데이터 기반 의사결정을 통한 비지니스 혁신 - 윤석찬 (AWS 테크에반젤리스트)

Amazon Web Services Korea
Amazon Web Services KoreaAmazon Web Services Korea
A
@
. 2
1 . ? S
. ? W3
A ?
.
.
4 ? W3
데이터 기반 의사결정을 통한 비지니스 혁신 - 윤석찬 (AWS 테크에반젤리스트)
•
•
• s
•
• v
•
• )
• /
• ?
•
• (
•
• )
•
•
웹 로그
클릭 데이터
사용자 행동
콘텐츠
구매 데이터
센서 데이터
소셜 미디어
인공 지능
기계 학습
) (
대용량 저장소
관계형 DB
NoSQL
데이터웨어하우스
실시간 분석
비지니스 인텔리전스
오픈 소스 도구
데이터레이크
0 29
Source: IDC Digital Universe Study (2012)
• . 8 0 1 6 % 4
• 5 B B 2 % , % 4
• %
© Daum 내부 빅데이터 및 클라우드 기술 활용 사례- 윤석찬 (2012)
https://www.slideshare.net/Channy/daums-hadoop-usecases
• H
• H
Amazon EMR
(Hadoop)
Amazon Athena
(Presto)
Amazon EC2
(가상 서버)
Amazon S3
(스토리지)
데이터 기반 의사결정을 통한 비지니스 혁신 - 윤석찬 (AWS 테크에반젤리스트)
Accelerated
Transactions
ERP
Data analysts
1 4
0 9
5
AWS LambdaAmazon EMR
Amazon
Redshift
Amazon
Machine
Learning
Amazon
Elastisearch
Service
Amazon
Quicksight
AWS Glue
Amazon S3
Amazon
Kinesis
Amazon
DynamoDB Amazon Athena
DB 관리의 부담이 많?니,. (RDB)
관계형 DB 는 확장성이 쉽지 않B요. (NoSQL)
Hadoop 배포 및 관리하기가 힘듭니,.
기존 DW는 복잡하고 비싸고 느립니,.
상용 RDB는 고비용에 관리, 확장이 D려워요.
실시간 데이터는 수집하고 분석하기 힘듭니,.
데이터 클린징(ETL)을 좀. 쉽게 할 수 없을까요?
딥러닝 모델링 및 배포를 좀 . 쉽게 하고 싶D요.
ü Amazon RDS
ü Amazon DynamoDB
ü Amazon EMR
ü Amazon Redshift
ü Amazon Aurora
ü Amazon Kinesis
ü AWS Glue
ü Amazon SageMaker
https://aws.amazon.com/solutions/case-studies/big-data/
데이터 기반 의사결정을 통한 비지니스 혁신 - 윤석찬 (AWS 테크에반젤리스트)
.
Transactions
ERP
Database
Data analysts
Data Warehouse
Amazon Redshift
.
& &
• -
• &
Data Processing
Amazon EMR
Amazon
DynamoDB
Amazon RDS
& Aurora
AWS Data
Migration
Service
AWS Snowball
Amazon S3
Storage
, , , A8
Aurora
ElastiCache
(Redis)
Redshift
Kinesis
Firehose
S3
Historical
queries on
up to 2 years
of data
Operational
queries of real-
time data
Staging near
real-time data
Join / compare
events
Real-time
streams of
lodging
market data
Ingest
multiple data
streams
Reference data
on-premises
EC2
https://www.youtube.com/watch?v=9hUVcH48eLg
• E E , , 9
• -5 0 - (1 0 ) ,0 ) , 0
• C
• E % ) 5 C R
Work Item Storage
Partition Assigner
Timer Router
Time
r
Node
s
odesdesNode
s
Timer
Hosts
View Router
Time
r
Node
s
Node
sodesNode
s
View
Hosts
DynamoDB
• B O 1 - 3 0 D
• 7 2
• 7
https://www.youtube.com/watch?v=83-IWlvJ__8
https://www.youtube.com/watch?v=W9ofQMdl48w
Amazon
Elastic MapReduce
RDS/Redshift
Direct
Connect
Amazon
S3
Data Mart
DATA FROM
DEVICES AND
SERVICES
• E I S I 3I
• 3I M 3I R
• A P 3I
Transactions
ERP
Data
Lake
Data Data analysts
Direct Query
Amazon Athena
Data Storage
Amazon S3
. ( ( )) 2
,
•
.
• ,
Amazon
QuickSight
9 D%
https://aws.amazon.com/big-data/datalakes-and-analytics/what-is-a-data-lake/
9 ) ) () , E
( )
A 9 L
?
Raw Data
Amazon S3
• A
•
ETL (Hadoop)
Amazon EMR
Triggered Code
AWS Lambda
Staged Data
(Data Lake)
Amazon S3
ETL & Catalog Management
AWS Glue
Data Warehouse
Amazon Redshift
