SlideShare a Scribd company logo
1 of 45
Download to read offline
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Kernel Based Estimation
of Inequality Indices and Risk Measures
Arthur Charpentier
arthur.charpentier@univ-rennes1.fr
http://freakonometrics.hypotheses.org/
based on joint work with E. Flachaire
initiated by some joint work with
A. Oulidi, J.D. Fermanian, O. Scaillet, G. Geenens and D. Paindaveine
(Université de Rennes 1, 2015)
1
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Stochastic Dominance and Related Indices
• First Order Stochastic Dominance (cf standard stochastic order, st)
X 1 Y ⇐⇒ FX(t) ≥ FY (t), ∀t ⇐⇒ VaRX(u) ≤ VaRY (u), ∀u
• Convex Stochastic Dominance (cf martingale property)
X cx Y ⇐⇒ E[ ˜Y | ˜X] = ˜X ⇐⇒ ESX(u) ≤ ESY (u), ∀u and E(X) = E(Y )
• Second Order Stochastic Dominance (cf submartingale property,
stop-loss order, icx)
X 2 Y ⇐⇒ E[ ˜Y | ˜X] ≥ ˜X ⇐⇒ ESX(u) ≤ ESY (u), ∀u
• Lorenz Stochastic Dominance (cf dilatation order)
X L Y ⇐⇒
X
E[X]
cx
X
E[Y ]
⇐⇒ LX(u) ≤ LY (u), ∀u
2
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Stochastic Dominance and Related Indices
• Parametric Model(s)
E.g. N(µX, σ2
X) 1 N(µY , σ2
Y ) ⇐⇒ µX ≤ µY and σ2
X = σ2
Y
E.g. N(µX, σ2
X) cx N(µY , σ2
Y ) ⇐⇒ µX = µY and σ2
X ≤ σ2
Y
E.g. N(µX, σ2
X) 2 N(µY , σ2
Y ) ⇐⇒ µX ≤ µY and σ2
X ≤ σ2
Y
Or other parametric distribution. E.g. a lognormal distribution for losses
3
Density
0 5 10 15 20 25
0.000.050.100.150.200.250.30
CumulatedDensity
0 5 10 15 20 25
0.00.20.40.60.81.0
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Stochastic Dominance and Related Indices
• Non-parametric Model(s)
4
Density
0 5 10 15 20 25
0.000.050.100.150.200.250.30
CumulatedDensity
0 5 10 15 20 250.00.20.40.60.81.0
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Nonparametric estimation of the density
5
density
0 20 40 60 80
0.00.10.20.30.40.50.6
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Agenda
sample {y1, · · · , yn} −→ fn(·)
Fn(·) or F−1
n (·)
R(fn)
• Estimating densities of copulas
◦ Beta kernels
◦ Transformed kernels
• Combining transformed and Beta kernels
• Moving around the Beta distribution
◦ Mixtures of Beta distributions
◦ Bernstein Polynomials
• Some probit type transformations
6
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Non parametric estimation of copula density
see C., Fermanian & Scaillet (2005), bias of kernel estimators at endpoints
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.01.2
Kernel based estimation of the uniform density on [0,1]
Density
0.0 0.2 0.4 0.6 0.8 1.00.00.20.40.60.81.01.2
Kernel based estimation of the uniform density on [0,1]
Density
7
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Non parametric estimation of copula density
e.g. E(c(0, 0, h)) =
1
4
· c(u, v) −
1
2
[c1(0, 0) + c2(0, 0)]
1
0
ωK(ω)dω · h + o(h)
0.2 0.4 0.6 0.8
0.2
0.4
0.6
0.8
0
1
2
3
4
5
Estimation of Frank copula
0.2 0.4 0.6 0.8
0.2
0.4
0.6
0.8
0
1
2
3
4
5
Estimation of Frank copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
with a symmetric kernel (here a Gaussian kernel).
8
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Non parametric estimation of copula density
0.0 0.2 0.4 0.6 0.8 1.0
01234
Standard Gaussian kernel estimator, n=100
Estimation of the density on the diagonal
Densityoftheestimator
0.0 0.2 0.4 0.6 0.8 1.0
01234
Standard Gaussian kernel estimator, n=1000
Estimation of the density on the diagonal
Densityoftheestimator
0.0 0.2 0.4 0.6 0.8 1.0
01234
Standard Gaussian kernel estimator, n=10000
Estimation of the density on the diagonal
Densityoftheestimator
Nice asymptotic properties, see Fermanian et al. (2005)... but still: on finite
sample, bad behavior on borders.
9
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Beta kernel idea (for copulas)
see Chen (1999, 2000), Bouezmarni & Rolin (2003),
Kxi (u) ∝ exp −
(u − xi)2
h2
vs. Kxi (u) ∝ u
x1,i
b
1 [1 − u1]
x1,i
b · u
x2,i
b
2 [1 − u2]
x2,i
b
10
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
qq
q
q
q
q q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Beta kernel idea (for copulas)
Beta (independent) bivariate kernel , x=0.0, y=0.0 Beta (independent) bivariate kernel , x=0.2, y=0.0 Beta (independent) bivariate kernel , x=0.5, y=0.0
Beta (independent) bivariate kernel , x=0.0, y=0.2 Beta (independent) bivariate kernel , x=0.2, y=0.2 Beta (independent) bivariate kernel , x=0.5, y=0.2
Beta (independent) bivariate kernel , x=0.0, y=0.5 Beta (independent) bivariate kernel , x=0.2, y=0.5 Beta (independent) bivariate kernel , x=0.5, y=0.5
11
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Beta kernel idea (for copulas)
0.2 0.4 0.6 0.8
0.2
0.4
0.6
0.8
0
1
2
3
4
5
Estimation of Frank copula
0.2 0.4 0.6 0.8
0.2
0.4
0.6
0.8
0.0
0.5
1.0
1.5
2.0
2.5
3.0
Estimation of the copula density (Beta kernel, b=0.1)
0.2 0.4 0.6 0.8
0.2
0.4
0.6
0.8
0.0
0.5
1.0
1.5
2.0
2.5
3.0
Estimation of the copula density (Beta kernel, b=0.05)
12
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Beta kernel idea (for copulas)
0.0 0.2 0.4 0.6 0.8 1.0
01234
Beta kernel estimator, b=0.05, n=100
Estimation of the density on the diagonal
Densityoftheestimator
0.0 0.2 0.4 0.6 0.8 1.0
01234
Beta kernel estimator, b=0.02, n=1000
Estimation of the density on the diagonal
Densityoftheestimator
0.0 0.2 0.4 0.6 0.8 1.0
01234
Beta kernel estimator, b=0.005, n=10000
Estimation of the density on the diagonal
Densityoftheestimator
13
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Transformed kernel idea (for copulas)
[0, 1] × [0, 1] → R × R → [0, 1] × [0, 1]
14
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Transformed kernel idea (for copulas)
0.2 0.4 0.6 0.8
0.2
0.4
0.6
0.8
0
1
2
3
4
5
Estimation of Frank copula
0.2 0.4 0.6 0.8
0.2
0.4
0.6
0.8
0
1
2
3
4
5
Estimation of Frank copula
0.2 0.4 0.6 0.8
0.2
0.4
0.6
0.8
0
1
2
3
4
5
Estimation of Frank copula
15
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Transformed kernel idea (for copulas)
0.0 0.2 0.4 0.6 0.8 1.0
01234
Transformed kernel estimator (Gaussian), n=100
Estimation of the density on the diagonal
Densityoftheestimator
0.0 0.2 0.4 0.6 0.8 1.0
01234
Transformed kernel estimator (Gaussian), n=1000
Estimation of the density on the diagonal
Densityoftheestimator
0.0 0.2 0.4 0.6 0.8 1.0
01234
Transformed kernel estimator (Gaussian), n=10000
Estimation of the density on the diagonal
Densityoftheestimator
see Geenens, C. & Paindaveine (2014) for more details on probit transformation
for copulas.
16
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Combining the two approaches
See Devroye & Györfi (1985), and Devroye & Lugosi (2001)
... use the transformed kernel the other way, R → [0, 1] → R
17
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Devroye & Györfi (1985) - Devroye & Lugosi (2001)
Interesting point, the optimal T should be F,
thus, T can be Fθ
18
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Heavy Tailed distribution
Let X denote a (heavy-tailed) random variable with tail index α ∈ (0, ∞), i.e.
P(X > x) = x−α
L1(x)
where L1 is some regularly varying function.
Let T denote a R → [0, 1] function, such that 1 − T is regularly varying at
infinity, with tail index β ∈ (0, ∞).
Define Q(x) = T−1
(1 − x−1
) the associated tail quantile function, then
Q(x) = x1/β
L2(1/x), where L2 is some regularly varying function (the de Bruyn
conjugate of the regular variation function associated with T). Assume here that
Q(x) = bx1/β
Let U = T(X). Then, as u → 1
P(U > u) ∼ (1 − u)α/β
.
19
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Heavy Tailed distribution
see C. & Oulidi (2007), α = 0.75−1
, T0.75−1 , T0.65−1
lighter
, T0.85−1
heavier
and Tˆα
Density
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.0
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Density
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.0
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Density
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.0
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Density
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.0
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
20
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Heavy Tailed distribution
see C. & Oulidi (2007), impact on quantile estimation ?
20 30 40 50 60 70 80
0.000.010.020.030.040.050.06
Density
21
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Heavy Tailed distribution
see C. & Oulidi (2007), impact on quantile estimation ? bias ? m.s.e. ?
22
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Which transformation ?
GB2 : t(y; a, b, p, q) =
|a|yap−1
bapB(p, q)[1 + (y/b)a]p+q
, for y > 0,
GB2
q→∞

