3 and Ollama
Tirana Tech Meetup - Agentic RAG with Milvus, Llama3 and OllamaTirana Tech Meetup - Agentic RAG with Milvus, Llama3 and Ollama
Tirana Tech Meetup - Agentic RAG with Milvus, Llama3 and Ollama
 
Implementations of Fused Deposition Modeling in real world
Implementations of Fused Deposition Modeling  in real worldImplementations of Fused Deposition Modeling  in real world
Implementations of Fused Deposition Modeling in real world
 
How to build a generative AI solution A step-by-step guide (2).pdf
How to build a generative AI solution A step-by-step guide (2).pdfHow to build a generative AI solution A step-by-step guide (2).pdf
How to build a generative AI solution A step-by-step guide (2).pdf
 
Advanced Techniques for Cyber Security Analysis and Anomaly Detection
Advanced Techniques for Cyber Security Analysis and Anomaly DetectionAdvanced Techniques for Cyber Security Analysis and Anomaly Detection
Advanced Techniques for Cyber Security Analysis and Anomaly Detection
 
Choose our Linux Web Hosting for a seamless and successful online presence
Choose our Linux Web Hosting for a seamless and successful online presenceChoose our Linux Web Hosting for a seamless and successful online presence
Choose our Linux Web Hosting for a seamless and successful online presence
 
find out more about the role of autonomous vehicles in facing global challenges
find out more about the role of autonomous vehicles in facing global challengesfind out more about the role of autonomous vehicles in facing global challenges
find out more about the role of autonomous vehicles in facing global challenges
 
Three New Criminal Laws in India 1 July 2024
Three New Criminal Laws in India 1 July 2024Three New Criminal Laws in India 1 July 2024
Three New Criminal Laws in India 1 July 2024
 
How to Build a Profitable IoT Product.pptx
How to Build a Profitable IoT Product.pptxHow to Build a Profitable IoT Product.pptx
How to Build a Profitable IoT Product.pptx
 
Pigging Unit Lubricant Oil Blending Plant
Pigging Unit Lubricant Oil Blending PlantPigging Unit Lubricant Oil Blending Plant
Pigging Unit Lubricant Oil Blending Plant
 
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
 
Understanding Insider Security Threats: Types, Examples, Effects, and Mitigat...
Understanding Insider Security Threats: Types, Examples, Effects, and Mitigat...Understanding Insider Security Threats: Types, Examples, Effects, and Mitigat...
Understanding Insider Security Threats: Types, Examples, Effects, and Mitigat...
 
WPRiders Company Presentation Slide Deck
WPRiders Company Presentation Slide DeckWPRiders Company Presentation Slide Deck
WPRiders Company Presentation Slide Deck
 
WhatsApp Image 2024-03-27 at 08.19.52_bfd93109.pdf
WhatsApp Image 2024-03-27 at 08.19.52_bfd93109.pdfWhatsApp Image 2024-03-27 at 08.19.52_bfd93109.pdf
WhatsApp Image 2024-03-27 at 08.19.52_bfd93109.pdf
 
The Role of IoT in Australian Mobile App Development - PDF Guide
The Role of IoT in Australian Mobile App Development - PDF GuideThe Role of IoT in Australian Mobile App Development - PDF Guide
The Role of IoT in Australian Mobile App Development - PDF Guide
 
Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...
Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...
Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...
 
CHAPTER-8 COMPONENTS OF COMPUTER SYSTEM CLASS 9 CBSE
CHAPTER-8 COMPONENTS OF COMPUTER SYSTEM CLASS 9 CBSECHAPTER-8 COMPONENTS OF COMPUTER SYSTEM CLASS 9 CBSE
CHAPTER-8 COMPONENTS OF COMPUTER SYSTEM CLASS 9 CBSE
 
Comparison Table of DiskWarrior Alternatives.pdf
Comparison Table of DiskWarrior Alternatives.pdfComparison Table of DiskWarrior Alternatives.pdf
Comparison Table of DiskWarrior Alternatives.pdf
 
Recent Advancements in the NIST-JARVIS Infrastructure
Recent Advancements in the NIST-JARVIS InfrastructureRecent Advancements in the NIST-JARVIS Infrastructure
Recent Advancements in the NIST-JARVIS Infrastructure
 
