Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Specialist SA, WWSO, AWS ::: AWS Data Roadshow 2023

Amazon Web Services Korea
Amazon Web Services KoreaAmazon Web Services Korea
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Dalyoung Jung
APAC MySQL Specialist Solutions Architect
Amazon Web Services
Deep dive into Amazon Aurora
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
• Designed for unparalleled high performance and availability at global scale with full MySQL and PostgreSQL compatibility at 1/10th the cost of
commercial databases
▪ 5x throughput of standard
MySQL and 3x of standard
PostgreSQL
▪ Scale out up to 15 read replicas
▪ Decoupled storage and compute
enabling cost optimization
▪ Fast database cloning
▪ Distributed, dynamically scaling
storage subsystem
성능 및 확장성
▪ 6 copies of data across 3 AZs
(customers pays for 1)
▪ Automatic, continuous,
incremental backups with point-
in-time recovery (PITR)
▪ Fault-tolerant, self-healing, auto-
scaling storage
▪ Global Database for disaster
recovery
가용성 및 내구성
▪ Network isolation
▪ Encryption at rest/in transit
▪ Supports multiple secure
authentication mechanisms and
audit controls
높은 보안성
▪ Automates time-consuming
management of administration
tasks like hardware provisioning,
database setup, patching, and
backups
▪ Serverless configuration options
완전한 관리형
Amazon Aurora
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Architecture
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Storage
nodes
Shared storage volume
SQL
Transaction
Caching
Availability Zone 1
SQL
Transaction
Caching
Availability Zone 2
SQL
Transaction
Caching
Availability Zone 3
Instance
nodes
SQL
Transaction
Caching
Availability Zone 1
SQL
Transaction
Caching
Availability Zone 2
SQL
Transaction
Caching
Availability Zone 3
Instance
nodes
Network Storage
logging logging logging
Network Storage Network Storage
Storage
nodes
Amazon RDS Amazon Aurora
Amazon RDS vs Aurora
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
RO
Application
RW
Application
RO
Application
Async
Invalidation
& Update
Async
invalidation
& update
Write log
records
Read
blocks
RW
Aurora
storage
RO
RO
RO
RO
Availability Zone 3
Availability Zone 2
Availability Zone 1
db.r6i.4xlarge db.serverless
db.r6g.4xlarge
6
5
4
3
2
1
AWS JDBC
Aurora storage and replicas
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Replication
agents
Region B
Region A
Availability Zone 3
Availability Zone 1 Availability Zone 2
Availability Zone 3
Availability Zone 1 Availability Zone 2
Amazon Aurora Global Database
Aurora storage
RO
Application
RW
Application
RO
Application
Replication
servers Aurora storage
RO
Application Application
RO
Application
RO
RW
DR
primary DB cluster secondary DB cluster
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Replication
agents
Region B
Region A
Availability Zone 3
Availability Zone 1 Availability Zone 2
Availability Zone 3
Availability Zone 1 Availability Zone 2
Amazon Aurora Global Database
Managed planned failover
Aurora storage
RO
Application
RW
Application
RO
Application
Replication
servers Aurora storage
RO
Application Application
RO
Application
RO
RW
primary DB cluster secondary DB cluster
RO
verify
Replication
servers
Replication
agents
primary DB cluster
secondary DB cluster
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Amazon Aurora Global Database
Region A
Availability Zone 3
Availability Zone 1 Availability Zone 2
Aurora storage
RO
Application
RW
Application
RO
Application
Replication
servers
Region B
Availability Zone 3
Availability Zone 1 Availability Zone 2
Replication
agents Aurora storage
R
O
Applicatio
n
Applicatio
n
R
O
Applicatio
n
R
O
Region C
Availability Zone 3
Availability Zone 1 Availability Zone 2
Replication
agents Aurora storage
R
O
Applicatio
n
Applicatio
n
R
O
Region D
Availability Zone 3
Availability Zone 1 Availability Zone 2
Replication
agents Aurora storage
db.serverless
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Replication
agents
Region B
Region A
Availability Zone 3
Availability Zone 1 Availability Zone 2
Availability Zone 3
Availability Zone 1 Availability Zone 2
Amazon Aurora Global Database
Write Forwarding
Aurora storage
RO
Application
RW
Application
RO
Application
Replication
servers Aurora storage
RO
Application Application
RO
Application
RO
Application
--enable-global-write-forwarding
TUNNEL
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Aurora Storage Internals
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Aurora PostgreSQL: Writing less
Aurora
update t set y = 6
Block in
memory
t-v1
t-v2
t-v3
Aurora
storage
t-v2
t-v3
No engine
checkpoint
=
no FPW
Block in
memory
PostgreSQL
t-v1
t-v2
t-v3
Checkpoint
Datafile
t-v2
Full
block
t-v3
WAL
Archive
4K
4K
8K
update t set y = 6
Amazon Simple Storage
Service (Amazon S3)
recovery
in minutes continuous
& parallel
coalesce
recovery in
seconds
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Aurora MySQL: Writing less
Aurora
insert
Block in
memory
row1
row2
Aurora
storage
row2
No engine
checkpoint
=
no
doublewrite
buffer
Block in
memory
MySQL
row1
row2
Checkpoint
Datafile
row2
Full
block
log
Archive
4K
4K
16K
insert
Amazon Simple Storage
Service (Amazon S3)
recovery
in minutes continuous
& parallel
coalesce
recovery in
seconds
4K
4K
doublewrite
buffer
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Aurora
RW
Storage Node
Incoming queue Data
blocks
Update
queue
Hot log
Peer storage
nodes
Coalesce
Amazon S3
A A
C C
B
A B C
B C
A
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Storage Management – Dynamic resizing
new partitions
every hour
drop
existing
create
new
2 hour
spike drop
existing
create
new
drop
the
spike
used space
inside the db
used storage
space
2X extra
storage
costs
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Availability Zone 2
Availability Zone 1 Availability Zone 3
RO
Application
Fast clones
RW
Application
RW
Reporting
application
Write log
records
Read
blocks
Aurora
storage
Primary storage
Clone storage
Clone
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Fast clone example
0
5000
10000
15000
20000
25000
0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78
Transactions
per
second
(TPS)
Minutes
PGBench RW Scale 10K - Target Rate 20K TPS
Main Database Clone Database
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Export to S3 via clone
Amazon Aurora
Primary(R/W)
Snapshot
Aurora storage
Amazon Simple Storage
Service (Amazon S3)
Aurora storage
Amazon Aurora
CLONE
Amazon Aurora
Primary Snapshot
parallel export – Aurora MySQL
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Aurora Backtrack
t0 t1 t2
t0 t1
t2
t3 t4
t3
t4
Rewind to t1
Rewind to t3
Invisible Invisible
Backtrack brings the database to a point in time without requiring restore from backups
Recover from an unintentional DML or DDL operation
Backtrack is not destructive; you can backtrack multiple times to find the right point in time
Also useful for QA (rewind your DB between test runs)
NEW! Backtrack Support for Aurora MySQL Version 3 (As of Jan 4, 2023)
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Performance Features
Amazon Aurora
Parallel Query
(MySQL)
Query Plan
Management
(PostgreSQL)
Cluster Cache
Management
(PostgreSQL)
Logical
Replication
Cache
(PostgreSQL)
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
QPM in Aurora PostgreSQL
• Controls how and when query execution plans change
• Prevents plan regressions or plan flips
• Improves plan stability by forcing the optimizer to choose from a small number of known,
good plans
• Optimize plans centrally and then distribute them
• Automatically detects a new minimum-cost plan discovered by the optimizer
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Performance Insights
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Performance Insights – Zoom In
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Performance Insights
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Plan change
Before
• Aggregate (cost=3804.15..3804.16 rows=1 width=16)
• -> Nested Loop (cost=12.67..3802.61 rows=307 width=8)
• -> Index Scan using pgbench_branches_pkey on pgbench_branches b (cost=0.29..16.60 rows=2 width=8)
• Index Cond: (bid = ANY ('{1,4}'::integer[]))
• -> Bitmap Heap Scan on pgbench_history h (cost=12.39..1891.47 rows=154 width=8)
• Recheck Cond: (bid = b.bid)
• Filter: ((mtime >= (now() - '01:00:00'::interval)) AND (mtime <= (now() - '00:30:00'::interval)))
• -> Bitmap Index Scan on i_p_bid (cost=0.00..12.35 rows=522 width=0)
• Index Cond: (bid = b.bid)
After
• Aggregate (cost=171092.96..171092.97 rows=1 width=16)
• -> Hash Join (cost=329.02..171091.42 rows=307 width=8)
• Hash Cond: (h.bid = b.bid)
• -> Seq Scan on pgbench_history h (cost=0.00..166712.20 rows=1542280 width=8)
• Filter: ((mtime >= (now() - '01:00:00'::interval)) AND (mtime <= (now() - '00:30:00'::interval)))
• -> Hash (cost=329.00..329.00 rows=2 width=8)
• -> Seq Scan on pgbench_branches b (cost=0.00..329.00 rows=2 width=8)
• Filter: (bid = ANY ('{1,4}'::integer[]))
• enable_bitmapscan=off
• enable_indexscan=off
• stats change?
• index change?
• config change?
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
1. Capture plans
2. Approve plans
Use baseline
3. Evolve Unapproved plans
Compare
4. Re-test Approved plans
and possibly change to
Preferred or Rejected
Automatically happens if query runs
more than once
If an Unapproved plan is faster (slower),
Approve (Reject) it.
First captured plan is automatically
approved
5. See the effect of changing an optimizer
setting for any set of statements, without
risk of plan regression. Any new plans are
created with status ‘Unapproved’.
Using query plan stability and evolution
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Plan selection process
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
QPM – Use plan baselines
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Performance Features
Amazon Aurora
Parallel Query
(MySQL)
Query Plan
Management
(PostgreSQL)
Cluster Cache
Management
(PostgreSQL)
Logical
Replication
Cache
(PostgreSQL)
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Cluster Cache Management
• The cluster cache management (CCM) feature improves the performance of the
new primary/writer instance after failover occurs
• With CCM, you can designate a specific Aurora PostgreSQL replica as the failover
target
• CCM ensures that data in the designated replica’s cache is synchronized with the
data in the primary DB instance’s cache
• If a failover occurs, the designated reader uses values in its warm cache
immediately when it is promoted to the new writer DB instance
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Availability Zone 3
RO
Reporting
Application
Cluster Cache Management (CCM) Feature
RW
Application
RO
Application
Async
Invalidation
& Update
Availability Zone 1
Availability Zone 2
RO
RO
RO
RO
Failover
Priority
1 or
higher
apg_ccm_enabled=on
bloom filter - replica cache
block addresses to load Failover
Priority
0
Failover
Priority
0
Distributed Log Based Storage
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Failover behavior with Cluster Cache Management
0
50,000
100,000
150,000
200,000
250,000
300,000
350,000
400,000
0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200
Transactions
per
Second
(TPS)
Seconds
PGBench 20X RO / 1X RW 160GB Cached - Failover at 600 Seconds