a=1

p=1
55
q=1
@@
GG
a→0
ÓÓ
a=1

p=1
%%
Beta2
q→∞
ww
SM
q→∞
xx
q=1
99
Dagum
p=1

Lognormal Gamma Weibull Champernowne
23
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Estimating a density on R+
• Stay on R+ : xi’s
• Get on [0, 1] : ui = Tθ
(xi) (distribution as uniform as possible)
◦ Use Beta Kernels on ui’s
◦ Mixtures of Beta distributions on ui’s
◦ Bernstein Polynomials on ui’s
• Get on R : use standard kernels (e.g. Gaussian)
◦ On xi = log(xi)
◦ On xi = BoxCoxλ
(xi)
◦ On xi = Φ−1
[Tθ
(xi)]
24
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Beta kernel
g(u) =
n
i=1
1
n
· b u;
Ui
h
,
1 − Ui
h
u ∈ [0, 1].
with some possible boundary correction, as suggested in Chen (1999),
u
h
→ ρ(u, h) = 2h2
+ 2.5 − (4h4
+ 6h2
+ 2.25 − u2
− u/h)1/2
Problem : choice of the bandwidth h ? Standard loss function
L(h) = [gn(u) − g(u)]2
du = [gn(u)]2
du − 2 gn(u) · g(u)du
CV (h)
+ [g(u)]2
du
where
CV (h) = gn(u)du
2
−
2
n
n
i=1
g(−i)(Ui)
25
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Mixture of Beta distributions
g(u) =
k
j=1
πj · b u; αj, βj u ∈ [0, 1].
Problem : choice the number of components k (and estimation...). Use of
stochastic EM algorithm (or sort of) see Celeux  Diebolt (1985).
Bernstein approximation
g(u) =
m
k=1
[mωk] · b (u; k, m − k) u ∈ [0, 1].
where ωk = G
k
m
− G
k − 1
m
.
26
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
On the log-transform
With a standard Gaussian kernel
fX(x) =
1
n
n
i=1
φ(x; xi, h)
A Gaussian kernel on a log transform,
fX(x) =
1
x
fX (log x) =
1
n
n
i=1
λ(x; log xi, h)
where λ(·; µ, σ) is the density of the log-normal distribution. Here, in 0,
bias[fX(x)] ∼
h2
2
[fX(x) + 3x · fX(x) + x2
· fX(x)]
and
Var[fX(x)] ∼
fX(x)
xnh
27
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
On the Box-Cox-transform
More generally, instead of transformed sample Yi = log[Xi], consider
Yi =
Xλ
i − 1
λ
when λ = 0.
Find the optimal transformation using standard regression techniques (least
squares)
Xi =
Xλ
i − 1
λ
when λ = 0
and Xi = log[Xi] if λ = 0. The density estimation is here
fX(x) = xλ −1
fX
xλ
− 1
λ
28
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Illustration with Log-normal samples
Standard kernel (− Silvermans’s rule h )
Density
0 2 4 6 8 10 12
0.00.10.20.30.40.50.6
Density
0 2 4 6 8 10 12
0.00.10.20.30.40.50.6
Density
0 2 4 6 8 10 12
0.00.10.20.30.40.50.6
29
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Illustration with Log-normal samples
Log transform, xi = log xi + Gaussian kernel
Density
−2 −1 0 1 2
0.00.10.20.30.40.50.6
Density
−2 −1 0 1 20.00.10.20.30.40.50.6
Density
−2 −1 0 1 2
0.00.10.20.30.40.50.6
Density
0 2 4 6 8 10 12
0.00.10.20.30.40.50.6
Density
0 2 4 6 8 10 12
0.00.10.20.30.40.50.6
Density
0 2 4 6 8 10 12
0.00.10.20.30.40.50.6
30
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Illustration with Log-normal samples
Probit-type transform, xi = Φ−1
[Tθ
(xi)] + Gaussian kernel
Density
−2 −1 0 1 2
0.00.10.20.30.40.50.6
Density
−2 −1 0 1 20.00.10.20.30.40.50.6
Density
−2 −1 0 1 2
0.00.10.20.30.40.50.6
Density
0 2 4 6 8 10 12
0.00.10.20.30.40.50.6
Density
0 2 4 6 8 10 12
0.00.10.20.30.40.50.6
Density
0 2 4 6 8 10 12
0.00.10.20.30.40.50.6
31
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Illustration with Log-normal samples
Box-Cox transform, xi = BoxCoxλ
(xi) + Gaussian kernel
Density
−2 −1 0 1 2
0.00.10.20.30.40.50.6
Density
−2 −1 0 1 20.00.10.20.30.40.50.6
Density
−2 −1 0 1 2
0.00.10.20.30.40.50.6
Density
0 2 4 6 8 10 12
0.00.10.20.30.40.50.6
Density
0 2 4 6 8 10 12
0.00.10.20.30.40.50.6
Density
0 2 4 6 8 10 12
0.00.10.20.30.40.50.6
32
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Illustration with Log-normal samples
ui = Tθ
(xi) + Mixture of Beta distributionsl
Density
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.0
Density
0.0 0.2 0.4 0.6 0.8 1.00.00.51.01.52.0
Density
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.0
Density
0 2 4 6 8 10 12
0.00.10.20.30.40.50.6
Density
0 2 4 6 8 10 12
0.00.10.20.30.40.50.6
Density
0 2 4 6 8 10 12
0.00.10.20.30.40.50.6
33
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Illustration with Log-normal samples
ui = Tθ
(xi) + Beta kernel estimation
Density
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.0
Density
0.0 0.2 0.4 0.6 0.8 1.00.00.51.01.52.0
Density
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.0
Density
0 2 4 6 8 10 12
0.00.10.20.30.40.50.6
Density
0 2 4 6 8 10 12
0.00.10.20.30.40.50.6
Density
0 2 4 6 8 10 12
0.00.10.20.30.40.50.6
34
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Quantities of interest
Standard statistical quantities
• miae,
∞
0
fn(x) − f(x) dx
• mise,
∞
0
fn(x) − f(x)
2
dx
• miaew,
∞
0
fn(x) − f(x) |x| dx
• misew,
∞
0