Password Rotation in 2024 is still Relevant
Password Rotation in 2024 is still RelevantPassword Rotation in 2024 is still Relevant
Password Rotation in 2024 is still Relevant
 
How Social Media Hackers Help You to See Your Wife's Message.pdf
How Social Media Hackers Help You to See Your Wife's Message.pdfHow Social Media Hackers Help You to See Your Wife's Message.pdf
How Social Media Hackers Help You to See Your Wife's Message.pdf
 

Qlik’s CTO on Why the Cloud Data Diaspora Forces Businesses To Rethink their Analytics Strategies

  • 1. Page 1 of 8 Qlik’s CTO on Why the Cloud Data Diaspora Forces Businesses To Rethink their Analytics Strategies Transcript of a discussion on why new ways of thinking are demanded if comprehensive analysis of relevant data can become practical across a multi- and hybrid-cloud deployments world. Listen to the podcast. Find it on iTunes. Download the transcript. Sponsor: Qlik. Dana Gardner: Hi, this is Dana Gardner, Principal Analyst at Interarbor Solutions, and you’re listening to BriefingsDirect. Our next business intelligence (BI) trends discussion explores the impact of dispersed data in a multicloud world. Gaining control over far-flung and disparate data has been a decades’ old struggle, but now as hybrid and public clouds join the mix of legacy and distributed digital architectures, new ways of thinking are demanded if comprehensive analysis of relevant data is going to become practical. Stay with us now as we examine the latest strategies for making the best use of data integration, data catalogs and indices, as well highly portable data analytics platforms. To learn more about closing the analysis gap between data and multiple -- and most probably changeable -- cloud models, we are now joined by Mike Potter, Chief Technology Officer (CTO) at Qlik. Welcome, Mike. Mike Potter: Hi, I’m glad to be here. Gardner: Mike, businesses are adopting cloud computing for very good reasons. The growth over the past decade has been strong and accelerating. What have been some of the -- if not unintentional -- complicating factors for gaining a comprehensive data analysis strategy amid this cloud computing complexity? Potter: The biggest thing is recognizing that it’s all about where data lives and where it's being created. Obviously, historically most data have been generated on-premises. So, there is a strong pull there, but you are seeing more and more cases now where data is born in the cloud and spends its whole lifetime in the cloud. And so now the use cases are different because you have a combination of those two worlds, on-premises and cloud. To add further complexity, data is now being born in different cloud providers. Not only are you dealing with having some data and legacy systems on-premises, but you may have to reconcile that you have data in Amazon, Google, or Microsoft. Our whole strategy around multicloud and hybrid cloud architectures is being able to deploy Qlik where the data lives. It allows you to leave the data where it is, but gives you options so that if Potter
  • 2. Page 2 of 8 you need to move the data, we can support the use cases on-premises to cloud or across cloud providers. Gardner: And you haven’t just put on the patina of cloud-first or software as a service (Saas) - first. You have rearchitected and repositioned a lot of what your products and technologies do. Tell us about being “SaaS-first” as a strategy. Scaling the clouds Potter: We began our journey about 2.5 years ago, when we started converting our monolith architecture into a microservices-based architecture. That journey struck to the core of the whole product. Qlik’s heritage was a Windows Server architecture. We had to rethink a lot of things. As part of that we made a big bet 1.5 years ago on containerization, using Docker and Kubernetes. And that’s really paid off for us. It has put us ahead of the technology curve in many respects. When we did our initial release of our multicloud product in June 2018, I had conversations with customers who didn’t know what Kubernetes was. One enterprise customer had an infrastructure team who had set up an environment to provision Kubernetes cluster environments, but we were only the second vendor that required one, so we were ahead of the game quite a bit. Gardner: How does using a managed container platform like Kubernetes help you in a multicloud world? Potter: The single biggest thing is it allows you to scale and manage workloads at a much finer grain of detail through auto-scaling capabilities provided by orchestration environments such as Kubernetes. More importantly it allows you to manage your costs. One of the biggest advantages of a microservice-based architecture is that you can scale up and scale down to a much finer grain. For most on-premises, server-based, monolith architectures, customers have to buy infrastructure for peak levels of workload. We can scale up and scale down those workloads - - basically on the fly -- and give them a lot more control over their infrastructure budget. It allows them to meet the needs of their customers when they need it. Gardner: Another aspect of the cloud evolution over the past decade is that no one enterprise is like any other. They have usually adopted cloud in different ways. Has Qlik’s multicloud analytics approach come with the advantage of being able to deal with any of those different topologies, enterprise by enterprise, to help them each uniquely attain more of a total data strategy? For most on-premises, server- based, monolith architectures, customers have to buy infrastructure for peak levels of workload. We can scale up and scale down those workloads – basically on the fly – and give them a lot more control over their infrastructure budget.