Triggered Code
AWS Lambda
Amazon
S3
Data lake
AWS Glue
(ETL & Data
Catalog)
Amazon
Athena
Amazon
QuickSight
$
AWS IoT
Devices Web Sensors Social
3
&
I 3n
& &
)(
.
Qz
o
&
B A
S L a Q
m
https://aws.amazon.com/athena/#Case_studies
P
B P
h
o P W %%
I P T
P
) a )% h e
t n o P 0 ,5
P t S (
S h s
o B P
2 5 32 1P
A r T
https://aws.amazon.com/quicksight/#Customers
“Amazon QuickSight's native integration
with Amazon Athena makes it the
ideal serverless analytics solution. With
QuickSight pay-per-session pricing, we
can easily extend access to interactive
dashboards across our teams and only
pay for what we use. The move from
static email reports and ad-hoc analysis
to always-available data in QuickSight
has been great!”
Anders Rahm-Nilzon
Cloud Manager, Volvo Group Connected Solutions
“The QuickSight pay-per-session dashboard
access is perfect as it allows secure, fast
and cost-effective access to interactive
data. As a cloud-based solution, QuickSight
automatically scales to our needs. The
combination of being able to connect to data
from a private Virtual Private Cloud (VPC)
through PrivateLink, authenticate users
via SAML.”
Massimilliano Ponticelli
Product Manager, Siemens
Data
Lake
Business users
Transactions
ERP
Social media
Data
Stream
Capture
Amazon
Kinesis
Events
Amazon
QuickSight
Data Warehouse
Amazon Redshift
Stream Data
Amazon
ElasticSearch
Data Storage
Amazon S3
.
.
•
• 0 : D L W g y
• 35 R w , Vh o
• 1 B E E L cow i R g () mK
• GB C 1 B E EW g S R y s
https://aws.amazon.com/ko/solutions/case-studies/supercell/
https://aws.amazon.com/solutions/case-studies/netflix-kinesis-streams/
• l ds e W a n
• ds 1 B E E D
gl mKs 4, CF 2C E a
• P a r
h M r
"AWS 플랫폼은 17PB의 야구 게임 데이터를 처리하고 고객에게
이를 거의 실시간으로 제공하기 위한 탁월한 선택이었습니다.”
–·Joe Inzerillo, EVP 및 CTO, Major League ase,all Advanced Media
8 7 2 1 5
ü c
ü
ü
ü
ü : 9 3
• E ) 0 2 17 dR (M: 8 3
• ) dRa M: ( 3
• M: ) 4 7 0 2 8)
https://www.youtube.com/watch?v=AsyqdESMSG8
Transactions
Data scientists
Business users
Connected
devices
Data
Event
Insights
Data
Lake
ML / Deep LearningWeb logs /
clickstream
.
,
https://nucleusresearch.com/research/single/guidebook-tensorflow-aws/
“In analyzing the experiences of researchers supporting more
than 388 unique projects, Nucleus found that 88 percent of
cloud-based TensorFlow projects are running on AWS.”
1 0
https://engineering.grab.com/driving-southeast-asia-forward-with-aws
https://aws.amazon.com/solutions/case-studies/grab/
ü +
5
5
ü
•
• 5 5 9
5
https://www.youtube.com/watch?v=tIt2JeNkbys
ü
ü 4
7
•
• 7 R
• D
EMR
Master Node
Data Node
Redshift
WAS
WEB
M
S
Collect
Server
ElasticSearch
Shard 1
Shard 2
Shard
Shard 4
Kinesis
WAS
L3g
S3
RDS
Aurora
Availability Zone
VPN
AWSE2d43i2t
L3gstash
S4ark Hive
Dashb3ard
A1ert
Debug
L3g
실시간
Bastion
EC2
Sync
R Server
Woongjin