Baseline CCM Enabled
32 seconds
340 seconds
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Performance Features
Amazon Aurora
Parallel Query
(MySQL)
Query Plan
Management
(PostgreSQL)
Cluster Cache
Management
(PostgreSQL)
Logical
Replication
Cache
(PostgreSQL)
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Aurora PostgreSQL – Logical replication cache
Aurora storage
Amazon
Aurora
write wal log
(needed for logical decoding)
write transaction
log
Users /
Applications
INSERT logical
decoding
AWS Database Migration
Service (AWS DMS)
INSERT
read wal log
(needed for logical decoding)
wal log
cache
cache read
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Performance Features
Amazon Aurora
Parallel Query
(MySQL)
Query Plan
Management
(PostgreSQL)
Cluster Cache
Management
(PostgreSQL)
Logical
Replication
Cache
(PostgreSQL)
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Driving down query latency using Parallel Query (PQ)
• Use cases:
• HTAP, light analytics (aggregations)
• Scheduled reporting jobs on OLTP data
• What it is:
• Aurora storage fleet has thousands of
CPUs
• Push down and parallelize query
processing using the storage fleet
• Moving processing close to data
reduces network traffic and latency
DATABASE NODE
STORAGE NODES
PUSH DOWN
PREDICATES
AGGREGATE
RESULTS
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Working with Parallel Query
How it works:
• DB instance has max. number of PQ threads, based on type
• Available for any DB cluster versions >=1.23 (5.6), >=2.09 (5.7) , 3.0
• Enable/disable PQ at session and global level
• EXPLAIN plan will show if PQ is used (“Using parallel query” under ”Extra”)
• Make sure to enable hash joins optimization
• Improved parallel query support for Aurora MySQL 3
Limitations:
• Row format COMPACT and DYNAMIC only
• Partitioned tables not supported(Supported in Aurora MySQL3)
• Blobs, spatial, queries with data on external pages not supported
• Not available with
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
PQ performance results
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Aurora MySQL Enhancements
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Aurora MySQL
enhanced binlog
Binlog
Enhanced
Binlog
• greatly reduced
overhead for enabling
binlog
• reduced cost to read
binlogs for cdc
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Instant DDL – Aurora MySQL 3 (8.0)
• Supersedes “Lab Mode” Fast DDL.
• Compatible with the instant DDL from community MySQL 8.0
• ALGORITHM=INSTANT with the ALTER TABLE statement.
• Only modifies metadata in the data dictionary. No exclusive metadata locks.
• Not all operations are supported
https://dev.mysql.com/doc/refman/8.0/en/innodb-online-ddl-operations.html
• Limitations* –
• No temp table support
• No compressed row format support
• Only adds last column
*Inherited from MySQL and apply to both Aurora and MySQL Community
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Aurora Serverless
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Amazon Aurora Serverless
On-demand and automatically scaling configuration
Automatically scales capacity based on application needs
Simple pay-per-use pricing per second
Scales instantly to support demanding applications
Worry-free database capacity management
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Instant, in-place scaling
• Scales in place in under a second by adding
more CPU and memory resources and billed
by the second
• No impact due to scaling even when running
hundreds of thousands of transactions
AWS Lambda
Amazon Aurora
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Aurora – challenging workload example
db.r6g.4xlarge
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Aurora - challenging workload example
db.r6g.4xlarge
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Aurora Serverless – CPU scaling
db.serverless
per second scale
up by 8% of max
ACU configured
(128)
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Aurora - challenging workload example
db.r6g.4xlarge
Aurora - challenging workload example
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Aurora - challenging workload example
db.r6g.4xlarge
point select canary query
10X increase in average latency
Aurora - challenging workload example
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Aurora - challenging workload example
db.r6g.4xlarge
Aurora - challenging workload example
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Aurora Serverless – memory and CPU scaling
serverless scales up
providing additional
memory and CPU
db.serverless
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Aurora Serverless – memory scaling
8X reduction in latency
point select canary query
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Buffer pool resizing
Buffer pool
Access frequency
Storage volume
Page
read
Page
read
Evict cold pages
Shrink memory
Reads
Default memory allocation: 75% for buffer
pool and 25% for heap
Buffer pool size scaled along with capacity
Parameters automatically adjusted:
MySQL: innodb_buffer_pool_size
PostgreSQL: shared_buffers
Buffer pool scaled down through a
combination of least frequently used (LFU) and
least recently used (LRU) algorithms
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Blue/Green Deployment
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
How does Amazon RDS Blue/Green Deployment
work?
Users /
Applications
DB endpoint
Logical replication from ‘blue’
to ‘green’
Blue
Primary
Green
Primary
Future
Production
Current
Production
AWS Cloud
Amazon RDS
• Creates a mirrored copy of
the current production
environment (blue) as the
green environment (future
production)
• Sets up logical replication
between blue primary and
green primary
• Modify green, add/remove
replicas, and test changes in
green environment before
switchover
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Amazon Aurora Blue/Green Deployments
Region
Availability Zone
3
Availability Zone
1
Availability Zone
2
Aurora storage
RW
Users /
Applications
db cluster
endpoint
RO
Source
mycluster
Aurora MySQL 2.10.2 (5.7)
Aurora storage
RO
RW RO
Target
mycluster-green-x1234
Aurora MySQL 2.10.2 (5.7)
• Major/Minor Upgrades
• Schema Changes
• Static Parameter Changes
• Maintenance Updates
create-blue-green-deployment
RO RO
RO
RO
switchover-blue-green-deployment
delete-blue-green-deployment
Target
mycluster-green-x1234
Aurora MySQL 3.02.2 (8.0)
AVAILABLE
SWITCHOVER_IN_PROGRESS
SWITCHOVER_COMPLETED
Target
mycluster
Aurora MySQL 3.02.2 (8.0)
Source
mycluster-old1
Aurora MySQL 2.10.2 (5.7)
customer verification
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Aurora I/O-Optimized
Feature
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Compute Storage I/O
Backup
Data transfer
Aurora Global Database
Aurora Backtrack
Export to S3
Aurora Parallel Query*
Fast Database Cloning*
Amazon RDS Blue/Green Deployments*
Every DB Cluster
Most DB Cluster
Use case or
feature dependent
Cluster cache management*
The Aurora bill has several components
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Cost Monitoring
Cost Optimization
Read I/O Unit : Number of Physical Page reads (from Aurora Storage)
Read I/O Cost : Per 1 million requests (example: $0.20 per 1 million requests for AWS us-east-1 region)
CloudWatch Metrics: [Billed] Volume Read IOPS (Count)
✓ Tune SQL queries to optimize read operations and avoid additional or full/ large rows scan on table.
✓ Scale DB Instance to optimize read I/O (monitor CloudWatch metrics Buffer Cache Hit Ratio (Percent))
✓ Tune autovacuum process on Aurora PostgreSQL for tables with high DML operations to avoid bloated tables/indexes access
✓ Use logical backup only when it’s required to avoid full table scan for every table backup
✓ Understand Aurora I/O usage impact while using Aurora specific features like Aurora Parallel Query (Aurora MySQL) and Aurora
Cluster Cache Management (Aurora PostgreSQL)
I/O cost costs are generated when reading
from Aurora
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Writer
Read
replica
Read
replica
Read
replica
Shared distributed storage volume
AZ3
AZ2
AZ1
A p p
Read I/O’s depends on
DB Cache size i.e. DB instance size
Where rows are stored physically
Data access pattern
Configuration changes can make I/O costs change
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Writer
Read
replica
Read
replica
AZ3
AZ2
AZ1
A p p
No cost for redo log record replication
Write I/O cost for one copy of data only
Includes explicit & implicit write operations by SQL
query or DB engine process
Aurora write I/O cost
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
SQL query access pattern & Aurora I/O
• Difference between rows examined and rows sent may incur additional I/O’s
• Extra 8 rows may cause 8 or less number of data pages access
• Review SQL query execution plan for efficient index utilization
Efficient SQL query pattern & Aurora I/O
rows examined rows sent extra rows processing
10 2 8
SQL query execution
rows examined rows sent extra rows processing
2 2 0
SQL query execution
The way queries are structured can affect I/O costs
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
P R E D I C T A B L E P R I C E F O R A L L W O R K L O A D S
I M P R O V E D P R I C E - P E R F O R M A N C E F O R I / O H E A V Y W O R K L O A D S
New cluster configuration that allows customers to pay for
compute and storage only, with no charges for read/write IOs
Predictable price for all workloads
Improved price-performance with up to 40% cost savings
when I/O spend exceeds 25% of total Aurora database spend.
Available for Aurora PostgreSQL and Aurora MySQL across
Aurora Serverless v2, On-Demand, and Reserved Instances
With Reserved Instances, customers get additional I/O savings
Amazon Aurora I/O-Optimized
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
• Aurora I/O-Optimized is a cluster storage configuration
• Aurora cluster can modify storage option (standard to I/O-Optimized) once in a month and
switch back anytime.
• Available from Aurora PostgreSQL 13.x and Aurora MySQL 3.0.3.1 onwards.
• Compatible with
Intel-based Aurora database instance types such as t3, r5, r6i
Graviton-based database instance types such as t4g, r6g, and x2g
Aurora Serverless v2
• Aurora Global database cluster can have different Aurora storage config at cluster level i.e.
primary & secondary clusters can configure with different configuration.
I/O-Optimized can be configured at a cluster level
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
Aurora
Aurora Standard Aurora I/O-Optimized
• Compute (On-demand / RI )
• Storage (standard – pay-per-use )
• I/O (Pay-per-request)
• Other cost components
• Compute (On-demand / RI) + 30%
• Storage (Standard – pay-per-use) + 125%
• I/O – No additional charges for read and
write I/Os*
• Other cost components
*Aurora I/O cost applicable for Aurora cluster using standard I/O configuration while using Aurora Global DB and no Aurora I/O cost
for primary or secondary cluster is using IO-optimized.
Customers now have more flexibility to choose based on their price predictability and
price-performance needs …
Aurora I/O-Optimized is available alongside Aurora
Standard
AWS DATA ROADSHOW 2023
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Thank you!
1 of 65