  • 3. Page 3 of 8 Potter: Yes, I think so. The thing we want to focus on is, rather than dictate the cloud strategy – often the choice of our competitors -- we want to support your cloud strategy as you need it. We recognize that a customer may not want to be on just one cloud provider. They don’t want to lock themselves in. And so we need to accommodate that. There may be very valid reasons why they are regionalized, from a data sovereignty perspective, and we want to accommodate that. There will always be on-premises requirements, and we want to accommodate that. The reality is that, for quite a while, you are not going to see much convergence around cloud providers as you are going to see around microservices architectures, containers, and the way they are managed and orchestrated. Gardner: And there is another variable in the mix over the next years -- and that’s the edge. We have an uncharted, immature environment at the edge. But already we are hearing that a private cloud at the edge is entirely feasible. Perhaps containers will be working there. At Qlik, how are you anticipating edge computing, and how will that jibe with the multicloud approach? Running at the edge Potter: One of the key features of our platform architecture is not only can we run on-premises or in any cloud at scale, we can run on an edge device. We can take our core analytics engine and deploy it on a device or machine running at the edge. This enables a new opportunity, which is taking analytics itself to the edge. A lot of Internet of Things (IoT) implementations are geared toward collecting data at the sensor, transferring it to a central location to be processed, and then analyzing it all there. What we want to do is push the analytics problem out to the edge so that the analytic data feeds can be processed at the edge. Then only the analytics events are transmitted back for central processing, which obviously has a huge impact from a data-scale perspective. But more importantly, it creates a new opportunity to have the analytic context be very immediate in the field, where the point of occurrence is. So if you are sitting there on a sensor and you are doing analytics on the sensor, not only can you benefit at the sensor, you can send the analytics data back to the central point, where it can be analyzed as well. Gardner: It’s auspicious, the way that Qlik’s catalog, indexing, and abstracting out the information about where data is approach can now be used really well in an edge environment. Potter: Most definitely. Our entire data strategy is intricately linked with our architectural strategy in that respect, yes. Gardner: Analytics and being data-driven across an organization is the way of the future. It makes sense to not cede that core competency of being good at analytics to a cloud provider or to a vendor. The people, process, and tribal knowledge about analytics seems essential.
  • 4. Page 4 of 8 Do you agree with that, and how does Qlik’s strategy align with keeping the core competency of analytics of, by, and for each and every enterprise? Potter: Analytics is a specialization organizationally within all of our customers, and that’s not going to go away. What we want to do is parlay that into a broader discussion. So our focus is enabling three key strategies now. It's about enabling the analytics strategy, as we always have, but broadening the conversation to enabling the data strategy. More importantly, we want to close the organizational, technological, and priority gaps to foster creating an integrated data and analytics strategy. By doing that, we can create what I describe as a raw- to-ready analytics platform based on trust, because we own the process of the data from source to analysis, and that not only makes the analytics better, it promotes the third part of our strategy, which is around data literacy. That’s about creating a trusted environment in which people can interact with their data and do the analysis that they want to do without having to be data scientists or data experts. So owning that whole end-to-end architecture is what we are striving to reach. Gardner: As we have seen in other technology maturation trend curves, applying automation to the problem frees up the larger democratization process. More people can consume these services. How does automation work in the next few years when it comes to analytics? Are we going to start to see more artificial intelligence (AI) applied to the problem? Automated, intelligent analytics Potter: Automating those environments is an inevitability, not only from the standpoint of how the data is collected, but in how the data is pushed through a data operations process. More importantly, automating enables on the other end, too, by embedding artificial and machine learning (ML) techniques all the way along that value chain -- from the point of source to the point of consumption. Gardner: How does AI play a role in the automation and the capability to leverage data across the entire organization? Potter: How we perform analytics within an analytic system is going to evolve. It’s going to be more conversational in nature, and less about just consuming a dashboard and looking for an insight into a visualization. The analytics system itself will be an active member of that process, where the conversation is not only with the analytics system but the analytics system itself can initiate the conversation by identifying insights based on context and on other feeds. Those can come from the collective intelligence of the people you work with, or even from people not involved in the process. We own the process of the data from source to analysis, and that not only makes the analytics better, it promotes the third part of our strategy, which is around data literacy.
