SlideShare a Scribd company logo
1 of 31
Download to read offline
Arthur CHARPENTIER, Distortion in actuarial sciences




                         Distorting probabilities
                          in actuarial sciences
                                       Arthur Charpentier
                                            Université Rennes 1

                                arthur.charpentier@univ-rennes1.fr
                                http ://freakonometrics.blog.free.fr/




                               Univeristé Laval, Québec, Avril 2011


                                                                        1
Arthur CHARPENTIER, Distortion in actuarial sciences




1       Decision theory and distorted risk measures
Consider a preference ordering among risks, such that
1.                                          ˜ L    ˜ L         ˜     ˜
      is distribution based, i.e. if X Y , ∀X = X Y = Y , then X Y ; hence,
   we can write FX FY
2.    is total, reflexive and transitive,
3.    is continuous, i.e. ∀FX , FY and FZ such that FX FY      FZ , ∃λ, µ ∈ (0, 1)
   such that
                            λFX + (1 − λ)FZ             FY   µFX + (1 − µ)FZ .
4.      satisfies an independence axiom, i.e. ∀FX , FY and FZ , and ∀λ ∈ (0, 1),

                      FX        FY =⇒ λFX + (1 − λ)FZ           λFY + (1 − λ)FZ .

5.     satisfies an ordering axiom, ∀X and Y constant (i.e.
     P(X = x) = P(Y = y) = 1, FX FY =⇒ x ≤ y.


                                                                                    2
Arthur CHARPENTIER, Distortion in actuarial sciences




Theorem1
Ordering satisfies axioms 1-2-3-4-5 if and only if ∃u : R → R, continuous, strictly
increasing and unique (up to an increasing affine transformation) such that ∀FX and FY :

                       FX        FY      ⇔             u(x)dFX (x) ≤           u(x)dFY (x)
                                                   R                       R
                                         ⇔ E[u(X)] ≤ E[u(Y )].

But if we consider an alternative to the independence axiom
4’.   satisfies an dual independence axiom, i.e. ∀FX , FY and FZ , and ∀λ ∈ (0, 1),
                               −1          −1                             −1          −1
             FX       FY =⇒ [λFX + (1 − λ)FZ ]−1                       [λFY + (1 − λ)FZ ]−1 .
we (Yaari (1987)) obtain a dual representation theorem,
Theorem2
Ordering satisfies axioms 1-2-3-4’-5 if and only if ∃g : [0, 1] → R, continuous, strictly
increasing such that ∀FX and FY :

                         FX        FY ⇔            g(F X (x))dx ≤          g(F Y (x))dx
                                               R                       R


                                                                                                3
Arthur CHARPENTIER, Distortion in actuarial sciences




Standard axioms required on risque measures R : X → R,
                                 L
–    law invariance, X = Y =⇒ R(X) = R(Y )
–    increasing X ≥ Y =⇒ R(X) ≥ R(Y ),
–    translation invariance ∀k ∈ R, =⇒ R(X + k) = R(X) + k,
–    homogeneity ∀λ ∈ R+ , R(λX) = λ · R(X),
–    subadditivity R(X + Y ) ≤ R(X) + R(Y ),
–    convexity ∀β ∈ [0, 1], R(βλX + [1 − β]Y ) ≤ β · R(X) + [1 − β] · R(Y ).
– additivity for comonotonic risks ∀X and Y comonotonic,
  R(X + Y ) = R(X) + R(Y ),
– maximal correlation (w.r.t. measure µ) ∀X,

                                     R(X) = sup {E(X · U ) where U ∼ µ}

                                    ˜ ˜                            ˜ L
– strong coherence ∀X and Y , sup{R(X + Y )} = R(X) + R(Y ), where X = X
       ˜ L
  and Y = Y .


                                                                               4
Arthur CHARPENTIER, Distortion in actuarial sciences




Proposition1
If R is a monetary convex fonction, then the three statements are equivalent,
– R is strongly coherent,
– R is additive for comonotonic risks,
– R is a maximal correlation measure.
Proposition2
A coherente risk measure R is additive for comonotonic risks if and only if there exists a
decreasing positive function φ on [0, 1] such that
                                                            1
                                      R(X) =                    φ(t)F −1 (1 − t)dt
                                                        0

where F (x) = F(X ≤ x).
see Kusuoka (2001), i.e. R is a spectral risk measure.



                                                                                      5
Arthur CHARPENTIER, Distortion in actuarial sciences




Definition1
A distortion function is a function g : [0, 1] → [0, 1] such that g(0) = 0 and g(1) = 1.
For positive risks,
Definition1
Given distortion function g, Wang’s risk measure, denoted Rg , is
                                             ∞                                ∞
                    Rg (X) =                     g (1 − FX (x)) dx =              g F X (x) dx   (1)
                                         0                                0

Proposition1
Wang’s risk measure can be defined as
                                     1                                1
                                          −1
               Rg (X) =                  FX (1 − α) dg(α) =               VaR[X; 1 − α] dg(α).   (2)
                                 0                                0




                                                                                                 6
Arthur CHARPENTIER, Distortion in actuarial sciences




More generally (risks taking value in R)
Definition2
We call distorted risk measure
                                                            1
                                      R(X) =                    F −1 (1 − u)dg(u)
                                                        0

where g is some distortion function.
Proposition3
R(X) can be written
                                     +∞                                 0
                 R(X) =                   g(1 − F (x))dx −                  [1 − g(1 − F (x))]dx.
                                 0                                     −∞




                                                                                                    7
Arthur CHARPENTIER, Distortion in actuarial sciences




                      risk measures R                  distortion function g
                      VaR                              g (x) = I[x ≥ p]
                      Tail-VaR                         g (x) = min {x/p, 1}
                      PH                               g (x) = xp
                                                                             1/p
                      Dual Power                       g (x) = 1 − (1 − x)
                      Gini                             g (x) = (1 + p) x − px2
                      exponential transform            g (x) = (1 − px ) / (1 − p)

                        Table 1 – Standard risk measures, p ∈ (0, 1).




                                                                                     8
Arthur CHARPENTIER, Distortion in actuarial sciences




Here, it looks like risk measures can be seen as R(X) = Eg◦P (X).
Remark1
Let Q denote the distorted measure induced by g on P, denoted g ◦ P i.e.

                                      Q([a, +∞)) = g(P([a, +∞))).

Since g is increasing on [0, 1] Q is a capacity.
Example1
Consider function g(x) = xk . The PH - proportional hazard - risk measure is
                                            1                                ∞
                     R(X; k) =                  F −1 (1 − u)kuk−1 du =           [F (x)]k dx
                                        0                                0

If k is an integer [F (x)]k is the survival distribution of the minimum over k values.
Definition2
The Esscher risk measure with parameter h > 0 is Es[X; h], defined as
                                                 E[X exp(hX)]    d
                            Es[X; h] =                        =    ln MX (h).
                                                    MX (h)      dh


                                                                                               9
Arthur CHARPENTIER, Distortion in actuarial sciences




2      Archimedean copulas
Definition3
Let φ denote a decreasing function (0, 1] → [0, ∞] such that φ(1) = 0, and such that
φ−1 is d-monotone, i.e. for all k = 0, 1, · · · , d, (−1)k [φ−1 ](k) (t) ≥ 0 for all t. Define
the inverse (or quasi-inverse if φ(0) < ∞) as
                                 
                                  φ−1 (t) for 0 ≤ t ≤ φ(0)
                       φ−1 (t) =
                                  0               for φ(0) < t < ∞.