Recommended

LG전자 - Amazon Aurora 및 RDS 블루/그린 배포를 이용한 데이터베이스 업그레이드 안정성 확보 - 발표자: 이은경 책임, L... by
LG전자 - Amazon Aurora 및 RDS 블루/그린 배포를 이용한 데이터베이스 업그레이드 안정성 확보 - 발표자: 이은경 책임, L...LG전자 - Amazon Aurora 및 RDS 블루/그린 배포를 이용한 데이터베이스 업그레이드 안정성 확보 - 발표자: 이은경 책임, L...
LG전자 - Amazon Aurora 및 RDS 블루/그린 배포를 이용한 데이터베이스 업그레이드 안정성 확보 - 발표자: 이은경 책임, L...Amazon Web Services Korea
355 views27 slides
Amazon Redshift Deep Dive - Serverless, Streaming, ML, Auto Copy (New feature... by
Amazon Redshift Deep Dive - Serverless, Streaming, ML, Auto Copy (New feature...Amazon Redshift Deep Dive - Serverless, Streaming, ML, Auto Copy (New feature...
Amazon Redshift Deep Dive - Serverless, Streaming, ML, Auto Copy (New feature...Amazon Web Services Korea
154 views46 slides
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ... by
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...Amazon Web Services Korea
222 views86 slides
Aws glue를 통한 손쉬운 데이터 전처리 작업하기 by
Aws glue를 통한 손쉬운 데이터 전처리 작업하기Aws glue를 통한 손쉬운 데이터 전처리 작업하기
Aws glue를 통한 손쉬운 데이터 전처리 작업하기Amazon Web Services Korea
11.8K views43 slides
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ... by
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...Amazon Web Services Korea
306 views24 slides
AWS Summit Seoul 2023 | Amazon Redshift Serverless를 활용한 LG 이노텍의 데이터 분석 플랫폼 혁신 과정 by
AWS Summit Seoul 2023 | Amazon Redshift Serverless를 활용한 LG 이노텍의 데이터 분석 플랫폼 혁신 과정AWS Summit Seoul 2023 | Amazon Redshift Serverless를 활용한 LG 이노텍의 데이터 분석 플랫폼 혁신 과정
AWS Summit Seoul 2023 | Amazon Redshift Serverless를 활용한 LG 이노텍의 데이터 분석 플랫폼 혁신 과정Amazon Web Services Korea
153 views36 slides