fn(x) − f(x)
2
x2
dx
35
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Quantities of interest
Inequality indices and risk measures, based on F(x) =
x
0
f(t)dt,
• Gini,
1
µ
∞
0
F(t)[1 − F(t)]dt
• Theil,
∞
0
t
µ
log
t
µ
f(t)dt
• Entropy −
∞
0
f(t) log[f(t)]dt
• VaR-quantile, x such that F(x) = P(X ≤ x) = α, i.e. F−1
(α)
• TVaR-expected shorfall, E[X|X  F−1
(α)]
where µ =
∞
0
[1 − F(x)]dx.
36
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Computations Aspects
Here, for each method, we return two functions,
• function fn(·)
• a random generator for distribution fn(·)
◦ H-transform and Gaussian kernel
draw i ∈ {1, · · · , n} and X = H−1
(Z) where Z ∼ N(H(xi), b2
)
◦ H-transform and Beta kernel
draw i ∈ {1, · · · , n} and X = H−1
(U) where U ∼ B(H(xi)/h, [1 − H(xi)]/h)
◦ H-transform and Beta mixture
draw k ∈ {1, · · · , K} and X = H−1
(U) where U ∼ B(αk, βk)
37
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
◦ ‘standard’ Gaussian kernel (benchmark)
draw i ∈ {1, · · · , n}, and X ∼ N(xi, b2
) (almost)
up to some normalization, · →
fn(·)
∞
0
fn(x)dx
38
Density
−2 0 2 4 6 8
0.00.10.20.30.4
q qq qqq q qqq
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
MISE
∞
0
f(s)
n (x) − f(x)
2
dx
q
Singh−Maddala
MISE
qqq qq
qqqqqq q
q qqq qq qqq qq q
qqqq qq q
q qqq qq qqq qq q
qqqq qq q q
qqq qq
qq qq q qq qqq q
standard kernel
log kernel
log mix
boxcox kernel
boxcox mix
probit kernel
beta kernel
beta mix
0.000
0.005
0.010
0.015
q
Mixed Singh−Maddala
MISE
qq
q qqq qqq qqq q
q qq qqq qq qqq q
q qq qq qqq qq qqqq q
qqq qq
qqq
standard kernel
log kernel
log mix
boxcox kernel
boxcox mix
probit kernel
beta kernel
beta mix
0.00
0.05
0.10
0.15
39
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
MIAE
∞
0
|f(s)
n (x) − f(x)| dx
q
Singh−Maddala
MIAE
q qqq q
qq qq qq
q qq
qqqq qq
q qq qq
qqqq q
qq qqq q
q qqq
standard kernel
log kernel
log mix
boxcox kernel
boxcox mix
probit kernel
beta kernel
beta mix
0.00
0.05
0.10
0.15
0.20
q
Mixed Singh−Maddala
MIAE
q
qq q
q qqqqq q
q q
standard kernel
log kernel
log mix
boxcox kernel
boxcox mix
probit kernel
beta kernel
beta mix
0.05
0.10
0.15
0.20
0.25
0.30
40
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Gini Index
1
µ
(s)
n
∞
0
F(s)
n (t)[1 − F(s)
n (t)]dt
Singh−Maddala
Gini Index
q q
qq
q q
qq
q
qqq
q q
standard kernel
log kernel
log mix
boxcox kernel
boxcox mix
probit kernel
beta kernel
beta mix
0.45
0.50
0.55
0.60
Mixed Singh−Maddala
Gini Index
q
qq
q
q
q qq
qq
standard kernel
log kernel
log mix
boxcox kernel
boxcox mix
probit kernel
beta kernel
beta mix
0.55
0.60
0.65
0.70
41
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Value-at-Risk, 95%
Q(s)
n (α) = inf{x, α ≤ F(s)
n (x)}
q
Singh−Maddala
Quantile 95%
qq qqqq q
q q qq q
qq
q qqqqq q
q qqqqqq qq
qq qqqqqq
qqq q
qq
standard kernel
log kernel
log mix
boxcox kernel
boxcox mix
probit kernel
beta kernel
beta mix
10
20
30
40
50
Mixed Singh−Maddala
Quantile 95%
qq
q q
q
q
q q
q
standard kernel
log kernel
log mix
boxcox kernel
boxcox mix
probit kernel
beta kernel
beta mix
2.0
2.5
3.0
3.5
4.0
4.5
42
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Value-at-Risk, 99%
Q(s)
n (α) = inf{x, α ≤ F(s)
n (x)}
Singh−Maddala
Quantile 99%
q qqq
qq q qqq
qq
qqq qq qqqq
qq qqqq
qq qqqq
qq q
qq
standard kernel
log kernel
log mix
boxcox kernel
boxcox mix
probit kernel
beta kernel
beta mix
6
8
10
12
14
16
18
q
Mixed Singh−Maddala
Quantile 99%
q q
q qqqqqq qqqq
qqq qqq
q qqqqq
q q qq
qq q
standard kernel
log kernel
log mix
boxcox kernel
boxcox mix
probit kernel
beta kernel
beta mix
2
4
6
8
10
43
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Tail Value-at-Risk, 95%
E[X|X  Q(s)
n (α)]
Singh−Maddala
Expected Shortfall 95%
q
q
qq
q
qq
q
standard kernel
log kernel
log mix
boxcox kernel
boxcox mix
probit kernel
beta kernel
beta mix
4.0
4.5
5.0
5.5
6.0
6.5
q
Mixed Singh−Maddala
Expected Shortfall 95%
q qqq
q qqq
q qqq
q qqq
q
standard kernel
log kernel
log mix
boxcox kernel
boxcox mix
probit kernel
beta kernel
beta mix
4
6
8
10
12
44
Arthur CHARPENTIER - Rennes, SMART Workshop, 2014
Possible conclusion ?
• estimating densities on transformated data is definitively a good idea
• but we need to find a good transformation
parametric + beta
parametric + probit
log-transform
Box-Cox
0.719
0.719
0.719
0.719
0.719
0.719
0.719
0.719
1.428
2.137
47.75
48.00
48.25
48.50
48.75
−4.8 −4.4 −4.0 −3.6
longitude
latitude
0.011
0.719
1.428
2.137
2.845
0.719
0.719
0.7190.719
0.719
0.719
0.719
0.719
0.719
1.428
1.428
1.428
1.428
1.428
1.4281.428
1.428
1.428
1.428
1.428
1.428
1.428
1.428
1.428
1.428
2.137
2.137
47.75
48.00
48.25
48.50
48.75
−4.8 −4.4 −4.0 −3.6
longitude
latitude 0.011
0.719
1.428
2.137
2.845
(joint work with E. Gallic)
45