The function
              C(u1 , · · · , un ) = φ−1 (φ(u1 ) + · · · + φ(ud )), u1 , · · · , un ∈ [0, 1],
is a copula, called an Archimedean copula, with generator φ.
Let Φd denote the set of generators in dimension d.
Example2
The independent copula C ⊥ is an Archimedean copula, with generator φ(t) = − log t.

                                                                                               10
Arthur CHARPENTIER, Distortion in actuarial sciences




The upper Fréchet-Hoeffding copula, defined as the minimum componentwise,
M (u) = min{u1 , · · · , ud }, is not Archimedean (but can be obtained as the limit of
some Archimedean copulas).
Set λ(t) = exp[−φ(t)] (the multiplicative generator), then
                   C(u1 , ..., ud ) = λ−1 (λ(u1 ) · · · λ(ud )), ∀u1 , ..., ud ∈ [0, 1],
which can be written
              C(u1 , ..., ud ) = λ−1 (C ⊥ [λ(u1 ), . . . , λ(ud )]), ∀u1 , ..., ud ∈ [0, 1],

Note that it is possible to get an interpretation of that distortion of the
independence.
A large subclass of Archimedean copula in dimension d is the class of
Archimedean copulas obtained using the frailty approach.
Consider random variables X1 , · · · , Xd conditionally independent, given a latent
                                                                         Θ
factor Θ, a positive random variable, such that P (Xi ≤ xi |Θ) = Gi (x) where
Gi denotes a baseline distribution function.

                                                                                               11
Arthur CHARPENTIER, Distortion in actuarial sciences




The joint distribution function of X is given by
FX (x1 , · · · , xd ) =          E (P (X1 ≤ x1 , · · · , Xd ≤ Xd |Θ))
                                        d                                d
                                                                                    Θ
                           =     E           P (Xi ≤ xi |Θ)   =E             Gi (xi )
                                       i=1                           i=1
                                        d                                                d
                           =     E           exp [−Θ (− log Gi (xi ))]       =ψ −             log Gi (xi ) ,
                                       i=1                                              i=1

where ψ is the Laplace transform of the distribution of Θ, i.e.
ψ (t) = E (exp (−tΘ)) . Because the marginal distributions are given respectively
by
                    Fi (xi ) = P(Xi ≤ xi ) = ψ (− log Gi (xi )) ,
the copula of X is
                    −1                 −1
        C (u) = FX F1 (u1 ) , · · · , Fd (ud ) = ψ ψ −1 (u) + · · · + ψ −1 (ud )
This copula is an Archimedean copula with generator φ = ψ −1 (see e.g. Clayton
(1978), Oakes (1989), Bandeen-Roche & Liang (1996) for more details).

                                                                                                         12
Arthur CHARPENTIER, Distortion in actuarial sciences




3      Hierarchical Archimedean copulas
It is possible to look at C(u1 , · · · , ud ) defined as

    φ−1 [φ1 [φ−1 (φ2 [· · · φ−1 [φd−1 (u1 ) + φd−1 (u2 )] + · · · + φ2 (ud−1 ))] + φ1 (ud )]
     1        2              d−1

where φi are generators. C is a copula if φi ◦ φ−1 is the inverse of a Laplace
                                                i−1
transform. This copula is said to be a fully nested Archimedean (FNA) copula.
E.g. in dimension d = 5, we get

φ1 [φ1 (φ−1 [φ2 (φ−1 [φ3 (φ−1 [φ4 (u1 ) + φ4 (u2 )]) + φ3 (u3 )]) + φ2 (u4 )]) + φ1 (u5 )].
 −1
         2        3        4


It is also possible to consider partially nested Archimedean (PNA) copulas, e.g.
by coupling (U1 , U2 , U3 ), and (U4 , U5 ),

φ−1 [φ4 (φ−1 [φ1 (φ−1 [φ2 (u1 ) + φ2 (u2 )]) + φ1 (u3 )]) + φ4 (φ−1 [φ3 (u4 ) + φ3 (u5 )])]
 4        1        2                                             3

Again, it is a copula if φ2 ◦ φ−1 is the inverse of a Laplace transform, as well as
                               1
φ4 ◦ φ−1 and φ4 ◦ φ−1 .
      1             3


                                                                                               13
Arthur CHARPENTIER, Distortion in actuarial sciences




                                             φ1

                                     φ2                                   φ4

                               φ3                                   φ1

                         φ4                                   φ2                    φ3

                    U1        U2    U3      U4      U5   U1        U2    U3    U4        U5




Figure 1 – fully nested Archimedean copula, and partially nested Archimedean
copula.



                                                                                              14
Arthur CHARPENTIER, Distortion in actuarial sciences




It is also possible to consider

     φ−1 [φ3 (φ−1 [φ1 (u1 ) + φ1 (u2 ) + φ1 (u3 )]) + φ3 (φ−1 [φ2 (u4 ) + φ2 (u5 )])].
      3        1                                           2

if φ3 ◦ φ−1 and φ3 ◦ φ−1 are inverses of Laplace transform. Or
         1            2

      φ−1 [φ3 (φ−1 [φ1 (u1 ) + φ1 (u2 )] + φ3 (u3 ) + φ3 (φ−1 [φ2 (u4 ) + φ2 (u5 )])].
       3        1                                          2




                                                                                         15
Arthur CHARPENTIER, Distortion in actuarial sciences




                                      φ3                                  φ3

                             φ1                  φ2             φ1                  φ2

                    U1      U2      U3      U4        U5   U1        U2   U3   U4        U5




Figure 2 – Copules Archimédiennes hiérarchiques avec deux constructions dif-
férentes.




                                                                                              16
Arthur CHARPENTIER, Distortion in actuarial sciences




Example3
If φi ’s are Gumbel’s generators, with parameter θi , a sufficient condition for C to be a
FNA copula is that θi ’s increasing. Similarly if φi ’s are Clayton’s generators.
Again, an heuristic interpretation can be derived, see Hougaard (2000), with two
frailties Θ1 and Θ2 such that




                                                                                        17
Arthur CHARPENTIER, Distortion in actuarial sciences




4      Distorting copulas
Genest & Rivest (2001) extended the concept of Archimedean copulas
introducing the multivariate probability integral transformation (Wang, Nelsen &
Valdez (2005) called this the distorted copula, while Klement, Mesiar & Pap
(2005) or Durante & Sempi (2005) called this the transformed copula). Consider
a copula C. Let h be a continuous strictly concave increasing function
[0, 1] → [0, 1] satisfying h (0) = 0 and h (1) = 1, such that
              Dh (C) (u1 , · · · , ud ) = h−1 (C (h (u1 ) , · · · , h (ud ))), 0 ≤ ui ≤ 1
is a copula. Those functions will be called distortion functions.
Example4
A classical example is obtained when h is a power function, and when the power is the
inverse of an integer, hn (x) = x1/n , i.e.
                  Dhn (C) (u, v) = C n (u1/n , v 1/n ), 0 ≤ u, v ≤ 1 and n ∈ N.
Then this copula is the survival copula of the componentwise maxima : the copula of

                                                                                            18
Arthur CHARPENTIER, Distortion in actuarial sciences




(max{X1 , · · · , Xn }, max{Y1 , · · · , Yn }) is Dhn (C), where {(X1 , Y1 ), · · · , (Xn , Yn )}
is an i.i.d. sample, and the (Xi , Yi )’s have copula C.
A max-stable copula is a copula C such that ∀n ∈ N,
                                        1/n             1/n
                                C n (u1 , · · · , ud ) = C(u1 , · · · , ud ).