  • 5. Page 5 of 8 Gardner: I have been at some events where robotic process automation (RPA) has been a key topic. It seems to me that there is this welling opportunity to use AI with RPA, but it’s a separate track from what's going on with BI, analytics, and the traditional data warehouse approach. Do you see an opportunity for what’s going on with AI and use of RPA? Can what Qlik is doing with the analytics and data assimilation problem come together with RPA? Would a process be able to leverage analytic information, and vice versa? Potter: It gets back to the idea of pushing analytics to the edge, because an edge isn’t just a device-level integration. It can be the edge of a process. It can be the edge of not only a human process, but an automated business process. The notion of being able to embed analytics deep into those processes is already being done. Process analytics is an important field. But the newer idea is that analytics is in service of the process, as opposed to the other way around. The world is getting away from analytics being a separate activity, done by a separate group, and as a separate act. It is as commonplace as getting a text message, right? Gardner: For the organization to get to that nirvana of total analytics as a common strategy, this needs to be part of what the IT organization is doing, with full stack architecture and evolution. So AIOps and DataOps also getting closer over time. How does DataOps in your thinking relate to what the larger IT enterprise architects are doing, and why should they be thinking about data more? Optimizing data pipelines Potter: That’s a really good question. From my perspective, when I get a chance to talk to data teams, I ask a simple question: “You have this data lake. Is it meeting the analytic requirements of your organization?” And often I don’t get very good answers. And a big reason why is because what motivates and prioritizes the data team is the storage and management of data, not necessarily the analytics. And often those priorities conflict with the priorities of the analytics team. What we are trying to do with the Qlik integrated data and analytic strategy is to create data pipelines optimized for analytics, and data operations optimized for analytics. And our investments and our acquisitions in Attunity and Podium are about taking that process and focusing on the raw-to-ready part of the data operations. Gardner: Mike, we have been talking at a fairly abstract level, but can you share any use cases where leading-edge organizations recognize the intrinsic relationship between DataOps and enterprise architecture? Can you describe some examples or use cases where they get it, and what it gets for them? Potter: One of our very large enterprise customers deals in medical devices and related products and services. They realized an essential need to have an integrated strategy. And one of the challenges they have, like most organizations, is how to not only overcome the technology part but also the organizational, cultural, and change-management aspects as well.
  • 6. Page 6 of 8 They recognized the business has a need for data, and IT has data. If you intersect that, how much of that data is actually a good fit? How much data does IT have that isn't needed? How much of the remaining need is unfulfilled by IT? That's the problem we need to close in on. Gardner: Businesses need to be thinking at the C-suite level about outcomes. Are there some examples where you can tie together such strategic business outcomes back to the total data approach, to using enterprise architecture and DataOps? Data decision-making, democratized Potter: The biggest ones center on end-to-end governance of data for analytics, the ability to understand where the data comes from, and building trust in the data inside the organization so that decisions can be made, and those decisions have traceability back to results. The other aspect of building such an integrated system is a total cost of ownership (TCO) opportunity, because you are no longer expending energy managing data that isn't relevant to adding value to the organization. You can make a lot more intelligent choices about how you use data and how you actually measure the impact that the data can have. Gardner: On the topic of data literacy, how do you see the behavior of an organization -- the culture of an organization -- shifting? How do we get the chicken-and-egg relationship going between the data services that provide analytics and the consumers to start a virtuous positive adoption pattern? Potter: One of the biggest puzzles a lot of IT organizations face is around adoption and utilization. They build a data lake and they don't know why people aren’t using it. For me, there are a couple of elements to the problem. One is what I call data elitism. When you think about data literacy and you compare it to