More Related Content

What's hot (20)

slides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial scienceslides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial science
 
Slides toulouse
Slides toulouseSlides toulouse
Slides toulouse
 
Slides amsterdam-2013
Slides amsterdam-2013Slides amsterdam-2013
Slides amsterdam-2013
 
Slides compiegne
Slides compiegneSlides compiegne
Slides compiegne
 
Slides université Laval, Actuariat, Avril 2011
Slides université Laval, Actuariat, Avril 2011Slides université Laval, Actuariat, Avril 2011
Slides université Laval, Actuariat, Avril 2011
 
Slides erm
Slides ermSlides erm
Slides erm
 
Slides dauphine
Slides dauphineSlides dauphine
Slides dauphine
 
Slides erasmus
Slides erasmusSlides erasmus
Slides erasmus
 
Quantile and Expectile Regression
Quantile and Expectile RegressionQuantile and Expectile Regression
Quantile and Expectile Regression
 
Slides univ-van-amsterdam
Slides univ-van-amsterdamSlides univ-van-amsterdam
Slides univ-van-amsterdam
 
Slides sales-forecasting-session2-web
Slides sales-forecasting-session2-webSlides sales-forecasting-session2-web
Slides sales-forecasting-session2-web
 
Sildes buenos aires
Sildes buenos airesSildes buenos aires
Sildes buenos aires
 
Slides ensae-2016-8
Slides ensae-2016-8Slides ensae-2016-8
Slides ensae-2016-8
 
Slides ACTINFO 2016
Slides ACTINFO 2016Slides ACTINFO 2016
Slides ACTINFO 2016
 
Slides ihp
Slides ihpSlides ihp
Slides ihp
 
Proba stats-r1-2017
Proba stats-r1-2017Proba stats-r1-2017
Proba stats-r1-2017
 
Slides lausanne-2013-v2
Slides lausanne-2013-v2Slides lausanne-2013-v2
Slides lausanne-2013-v2
 
transformations and nonparametric inference
transformations and nonparametric inferencetransformations and nonparametric inference
transformations and nonparametric inference
 
Slides ineq-4
Slides ineq-4Slides ineq-4
Slides ineq-4
 
Slides barcelona Machine Learning
Slides barcelona Machine LearningSlides barcelona Machine Learning
Slides barcelona Machine Learning
 

Viewers also liked

Nonparametric Density Estimation
Nonparametric Density EstimationNonparametric Density Estimation
Nonparametric Density Estimationjachno
 
Network Based Kernel Density Estimation for Cycling Facilities Optimal Locati...
Network Based Kernel Density Estimation for Cycling Facilities Optimal Locati...Network Based Kernel Density Estimation for Cycling Facilities Optimal Locati...
Network Based Kernel Density Estimation for Cycling Facilities Optimal Locati...Beniamino Murgante
 
2014.7.9 detecting p2 p botnets through network behavior analysis and machine...
2014.7.9 detecting p2 p botnets through network behavior analysis and machine...2014.7.9 detecting p2 p botnets through network behavior analysis and machine...
2014.7.9 detecting p2 p botnets through network behavior analysis and machine...ericsuboy
 
Chaubey seminarslides2017
Chaubey seminarslides2017Chaubey seminarslides2017
Chaubey seminarslides2017ychaubey
 
WSDM'16 Relational Learning with Social Status Analysis
WSDM'16 Relational Learning with Social Status AnalysisWSDM'16 Relational Learning with Social Status Analysis
WSDM'16 Relational Learning with Social Status AnalysisArizona State University
 
Moa: Real Time Analytics for Data Streams
Moa: Real Time Analytics for Data StreamsMoa: Real Time Analytics for Data Streams
Moa: Real Time Analytics for Data StreamsAlbert Bifet
 
Natural Disaster Risk Management
Natural Disaster Risk ManagementNatural Disaster Risk Management
Natural Disaster Risk ManagementArthur Charpentier
 

Viewers also liked (19)

Nonparametric Density Estimation
Nonparametric Density EstimationNonparametric Density Estimation
Nonparametric Density Estimation
 
Network Based Kernel Density Estimation for Cycling Facilities Optimal Locati...
Network Based Kernel Density Estimation for Cycling Facilities Optimal Locati...Network Based Kernel Density Estimation for Cycling Facilities Optimal Locati...
Network Based Kernel Density Estimation for Cycling Facilities Optimal Locati...
 
2014.7.9 detecting p2 p botnets through network behavior analysis and machine...
2014.7.9 detecting p2 p botnets through network behavior analysis and machine...2014.7.9 detecting p2 p botnets through network behavior analysis and machine...
2014.7.9 detecting p2 p botnets through network behavior analysis and machine...
 