More Related Content

What's hot

Amazon EMR과 SageMaker를 이용하여 데이터를 준비하고 머신러닝 모델 개발 하기 by
Amazon EMR과 SageMaker를 이용하여 데이터를 준비하고 머신러닝 모델 개발 하기Amazon EMR과 SageMaker를 이용하여 데이터를 준비하고 머신러닝 모델 개발 하기
Amazon EMR과 SageMaker를 이용하여 데이터를 준비하고 머신러닝 모델 개발 하기Amazon Web Services Korea
786 views29 slides
AWS Summit Seoul 2023 | 천만 사용자를 위한 카카오의 AWS Native 글로벌 채팅 서비스 by
AWS Summit Seoul 2023 | 천만 사용자를 위한 카카오의 AWS Native 글로벌 채팅 서비스AWS Summit Seoul 2023 | 천만 사용자를 위한 카카오의 AWS Native 글로벌 채팅 서비스
AWS Summit Seoul 2023 | 천만 사용자를 위한 카카오의 AWS Native 글로벌 채팅 서비스Amazon Web Services Korea
291 views40 slides
AWS Summit Seoul 2023 | 스타트업의 서버리스 기반 SaaS 데이터 처리 및 데이터웨어하우스 구축 사례 by
AWS Summit Seoul 2023 | 스타트업의 서버리스 기반 SaaS 데이터 처리 및 데이터웨어하우스 구축 사례AWS Summit Seoul 2023 | 스타트업의 서버리스 기반 SaaS 데이터 처리 및 데이터웨어하우스 구축 사례
AWS Summit Seoul 2023 | 스타트업의 서버리스 기반 SaaS 데이터 처리 및 데이터웨어하우스 구축 사례Amazon Web Services Korea
208 views61 slides
Amazon Aurora 성능 향상 및 마이그레이션 모범 사례 - AWS Summit Seoul 2017 by
Amazon Aurora 성능 향상 및 마이그레이션 모범 사례 - AWS Summit Seoul 2017Amazon Aurora 성능 향상 및 마이그레이션 모범 사례 - AWS Summit Seoul 2017
Amazon Aurora 성능 향상 및 마이그레이션 모범 사례 - AWS Summit Seoul 2017Amazon Web Services Korea
3.3K views64 slides
AWS Summit Seoul 2023 | 12가지 디자인 패턴으로 알아보는 클라우드 네이티브 마이크로서비스 아키텍처 by
AWS Summit Seoul 2023 | 12가지 디자인 패턴으로 알아보는 클라우드 네이티브 마이크로서비스 아키텍처AWS Summit Seoul 2023 | 12가지 디자인 패턴으로 알아보는 클라우드 네이티브 마이크로서비스 아키텍처
AWS Summit Seoul 2023 | 12가지 디자인 패턴으로 알아보는 클라우드 네이티브 마이크로서비스 아키텍처Amazon Web Services Korea
327 views64 slides
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::... by
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...Amazon Web Services Korea
114 views29 slides

What's hot(20)

Amazon EMR과 SageMaker를 이용하여 데이터를 준비하고 머신러닝 모델 개발 하기 by Amazon Web Services Korea
Amazon EMR과 SageMaker를 이용하여 데이터를 준비하고 머신러닝 모델 개발 하기Amazon EMR과 SageMaker를 이용하여 데이터를 준비하고 머신러닝 모델 개발 하기
Amazon EMR과 SageMaker를 이용하여 데이터를 준비하고 머신러닝 모델 개발 하기
AWS Summit Seoul 2023 | 천만 사용자를 위한 카카오의 AWS Native 글로벌 채팅 서비스 by Amazon Web Services Korea
AWS Summit Seoul 2023 | 천만 사용자를 위한 카카오의 AWS Native 글로벌 채팅 서비스AWS Summit Seoul 2023 | 천만 사용자를 위한 카카오의 AWS Native 글로벌 채팅 서비스
AWS Summit Seoul 2023 | 천만 사용자를 위한 카카오의 AWS Native 글로벌 채팅 서비스
AWS Summit Seoul 2023 | 스타트업의 서버리스 기반 SaaS 데이터 처리 및 데이터웨어하우스 구축 사례 by Amazon Web Services Korea
AWS Summit Seoul 2023 | 스타트업의 서버리스 기반 SaaS 데이터 처리 및 데이터웨어하우스 구축 사례AWS Summit Seoul 2023 | 스타트업의 서버리스 기반 SaaS 데이터 처리 및 데이터웨어하우스 구축 사례
AWS Summit Seoul 2023 | 스타트업의 서버리스 기반 SaaS 데이터 처리 및 데이터웨어하우스 구축 사례
Amazon Aurora 성능 향상 및 마이그레이션 모범 사례 - AWS Summit Seoul 2017 by Amazon Web Services Korea
Amazon Aurora 성능 향상 및 마이그레이션 모범 사례 - AWS Summit Seoul 2017Amazon Aurora 성능 향상 및 마이그레이션 모범 사례 - AWS Summit Seoul 2017
Amazon Aurora 성능 향상 및 마이그레이션 모범 사례 - AWS Summit Seoul 2017
AWS Summit Seoul 2023 | 12가지 디자인 패턴으로 알아보는 클라우드 네이티브 마이크로서비스 아키텍처 by Amazon Web Services Korea
AWS Summit Seoul 2023 | 12가지 디자인 패턴으로 알아보는 클라우드 네이티브 마이크로서비스 아키텍처AWS Summit Seoul 2023 | 12가지 디자인 패턴으로 알아보는 클라우드 네이티브 마이크로서비스 아키텍처
AWS Summit Seoul 2023 | 12가지 디자인 패턴으로 알아보는 클라우드 네이티브 마이크로서비스 아키텍처
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::... by Amazon Web Services Korea
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
AWS Summit Seoul 2023 | Amazon EKS 데이터 전송 비용 절감 및 카오스 엔지니어링 적용 사례 by Amazon Web Services Korea
AWS Summit Seoul 2023 | Amazon EKS 데이터 전송 비용 절감 및 카오스 엔지니어링 적용 사례AWS Summit Seoul 2023 | Amazon EKS 데이터 전송 비용 절감 및 카오스 엔지니어링 적용 사례
AWS Summit Seoul 2023 | Amazon EKS 데이터 전송 비용 절감 및 카오스 엔지니어링 적용 사례
AWS Summit Seoul 2023 | AWS 마이그레이션을 통한 엔카닷컴의 DT 전략 by Amazon Web Services Korea
AWS Summit Seoul 2023 | AWS 마이그레이션을 통한 엔카닷컴의 DT 전략AWS Summit Seoul 2023 | AWS 마이그레이션을 통한 엔카닷컴의 DT 전략
AWS Summit Seoul 2023 | AWS 마이그레이션을 통한 엔카닷컴의 DT 전략
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,... by Amazon Web Services Korea
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...
AWS Summit Seoul 2023 | 혁신의 키워드는 '조직'과 '문화' - 하이브리드 클라우드 플랫폼과 agile 조직이 만드는 혁신 by Amazon Web Services Korea
AWS Summit Seoul 2023 | 혁신의 키워드는 '조직'과 '문화' - 하이브리드 클라우드 플랫폼과 agile 조직이 만드는 혁신AWS Summit Seoul 2023 | 혁신의 키워드는 '조직'과 '문화' - 하이브리드 클라우드 플랫폼과 agile 조직이 만드는 혁신
AWS Summit Seoul 2023 | 혁신의 키워드는 '조직'과 '문화' - 하이브리드 클라우드 플랫폼과 agile 조직이 만드는 혁신
AWS Summit Seoul 2023 |투자를 모두에게, 토스증권의 MTS 구축 사례 by Amazon Web Services Korea
AWS Summit Seoul 2023 |투자를 모두에게, 토스증권의 MTS 구축 사례AWS Summit Seoul 2023 |투자를 모두에게, 토스증권의 MTS 구축 사례
AWS Summit Seoul 2023 |투자를 모두에게, 토스증권의 MTS 구축 사례
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance... by Amazon Web Services Korea
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
AWS Summit Seoul 2023 | SK쉴더스: AWS Native Security 서비스를 활용한 경계보안 by Amazon Web Services Korea
AWS Summit Seoul 2023 | SK쉴더스: AWS Native Security 서비스를 활용한 경계보안AWS Summit Seoul 2023 | SK쉴더스: AWS Native Security 서비스를 활용한 경계보안
AWS Summit Seoul 2023 | SK쉴더스: AWS Native Security 서비스를 활용한 경계보안
AWS Summit Seoul 2023 | AWS의 개발자를 위한 신규 서비스 소개 Amazon CodeCatalyst & Amazon C... by Amazon Web Services Korea
AWS Summit Seoul 2023 | AWS의 개발자를 위한 신규 서비스 소개 Amazon CodeCatalyst & Amazon C...AWS Summit Seoul 2023 | AWS의 개발자를 위한 신규 서비스 소개 Amazon CodeCatalyst & Amazon C...
AWS Summit Seoul 2023 | AWS의 개발자를 위한 신규 서비스 소개 Amazon CodeCatalyst & Amazon C...
AWS Summit Seoul 2023 | 가격은 저렴, 성능은 최대로! 확 달라진 Amazon EC2 알아보기 by Amazon Web Services Korea
AWS Summit Seoul 2023 | 가격은 저렴, 성능은 최대로! 확 달라진 Amazon EC2 알아보기AWS Summit Seoul 2023 | 가격은 저렴, 성능은 최대로! 확 달라진 Amazon EC2 알아보기
AWS Summit Seoul 2023 | 가격은 저렴, 성능은 최대로! 확 달라진 Amazon EC2 알아보기
AWS Summit Seoul 2023 |Datadog을 활용한 AWS 서버리스 Observability by Amazon Web Services Korea
AWS Summit Seoul 2023 |Datadog을 활용한 AWS 서버리스 ObservabilityAWS Summit Seoul 2023 |Datadog을 활용한 AWS 서버리스 Observability
AWS Summit Seoul 2023 |Datadog을 활용한 AWS 서버리스 Observability
Amazon DynamoDB - Use Cases and Cost Optimization - 발표자: 이혁, DynamoDB Special... by Amazon Web Services Korea
Amazon DynamoDB - Use Cases and Cost Optimization - 발표자: 이혁, DynamoDB Special...Amazon DynamoDB - Use Cases and Cost Optimization - 발표자: 이혁, DynamoDB Special...
Amazon DynamoDB - Use Cases and Cost Optimization - 발표자: 이혁, DynamoDB Special...
AWS Lake Formation을 통한 손쉬운 데이터 레이크 구성 및 관리 - 윤석찬 :: AWS Unboxing 온라인 세미나 by Amazon Web Services Korea
AWS Lake Formation을 통한 손쉬운 데이터 레이크 구성 및 관리 - 윤석찬 :: AWS Unboxing 온라인 세미나AWS Lake Formation을 통한 손쉬운 데이터 레이크 구성 및 관리 - 윤석찬 :: AWS Unboxing 온라인 세미나
AWS Lake Formation을 통한 손쉬운 데이터 레이크 구성 및 관리 - 윤석찬 :: AWS Unboxing 온라인 세미나
AWS Summit Seoul 2023 | 서버리스, 이제는 데이터 분석에서 활용해요! by Amazon Web Services Korea
AWS Summit Seoul 2023 | 서버리스, 이제는 데이터 분석에서 활용해요!AWS Summit Seoul 2023 | 서버리스, 이제는 데이터 분석에서 활용해요!
AWS Summit Seoul 2023 | 서버리스, 이제는 데이터 분석에서 활용해요!