literacy in the pre-industrial age, the people who had the books were the people who were rich and had power. So church and state, that kind of thing. It wasn't until technology created, through the printing press, a democratization of literacy that you started to see interesting behavior. Those with the books, those with the power, tried to subvert reading in the general population. They made it illegal. Some argue that the French Revolution was, in part, caused by rising rates of literacy. If you flash-forward this analogy to today in data literacy, you have the same notion of elitism. Data is only allowed to be accessed by the senior levels of the organization. It can only be controlled by IT. Ironically, the most data-enabled organizations are typically oriented to the Millennials or younger users. But they are in the wrong part of the organizational chart to actually take advantage of that. They are not allowed to see the data they could use to do their jobs. The opportunity from a democratization-of-data perspective is understanding the value of data for every individual and allowing that data to be made available in a trusted environment. The opportunity from a democratization-of-data perspective is understanding the value of data for every individual and allowing that data to be made available in a trusted environment.
  • 7. Page 7 of 8 That’s where this end-to-end process becomes so important. Gardner: How do we make the economics of analytics an accelerant to that adoption and the democratization of data? I’ll use another historical analogy, the Model T and assembly line. They didn't sell Model Ts nearly to the degree they thought until they paid their own people enough to afford one. Is there a way of looking at that and saying, “Okay, we need to create an economic environment where analytics is paid for-on-demand, it's fit-for-purpose, it's consumption-oriented.” Wouldn’t that market effect help accelerate the adoption of analytics as a total enterprise cultural activity? Think positive data culture Potter: That’s a really interesting thought. The consumerization of analytics is a product of accessibility and of cost. When you build a positive data culture in an organization, data needs to be as readily accessible as email. From that perspective, turning it into a cost model might be a way to accomplish it. It's about a combination of leadership, of just going there and making occur at the grassroots level, where the value it presents is clear. And, again, I reemphasize this idea of needing a positive data culture. Gardner: Any added practical advice for organizations? We have been looking at what will be happening and what to anticipate. But what should an enterprise do now to be in an advantageous position to execute a “positive data culture”? Potter: The simplest advice is to know that technology is not the biggest hurdle; it's change management, culture, and leadership. When you think about the data strategy integrated with the analytics strategy, that means looking at how you are organized and prioritized around that combined strategy. Finally, when it comes to a data literacy strategy, define how you are going to enable your organization to see data as a positive asset to doing their jobs. The leadership should understand that data translates into value and results. It's a tool, not a weapon. Gardner: I’m afraid we’ll have to leave it there. You have been listening to a sponsored BriefingsDirect discussion on the impact of dispersed data in a multicloud world. And we have learned about the latest strategies for making the best use of data across an entire organization -- technically, in process terms, as well as culturally. So a big thank you to our guest, Mike Potter, Chief Technology Officer at Qlik. Potter: Thank you. It was great to be here. Gardner: And thank you as well to our audience for joining this BriefingsDirect business intelligence trends discussion. I’m Dana Gardner, Principal Analyst at Interarbor Solutions, your host throughout this series of Qlik-sponsored BriefingsDirect interviews. Technology is not the biggest hurdle [in creating a positive data culture]; it’s change management, culture, and leadership.
  • 8. Page 8 of 8 Thanks again for listening. Please pass this along to your IT community, and do come back next time. Listen to the podcast. Find it on iTunes. Download the transcript. Sponsor: Qlik. Transcript of a discussion on why new ways of thinking are demanded if comprehensive analysis of relevant data can become practical across a multi- and hybrid-cloud deployments world. Copyright Interarbor Solutions, LLC, 2005-2019. All rights reserved. You may also be interested in: • How real-time data streaming and integration set the stage for AI-driven DataOps • How a Business Matchmaker Application Helps SMBs Impacted by Natural Disasters Gain New Credit • The New Procurement Advantage-How Business Networks Generate Multi-Party Ecosystem Solutions • How Data-Driven Business Networks Help Close the Digital Transformation Gap • Building the Intelligent Enterprise with Strategic Procurement and Analytics • How SMBs impacted by natural disasters gain new credit thanks to a finance matchmaker app • The new procurement advantage: How business networks generate multi-party ecosystem solutions • SAP Ariba's chief data scientist on how ML and dynamic processes build an intelligent enterprise • SAP Ariba’s President Barry Padgett on building the intelligent enterprise