Chaubey seminarslides2017
Chaubey seminarslides2017Chaubey seminarslides2017
Chaubey seminarslides2017
 
WSDM'16 Relational Learning with Social Status Analysis
WSDM'16 Relational Learning with Social Status AnalysisWSDM'16 Relational Learning with Social Status Analysis
WSDM'16 Relational Learning with Social Status Analysis
 
Bioassay
BioassayBioassay
Bioassay
 
Moa: Real Time Analytics for Data Streams
Moa: Real Time Analytics for Data StreamsMoa: Real Time Analytics for Data Streams
Moa: Real Time Analytics for Data Streams
 
Inequalities #2
Inequalities #2Inequalities #2
Inequalities #2
 
Slides act6420-e2014-ts-2
Slides act6420-e2014-ts-2Slides act6420-e2014-ts-2
Slides act6420-e2014-ts-2
 
Slides saopaulo-catastrophe
Slides saopaulo-catastropheSlides saopaulo-catastrophe
Slides saopaulo-catastrophe
 
Slides barcelona risk data
Slides barcelona risk dataSlides barcelona risk data
Slides barcelona risk data
 
Slides risk-rennes
Slides risk-rennesSlides risk-rennes
Slides risk-rennes
 
Natural Disaster Risk Management
Natural Disaster Risk ManagementNatural Disaster Risk Management
Natural Disaster Risk Management
 
Slides Prix Scor
Slides Prix ScorSlides Prix Scor
Slides Prix Scor
 
Slides ilb
Slides ilbSlides ilb
Slides ilb
 
Multiattribute utility copula
Multiattribute utility copulaMultiattribute utility copula
Multiattribute utility copula
 
Rappels stats-2014-part1
Rappels stats-2014-part1Rappels stats-2014-part1
Rappels stats-2014-part1
 
Actuariat et Données
Actuariat et DonnéesActuariat et Données
Actuariat et Données
 
Sildes big-data-ia-may
Sildes big-data-ia-maySildes big-data-ia-may
Sildes big-data-ia-may
 

Similar to Slides smart-2015

Graduate Econometrics Course, part 4, 2017
Graduate Econometrics Course, part 4, 2017Graduate Econometrics Course, part 4, 2017
Graduate Econometrics Course, part 4, 2017Arthur Charpentier
 
Slides econometrics-2018-graduate-4
Slides econometrics-2018-graduate-4Slides econometrics-2018-graduate-4
Slides econometrics-2018-graduate-4Arthur Charpentier
 
Biosight: Quantitative Methods for Policy Analysis: Stochastic Dynamic Progra...
Biosight: Quantitative Methods for Policy Analysis: Stochastic Dynamic Progra...Biosight: Quantitative Methods for Policy Analysis: Stochastic Dynamic Progra...
Biosight: Quantitative Methods for Policy Analysis: Stochastic Dynamic Progra...IFPRI-EPTD
 
Dynamic response of structures with uncertain properties
Dynamic response of structures with uncertain propertiesDynamic response of structures with uncertain properties
Dynamic response of structures with uncertain propertiesUniversity of Glasgow
 
Generalized Carleson Operator and Convergence of Walsh Type Wavelet Packet Ex...
Generalized Carleson Operator and Convergence of Walsh Type Wavelet Packet Ex...Generalized Carleson Operator and Convergence of Walsh Type Wavelet Packet Ex...
Generalized Carleson Operator and Convergence of Walsh Type Wavelet Packet Ex...IJERA Editor
 
A new axisymmetric finite element
A new axisymmetric finite elementA new axisymmetric finite element
A new axisymmetric finite elementStefan Duprey
 
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...Wireilla
 
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...ijfls
 

Similar to Slides smart-2015 (20)

HdR
HdRHdR
HdR
 
D023031047
D023031047D023031047
D023031047
 
D023031047
D023031047D023031047
D023031047
 
Graduate Econometrics Course, part 4, 2017
Graduate Econometrics Course, part 4, 2017Graduate Econometrics Course, part 4, 2017
Graduate Econometrics Course, part 4, 2017
 
Slides econometrics-2018-graduate-4
Slides econometrics-2018-graduate-4Slides econometrics-2018-graduate-4
Slides econometrics-2018-graduate-4
 
Biosight: Quantitative Methods for Policy Analysis: Stochastic Dynamic Progra...
Biosight: Quantitative Methods for Policy Analysis: Stochastic Dynamic Progra...Biosight: Quantitative Methods for Policy Analysis: Stochastic Dynamic Progra...
Biosight: Quantitative Methods for Policy Analysis: Stochastic Dynamic Progra...
 
Dynamic response of structures with uncertain properties
Dynamic response of structures with uncertain propertiesDynamic response of structures with uncertain properties
Dynamic response of structures with uncertain properties
 
Slides laval stat avril 2011
Slides laval stat avril 2011Slides laval stat avril 2011
Slides laval stat avril 2011
 
Slides mevt
Slides mevtSlides mevt
Slides mevt
 
Generalized Carleson Operator and Convergence of Walsh Type Wavelet Packet Ex...
Generalized Carleson Operator and Convergence of Walsh Type Wavelet Packet Ex...Generalized Carleson Operator and Convergence of Walsh Type Wavelet Packet Ex...
Generalized Carleson Operator and Convergence of Walsh Type Wavelet Packet Ex...
 
Sc ppt
Sc pptSc ppt
Sc ppt
 
Projekt
ProjektProjekt
Projekt
 
Proje kt
Proje ktProje kt
Proje kt
 
A02402001011
A02402001011A02402001011
A02402001011
 
Slides ima
Slides imaSlides ima
Slides ima
 
A new axisymmetric finite element
A new axisymmetric finite elementA new axisymmetric finite element
A new axisymmetric finite element
 
Slides angers-sfds
Slides angers-sfdsSlides angers-sfds
Slides angers-sfds
 
Families of Triangular Norm Based Kernel Function and Its Application to Kern...
Families of Triangular Norm Based Kernel Function and Its Application to Kern...Families of Triangular Norm Based Kernel Function and Its Application to Kern...
Families of Triangular Norm Based Kernel Function and Its Application to Kern...
 
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
 
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
 

More from Arthur Charpentier (20)

Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
ACT6100 introduction
ACT6100 introductionACT6100 introduction
ACT6100 introduction
 
Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)
 
Control epidemics
Control epidemics Control epidemics
Control epidemics
 
STT5100 Automne 2020, introduction
STT5100 Automne 2020, introductionSTT5100 Automne 2020, introduction
STT5100 Automne 2020, introduction
 
Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
Machine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & InsuranceMachine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & Insurance
 
Reinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and FinanceReinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and Finance
 
Optimal Control and COVID-19
Optimal Control and COVID-19Optimal Control and COVID-19
Optimal Control and COVID-19
 