Similar to Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Specialist SA, WWSO, AWS ::: AWS Data Roadshow 2023

re:Invent 2022 DAT326 Deep dive into Amazon Aurora and its innovations by
re:Invent 2022  DAT326 Deep dive into Amazon Aurora and its innovationsre:Invent 2022  DAT326 Deep dive into Amazon Aurora and its innovations
re:Invent 2022 DAT326 Deep dive into Amazon Aurora and its innovationsGrant McAlister
299 views197 slides
Build on Amazon Aurora with MySQL Compatibility (DAT348-R4) - AWS re:Invent 2018 by
Build on Amazon Aurora with MySQL Compatibility (DAT348-R4) - AWS re:Invent 2018Build on Amazon Aurora with MySQL Compatibility (DAT348-R4) - AWS re:Invent 2018
Build on Amazon Aurora with MySQL Compatibility (DAT348-R4) - AWS re:Invent 2018Amazon Web Services
677 views56 slides
SRV308 Deep Dive on Amazon Aurora by
SRV308 Deep Dive on Amazon AuroraSRV308 Deep Dive on Amazon Aurora
SRV308 Deep Dive on Amazon AuroraAmazon Web Services
3.2K views55 slides
Amazon Aurora 深度探討 by
Amazon Aurora 深度探討Amazon Aurora 深度探討
Amazon Aurora 深度探討Amazon Web Services
302 views40 slides
Amazon Aurora_Deep Dive by
Amazon Aurora_Deep DiveAmazon Aurora_Deep Dive
Amazon Aurora_Deep DiveAmazon Web Services
398 views58 slides
Optimize Costs and Scale Your Streaming Applications with Virtually Unlimited... by
Optimize Costs and Scale Your Streaming Applications with Virtually Unlimited...Optimize Costs and Scale Your Streaming Applications with Virtually Unlimited...
Optimize Costs and Scale Your Streaming Applications with Virtually Unlimited...HostedbyConfluent
42 views28 slides

Similar to Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Specialist SA, WWSO, AWS ::: AWS Data Roadshow 2023(20)

re:Invent 2022 DAT326 Deep dive into Amazon Aurora and its innovations by Grant McAlister
re:Invent 2022  DAT326 Deep dive into Amazon Aurora and its innovationsre:Invent 2022  DAT326 Deep dive into Amazon Aurora and its innovations
re:Invent 2022 DAT326 Deep dive into Amazon Aurora and its innovations
Grant McAlister299 views
Build on Amazon Aurora with MySQL Compatibility (DAT348-R4) - AWS re:Invent 2018 by Amazon Web Services
Build on Amazon Aurora with MySQL Compatibility (DAT348-R4) - AWS re:Invent 2018Build on Amazon Aurora with MySQL Compatibility (DAT348-R4) - AWS re:Invent 2018
Build on Amazon Aurora with MySQL Compatibility (DAT348-R4) - AWS re:Invent 2018
Optimize Costs and Scale Your Streaming Applications with Virtually Unlimited... by HostedbyConfluent
Optimize Costs and Scale Your Streaming Applications with Virtually Unlimited...Optimize Costs and Scale Your Streaming Applications with Virtually Unlimited...
Optimize Costs and Scale Your Streaming Applications with Virtually Unlimited...
Migrating Your Oracle & SQL Server Databases to Amazon Aurora (DAT318) - AWS ... by Amazon Web Services
Migrating Your Oracle & SQL Server Databases to Amazon Aurora (DAT318) - AWS ...Migrating Your Oracle & SQL Server Databases to Amazon Aurora (DAT318) - AWS ...
Migrating Your Oracle & SQL Server Databases to Amazon Aurora (DAT318) - AWS ...
Dat305 Deep Dive on Amazon Aurora PostgreSQL by Grant McAlister
Dat305 Deep Dive on Amazon Aurora PostgreSQLDat305 Deep Dive on Amazon Aurora PostgreSQL
Dat305 Deep Dive on Amazon Aurora PostgreSQL
Grant McAlister747 views
Introducing Amazon Aurora with PostgreSQL Compatibility - AWS Online Tech Talks by Amazon Web Services
Introducing Amazon Aurora with PostgreSQL Compatibility - AWS Online Tech TalksIntroducing Amazon Aurora with PostgreSQL Compatibility - AWS Online Tech Talks
Introducing Amazon Aurora with PostgreSQL Compatibility - AWS Online Tech Talks
Amazon Web Services1.4K views
SQL Server to Amazon Aurora Migration, Step by Step (DAT405) - AWS re:Invent ... by Amazon Web Services
SQL Server to Amazon Aurora Migration, Step by Step (DAT405) - AWS re:Invent ...SQL Server to Amazon Aurora Migration, Step by Step (DAT405) - AWS re:Invent ...
SQL Server to Amazon Aurora Migration, Step by Step (DAT405) - AWS re:Invent ...
Amazon Web Services1.7K views
Accelerate Database Development and Testing with Amazon Aurora (DAT313) - AWS... by Amazon Web Services
Accelerate Database Development and Testing with Amazon Aurora (DAT313) - AWS...Accelerate Database Development and Testing with Amazon Aurora (DAT313) - AWS...
Accelerate Database Development and Testing with Amazon Aurora (DAT313) - AWS...
Oracle to Amazon Aurora Migration, Step by Step (DAT435-R1) - AWS re:Invent 2018 by Amazon Web Services
Oracle to Amazon Aurora Migration, Step by Step (DAT435-R1) - AWS re:Invent 2018Oracle to Amazon Aurora Migration, Step by Step (DAT435-R1) - AWS re:Invent 2018
Oracle to Amazon Aurora Migration, Step by Step (DAT435-R1) - AWS re:Invent 2018
Scale Up and Modernize Your Database with Amazon Relational Database Service ... by Amazon Web Services
Scale Up and Modernize Your Database with Amazon Relational Database Service ...Scale Up and Modernize Your Database with Amazon Relational Database Service ...
Scale Up and Modernize Your Database with Amazon Relational Database Service ...
Ask Me Anything about Amazon Aurora (DAT369-R1) - AWS re:Invent 2018 by Amazon Web Services
Ask Me Anything about Amazon Aurora (DAT369-R1) - AWS re:Invent 2018Ask Me Anything about Amazon Aurora (DAT369-R1) - AWS re:Invent 2018
Ask Me Anything about Amazon Aurora (DAT369-R1) - AWS re:Invent 2018
AWS reInvent 2022 reCap AI/ML and Data by Chris Fregly
AWS reInvent 2022 reCap AI/ML and DataAWS reInvent 2022 reCap AI/ML and Data
AWS reInvent 2022 reCap AI/ML and Data
Chris Fregly347 views
Cumminsallison.com by davidwaizer
Cumminsallison.comCumminsallison.com
Cumminsallison.com
davidwaizer848 views