IDC
NoSQL & Prediction Engine
!
(
)
-
H
J
N
Direct Connect
80TB / day
Build Model
Feature Extraction
100 PB Archive
User
Application
Cache Hit Rate
Feedback
Optimized
S3 Cache
SM Decision:
Cache Image or Not
Cleaned
Feature
Vectors
Amazon
SageMaker
Jupyter/Pandas
Order
History
Data
Warehouse
Imagery
Metadata
Cache hit rate dropped by nearly 2x
“We plan to use Amazon SageMaker to train models against petabytes of
Earth observation imagery datasets using hosted Jupyter notebooks, so
DigitalGlobe's Geospatial Big Data Platform (GBDX) users can just push a
button, create a model, and deploy it all within one scalable distributed
environment at scale.”
- Dr. Walter Scott, CTO of Maxar Technologies and founder of DigitalGlobe
S
S , 5 , I m
z k kGe b
M m k L a
o A g sW S
2
0 5 n . g k r A
A M
!
Transactions
ERP
Data analysts
Data scientists
Business users
Engagement platformsConnected
devices
Automation / events
Data
Event Action
Insights
Data
Lake
ML / Deep Learning
Predict / Recommend
AI Services
Social media
Web logs /
clickstream
.
& &
A
-
"Persons": [
{
"Timestamp": number,
"Person":
{
"Index": number,
"BoundingBox":
{
"Width": number,
"Top": number,
"Height": number,
"Left": number
},
"Face":
{
"BoundingBox": { ... },
"Landmarks": { ... },
"Pose": { ... },
"Quality": { ... },
"Confidence": number
}
},
...
GetPersonTracking
StartPersonTracking
-
Live Street Camera Amazon Kinesis Video Streams
1. Camera-captured video
streams are processed by
Kinesis Video Streams
End User
3. End user is notified
in case of face matches
Amazon SNS AWS Lambda Amazon Kinesis
Streams
Amazon Rekognition Video Face collection
2. Rekognition Video analyses the
video and searches faces on screen
against a collection of millions of faces
P R
8 E
2
C
C 0
S C
TM
1 E
E
N A TM J
https://aws.amazon.com/ko/rekognition/customers/
A QUIET OFFICE
Amazon SageMaker
Image Classification
Amazon Rekognition
Image
CHAIR
LAPTOP
LAMP
DESK
97%
95%
88%
82%
Object Identification
WORKING!
<HISTORY>
!
4 4
1 + 0 5 5
!
#
수집 저장/처리 협업/공유분석/시각화
Kinesis
E트리A 데이터
Database Migration
Service
Oracl,, N,t,zza 등의
데이터 S포트
Amazon S3
안전c고, 비L
효OT인 E토리지
Direct Connect
데이터 센터와 연결
Snowball
B크 데이터 로드
내부 사용자와 시스템
고객 대상 서비스
Redshift
데이터 NIc우E
EMR
비정e 데이터 처리,
pac-, Spark
Athena
ad--oc 쿼리
SageMaker
기계 d습 플랫a
QuickSight
시각화, BI
다양한 솔루션과 연동
Glue
데이터카타로그와 ETL
d P p n
g r a R n & R M
• -H , A CAC AC -H ,
• ADE C , A CAC AC ADE C ,
• /C A CAC AC /C
• , C C A CAC AC , C C
• - C & A CAC AC - C &
uQ n d a R n • A ,z P hl H A &
• & S m d m A CAC
c o d t • A DE
y r d i Wr r • A D E A B EC A E
kf r d tK • A E A E
AAB e hl • A -
vtL d R hl • A D D DE D C C
y • A A BC
O d N s • A - C
• B B C A -
N
https://aws.amazon.com/ko/events/data-driven-decisions/webinars/
L S
CW
A M D
A
b !
:
ü :
ü a:
. / - /
.
1 of 52