Slides OICA 2020
Slides OICA 2020Slides OICA 2020
Slides OICA 2020
 
Lausanne 2019 #3
Lausanne 2019 #3Lausanne 2019 #3
Lausanne 2019 #3
 
Lausanne 2019 #4
Lausanne 2019 #4Lausanne 2019 #4
Lausanne 2019 #4
 
Lausanne 2019 #2
Lausanne 2019 #2Lausanne 2019 #2
Lausanne 2019 #2
 
Lausanne 2019 #1
Lausanne 2019 #1Lausanne 2019 #1
Lausanne 2019 #1
 
Side 2019 #10
Side 2019 #10Side 2019 #10
Side 2019 #10
 
Side 2019 #11
Side 2019 #11Side 2019 #11
Side 2019 #11
 
Side 2019 #12
Side 2019 #12Side 2019 #12
Side 2019 #12
 
Side 2019 #9
Side 2019 #9Side 2019 #9
Side 2019 #9
 
Side 2019 #8
Side 2019 #8Side 2019 #8
Side 2019 #8
 
Side 2019 #7
Side 2019 #7Side 2019 #7
Side 2019 #7
 

Slides smart-2015

  • 1. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Kernel Based Estimation of Inequality Indices and Risk Measures Arthur Charpentier arthur.charpentier@univ-rennes1.fr http://freakonometrics.hypotheses.org/ based on joint work with E. Flachaire initiated by some joint work with A. Oulidi, J.D. Fermanian, O. Scaillet, G. Geenens and D. Paindaveine (Université de Rennes 1, 2015) 1
  • 2. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Stochastic Dominance and Related Indices • First Order Stochastic Dominance (cf standard stochastic order, st) X 1 Y ⇐⇒ FX(t) ≥ FY (t), ∀t ⇐⇒ VaRX(u) ≤ VaRY (u), ∀u • Convex Stochastic Dominance (cf martingale property) X cx Y ⇐⇒ E[ ˜Y | ˜X] = ˜X ⇐⇒ ESX(u) ≤ ESY (u), ∀u and E(X) = E(Y ) • Second Order Stochastic Dominance (cf submartingale property, stop-loss order, icx) X 2 Y ⇐⇒ E[ ˜Y | ˜X] ≥ ˜X ⇐⇒ ESX(u) ≤ ESY (u), ∀u • Lorenz Stochastic Dominance (cf dilatation order) X L Y ⇐⇒ X E[X] cx X E[Y ] ⇐⇒ LX(u) ≤ LY (u), ∀u 2
  • 3. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Stochastic Dominance and Related Indices • Parametric Model(s) E.g. N(µX, σ2 X) 1 N(µY , σ2 Y ) ⇐⇒ µX ≤ µY and σ2 X = σ2 Y E.g. N(µX, σ2 X) cx N(µY , σ2 Y ) ⇐⇒ µX = µY and σ2 X ≤ σ2 Y E.g. N(µX, σ2 X) 2 N(µY , σ2 Y ) ⇐⇒ µX ≤ µY and σ2 X ≤ σ2 Y Or other parametric distribution. E.g. a lognormal distribution for losses 3 Density 0 5 10 15 20 25 0.000.050.100.150.200.250.30 CumulatedDensity 0 5 10 15 20 25 0.00.20.40.60.81.0
  • 4. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Stochastic Dominance and Related Indices • Non-parametric Model(s) 4 Density 0 5 10 15 20 25 0.000.050.100.150.200.250.30 CumulatedDensity 0 5 10 15 20 250.00.20.40.60.81.0
  • 5. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Nonparametric estimation of the density 5 density 0 20 40 60 80 0.00.10.20.30.40.50.6
  • 6. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Agenda sample {y1, · · · , yn} −→ fn(·) Fn(·) or F−1 n (·) R(fn) • Estimating densities of copulas ◦ Beta kernels ◦ Transformed kernels • Combining transformed and Beta kernels • Moving around the Beta distribution ◦ Mixtures of Beta distributions ◦ Bernstein Polynomials • Some probit type transformations 6
  • 7. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Non parametric estimation of copula density see C., Fermanian & Scaillet (2005), bias of kernel estimators at endpoints 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.01.2 Kernel based estimation of the uniform density on [0,1] Density 0.0 0.2 0.4 0.6 0.8 1.00.00.20.40.60.81.01.2 Kernel based estimation of the uniform density on [0,1] Density 7
  • 8. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Non parametric estimation of copula density e.g. E(c(0, 0, h)) = 1 4 · c(u, v) − 1 2 [c1(0, 0) + c2(0, 0)] 1 0 ωK(ω)dω · h + o(h) 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0 1 2 3 4 5 Estimation of Frank copula 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0 1 2 3 4 5 Estimation of Frank copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 with a symmetric kernel (here a Gaussian kernel). 8
  • 9. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Non parametric estimation of copula density 0.0 0.2 0.4 0.6 0.8 1.0 01234 Standard Gaussian kernel estimator, n=100 Estimation of the density on the diagonal Densityoftheestimator 0.0 0.2 0.4 0.6 0.8 1.0 01234 Standard Gaussian kernel estimator, n=1000 Estimation of the density on the diagonal Densityoftheestimator 0.0 0.2 0.4 0.6 0.8 1.0 01234 Standard Gaussian kernel estimator, n=10000 Estimation of the density on the diagonal Densityoftheestimator Nice asymptotic properties, see Fermanian et al. (2005)... but still: on finite sample, bad behavior on borders. 9
  • 10. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Beta kernel idea (for copulas) see Chen (1999, 2000), Bouezmarni & Rolin (2003), Kxi (u) ∝ exp − (u − xi)2 h2 vs. Kxi (u) ∝ u x1,i b 1 [1 − u1] x1,i b · u x2,i b 2 [1 − u2] x2,i b 10 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q
  • 11. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Beta kernel idea (for copulas) Beta (independent) bivariate kernel , x=0.0, y=0.0 Beta (independent) bivariate kernel , x=0.2, y=0.0 Beta (independent) bivariate kernel , x=0.5, y=0.0 Beta (independent) bivariate kernel , x=0.0, y=0.2 Beta (independent) bivariate kernel , x=0.2, y=0.2 Beta (independent) bivariate kernel , x=0.5, y=0.2 Beta (independent) bivariate kernel , x=0.0, y=0.5 Beta (independent) bivariate kernel , x=0.2, y=0.5 Beta (independent) bivariate kernel , x=0.5, y=0.5 11
  • 12. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Beta kernel idea (for copulas) 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0 1 2 3 4 5 Estimation of Frank copula 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Estimation of the copula density (Beta kernel, b=0.1) 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Estimation of the copula density (Beta kernel, b=0.05) 12
  • 13. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Beta kernel idea (for copulas) 0.0 0.2 0.4 0.6 0.8 1.0 01234 Beta kernel estimator, b=0.05, n=100 Estimation of the density on the diagonal Densityoftheestimator 0.0 0.2 0.4 0.6 0.8 1.0 01234 Beta kernel estimator, b=0.02, n=1000 Estimation of the density on the diagonal Densityoftheestimator 0.0 0.2 0.4 0.6 0.8 1.0 01234 Beta kernel estimator, b=0.005, n=10000 Estimation of the density on the diagonal Densityoftheestimator 13
  • 14. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Transformed kernel idea (for copulas) [0, 1] × [0, 1] → R × R → [0, 1] × [0, 1] 14