Example5
Let φ denote a convex decreasing function on (0, 1] such that φ(1) = 0, and define
C(u, v) = φ−1 (φ(u) + φ(v)) = Dexp[−φ] (C ⊥ ). This function is an Archimedean copula.
Example6
A distorted version of the comonontonic copula is the comonotonic copula,

                         h−1 [min{h(u1 ), · · · , h(ud )}] = min{u1 , · · · , ud }

Example7
Following the idea of Capéraà, Fougères & Genest (2000), it is possible to construct
Archimax copulas as distortions of max-stable copulas. In dimension d = 2, max-stable

                                                                                              19
Arthur CHARPENTIER, Distortion in actuarial sciences




copulas are characterized through a generator A such that
                                                          log(u)
                                C(u, v) = exp log(uv)A
                                                         log(uv)
Here consider φ an Archimedean generator, then Archimax copulas are defined as
                                                            φ(u)
                        C(u, v) = φ−1 [φ(u) + φ(v)]A
                                                         φ(u) + φ(v)

In the bivariate case, h need not be differentiable, and concavity is a sufficient
condition.




                                                                                20
Arthur CHARPENTIER, Distortion in actuarial sciences




With nonconcave distortion function, distorted copulas are semi-copulas, from
Bassan & Spizzichino (2001).
Definition4
Function S : [0, 1]d → [0, 1] is a semi-copula if 0 ≤ ui ≤ 1, i = 1, · · · , d,
                                         S(1, ..., 1, ui , 1, ..., 1) = ui ,                (3)
                                   S(u1 , ..., ui−1 , 0, ui+1 , ..., ud ) = 0,              (4)
and s → S(u1 , ..., ui−1 , s, ui+1 , ..., ud ) is increasing on [0, 1].
Let Hd denote the set of continuous strictly increasing functions [0, 1] → [0, 1]
such that h (0) = 0 and h (1) = 1, C ∈ C,
             Dh (C) (u1 , · · · , ud ) = h−1 (C (h (u1 ) , · · · , h (ud ))) , 0 ≤ ui ≤ 1
is a copula, called distorted copula.
Hd -copulas will be functions Dh (C) for some distortion function h and some
copula C.
d-increasingness of function Dh (C) is obtained when h ∈ Hd , i.e. h is continuous,

                                                                                            21
Arthur CHARPENTIER, Distortion in actuarial sciences




with h (0) = 0 and h (1) = 1, and such that h(k) (x) ≤ 0 for all x ∈ (0, 1) and
k = 2, 3, · · · , d (see Theorem 2.6 and 4.4 in Morillas (2005)).
As a corollary, note that if φ ∈ Φd , then h(x) = exp(−φ(x)) belongs to Hd .
Further, observe that for h, h ∈ Hd ,

           Dh◦h (C) (u1 , · · · , ud ) = (Dh ◦ Dh ) (C) (u1 , · · · , ud ) , 0 ≤ ui ≤ 1.

Again, it is possible to get an intuitive interpretation of that distortion.
Consider a max-stable copula C. Let X be a random vector such that X given Θ
                                          Θ
has copula C and P (Xi ≤ xi |Θ) = Gi (xi ) , i = 1, · · · , d.
Then, the (unconditional) joint distribution function of X is given by

 F (x)      =      E (P (X1 ≤ x1 , · · · , Xd ≤ xd |Θ))
            =      E (C (P (X1 ≤ xi |Θ) , · · · , P (Xd ≤ xd |Θ)))
                                        Θ               Θ
            =      E C G1 (x1 ) , · · · , Gd (xd )          = E C Θ (G1 (x1 ) , · · · , Gd (xd ))
            =      ψ (− log C (G1 (x1 ) , · · · , Gd (xd ))) ,

                                                                                                22
Arthur CHARPENTIER, Distortion in actuarial sciences




where ψ is the Laplace transform of the distribution of Θ, i.e.
ψ (t) = E (exp (−tΘ)), since C is a max-stable copula, i.e.
                                Θ                       Θ
                C G1 (x1 ) , · · · , Gd (xd )               = C Θ (G1 (x1 ) , · · · , Gd (xd )) .

The unconditional marginal distribution functions are Fi (xi ) = ψ (− log Gi (xi )),
and therefore

         CX (x1 , · · · , xd ) = ψ − log C exp −ψ −1 (x) , exp −ψ −1 (y)                            .

Note that since ψ −1 is completly montone, then h belongs to Hd .




                                                                                                        23
Arthur CHARPENTIER, Distortion in actuarial sciences




Remark2
It is possible to use distortion to obtain stronger tail dependence (with results that can be
related to C & Segers (2007)). Recall that
                                       C(u, u)              1 − C(u, u)
                          λL = lim             and λU = lim             .
                                   u→0   u              u→1    1−u
If h−1 is regularly varying in 0 with exponent α > 0, i.e. h−1 (t) ∼ L0 tα in 0, then
λL (Dh (C)) = [λL (C)]α .
If h−1 is regularly varying in 1 with exponent β > 0, i.e. 1 − h−1 (t) ∼ L0 [1 − t]β in 1,
then λU (Dh (C)) = 2 − [2 − λU (C)]β .




                                                                                         24
Arthur CHARPENTIER, Distortion in actuarial sciences




5      Application to multivariate risk measure
Wang (1996) proposed the risk measure based on distortion function
g(t) = Φ(Φ−1 (t) − λ), with λ ≥ 0 (to be convex).
Valdez (2009) suggested a multivariate distortion.




                                                                     25
Arthur CHARPENTIER, Distortion in actuarial sciences




6      Application to aging problems
Let T = (T1 , · · · , Td ) denote remaining lifetime, at time t = 0. Consider the
conditional distribution

                                (T1 , · · · , Td ) given T1 > t, · · · , Td > t

for some t > 0.
Let C denote the survival copula of T ,

                 P(T1 > t1 , · · · , Td > td ) = C(P(T1 > t1 ), · · · , P(T1 > tc )).

The survival copula of the conditional distribution is the copula of

                   (U1 , · · · , Ud ) given U1 < F 1 (t) , · · · ,underbraceF d (t)ud
                                                        u1

where (U1 , · · · , Ud ) has distribution C , and where Fi is the distribution of Ti

                                                                                        26
Arthur CHARPENTIER, Distortion in actuarial sciences




Let C be a copula and let U be a random vector with joint distribution function
C. Let u ∈ (0, 1]d be such that C(u) > 0. The lower tail dependence copula of C
at level u is defined as the copula, denoted Cu , of the joint distribution of U
conditionally on the event {U ≤ u} = {U1 ≤ u1 , · · · , Ud ≤ ud }.


6.1      Aging with Archimedean copulas

If C is a strict Archimedean copula with generator φ (i.e. φ(0) = ∞), then the
lower tail dependence copula relative to C at level u is given by the strict
Archimedean copula with generator φu defined by

                             φu (t) = φ(t · C(u)) − φ(C(u)), 0 ≤ t ≤ 1,

where C(u) = φ−1 [φ(u1 ) + · · · + φ(ud )] (see Juri & Wüthrich (2002) or C & Juri
(2007)).


                                                                               27
Arthur CHARPENTIER, Distortion in actuarial sciences




Example8
                                                           θ
Gumbel copulas have generator φ (t) = [− ln t] where θ ≥ 1. For any u ∈ (0, 1]d , the
corresponding conditional copula has generator
                                          θ
                           1/θ                                          θ                 θ
        φu (t) = M               − ln t       − M where M = [− ln u1 ] + · · · + [− ln ud ] .