More from Amazon Web Services Korea

AWS Modern Infra with Storage Roadshow 2023 - Day 1 by
AWS Modern Infra with Storage Roadshow 2023 - Day 1AWS Modern Infra with Storage Roadshow 2023 - Day 1
AWS Modern Infra with Storage Roadshow 2023 - Day 1Amazon Web Services Korea
102 views173 slides
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A... by
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...Amazon Web Services Korea
120 views36 slides
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal... by
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...Amazon Web Services Korea
140 views57 slides
From Insights to Action, How to build and maintain a Data Driven Organization... by
From Insights to Action, How to build and maintain a Data Driven Organization...From Insights to Action, How to build and maintain a Data Driven Organization...
From Insights to Action, How to build and maintain a Data Driven Organization...Amazon Web Services Korea
163 views27 slides
KB국민카드 - 클라우드 기반 분석 플랫폼 혁신 여정 - 발표자: 박창용 과장, 데이터전략본부, AI혁신부, KB카드│강병억, Soluti... by
KB국민카드 - 클라우드 기반 분석 플랫폼 혁신 여정 - 발표자: 박창용 과장, 데이터전략본부, AI혁신부, KB카드│강병억, Soluti...KB국민카드 - 클라우드 기반 분석 플랫폼 혁신 여정 - 발표자: 박창용 과장, 데이터전략본부, AI혁신부, KB카드│강병억, Soluti...
KB국민카드 - 클라우드 기반 분석 플랫폼 혁신 여정 - 발표자: 박창용 과장, 데이터전략본부, AI혁신부, KB카드│강병억, Soluti...Amazon Web Services Korea
323 views29 slides
SK Telecom - 망관리 프로젝트 TANGO의 오픈소스 데이터베이스 전환 여정 - 발표자 : 박승전, Project Manager, ... by
SK Telecom - 망관리 프로젝트 TANGO의 오픈소스 데이터베이스 전환 여정 - 발표자 : 박승전, Project Manager, ...SK Telecom - 망관리 프로젝트 TANGO의 오픈소스 데이터베이스 전환 여정 - 발표자 : 박승전, Project Manager, ...
SK Telecom - 망관리 프로젝트 TANGO의 오픈소스 데이터베이스 전환 여정 - 발표자 : 박승전, Project Manager, ...Amazon Web Services Korea
272 views26 slides

More from Amazon Web Services Korea(17)

[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A... by Amazon Web Services Korea
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal... by Amazon Web Services Korea
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
From Insights to Action, How to build and maintain a Data Driven Organization... by Amazon Web Services Korea
From Insights to Action, How to build and maintain a Data Driven Organization...From Insights to Action, How to build and maintain a Data Driven Organization...
From Insights to Action, How to build and maintain a Data Driven Organization...
KB국민카드 - 클라우드 기반 분석 플랫폼 혁신 여정 - 발표자: 박창용 과장, 데이터전략본부, AI혁신부, KB카드│강병억, Soluti... by Amazon Web Services Korea
KB국민카드 - 클라우드 기반 분석 플랫폼 혁신 여정 - 발표자: 박창용 과장, 데이터전략본부, AI혁신부, KB카드│강병억, Soluti...KB국민카드 - 클라우드 기반 분석 플랫폼 혁신 여정 - 발표자: 박창용 과장, 데이터전략본부, AI혁신부, KB카드│강병억, Soluti...
KB국민카드 - 클라우드 기반 분석 플랫폼 혁신 여정 - 발표자: 박창용 과장, 데이터전략본부, AI혁신부, KB카드│강병억, Soluti...
SK Telecom - 망관리 프로젝트 TANGO의 오픈소스 데이터베이스 전환 여정 - 발표자 : 박승전, Project Manager, ... by Amazon Web Services Korea
SK Telecom - 망관리 프로젝트 TANGO의 오픈소스 데이터베이스 전환 여정 - 발표자 : 박승전, Project Manager, ...SK Telecom - 망관리 프로젝트 TANGO의 오픈소스 데이터베이스 전환 여정 - 발표자 : 박승전, Project Manager, ...
SK Telecom - 망관리 프로젝트 TANGO의 오픈소스 데이터베이스 전환 여정 - 발표자 : 박승전, Project Manager, ...
코리안리 - 데이터 분석 플랫폼 구축 여정, 그 시작과 과제 - 발표자: 김석기 그룹장, 데이터비즈니스센터, 메가존클라우드 ::: AWS ... by Amazon Web Services Korea
코리안리 - 데이터 분석 플랫폼 구축 여정, 그 시작과 과제 - 발표자: 김석기 그룹장, 데이터비즈니스센터, 메가존클라우드 ::: AWS ...코리안리 - 데이터 분석 플랫폼 구축 여정, 그 시작과 과제 - 발표자: 김석기 그룹장, 데이터비즈니스센터, 메가존클라우드 ::: AWS ...
코리안리 - 데이터 분석 플랫폼 구축 여정, 그 시작과 과제 - 발표자: 김석기 그룹장, 데이터비즈니스센터, 메가존클라우드 ::: AWS ...
LG 이노텍 - Amazon Redshift Serverless를 활용한 데이터 분석 플랫폼 혁신 과정 - 발표자: 유재상 선임, LG이노... by Amazon Web Services Korea
LG 이노텍 - Amazon Redshift Serverless를 활용한 데이터 분석 플랫폼 혁신 과정 - 발표자: 유재상 선임, LG이노...LG 이노텍 - Amazon Redshift Serverless를 활용한 데이터 분석 플랫폼 혁신 과정 - 발표자: 유재상 선임, LG이노...
LG 이노텍 - Amazon Redshift Serverless를 활용한 데이터 분석 플랫폼 혁신 과정 - 발표자: 유재상 선임, LG이노...
AWS Summit Seoul 2023 | Amazon Neptune 및 Elastic을 이용한 추천 서비스 및 검색 플랫폼 구축하기 by Amazon Web Services Korea
AWS Summit Seoul 2023 | Amazon Neptune 및 Elastic을 이용한 추천 서비스 및 검색 플랫폼 구축하기AWS Summit Seoul 2023 | Amazon Neptune 및 Elastic을 이용한 추천 서비스 및 검색 플랫폼 구축하기
AWS Summit Seoul 2023 | Amazon Neptune 및 Elastic을 이용한 추천 서비스 및 검색 플랫폼 구축하기
AWS Summit Seoul 2023 | 생성 AI 모델의 임베딩 벡터를 이용한 서버리스 추천 검색 구현하기 by Amazon Web Services Korea
AWS Summit Seoul 2023 | 생성 AI 모델의 임베딩 벡터를 이용한 서버리스 추천 검색 구현하기AWS Summit Seoul 2023 | 생성 AI 모델의 임베딩 벡터를 이용한 서버리스 추천 검색 구현하기
AWS Summit Seoul 2023 | 생성 AI 모델의 임베딩 벡터를 이용한 서버리스 추천 검색 구현하기
AWS Summit Seoul 2023 | 실시간 CDC 데이터 처리! Modern Transactional Data Lake 구축하기 by Amazon Web Services Korea
AWS Summit Seoul 2023 | 실시간 CDC 데이터 처리! Modern Transactional Data Lake 구축하기AWS Summit Seoul 2023 | 실시간 CDC 데이터 처리! Modern Transactional Data Lake 구축하기
AWS Summit Seoul 2023 | 실시간 CDC 데이터 처리! Modern Transactional Data Lake 구축하기
AWS Summit Seoul 2023 | AWS에서 OpenTelemetry 기반의 애플리케이션 Observability 구축/활용하기 by Amazon Web Services Korea
AWS Summit Seoul 2023 | AWS에서 OpenTelemetry 기반의 애플리케이션 Observability 구축/활용하기AWS Summit Seoul 2023 | AWS에서 OpenTelemetry 기반의 애플리케이션 Observability 구축/활용하기
AWS Summit Seoul 2023 | AWS에서 OpenTelemetry 기반의 애플리케이션 Observability 구축/활용하기
AWS Summit Seoul 2023 | 갤럭시 규모의 서비스를 위한 Amazon DynamoDB의 역할과 비용 최적화 방법 by Amazon Web Services Korea
AWS Summit Seoul 2023 | 갤럭시 규모의 서비스를 위한 Amazon DynamoDB의 역할과 비용 최적화 방법AWS Summit Seoul 2023 | 갤럭시 규모의 서비스를 위한 Amazon DynamoDB의 역할과 비용 최적화 방법
AWS Summit Seoul 2023 | 갤럭시 규모의 서비스를 위한 Amazon DynamoDB의 역할과 비용 최적화 방법
AWS Summit Seoul 2023 | 기업 고객 대상 기계학습 기반 콜센터 도입을 위한 여정 by Amazon Web Services Korea
AWS Summit Seoul 2023 | 기업 고객 대상 기계학습 기반 콜센터 도입을 위한 여정AWS Summit Seoul 2023 | 기업 고객 대상 기계학습 기반 콜센터 도입을 위한 여정
AWS Summit Seoul 2023 | 기업 고객 대상 기계학습 기반 콜센터 도입을 위한 여정
AWS Summit Seoul 2023 | 바쁘다 바빠, 현대사회! Amazon Kendra로 원하는 자료를 적재적소에 찾아서 활용하기 by Amazon Web Services Korea
AWS Summit Seoul 2023 | 바쁘다 바빠, 현대사회! Amazon Kendra로 원하는 자료를 적재적소에 찾아서 활용하기AWS Summit Seoul 2023 | 바쁘다 바빠, 현대사회! Amazon Kendra로 원하는 자료를 적재적소에 찾아서 활용하기
AWS Summit Seoul 2023 | 바쁘다 바빠, 현대사회! Amazon Kendra로 원하는 자료를 적재적소에 찾아서 활용하기
AWS Summit Seoul 2023 | 다중 계정 및 하이브리드 환경에서 안전한 IAM 체계 만들기 by Amazon Web Services Korea
AWS Summit Seoul 2023 | 다중 계정 및 하이브리드 환경에서 안전한 IAM 체계 만들기AWS Summit Seoul 2023 | 다중 계정 및 하이브리드 환경에서 안전한 IAM 체계 만들기
AWS Summit Seoul 2023 | 다중 계정 및 하이브리드 환경에서 안전한 IAM 체계 만들기
AWS Summit Seoul 2023 | 아마존의 공급망 전략을 배워보고, 우리 회사에 적용하기 by Amazon Web Services Korea
AWS Summit Seoul 2023 | 아마존의 공급망 전략을 배워보고, 우리 회사에 적용하기AWS Summit Seoul 2023 | 아마존의 공급망 전략을 배워보고, 우리 회사에 적용하기
AWS Summit Seoul 2023 | 아마존의 공급망 전략을 배워보고, 우리 회사에 적용하기