  • 15. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Transformed kernel idea (for copulas) 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0 1 2 3 4 5 Estimation of Frank copula 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0 1 2 3 4 5 Estimation of Frank copula 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0 1 2 3 4 5 Estimation of Frank copula 15
  • 16. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Transformed kernel idea (for copulas) 0.0 0.2 0.4 0.6 0.8 1.0 01234 Transformed kernel estimator (Gaussian), n=100 Estimation of the density on the diagonal Densityoftheestimator 0.0 0.2 0.4 0.6 0.8 1.0 01234 Transformed kernel estimator (Gaussian), n=1000 Estimation of the density on the diagonal Densityoftheestimator 0.0 0.2 0.4 0.6 0.8 1.0 01234 Transformed kernel estimator (Gaussian), n=10000 Estimation of the density on the diagonal Densityoftheestimator see Geenens, C. & Paindaveine (2014) for more details on probit transformation for copulas. 16
  • 17. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Combining the two approaches See Devroye & Györfi (1985), and Devroye & Lugosi (2001) ... use the transformed kernel the other way, R → [0, 1] → R 17
  • 18. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Devroye & Györfi (1985) - Devroye & Lugosi (2001) Interesting point, the optimal T should be F, thus, T can be Fθ 18
  • 19. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Heavy Tailed distribution Let X denote a (heavy-tailed) random variable with tail index α ∈ (0, ∞), i.e. P(X > x) = x−α L1(x) where L1 is some regularly varying function. Let T denote a R → [0, 1] function, such that 1 − T is regularly varying at infinity, with tail index β ∈ (0, ∞). Define Q(x) = T−1 (1 − x−1 ) the associated tail quantile function, then Q(x) = x1/β L2(1/x), where L2 is some regularly varying function (the de Bruyn conjugate of the regular variation function associated with T). Assume here that Q(x) = bx1/β Let U = T(X). Then, as u → 1 P(U > u) ∼ (1 − u)α/β . 19
  • 20. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Heavy Tailed distribution see C. & Oulidi (2007), α = 0.75−1 , T0.75−1 , T0.65−1 lighter , T0.85−1 heavier and Tˆα Density 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.0 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Density 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.0 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Density 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.0 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Density 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.0 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 20
  • 21. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Heavy Tailed distribution see C. & Oulidi (2007), impact on quantile estimation ? 20 30 40 50 60 70 80 0.000.010.020.030.040.050.06 Density 21
  • 22. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Heavy Tailed distribution see C. & Oulidi (2007), impact on quantile estimation ? bias ? m.s.e. ? 22
  • 23. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Which transformation ? GB2 : t(y; a, b, p, q) = |a|yap−1 bapB(p, q)[1 + (y/b)a]p+q , for y > 0, GB2 q→∞  a=1 p=1 55 q=1 @@ GG a→0 ÓÓ a=1 p=1 %% Beta2 q→∞ ww SM q→∞ xx q=1 99 Dagum p=1 Lognormal Gamma Weibull Champernowne 23
  • 24. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Estimating a density on R+ • Stay on R+ : xi’s • Get on [0, 1] : ui = Tθ (xi) (distribution as uniform as possible) ◦ Use Beta Kernels on ui’s ◦ Mixtures of Beta distributions on ui’s ◦ Bernstein Polynomials on ui’s • Get on R : use standard kernels (e.g. Gaussian) ◦ On xi = log(xi) ◦ On xi = BoxCoxλ (xi) ◦ On xi = Φ−1 [Tθ (xi)] 24
  • 25. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Beta kernel g(u) = n i=1 1 n · b u; Ui h , 1 − Ui h u ∈ [0, 1]. with some possible boundary correction, as suggested in Chen (1999), u h → ρ(u, h) = 2h2 + 2.5 − (4h4 + 6h2 + 2.25 − u2 − u/h)1/2 Problem : choice of the bandwidth h ? Standard loss function L(h) = [gn(u) − g(u)]2 du = [gn(u)]2 du − 2 gn(u) · g(u)du CV (h) + [g(u)]2 du where CV (h) = gn(u)du 2 − 2 n n i=1 g(−i)(Ui) 25
  • 26. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Mixture of Beta distributions g(u) = k j=1 πj · b u; αj, βj u ∈ [0, 1]. Problem : choice the number of components k (and estimation...). Use of stochastic EM algorithm (or sort of) see Celeux Diebolt (1985). Bernstein approximation g(u) = m k=1 [mωk] · b (u; k, m − k) u ∈ [0, 1]. where ωk = G k m − G k − 1 m . 26
  • 27. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 On the log-transform With a standard Gaussian kernel fX(x) = 1 n n i=1 φ(x; xi, h) A Gaussian kernel on a log transform, fX(x) = 1 x fX (log x) = 1 n n i=1 λ(x; log xi, h) where λ(·; µ, σ) is the density of the log-normal distribution. Here, in 0, bias[fX(x)] ∼ h2 2 [fX(x) + 3x · fX(x) + x2 · fX(x)] and Var[fX(x)] ∼ fX(x) xnh 27
  • 28. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 On the Box-Cox-transform More generally, instead of transformed sample Yi = log[Xi], consider Yi = Xλ i − 1 λ when λ = 0. Find the optimal transformation using standard regression techniques (least squares) Xi = Xλ i − 1 λ when λ = 0 and Xi = log[Xi] if λ = 0. The density estimation is here fX(x) = xλ −1 fX xλ − 1 λ 28
  • 29. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Illustration with Log-normal samples Standard kernel (− Silvermans’s rule h ) Density 0 2 4 6 8 10 12 0.00.10.20.30.40.50.6 Density 0 2 4 6 8 10 12 0.00.10.20.30.40.50.6 Density 0 2 4 6 8 10 12 0.00.10.20.30.40.50.6 29
  • 30. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Illustration with Log-normal samples Log transform, xi = log xi + Gaussian kernel Density −2 −1 0 1 2 0.00.10.20.30.40.50.6 Density −2 −1 0 1 20.00.10.20.30.40.50.6 Density −2 −1 0 1 2 0.00.10.20.30.40.50.6 Density 0 2 4 6 8 10 12 0.00.10.20.30.40.50.6 Density 0 2 4 6 8 10 12 0.00.10.20.30.40.50.6 Density 0 2 4 6 8 10 12 0.00.10.20.30.40.50.6 30
  • 31. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Illustration with Log-normal samples Probit-type transform, xi = Φ−1 [Tθ (xi)] + Gaussian kernel Density −2 −1 0 1 2 0.00.10.20.30.40.50.6 Density −2 −1 0 1 20.00.10.20.30.40.50.6 Density −2 −1 0 1 2 0.00.10.20.30.40.50.6 Density 0 2 4 6 8 10 12 0.00.10.20.30.40.50.6 Density 0 2 4 6 8 10 12 0.00.10.20.30.40.50.6 Density 0 2 4 6 8 10 12 0.00.10.20.30.40.50.6 31