Example9
Clayton copulas C have generator φ (t) = t−θ − 1 where θ > 0. Hence,

φu (t) = [t·C(u)]−θ −1−φ(C(u)) = t−θ ·C(u)−θ −1−[C(u)−θ −1] = C(u)−θ ·[t−θ −1],

hence φu (t) = C(u)−θ · φ(t). Since the generator of an Archimedean copula is unique
up to a multiplicative constant, φu is also the generator of Clayton copula, with
parameter θ.
Theorem3
Consider X with Archimedean copula, having a factor representation, and let ψ denote
the Laplace transform of the heterogeneity factor Θ. Let u ∈ (0, 1]d , then X given
       −1                                          −1                      −1
X ≤ FX (u) (in the pointwise sense, i.e. X1 ≤ F1 (u1 ), · · · ., Xd ≤ Fd (ud )) is an

                                                                                                28
Arthur CHARPENTIER, Distortion in actuarial sciences




Archimedean copula with a factor representation, where the factor has Laplace transform
                                               ψ t + ψ −1 (C(u))
                                      ψu (t) =                   .
                                                     C(u)


6.2      Aging with distorted copulas copulas
Recall that Hd -copulas are defined as

               Dh (C)(u1 , · · · , ud ) = h−1 (C(h(u1 ), · · · , h(ud ))), 0 ≤ ui ≤ 1,

where C is a copula, and h ∈ Hd is a d-distortion function.
Assume that there exists a positive random variable Θ, such that, conditionally
on Θ, random vector X = (X1 , · · · , Xd ) has copula C, which does not depend on
Θ. Assume moreover that C is in extreme value copula, or max-stable copula (see
e.g. Joe (1997)) : C xh , · · · , xh = C h (x1 , · · · , xd ) for all h ≥ 0. The following
                      1            d
result holds,
Lemma1

                                                                                         29
Arthur CHARPENTIER, Distortion in actuarial sciences




Let Θ be a random variable with Laplace transform ψ, and consider a random vector
X = (X1 , · · · , Xd ) such that X given Θ has copula C, an extreme value copula.
                                                                Θ
Assume that, for all i = 1, · · · , d, P (Xi ≤ xi |Θ) = Gi (xi ) where the Gi ’s are
distribution functions. Then X has copula
    CX (x1 , · · · , xd ) = ψ − log C exp −ψ −1 (x1 ) , · · · , exp −ψ −1 (xd )     ,
whose copula is of the form Dh (C) with h(·) = exp −ψ −1 (·) .
Theorem4
Let X be a random vector with an Hd -copula with a factor representation, let ψ denote
the Laplace transform of the heterogeneity factor Θ, C denote the underlying copula, and
Gi ’s the marginal distributions.
                                                   −1
Let u ∈ (0, 1]d , then, the copula of X given X ≤ FX (u) is
                             −1                      −1
CX,u (x) = ψu − log Cu exp −ψu (x1 ) , · · · , exp −ψu (xd )                = Dhu (Cu )(x),
                        −1
where hu (·) = exp −ψu (·) , and where
– ψu is the Laplace transform defined as ψu (t) = ψ (t + α) /ψ (α) where
  α = − log (C (u∗ )), u∗ = exp −ψ −1 (ui ) for all i = 1, · · · , d. Hence, ψu is the
                         i

                                                                                        30
Arthur CHARPENTIER, Distortion in actuarial sciences




                                    −1
  Laplace transform of Θ given X ≤ FX (u),
                     −1                Θ
– P Xi ≤ xi |X ≤ FX (u) , Θ = Gi (xi ) for all i = 1, · · · , d, where

                                          C (u∗ , u∗ , · · · , Gi (xi ) , · · · , u∗ )
                                              1     2                              d
                               Gi (xi ) =                                              ,
                                            C (u∗ , u∗ , · · · , u∗ , · · · , u∗ )
                                                  1     2          i            d

– and Cu is the following copula
                                      C G1 G1 −1 (x1 ) , · · · , Gd Gd −1 (xd )
                       Cu (x) =                  −1                           −1           .
                                        C    G1 F1      (u1 ) , · · ·   , Gd Fd    (ud )




                                                                                               31

More Related Content

What's hot (20)

Slides ihp
Slides ihpSlides ihp
Slides ihp
 
slides tails copulas
slides tails copulasslides tails copulas
slides tails copulas
 
Slides sales-forecasting-session2-web
Slides sales-forecasting-session2-webSlides sales-forecasting-session2-web
Slides sales-forecasting-session2-web
 
Slides amsterdam-2013
Slides amsterdam-2013Slides amsterdam-2013
Slides amsterdam-2013
 
Slides toulouse
Slides toulouseSlides toulouse
Slides toulouse
 
Slides ensae 8
Slides ensae 8Slides ensae 8
Slides ensae 8
 
Slides angers-sfds
Slides angers-sfdsSlides angers-sfds
Slides angers-sfds
 
Slides lausanne-2013-v2
Slides lausanne-2013-v2Slides lausanne-2013-v2
Slides lausanne-2013-v2
 
Slides erasmus
Slides erasmusSlides erasmus
Slides erasmus
 
Slides smart-2015
Slides smart-2015Slides smart-2015
Slides smart-2015
 
slides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial scienceslides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial science
 
Quantile and Expectile Regression
Quantile and Expectile RegressionQuantile and Expectile Regression
Quantile and Expectile Regression
 
Slides ineq-4
Slides ineq-4Slides ineq-4
Slides ineq-4
 
Slides euria-1
Slides euria-1Slides euria-1
Slides euria-1
 
Slides edf-2
Slides edf-2Slides edf-2
Slides edf-2
 
So a webinar-2013-2
So a webinar-2013-2So a webinar-2013-2
So a webinar-2013-2
 
Slides ensae-2016-8
Slides ensae-2016-8Slides ensae-2016-8
Slides ensae-2016-8
 
Slides barcelona Machine Learning
Slides barcelona Machine LearningSlides barcelona Machine Learning
Slides barcelona Machine Learning
 
Multiattribute utility copula
Multiattribute utility copulaMultiattribute utility copula
Multiattribute utility copula
 
Slides erm-cea-ia
Slides erm-cea-iaSlides erm-cea-ia
Slides erm-cea-ia
 

Similar to Slides université Laval, Actuariat, Avril 2011

Intro probability 2
Intro probability 2Intro probability 2
Intro probability 2Phong Vo
 
Finance Enginering from Columbia.pdf
Finance Enginering from Columbia.pdfFinance Enginering from Columbia.pdf
Finance Enginering from Columbia.pdfCarlosLazo45
 
Introduction to Stochastic calculus
Introduction to Stochastic calculusIntroduction to Stochastic calculus
Introduction to Stochastic calculusAshwin Rao
 
Distributionworkshop 2.pptx
Distributionworkshop 2.pptxDistributionworkshop 2.pptx
Distributionworkshop 2.pptxnagalakshmig4
 
GradStudentSeminarSept30
GradStudentSeminarSept30GradStudentSeminarSept30
GradStudentSeminarSept30Ryan White
 
Quantum modes - Ion Cotaescu
Quantum modes - Ion CotaescuQuantum modes - Ion Cotaescu
Quantum modes - Ion CotaescuSEENET-MTP
 
Actuarial Science Reference Sheet
Actuarial Science Reference SheetActuarial Science Reference Sheet
Actuarial Science Reference SheetDaniel Nolan
 
Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...
Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...
Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...Christian Robert
 