More Related Content

What's hot(20)

Building a Data Lake on AWSBuilding a Data Lake on AWS
Building a Data Lake on AWS
Amazon Web Services15.9K views

Similar to 데이터 기반 의사결정을 통한 비지니스 혁신 - 윤석찬 (AWS 테크에반젤리스트)(20)

Opening KeynoteOpening Keynote
Opening Keynote
Amazon Web Services751 views
 AWS Cloud Kata 2014 | Jakarta - 2-3 Big Data AWS Cloud Kata 2014 | Jakarta - 2-3 Big Data
AWS Cloud Kata 2014 | Jakarta - 2-3 Big Data
Amazon Web Services3.6K views
Opening Keynote - AWS Summit SG 2017Opening Keynote - AWS Summit SG 2017
Opening Keynote - AWS Summit SG 2017
Amazon Web Services1.1K views
Opening Keynote - AWS Summit SG 2017Opening Keynote - AWS Summit SG 2017
Opening Keynote - AWS Summit SG 2017
Amazon Web Services1K views
AWS re:Invent 2016 recap (part 1)AWS re:Invent 2016 recap (part 1)
AWS re:Invent 2016 recap (part 1)
Julien SIMON1.2K views
B3 - Business intelligence apps on awsB3 - Business intelligence apps on aws
B3 - Business intelligence apps on aws
Amazon Web Services2.7K views
Real time serverless data pipelines on AWSReal time serverless data pipelines on AWS
Real time serverless data pipelines on AWS
The Incredible Automation Day403 views
Building your Datalake on AWSBuilding your Datalake on AWS
Building your Datalake on AWS
Amazon Web Services1.6K views
AWS Webcast - Amazon Kinesis and Apache StormAWS Webcast - Amazon Kinesis and Apache Storm
AWS Webcast - Amazon Kinesis and Apache Storm
Amazon Web Services13K views

More from Amazon Web Services Korea(20)

AWS Modern Infra with Storage Roadshow 2023 - Day 2AWS Modern Infra with Storage Roadshow 2023 - Day 2
AWS Modern Infra with Storage Roadshow 2023 - Day 2
Amazon Web Services Korea170 views
AWS Modern Infra with Storage Roadshow 2023 - Day 1AWS Modern Infra with Storage Roadshow 2023 - Day 1
AWS Modern Infra with Storage Roadshow 2023 - Day 1
Amazon Web Services Korea102 views

Recently uploaded(20)

Web Dev - 1 PPT.pdfWeb Dev - 1 PPT.pdf
Web Dev - 1 PPT.pdf
gdsczhcet48 views
Java Platform Approach 1.0 - Picnic MeetupJava Platform Approach 1.0 - Picnic Meetup
Java Platform Approach 1.0 - Picnic Meetup
Rick Ossendrijver23 views
CXL at OCPCXL at OCP
CXL at OCP
CXL Forum183 views

데이터 기반 의사결정을 통한 비지니스 혁신 - 윤석찬 (AWS 테크에반젤리스트)