  • 32. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Illustration with Log-normal samples Box-Cox transform, xi = BoxCoxλ (xi) + Gaussian kernel Density −2 −1 0 1 2 0.00.10.20.30.40.50.6 Density −2 −1 0 1 20.00.10.20.30.40.50.6 Density −2 −1 0 1 2 0.00.10.20.30.40.50.6 Density 0 2 4 6 8 10 12 0.00.10.20.30.40.50.6 Density 0 2 4 6 8 10 12 0.00.10.20.30.40.50.6 Density 0 2 4 6 8 10 12 0.00.10.20.30.40.50.6 32
  • 33. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Illustration with Log-normal samples ui = Tθ (xi) + Mixture of Beta distributionsl Density 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.0 Density 0.0 0.2 0.4 0.6 0.8 1.00.00.51.01.52.0 Density 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.0 Density 0 2 4 6 8 10 12 0.00.10.20.30.40.50.6 Density 0 2 4 6 8 10 12 0.00.10.20.30.40.50.6 Density 0 2 4 6 8 10 12 0.00.10.20.30.40.50.6 33
  • 34. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Illustration with Log-normal samples ui = Tθ (xi) + Beta kernel estimation Density 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.0 Density 0.0 0.2 0.4 0.6 0.8 1.00.00.51.01.52.0 Density 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.0 Density 0 2 4 6 8 10 12 0.00.10.20.30.40.50.6 Density 0 2 4 6 8 10 12 0.00.10.20.30.40.50.6 Density 0 2 4 6 8 10 12 0.00.10.20.30.40.50.6 34
  • 35. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Quantities of interest Standard statistical quantities • miae, ∞ 0 fn(x) − f(x) dx • mise, ∞ 0 fn(x) − f(x) 2 dx • miaew, ∞ 0 fn(x) − f(x) |x| dx • misew, ∞ 0 fn(x) − f(x) 2 x2 dx 35
  • 36. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Quantities of interest Inequality indices and risk measures, based on F(x) = x 0 f(t)dt, • Gini, 1 µ ∞ 0 F(t)[1 − F(t)]dt • Theil, ∞ 0 t µ log t µ f(t)dt • Entropy − ∞ 0 f(t) log[f(t)]dt • VaR-quantile, x such that F(x) = P(X ≤ x) = α, i.e. F−1 (α) • TVaR-expected shorfall, E[X|X F−1 (α)] where µ = ∞ 0 [1 − F(x)]dx. 36
  • 37. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Computations Aspects Here, for each method, we return two functions, • function fn(·) • a random generator for distribution fn(·) ◦ H-transform and Gaussian kernel draw i ∈ {1, · · · , n} and X = H−1 (Z) where Z ∼ N(H(xi), b2 ) ◦ H-transform and Beta kernel draw i ∈ {1, · · · , n} and X = H−1 (U) where U ∼ B(H(xi)/h, [1 − H(xi)]/h) ◦ H-transform and Beta mixture draw k ∈ {1, · · · , K} and X = H−1 (U) where U ∼ B(αk, βk) 37
  • 38. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 ◦ ‘standard’ Gaussian kernel (benchmark) draw i ∈ {1, · · · , n}, and X ∼ N(xi, b2 ) (almost) up to some normalization, · → fn(·) ∞ 0 fn(x)dx 38 Density −2 0 2 4 6 8 0.00.10.20.30.4 q qq qqq q qqq
  • 39. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 MISE ∞ 0 f(s) n (x) − f(x) 2 dx q Singh−Maddala MISE qqq qq qqqqqq q q qqq qq qqq qq q qqqq qq q q qqq qq qqq qq q qqqq qq q q qqq qq qq qq q qq qqq q standard kernel log kernel log mix boxcox kernel boxcox mix probit kernel beta kernel beta mix 0.000 0.005 0.010 0.015 q Mixed Singh−Maddala MISE qq q qqq qqq qqq q q qq qqq qq qqq q q qq qq qqq qq qqqq q qqq qq qqq standard kernel log kernel log mix boxcox kernel boxcox mix probit kernel beta kernel beta mix 0.00 0.05 0.10 0.15 39
  • 40. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 MIAE ∞ 0 |f(s) n (x) − f(x)| dx q Singh−Maddala MIAE q qqq q qq qq qq q qq qqqq qq q qq qq qqqq q qq qqq q q qqq standard kernel log kernel log mix boxcox kernel boxcox mix probit kernel beta kernel beta mix 0.00 0.05 0.10 0.15 0.20 q Mixed Singh−Maddala MIAE q qq q q qqqqq q q q standard kernel log kernel log mix boxcox kernel boxcox mix probit kernel beta kernel beta mix 0.05 0.10 0.15 0.20 0.25 0.30 40
  • 41. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Gini Index 1 µ (s) n ∞ 0 F(s) n (t)[1 − F(s) n (t)]dt Singh−Maddala Gini Index q q qq q q qq q qqq q q standard kernel log kernel log mix boxcox kernel boxcox mix probit kernel beta kernel beta mix 0.45 0.50 0.55 0.60 Mixed Singh−Maddala Gini Index q qq q q q qq qq standard kernel log kernel log mix boxcox kernel boxcox mix probit kernel beta kernel beta mix 0.55 0.60 0.65 0.70 41
  • 42. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Value-at-Risk, 95% Q(s) n (α) = inf{x, α ≤ F(s) n (x)} q Singh−Maddala Quantile 95% qq qqqq q q q qq q qq q qqqqq q q qqqqqq qq qq qqqqqq qqq q qq standard kernel log kernel log mix boxcox kernel boxcox mix probit kernel beta kernel beta mix 10 20 30 40 50 Mixed Singh−Maddala Quantile 95% qq q q q q q q q standard kernel log kernel log mix boxcox kernel boxcox mix probit kernel beta kernel beta mix 2.0 2.5 3.0 3.5 4.0 4.5 42
  • 43. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Value-at-Risk, 99% Q(s) n (α) = inf{x, α ≤ F(s) n (x)} Singh−Maddala Quantile 99% q qqq qq q qqq qq qqq qq qqqq qq qqqq qq qqqq qq q qq standard kernel log kernel log mix boxcox kernel boxcox mix probit kernel beta kernel beta mix 6 8 10 12 14 16 18 q Mixed Singh−Maddala Quantile 99% q q q qqqqqq qqqq qqq qqq q qqqqq q q qq qq q standard kernel log kernel log mix boxcox kernel boxcox mix probit kernel beta kernel beta mix 2 4 6 8 10 43
  • 44. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Tail Value-at-Risk, 95% E[X|X Q(s) n (α)] Singh−Maddala Expected Shortfall 95% q q qq q qq q standard kernel log kernel log mix boxcox kernel boxcox mix probit kernel beta kernel beta mix 4.0 4.5 5.0 5.5 6.0 6.5 q Mixed Singh−Maddala Expected Shortfall 95% q qqq q qqq q qqq q qqq q standard kernel log kernel log mix boxcox kernel boxcox mix probit kernel beta kernel beta mix 4 6 8 10 12 44
  • 45. Arthur CHARPENTIER - Rennes, SMART Workshop, 2014 Possible conclusion ? • estimating densities on transformated data is definitively a good idea • but we need to find a good transformation parametric + beta parametric + probit log-transform Box-Cox 0.719 0.719 0.719 0.719 0.719 0.719 0.719 0.719 1.428 2.137 47.75 48.00 48.25 48.50 48.75 −4.8 −4.4 −4.0 −3.6 longitude latitude 0.011 0.719 1.428 2.137 2.845 0.719 0.719 0.7190.719 0.719 0.719 0.719 0.719 0.719 1.428 1.428 1.428 1.428 1.428 1.4281.428 1.428 1.428 1.428 1.428 1.428 1.428 1.428 1.428 1.428 2.137 2.137 47.75 48.00 48.25 48.50 48.75 −4.8 −4.4 −4.0 −3.6 longitude latitude 0.011 0.719 1.428 2.137 2.845 (joint work with E. Gallic) 45