Slides econometrics-2018-graduate-4
Slides econometrics-2018-graduate-4Slides econometrics-2018-graduate-4
Slides econometrics-2018-graduate-4Arthur Charpentier
 
ON OPTIMALITY OF THE INDEX OF SUM, PRODUCT, MAXIMUM, AND MINIMUM OF FINITE BA...
ON OPTIMALITY OF THE INDEX OF SUM, PRODUCT, MAXIMUM, AND MINIMUM OF FINITE BA...ON OPTIMALITY OF THE INDEX OF SUM, PRODUCT, MAXIMUM, AND MINIMUM OF FINITE BA...
ON OPTIMALITY OF THE INDEX OF SUM, PRODUCT, MAXIMUM, AND MINIMUM OF FINITE BA...UniversitasGadjahMada
 

Similar to Slides université Laval, Actuariat, Avril 2011 (20)

Slides mc gill-v3
Slides mc gill-v3Slides mc gill-v3
Slides mc gill-v3
 
Slides mc gill-v4
Slides mc gill-v4Slides mc gill-v4
Slides mc gill-v4
 
Slides lln-risques
Slides lln-risquesSlides lln-risques
Slides lln-risques
 
Intro probability 2
Intro probability 2Intro probability 2
Intro probability 2
 
Finance Enginering from Columbia.pdf
Finance Enginering from Columbia.pdfFinance Enginering from Columbia.pdf
Finance Enginering from Columbia.pdf
 
Proba stats-r1-2017
Proba stats-r1-2017Proba stats-r1-2017
Proba stats-r1-2017
 
Introduction to Stochastic calculus
Introduction to Stochastic calculusIntroduction to Stochastic calculus
Introduction to Stochastic calculus
 
Distributionworkshop 2.pptx
Distributionworkshop 2.pptxDistributionworkshop 2.pptx
Distributionworkshop 2.pptx
 
Slides risk-rennes
Slides risk-rennesSlides risk-rennes
Slides risk-rennes
 
Mcgill3
Mcgill3Mcgill3
Mcgill3
 
GradStudentSeminarSept30
GradStudentSeminarSept30GradStudentSeminarSept30
GradStudentSeminarSept30
 
Slides erm-cea-ia
Slides erm-cea-iaSlides erm-cea-ia
Slides erm-cea-ia
 
Quantum modes - Ion Cotaescu
Quantum modes - Ion CotaescuQuantum modes - Ion Cotaescu
Quantum modes - Ion Cotaescu
 
Actuarial Science Reference Sheet
Actuarial Science Reference SheetActuarial Science Reference Sheet
Actuarial Science Reference Sheet
 
Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...
Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...
Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...
 
Distributions
DistributionsDistributions
Distributions
 
Slides econometrics-2018-graduate-4
Slides econometrics-2018-graduate-4Slides econometrics-2018-graduate-4
Slides econometrics-2018-graduate-4
 
ON OPTIMALITY OF THE INDEX OF SUM, PRODUCT, MAXIMUM, AND MINIMUM OF FINITE BA...
ON OPTIMALITY OF THE INDEX OF SUM, PRODUCT, MAXIMUM, AND MINIMUM OF FINITE BA...ON OPTIMALITY OF THE INDEX OF SUM, PRODUCT, MAXIMUM, AND MINIMUM OF FINITE BA...
ON OPTIMALITY OF THE INDEX OF SUM, PRODUCT, MAXIMUM, AND MINIMUM OF FINITE BA...
 
MUMS: Bayesian, Fiducial, and Frequentist Conference - Statistical Sparsity, ...
MUMS: Bayesian, Fiducial, and Frequentist Conference - Statistical Sparsity, ...MUMS: Bayesian, Fiducial, and Frequentist Conference - Statistical Sparsity, ...
MUMS: Bayesian, Fiducial, and Frequentist Conference - Statistical Sparsity, ...
 
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
 

More from Arthur Charpentier (20)

Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
ACT6100 introduction
ACT6100 introductionACT6100 introduction
ACT6100 introduction
 
Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)
 
Control epidemics
Control epidemics Control epidemics
Control epidemics
 
STT5100 Automne 2020, introduction
STT5100 Automne 2020, introductionSTT5100 Automne 2020, introduction
STT5100 Automne 2020, introduction
 
Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
Machine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & InsuranceMachine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & Insurance
 
Reinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and FinanceReinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and Finance
 
Optimal Control and COVID-19
Optimal Control and COVID-19Optimal Control and COVID-19
Optimal Control and COVID-19
 