  • 1. A @
  • 2. . 2 1 . ? S . ? W3 A ? . . 4 ? W3
  • 4. • • • s • • v • • ) • / • ? • • ( • • ) • •
  • 5. 웹 로그 클릭 데이터 사용자 행동 콘텐츠 구매 데이터 센서 데이터 소셜 미디어 인공 지능 기계 학습 ) ( 대용량 저장소 관계형 DB NoSQL 데이터웨어하우스 실시간 분석 비지니스 인텔리전스 오픈 소스 도구 데이터레이크
  • 6. 0 29 Source: IDC Digital Universe Study (2012) • . 8 0 1 6 % 4 • 5 B B 2 % , % 4 • %
  • 7. © Daum 내부 빅데이터 및 클라우드 기술 활용 사례- 윤석찬 (2012) https://www.slideshare.net/Channy/daums-hadoop-usecases • H • H
  • 8. Amazon EMR (Hadoop) Amazon Athena (Presto) Amazon EC2 (가상 서버) Amazon S3 (스토리지)
  • 11. Transactions ERP Data analysts 1 4 0 9 5 AWS LambdaAmazon EMR Amazon Redshift Amazon Machine Learning Amazon Elastisearch Service Amazon Quicksight AWS Glue Amazon S3 Amazon Kinesis Amazon DynamoDB Amazon Athena
  • 12. DB 관리의 부담이 많?니,. (RDB) 관계형 DB 는 확장성이 쉽지 않B요. (NoSQL) Hadoop 배포 및 관리하기가 힘듭니,. 기존 DW는 복잡하고 비싸고 느립니,. 상용 RDB는 고비용에 관리, 확장이 D려워요. 실시간 데이터는 수집하고 분석하기 힘듭니,. 데이터 클린징(ETL)을 좀. 쉽게 할 수 없을까요? 딥러닝 모델링 및 배포를 좀 . 쉽게 하고 싶D요. ü Amazon RDS ü Amazon DynamoDB ü Amazon EMR ü Amazon Redshift ü Amazon Aurora ü Amazon Kinesis ü AWS Glue ü Amazon SageMaker
  • 15. .
  • 16. Transactions ERP Database Data analysts Data Warehouse Amazon Redshift . & & • - • & Data Processing Amazon EMR Amazon DynamoDB Amazon RDS & Aurora AWS Data Migration Service AWS Snowball Amazon S3 Storage
  • 17. , , , A8 Aurora ElastiCache (Redis) Redshift Kinesis Firehose S3 Historical queries on up to 2 years of data Operational queries of real- time data Staging near real-time data Join / compare events Real-time streams of lodging market data Ingest multiple data streams Reference data on-premises EC2 https://www.youtube.com/watch?v=9hUVcH48eLg • E E , , 9 • -5 0 - (1 0 ) ,0 ) , 0 • C • E % ) 5 C R
  • 18. Work Item Storage Partition Assigner Timer Router Time r Node s odesdesNode s Timer Hosts View Router Time r Node s Node sodesNode s View Hosts DynamoDB • B O 1 - 3 0 D • 7 2 • 7 https://www.youtube.com/watch?v=83-IWlvJ__8
  • 20. Transactions ERP Data Lake Data Data analysts Direct Query Amazon Athena Data Storage Amazon S3 . ( ( )) 2 , • . • , Amazon QuickSight
  • 22. Raw Data Amazon S3 • A • ETL (Hadoop) Amazon EMR Triggered Code AWS Lambda Staged Data (Data Lake) Amazon S3 ETL & Catalog Management AWS Glue Data Warehouse Amazon Redshift Triggered Code AWS Lambda
  • 23. Amazon S3 Data lake AWS Glue (ETL & Data Catalog) Amazon Athena Amazon QuickSight $ AWS IoT Devices Web Sensors Social
  • 25. https://aws.amazon.com/athena/#Case_studies P B P h o P W %% I P T P ) a )% h e t n o P 0 ,5 P t S ( S h s o B P 2 5 32 1P A r T
  • 26. https://aws.amazon.com/quicksight/#Customers “Amazon QuickSight's native integration with Amazon Athena makes it the ideal serverless analytics solution. With QuickSight pay-per-session pricing, we can easily extend access to interactive dashboards across our teams and only pay for what we use. The move from static email reports and ad-hoc analysis to always-available data in QuickSight has been great!” Anders Rahm-Nilzon Cloud Manager, Volvo Group Connected Solutions “The QuickSight pay-per-session dashboard access is perfect as it allows secure, fast and cost-effective access to interactive data. As a cloud-based solution, QuickSight automatically scales to our needs. The combination of being able to connect to data from a private Virtual Private Cloud (VPC) through PrivateLink, authenticate users via SAML.” Massimilliano Ponticelli Product Manager, Siemens
  • 27. Data Lake Business users Transactions ERP Social media Data Stream Capture Amazon Kinesis Events Amazon QuickSight Data Warehouse Amazon Redshift Stream Data Amazon ElasticSearch Data Storage Amazon S3 . . •
  • 28. • 0 : D L W g y • 35 R w , Vh o • 1 B E E L cow i R g () mK • GB C 1 B E EW g S R y s https://aws.amazon.com/ko/solutions/case-studies/supercell/ https://aws.amazon.com/solutions/case-studies/netflix-kinesis-streams/ • l ds e W a n • ds 1 B E E D gl mKs 4, CF 2C E a • P a r h M r