Slides OICA 2020
Slides OICA 2020Slides OICA 2020
Slides OICA 2020
 
Lausanne 2019 #3
Lausanne 2019 #3Lausanne 2019 #3
Lausanne 2019 #3
 
Lausanne 2019 #4
Lausanne 2019 #4Lausanne 2019 #4
Lausanne 2019 #4
 
Lausanne 2019 #2
Lausanne 2019 #2Lausanne 2019 #2
Lausanne 2019 #2
 
Lausanne 2019 #1
Lausanne 2019 #1Lausanne 2019 #1
Lausanne 2019 #1
 
Side 2019 #10
Side 2019 #10Side 2019 #10
Side 2019 #10
 
Side 2019 #11
Side 2019 #11Side 2019 #11
Side 2019 #11
 
Side 2019 #12
Side 2019 #12Side 2019 #12
Side 2019 #12
 
Side 2019 #9
Side 2019 #9Side 2019 #9
Side 2019 #9
 
Side 2019 #8
Side 2019 #8Side 2019 #8
Side 2019 #8
 
Side 2019 #7
Side 2019 #7Side 2019 #7
Side 2019 #7
 

Slides université Laval, Actuariat, Avril 2011

  • 1. Arthur CHARPENTIER, Distortion in actuarial sciences Distorting probabilities in actuarial sciences Arthur Charpentier Université Rennes 1 arthur.charpentier@univ-rennes1.fr http ://freakonometrics.blog.free.fr/ Univeristé Laval, Québec, Avril 2011 1
  • 2. Arthur CHARPENTIER, Distortion in actuarial sciences 1 Decision theory and distorted risk measures Consider a preference ordering among risks, such that 1. ˜ L ˜ L ˜ ˜ is distribution based, i.e. if X Y , ∀X = X Y = Y , then X Y ; hence, we can write FX FY 2. is total, reflexive and transitive, 3. is continuous, i.e. ∀FX , FY and FZ such that FX FY FZ , ∃λ, µ ∈ (0, 1) such that λFX + (1 − λ)FZ FY µFX + (1 − µ)FZ . 4. satisfies an independence axiom, i.e. ∀FX , FY and FZ , and ∀λ ∈ (0, 1), FX FY =⇒ λFX + (1 − λ)FZ λFY + (1 − λ)FZ . 5. satisfies an ordering axiom, ∀X and Y constant (i.e. P(X = x) = P(Y = y) = 1, FX FY =⇒ x ≤ y. 2
  • 3. Arthur CHARPENTIER, Distortion in actuarial sciences Theorem1 Ordering satisfies axioms 1-2-3-4-5 if and only if ∃u : R → R, continuous, strictly increasing and unique (up to an increasing affine transformation) such that ∀FX and FY : FX FY ⇔ u(x)dFX (x) ≤ u(x)dFY (x) R R ⇔ E[u(X)] ≤ E[u(Y )]. But if we consider an alternative to the independence axiom 4’. satisfies an dual independence axiom, i.e. ∀FX , FY and FZ , and ∀λ ∈ (0, 1), −1 −1 −1 −1 FX FY =⇒ [λFX + (1 − λ)FZ ]−1 [λFY + (1 − λ)FZ ]−1 . we (Yaari (1987)) obtain a dual representation theorem, Theorem2 Ordering satisfies axioms 1-2-3-4’-5 if and only if ∃g : [0, 1] → R, continuous, strictly increasing such that ∀FX and FY : FX FY ⇔ g(F X (x))dx ≤ g(F Y (x))dx R R 3
  • 4. Arthur CHARPENTIER, Distortion in actuarial sciences Standard axioms required on risque measures R : X → R, L – law invariance, X = Y =⇒ R(X) = R(Y ) – increasing X ≥ Y =⇒ R(X) ≥ R(Y ), – translation invariance ∀k ∈ R, =⇒ R(X + k) = R(X) + k, – homogeneity ∀λ ∈ R+ , R(λX) = λ · R(X), – subadditivity R(X + Y ) ≤ R(X) + R(Y ), – convexity ∀β ∈ [0, 1], R(βλX + [1 − β]Y ) ≤ β · R(X) + [1 − β] · R(Y ). – additivity for comonotonic risks ∀X and Y comonotonic, R(X + Y ) = R(X) + R(Y ), – maximal correlation (w.r.t. measure µ) ∀X, R(X) = sup {E(X · U ) where U ∼ µ} ˜ ˜ ˜ L – strong coherence ∀X and Y , sup{R(X + Y )} = R(X) + R(Y ), where X = X ˜ L and Y = Y . 4
  • 5. Arthur CHARPENTIER, Distortion in actuarial sciences Proposition1 If R is a monetary convex fonction, then the three statements are equivalent, – R is strongly coherent, – R is additive for comonotonic risks, – R is a maximal correlation measure. Proposition2 A coherente risk measure R is additive for comonotonic risks if and only if there exists a decreasing positive function φ on [0, 1] such that 1 R(X) = φ(t)F −1 (1 − t)dt 0 where F (x) = F(X ≤ x). see Kusuoka (2001), i.e. R is a spectral risk measure. 5
  • 6. Arthur CHARPENTIER, Distortion in actuarial sciences Definition1 A distortion function is a function g : [0, 1] → [0, 1] such that g(0) = 0 and g(1) = 1. For positive risks, Definition1 Given distortion function g, Wang’s risk measure, denoted Rg , is ∞ ∞ Rg (X) = g (1 − FX (x)) dx = g F X (x) dx (1) 0 0 Proposition1 Wang’s risk measure can be defined as 1 1 −1 Rg (X) = FX (1 − α) dg(α) = VaR[X; 1 − α] dg(α). (2) 0 0 6
  • 7. Arthur CHARPENTIER, Distortion in actuarial sciences More generally (risks taking value in R) Definition2 We call distorted risk measure 1 R(X) = F −1 (1 − u)dg(u) 0 where g is some distortion function. Proposition3 R(X) can be written +∞ 0 R(X) = g(1 − F (x))dx − [1 − g(1 − F (x))]dx. 0 −∞ 7
  • 8. Arthur CHARPENTIER, Distortion in actuarial sciences risk measures R distortion function g VaR g (x) = I[x ≥ p] Tail-VaR g (x) = min {x/p, 1} PH g (x) = xp 1/p Dual Power g (x) = 1 − (1 − x) Gini g (x) = (1 + p) x − px2 exponential transform g (x) = (1 − px ) / (1 − p) Table 1 – Standard risk measures, p ∈ (0, 1). 8
  • 9. Arthur CHARPENTIER, Distortion in actuarial sciences Here, it looks like risk measures can be seen as R(X) = Eg◦P (X). Remark1 Let Q denote the distorted measure induced by g on P, denoted g ◦ P i.e. Q([a, +∞)) = g(P([a, +∞))). Since g is increasing on [0, 1] Q is a capacity. Example1 Consider function g(x) = xk . The PH - proportional hazard - risk measure is 1 ∞ R(X; k) = F −1 (1 − u)kuk−1 du = [F (x)]k dx 0 0 If k is an integer [F (x)]k is the survival distribution of the minimum over k values. Definition2 The Esscher risk measure with parameter h > 0 is Es[X; h], defined as E[X exp(hX)] d Es[X; h] = = ln MX (h). MX (h) dh 9
  • 10. Arthur CHARPENTIER, Distortion in actuarial sciences 2 Archimedean copulas Definition3 Let φ denote a decreasing function (0, 1] → [0, ∞] such that φ(1) = 0, and such that φ−1 is d-monotone, i.e. for all k = 0, 1, · · · , d, (−1)k [φ−1 ](k) (t) ≥ 0 for all t. Define the inverse (or quasi-inverse if φ(0) < ∞) as   φ−1 (t) for 0 ≤ t ≤ φ(0) φ−1 (t) =  0 for φ(0) < t < ∞. The function C(u1 , · · · , un ) = φ−1 (φ(u1 ) + · · · + φ(ud )), u1 , · · · , un ∈ [0, 1], is a copula, called an Archimedean copula, with generator φ. Let Φd denote the set of generators in dimension d. Example2 The independent copula C ⊥ is an Archimedean copula, with generator φ(t) = − log t. 10
  • 11. Arthur CHARPENTIER, Distortion in actuarial sciences The upper Fréchet-Hoeffding copula, defined as the minimum componentwise, M (u) = min{u1 , · · · , ud }, is not Archimedean (but can be obtained as the limit of some Archimedean copulas). Set λ(t) = exp[−φ(t)] (the multiplicative generator), then C(u1 , ..., ud ) = λ−1 (λ(u1 ) · · · λ(ud )), ∀u1 , ..., ud ∈ [0, 1], which can be written C(u1 , ..., ud ) = λ−1 (C ⊥ [λ(u1 ), . . . , λ(ud )]), ∀u1 , ..., ud ∈ [0, 1], Note that it is possible to get an interpretation of that distortion of the independence. A large subclass of Archimedean copula in dimension d is the class of Archimedean copulas obtained using the frailty approach. Consider random variables X1 , · · · , Xd conditionally independent, given a latent Θ factor Θ, a positive random variable, such that P (Xi ≤ xi |Θ) = Gi (x) where Gi denotes a baseline distribution function. 11
  • 12. Arthur CHARPENTIER, Distortion in actuarial sciences The joint distribution function of X is given by FX (x1 , · · · , xd ) = E (P (X1 ≤ x1 , · · · , Xd ≤ Xd |Θ)) d d Θ = E P (Xi ≤ xi |Θ) =E Gi (xi ) i=1 i=1 d d = E exp [−Θ (− log Gi (xi ))] =ψ − log Gi (xi ) , i=1 i=1 where ψ is the Laplace transform of the distribution of Θ, i.e. ψ (t) = E (exp (−tΘ)) . Because the marginal distributions are given respectively by Fi (xi ) = P(Xi ≤ xi ) = ψ (− log Gi (xi )) , the copula of X is −1 −1 C (u) = FX F1 (u1 ) , · · · , Fd (ud ) = ψ ψ −1 (u) + · · · + ψ −1 (ud ) This copula is an Archimedean copula with generator φ = ψ −1 (see e.g. Clayton (1978), Oakes (1989), Bandeen-Roche & Liang (1996) for more details). 12
  • 13. Arthur CHARPENTIER, Distortion in actuarial sciences 3 Hierarchical Archimedean copulas It is possible to look at C(u1 , · · · , ud ) defined as φ−1 [φ1 [φ−1 (φ2 [· · · φ−1 [φd−1 (u1 ) + φd−1 (u2 )] + · · · + φ2 (ud−1 ))] + φ1 (ud )] 1 2 d−1 where φi are generators. C is a copula if φi ◦ φ−1 is the inverse of a Laplace i−1 transform. This copula is said to be a fully nested Archimedean (FNA) copula. E.g. in dimension d = 5, we get φ1 [φ1 (φ−1 [φ2 (φ−1 [φ3 (φ−1 [φ4 (u1 ) + φ4 (u2 )]) + φ3 (u3 )]) + φ2 (u4 )]) + φ1 (u5 )]. −1 2 3 4 It is also possible to consider partially nested Archimedean (PNA) copulas, e.g. by coupling (U1 , U2 , U3 ), and (U4 , U5 ), φ−1 [φ4 (φ−1 [φ1 (φ−1 [φ2 (u1 ) + φ2 (u2 )]) + φ1 (u3 )]) + φ4 (φ−1 [φ3 (u4 ) + φ3 (u5 )])] 4 1 2 3 Again, it is a copula if φ2 ◦ φ−1 is the inverse of a Laplace transform, as well as 1 φ4 ◦ φ−1 and φ4 ◦ φ−1 . 1 3 13
  • 14. Arthur CHARPENTIER, Distortion in actuarial sciences φ1 φ2 φ4 φ3 φ1 φ4 φ2 φ3 U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Figure 1 – fully nested Archimedean copula, and partially nested Archimedean copula. 14
  • 15. Arthur CHARPENTIER, Distortion in actuarial sciences It is also possible to consider φ−1 [φ3 (φ−1 [φ1 (u1 ) + φ1 (u2 ) + φ1 (u3 )]) + φ3 (φ−1 [φ2 (u4 ) + φ2 (u5 )])]. 3 1 2 if φ3 ◦ φ−1 and φ3 ◦ φ−1 are inverses of Laplace transform. Or 1 2 φ−1 [φ3 (φ−1 [φ1 (u1 ) + φ1 (u2 )] + φ3 (u3 ) + φ3 (φ−1 [φ2 (u4 ) + φ2 (u5 )])]. 3 1 2 15
  • 16. Arthur CHARPENTIER, Distortion in actuarial sciences φ3 φ3 φ1 φ2 φ1 φ2 U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 Figure 2 – Copules Archimédiennes hiérarchiques avec deux constructions dif- férentes. 16
  • 17. Arthur CHARPENTIER, Distortion in actuarial sciences Example3 If φi ’s are Gumbel’s generators, with parameter θi , a sufficient condition for C to be a FNA copula is that θi ’s increasing. Similarly if φi ’s are Clayton’s generators. Again, an heuristic interpretation can be derived, see Hougaard (2000), with two frailties Θ1 and Θ2 such that 17
  • 18. Arthur CHARPENTIER, Distortion in actuarial sciences 4 Distorting copulas Genest & Rivest (2001) extended the concept of Archimedean copulas introducing the multivariate probability integral transformation (Wang, Nelsen & Valdez (2005) called this the distorted copula, while Klement, Mesiar & Pap (2005) or Durante & Sempi (2005) called this the transformed copula). Consider a copula C. Let h be a continuous strictly concave increasing function [0, 1] → [0, 1] satisfying h (0) = 0 and h (1) = 1, such that Dh (C) (u1 , · · · , ud ) = h−1 (C (h (u1 ) , · · · , h (ud ))), 0 ≤ ui ≤ 1 is a copula. Those functions will be called distortion functions. Example4 A classical example is obtained when h is a power function, and when the power is the inverse of an integer, hn (x) = x1/n , i.e. Dhn (C) (u, v) = C n (u1/n , v 1/n ), 0 ≤ u, v ≤ 1 and n ∈ N. Then this copula is the survival copula of the componentwise maxima : the copula of 18
  • 19. Arthur CHARPENTIER, Distortion in actuarial sciences (max{X1 , · · · , Xn }, max{Y1 , · · · , Yn }) is Dhn (C), where {(X1 , Y1 ), · · · , (Xn , Yn )} is an i.i.d. sample, and the (Xi , Yi )’s have copula C. A max-stable copula is a copula C such that ∀n ∈ N, 1/n 1/n C n (u1 , · · · , ud ) = C(u1 , · · · , ud ). Example5 Let φ denote a convex decreasing function on (0, 1] such that φ(1) = 0, and define C(u, v) = φ−1 (φ(u) + φ(v)) = Dexp[−φ] (C ⊥ ). This function is an Archimedean copula. Example6 A distorted version of the comonontonic copula is the comonotonic copula, h−1 [min{h(u1 ), · · · , h(ud )}] = min{u1 , · · · , ud } Example7 Following the idea of Capéraà, Fougères & Genest (2000), it is possible to construct Archimax copulas as distortions of max-stable copulas. In dimension d = 2, max-stable 19
  • 20. Arthur CHARPENTIER, Distortion in actuarial sciences copulas are characterized through a generator A such that log(u) C(u, v) = exp log(uv)A log(uv) Here consider φ an Archimedean generator, then Archimax copulas are defined as φ(u) C(u, v) = φ−1 [φ(u) + φ(v)]A φ(u) + φ(v) In the bivariate case, h need not be differentiable, and concavity is a sufficient condition. 20
  • 21. Arthur CHARPENTIER, Distortion in actuarial sciences With nonconcave distortion function, distorted copulas are semi-copulas, from Bassan & Spizzichino (2001). Definition4 Function S : [0, 1]d → [0, 1] is a semi-copula if 0 ≤ ui ≤ 1, i = 1, · · · , d, S(1, ..., 1, ui , 1, ..., 1) = ui , (3) S(u1 , ..., ui−1 , 0, ui+1 , ..., ud ) = 0, (4) and s → S(u1 , ..., ui−1 , s, ui+1 , ..., ud ) is increasing on [0, 1]. Let Hd denote the set of continuous strictly increasing functions [0, 1] → [0, 1] such that h (0) = 0 and h (1) = 1, C ∈ C, Dh (C) (u1 , · · · , ud ) = h−1 (C (h (u1 ) , · · · , h (ud ))) , 0 ≤ ui ≤ 1 is a copula, called distorted copula. Hd -copulas will be functions Dh (C) for some distortion function h and some copula C. d-increasingness of function Dh (C) is obtained when h ∈ Hd , i.e. h is continuous, 21