  • 29. "AWS 플랫폼은 17PB의 야구 게임 데이터를 처리하고 고객에게 이를 거의 실시간으로 제공하기 위한 탁월한 선택이었습니다.” –·Joe Inzerillo, EVP 및 CTO, Major League ase,all Advanced Media
  • 30. 8 7 2 1 5 ü c ü ü ü ü : 9 3 • E ) 0 2 17 dR (M: 8 3 • ) dRa M: ( 3 • M: ) 4 7 0 2 8) https://www.youtube.com/watch?v=AsyqdESMSG8
  • 32. , https://nucleusresearch.com/research/single/guidebook-tensorflow-aws/ “In analyzing the experiences of researchers supporting more than 388 unique projects, Nucleus found that 88 percent of cloud-based TensorFlow projects are running on AWS.”
  • 34. https://www.youtube.com/watch?v=tIt2JeNkbys ü ü 4 7 • • 7 R • D EMR Master Node Data Node Redshift WAS WEB M S Collect Server ElasticSearch Shard 1 Shard 2 Shard Shard 4 Kinesis WAS L3g S3 RDS Aurora Availability Zone VPN AWSE2d43i2t L3gstash S4ark Hive Dashb3ard A1ert Debug L3g 실시간 Bastion EC2 Sync R Server Woongjin IDC NoSQL & Prediction Engine
  • 35. ! ( )
  • 37. Direct Connect 80TB / day Build Model Feature Extraction 100 PB Archive User Application Cache Hit Rate Feedback Optimized S3 Cache SM Decision: Cache Image or Not Cleaned Feature Vectors Amazon SageMaker Jupyter/Pandas Order History Data Warehouse Imagery Metadata Cache hit rate dropped by nearly 2x “We plan to use Amazon SageMaker to train models against petabytes of Earth observation imagery datasets using hosted Jupyter notebooks, so DigitalGlobe's Geospatial Big Data Platform (GBDX) users can just push a button, create a model, and deploy it all within one scalable distributed environment at scale.” - Dr. Walter Scott, CTO of Maxar Technologies and founder of DigitalGlobe
  • 38. S S , 5 , I m z k kGe b M m k L a o A g sW S 2 0 5 n . g k r A A M !
  • 39. Transactions ERP Data analysts Data scientists Business users Engagement platformsConnected devices Automation / events Data Event Action Insights Data Lake ML / Deep Learning Predict / Recommend AI Services Social media Web logs / clickstream .
  • 40. & & A
  • 41. -
  • 42. "Persons": [ { "Timestamp": number, "Person": { "Index": number, "BoundingBox": { "Width": number, "Top": number, "Height": number, "Left": number }, "Face": { "BoundingBox": { ... }, "Landmarks": { ... }, "Pose": { ... }, "Quality": { ... }, "Confidence": number } }, ... GetPersonTracking StartPersonTracking -
  • 43. Live Street Camera Amazon Kinesis Video Streams 1. Camera-captured video streams are processed by Kinesis Video Streams End User 3. End user is notified in case of face matches Amazon SNS AWS Lambda Amazon Kinesis Streams Amazon Rekognition Video Face collection 2. Rekognition Video analyses the video and searches faces on screen against a collection of millions of faces
  • 44. P R 8 E 2 C C 0 S C TM 1 E E N A TM J https://aws.amazon.com/ko/rekognition/customers/
  • 45. A QUIET OFFICE Amazon SageMaker Image Classification Amazon Rekognition Image CHAIR LAPTOP LAMP DESK 97% 95% 88% 82% Object Identification WORKING! <HISTORY>
  • 46. ! 4 4
  • 47. 1 + 0 5 5
  • 48. ! #
  • 49. 수집 저장/처리 협업/공유분석/시각화 Kinesis E트리A 데이터 Database Migration Service Oracl,, N,t,zza 등의 데이터 S포트 Amazon S3 안전c고, 비L 효OT인 E토리지 Direct Connect 데이터 센터와 연결 Snowball B크 데이터 로드 내부 사용자와 시스템 고객 대상 서비스 Redshift 데이터 NIc우E EMR 비정e 데이터 처리, pac-, Spark Athena ad--oc 쿼리 SageMaker 기계 d습 플랫a QuickSight 시각화, BI 다양한 솔루션과 연동 Glue 데이터카타로그와 ETL
  • 50. d P p n g r a R n & R M • -H , A CAC AC -H , • ADE C , A CAC AC ADE C , • /C A CAC AC /C • , C C A CAC AC , C C • - C & A CAC AC - C & uQ n d a R n • A ,z P hl H A & • & S m d m A CAC c o d t • A DE y r d i Wr r • A D E A B EC A E kf r d tK • A E A E AAB e hl • A - vtL d R hl • A D D DE D C C y • A A BC O d N s • A - C • B B C A -
  • 52. b ! : ü : ü a: . / - / .