  • 22. Arthur CHARPENTIER, Distortion in actuarial sciences with h (0) = 0 and h (1) = 1, and such that h(k) (x) ≤ 0 for all x ∈ (0, 1) and k = 2, 3, · · · , d (see Theorem 2.6 and 4.4 in Morillas (2005)). As a corollary, note that if φ ∈ Φd , then h(x) = exp(−φ(x)) belongs to Hd . Further, observe that for h, h ∈ Hd , Dh◦h (C) (u1 , · · · , ud ) = (Dh ◦ Dh ) (C) (u1 , · · · , ud ) , 0 ≤ ui ≤ 1. Again, it is possible to get an intuitive interpretation of that distortion. Consider a max-stable copula C. Let X be a random vector such that X given Θ Θ has copula C and P (Xi ≤ xi |Θ) = Gi (xi ) , i = 1, · · · , d. Then, the (unconditional) joint distribution function of X is given by F (x) = E (P (X1 ≤ x1 , · · · , Xd ≤ xd |Θ)) = E (C (P (X1 ≤ xi |Θ) , · · · , P (Xd ≤ xd |Θ))) Θ Θ = E C G1 (x1 ) , · · · , Gd (xd ) = E C Θ (G1 (x1 ) , · · · , Gd (xd )) = ψ (− log C (G1 (x1 ) , · · · , Gd (xd ))) , 22
  • 23. Arthur CHARPENTIER, Distortion in actuarial sciences where ψ is the Laplace transform of the distribution of Θ, i.e. ψ (t) = E (exp (−tΘ)), since C is a max-stable copula, i.e. Θ Θ C G1 (x1 ) , · · · , Gd (xd ) = C Θ (G1 (x1 ) , · · · , Gd (xd )) . The unconditional marginal distribution functions are Fi (xi ) = ψ (− log Gi (xi )), and therefore CX (x1 , · · · , xd ) = ψ − log C exp −ψ −1 (x) , exp −ψ −1 (y) . Note that since ψ −1 is completly montone, then h belongs to Hd . 23
  • 24. Arthur CHARPENTIER, Distortion in actuarial sciences Remark2 It is possible to use distortion to obtain stronger tail dependence (with results that can be related to C & Segers (2007)). Recall that C(u, u) 1 − C(u, u) λL = lim and λU = lim . u→0 u u→1 1−u If h−1 is regularly varying in 0 with exponent α > 0, i.e. h−1 (t) ∼ L0 tα in 0, then λL (Dh (C)) = [λL (C)]α . If h−1 is regularly varying in 1 with exponent β > 0, i.e. 1 − h−1 (t) ∼ L0 [1 − t]β in 1, then λU (Dh (C)) = 2 − [2 − λU (C)]β . 24
  • 25. Arthur CHARPENTIER, Distortion in actuarial sciences 5 Application to multivariate risk measure Wang (1996) proposed the risk measure based on distortion function g(t) = Φ(Φ−1 (t) − λ), with λ ≥ 0 (to be convex). Valdez (2009) suggested a multivariate distortion. 25
  • 26. Arthur CHARPENTIER, Distortion in actuarial sciences 6 Application to aging problems Let T = (T1 , · · · , Td ) denote remaining lifetime, at time t = 0. Consider the conditional distribution (T1 , · · · , Td ) given T1 > t, · · · , Td > t for some t > 0. Let C denote the survival copula of T , P(T1 > t1 , · · · , Td > td ) = C(P(T1 > t1 ), · · · , P(T1 > tc )). The survival copula of the conditional distribution is the copula of (U1 , · · · , Ud ) given U1 < F 1 (t) , · · · ,underbraceF d (t)ud u1 where (U1 , · · · , Ud ) has distribution C , and where Fi is the distribution of Ti 26
  • 27. Arthur CHARPENTIER, Distortion in actuarial sciences Let C be a copula and let U be a random vector with joint distribution function C. Let u ∈ (0, 1]d be such that C(u) > 0. The lower tail dependence copula of C at level u is defined as the copula, denoted Cu , of the joint distribution of U conditionally on the event {U ≤ u} = {U1 ≤ u1 , · · · , Ud ≤ ud }. 6.1 Aging with Archimedean copulas If C is a strict Archimedean copula with generator φ (i.e. φ(0) = ∞), then the lower tail dependence copula relative to C at level u is given by the strict Archimedean copula with generator φu defined by φu (t) = φ(t · C(u)) − φ(C(u)), 0 ≤ t ≤ 1, where C(u) = φ−1 [φ(u1 ) + · · · + φ(ud )] (see Juri & Wüthrich (2002) or C & Juri (2007)). 27
  • 28. Arthur CHARPENTIER, Distortion in actuarial sciences Example8 θ Gumbel copulas have generator φ (t) = [− ln t] where θ ≥ 1. For any u ∈ (0, 1]d , the corresponding conditional copula has generator θ 1/θ θ θ φu (t) = M − ln t − M where M = [− ln u1 ] + · · · + [− ln ud ] . Example9 Clayton copulas C have generator φ (t) = t−θ − 1 where θ > 0. Hence, φu (t) = [t·C(u)]−θ −1−φ(C(u)) = t−θ ·C(u)−θ −1−[C(u)−θ −1] = C(u)−θ ·[t−θ −1], hence φu (t) = C(u)−θ · φ(t). Since the generator of an Archimedean copula is unique up to a multiplicative constant, φu is also the generator of Clayton copula, with parameter θ. Theorem3 Consider X with Archimedean copula, having a factor representation, and let ψ denote the Laplace transform of the heterogeneity factor Θ. Let u ∈ (0, 1]d , then X given −1 −1 −1 X ≤ FX (u) (in the pointwise sense, i.e. X1 ≤ F1 (u1 ), · · · ., Xd ≤ Fd (ud )) is an 28
  • 29. Arthur CHARPENTIER, Distortion in actuarial sciences Archimedean copula with a factor representation, where the factor has Laplace transform ψ t + ψ −1 (C(u)) ψu (t) = . C(u) 6.2 Aging with distorted copulas copulas Recall that Hd -copulas are defined as Dh (C)(u1 , · · · , ud ) = h−1 (C(h(u1 ), · · · , h(ud ))), 0 ≤ ui ≤ 1, where C is a copula, and h ∈ Hd is a d-distortion function. Assume that there exists a positive random variable Θ, such that, conditionally on Θ, random vector X = (X1 , · · · , Xd ) has copula C, which does not depend on Θ. Assume moreover that C is in extreme value copula, or max-stable copula (see e.g. Joe (1997)) : C xh , · · · , xh = C h (x1 , · · · , xd ) for all h ≥ 0. The following 1 d result holds, Lemma1 29
  • 30. Arthur CHARPENTIER, Distortion in actuarial sciences Let Θ be a random variable with Laplace transform ψ, and consider a random vector X = (X1 , · · · , Xd ) such that X given Θ has copula C, an extreme value copula. Θ Assume that, for all i = 1, · · · , d, P (Xi ≤ xi |Θ) = Gi (xi ) where the Gi ’s are distribution functions. Then X has copula CX (x1 , · · · , xd ) = ψ − log C exp −ψ −1 (x1 ) , · · · , exp −ψ −1 (xd ) , whose copula is of the form Dh (C) with h(·) = exp −ψ −1 (·) . Theorem4 Let X be a random vector with an Hd -copula with a factor representation, let ψ denote the Laplace transform of the heterogeneity factor Θ, C denote the underlying copula, and Gi ’s the marginal distributions. −1 Let u ∈ (0, 1]d , then, the copula of X given X ≤ FX (u) is −1 −1 CX,u (x) = ψu − log Cu exp −ψu (x1 ) , · · · , exp −ψu (xd ) = Dhu (Cu )(x), −1 where hu (·) = exp −ψu (·) , and where – ψu is the Laplace transform defined as ψu (t) = ψ (t + α) /ψ (α) where α = − log (C (u∗ )), u∗ = exp −ψ −1 (ui ) for all i = 1, · · · , d. Hence, ψu is the i 30
  • 31. Arthur CHARPENTIER, Distortion in actuarial sciences −1 Laplace transform of Θ given X ≤ FX (u), −1 Θ – P Xi ≤ xi |X ≤ FX (u) , Θ = Gi (xi ) for all i = 1, · · · , d, where C (u∗ , u∗ , · · · , Gi (xi ) , · · · , u∗ ) 1 2 d Gi (xi ) = , C (u∗ , u∗ , · · · , u∗ , · · · , u∗ ) 1 2 i d – and Cu is the following copula C G1 G1 −1 (x1 ) , · · · , Gd Gd −1 (xd ) Cu (x) = −1 −1 . C G1 F1 (u1 ) , · · · , Gd Fd (ud ) 31