Recently uploaded

VNF Integration and Support in CloudStack - Wei Zhou - ShapeBlue by
VNF Integration and Support in CloudStack - Wei Zhou - ShapeBlueVNF Integration and Support in CloudStack - Wei Zhou - ShapeBlue
VNF Integration and Support in CloudStack - Wei Zhou - ShapeBlueShapeBlue
207 views54 slides
Business Analyst Series 2023 - Week 4 Session 8 by
Business Analyst Series 2023 -  Week 4 Session 8Business Analyst Series 2023 -  Week 4 Session 8
Business Analyst Series 2023 - Week 4 Session 8DianaGray10
145 views13 slides
ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ... by
ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ...ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ...
ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ...Jasper Oosterveld
35 views49 slides
CryptoBotsAI by
CryptoBotsAICryptoBotsAI
CryptoBotsAIchandureddyvadala199
42 views5 slides
CloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlue by
CloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlueCloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlue
CloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlueShapeBlue
137 views13 slides
Transitioning from VMware vCloud to Apache CloudStack: A Path to Profitabilit... by
Transitioning from VMware vCloud to Apache CloudStack: A Path to Profitabilit...Transitioning from VMware vCloud to Apache CloudStack: A Path to Profitabilit...
Transitioning from VMware vCloud to Apache CloudStack: A Path to Profitabilit...ShapeBlue
162 views25 slides

Recently uploaded(20)

VNF Integration and Support in CloudStack - Wei Zhou - ShapeBlue by ShapeBlue
VNF Integration and Support in CloudStack - Wei Zhou - ShapeBlueVNF Integration and Support in CloudStack - Wei Zhou - ShapeBlue
VNF Integration and Support in CloudStack - Wei Zhou - ShapeBlue
ShapeBlue207 views
Business Analyst Series 2023 - Week 4 Session 8 by DianaGray10
Business Analyst Series 2023 -  Week 4 Session 8Business Analyst Series 2023 -  Week 4 Session 8
Business Analyst Series 2023 - Week 4 Session 8
DianaGray10145 views
ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ... by Jasper Oosterveld
ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ...ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ...
ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ...
CloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlue by ShapeBlue
CloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlueCloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlue
CloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlue
ShapeBlue137 views
Transitioning from VMware vCloud to Apache CloudStack: A Path to Profitabilit... by ShapeBlue
Transitioning from VMware vCloud to Apache CloudStack: A Path to Profitabilit...Transitioning from VMware vCloud to Apache CloudStack: A Path to Profitabilit...
Transitioning from VMware vCloud to Apache CloudStack: A Path to Profitabilit...
ShapeBlue162 views
Updates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBIT by ShapeBlue
Updates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBITUpdates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBIT
Updates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBIT
ShapeBlue208 views
Mitigating Common CloudStack Instance Deployment Failures - Jithin Raju - Sha... by ShapeBlue
Mitigating Common CloudStack Instance Deployment Failures - Jithin Raju - Sha...Mitigating Common CloudStack Instance Deployment Failures - Jithin Raju - Sha...
Mitigating Common CloudStack Instance Deployment Failures - Jithin Raju - Sha...
ShapeBlue183 views
Optimizing Communication to Optimize Human Behavior - LCBM by Yaman Kumar
Optimizing Communication to Optimize Human Behavior - LCBMOptimizing Communication to Optimize Human Behavior - LCBM
Optimizing Communication to Optimize Human Behavior - LCBM
Yaman Kumar38 views
"Running students' code in isolation. The hard way", Yurii Holiuk by Fwdays
"Running students' code in isolation. The hard way", Yurii Holiuk "Running students' code in isolation. The hard way", Yurii Holiuk
"Running students' code in isolation. The hard way", Yurii Holiuk
Fwdays36 views
KVM Security Groups Under the Hood - Wido den Hollander - Your.Online by ShapeBlue
KVM Security Groups Under the Hood - Wido den Hollander - Your.OnlineKVM Security Groups Under the Hood - Wido den Hollander - Your.Online
KVM Security Groups Under the Hood - Wido den Hollander - Your.Online
ShapeBlue225 views
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R... by ShapeBlue
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...
ShapeBlue178 views
Why and How CloudStack at weSystems - Stephan Bienek - weSystems by ShapeBlue
Why and How CloudStack at weSystems - Stephan Bienek - weSystemsWhy and How CloudStack at weSystems - Stephan Bienek - weSystems
Why and How CloudStack at weSystems - Stephan Bienek - weSystems
ShapeBlue247 views
DRaaS using Snapshot copy and destination selection (DRaaS) - Alexandre Matti... by ShapeBlue
DRaaS using Snapshot copy and destination selection (DRaaS) - Alexandre Matti...DRaaS using Snapshot copy and destination selection (DRaaS) - Alexandre Matti...
DRaaS using Snapshot copy and destination selection (DRaaS) - Alexandre Matti...
ShapeBlue141 views
Zero to Cloud Hero: Crafting a Private Cloud from Scratch with XCP-ng, Xen Or... by ShapeBlue
Zero to Cloud Hero: Crafting a Private Cloud from Scratch with XCP-ng, Xen Or...Zero to Cloud Hero: Crafting a Private Cloud from Scratch with XCP-ng, Xen Or...
Zero to Cloud Hero: Crafting a Private Cloud from Scratch with XCP-ng, Xen Or...
ShapeBlue199 views
How to Re-use Old Hardware with CloudStack. Saving Money and the Environment ... by ShapeBlue
How to Re-use Old Hardware with CloudStack. Saving Money and the Environment ...How to Re-use Old Hardware with CloudStack. Saving Money and the Environment ...
How to Re-use Old Hardware with CloudStack. Saving Money and the Environment ...
ShapeBlue171 views
The Power of Heat Decarbonisation Plans in the Built Environment by IES VE
The Power of Heat Decarbonisation Plans in the Built EnvironmentThe Power of Heat Decarbonisation Plans in the Built Environment
The Power of Heat Decarbonisation Plans in the Built Environment
IES VE84 views

Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Specialist SA, WWSO, AWS ::: AWS Data Roadshow 2023

  • 1. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Dalyoung Jung APAC MySQL Specialist Solutions Architect Amazon Web Services Deep dive into Amazon Aurora
  • 2. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. • Designed for unparalleled high performance and availability at global scale with full MySQL and PostgreSQL compatibility at 1/10th the cost of commercial databases ▪ 5x throughput of standard MySQL and 3x of standard PostgreSQL ▪ Scale out up to 15 read replicas ▪ Decoupled storage and compute enabling cost optimization ▪ Fast database cloning ▪ Distributed, dynamically scaling storage subsystem 성능 및 확장성 ▪ 6 copies of data across 3 AZs (customers pays for 1) ▪ Automatic, continuous, incremental backups with point- in-time recovery (PITR) ▪ Fault-tolerant, self-healing, auto- scaling storage ▪ Global Database for disaster recovery 가용성 및 내구성 ▪ Network isolation ▪ Encryption at rest/in transit ▪ Supports multiple secure authentication mechanisms and audit controls 높은 보안성 ▪ Automates time-consuming management of administration tasks like hardware provisioning, database setup, patching, and backups ▪ Serverless configuration options 완전한 관리형 Amazon Aurora
  • 3. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Architecture
  • 4. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Storage nodes Shared storage volume SQL Transaction Caching Availability Zone 1 SQL Transaction Caching Availability Zone 2 SQL Transaction Caching Availability Zone 3 Instance nodes SQL Transaction Caching Availability Zone 1 SQL Transaction Caching Availability Zone 2 SQL Transaction Caching Availability Zone 3 Instance nodes Network Storage logging logging logging Network Storage Network Storage Storage nodes Amazon RDS Amazon Aurora Amazon RDS vs Aurora
  • 5. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. RO Application RW Application RO Application Async Invalidation & Update Async invalidation & update Write log records Read blocks RW Aurora storage RO RO RO RO Availability Zone 3 Availability Zone 2 Availability Zone 1 db.r6i.4xlarge db.serverless db.r6g.4xlarge 6 5 4 3 2 1 AWS JDBC Aurora storage and replicas
  • 6. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Replication agents Region B Region A Availability Zone 3 Availability Zone 1 Availability Zone 2 Availability Zone 3 Availability Zone 1 Availability Zone 2 Amazon Aurora Global Database Aurora storage RO Application RW Application RO Application Replication servers Aurora storage RO Application Application RO Application RO RW DR primary DB cluster secondary DB cluster
  • 7. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Replication agents Region B Region A Availability Zone 3 Availability Zone 1 Availability Zone 2 Availability Zone 3 Availability Zone 1 Availability Zone 2 Amazon Aurora Global Database Managed planned failover Aurora storage RO Application RW Application RO Application Replication servers Aurora storage RO Application Application RO Application RO RW primary DB cluster secondary DB cluster RO verify Replication servers Replication agents primary DB cluster secondary DB cluster
  • 8. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Aurora Global Database Region A Availability Zone 3 Availability Zone 1 Availability Zone 2 Aurora storage RO Application RW Application RO Application Replication servers Region B Availability Zone 3 Availability Zone 1 Availability Zone 2 Replication agents Aurora storage R O Applicatio n Applicatio n R O Applicatio n R O Region C Availability Zone 3 Availability Zone 1 Availability Zone 2 Replication agents Aurora storage R O Applicatio n Applicatio n R O Region D Availability Zone 3 Availability Zone 1 Availability Zone 2 Replication agents Aurora storage db.serverless
  • 9. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Replication agents Region B Region A Availability Zone 3 Availability Zone 1 Availability Zone 2 Availability Zone 3 Availability Zone 1 Availability Zone 2 Amazon Aurora Global Database Write Forwarding Aurora storage RO Application RW Application RO Application Replication servers Aurora storage RO Application Application RO Application RO Application --enable-global-write-forwarding TUNNEL
  • 10. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Aurora Storage Internals
  • 11. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Aurora PostgreSQL: Writing less Aurora update t set y = 6 Block in memory t-v1 t-v2 t-v3 Aurora storage t-v2 t-v3 No engine checkpoint = no FPW Block in memory PostgreSQL t-v1 t-v2 t-v3 Checkpoint Datafile t-v2 Full block t-v3 WAL Archive 4K 4K 8K update t set y = 6 Amazon Simple Storage Service (Amazon S3) recovery in minutes continuous & parallel coalesce recovery in seconds
  • 12. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Aurora MySQL: Writing less Aurora insert Block in memory row1 row2 Aurora storage row2 No engine checkpoint = no doublewrite buffer Block in memory MySQL row1 row2 Checkpoint Datafile row2 Full block log Archive 4K 4K 16K insert Amazon Simple Storage Service (Amazon S3) recovery in minutes continuous & parallel coalesce recovery in seconds 4K 4K doublewrite buffer
  • 13. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Aurora RW Storage Node Incoming queue Data blocks Update queue Hot log Peer storage nodes Coalesce Amazon S3 A A C C B A B C B C A
  • 14. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Storage Management – Dynamic resizing new partitions every hour drop existing create new 2 hour spike drop existing create new drop the spike used space inside the db used storage space 2X extra storage costs
  • 15. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Availability Zone 2 Availability Zone 1 Availability Zone 3 RO Application Fast clones RW Application RW Reporting application Write log records Read blocks Aurora storage Primary storage Clone storage Clone
  • 16. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Fast clone example 0 5000 10000 15000 20000 25000 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 Transactions per second (TPS) Minutes PGBench RW Scale 10K - Target Rate 20K TPS Main Database Clone Database
  • 17. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Export to S3 via clone Amazon Aurora Primary(R/W) Snapshot Aurora storage Amazon Simple Storage Service (Amazon S3) Aurora storage Amazon Aurora CLONE Amazon Aurora Primary Snapshot parallel export – Aurora MySQL
  • 18. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Aurora Backtrack t0 t1 t2 t0 t1 t2 t3 t4 t3 t4 Rewind to t1 Rewind to t3 Invisible Invisible Backtrack brings the database to a point in time without requiring restore from backups Recover from an unintentional DML or DDL operation Backtrack is not destructive; you can backtrack multiple times to find the right point in time Also useful for QA (rewind your DB between test runs) NEW! Backtrack Support for Aurora MySQL Version 3 (As of Jan 4, 2023)
  • 19. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Performance Features Amazon Aurora Parallel Query (MySQL) Query Plan Management (PostgreSQL) Cluster Cache Management (PostgreSQL) Logical Replication Cache (PostgreSQL)
  • 20. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. QPM in Aurora PostgreSQL • Controls how and when query execution plans change • Prevents plan regressions or plan flips • Improves plan stability by forcing the optimizer to choose from a small number of known, good plans • Optimize plans centrally and then distribute them • Automatically detects a new minimum-cost plan discovered by the optimizer
  • 21. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Performance Insights
  • 22. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Performance Insights – Zoom In
  • 23. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Performance Insights
  • 24. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Plan change Before • Aggregate (cost=3804.15..3804.16 rows=1 width=16) • -> Nested Loop (cost=12.67..3802.61 rows=307 width=8) • -> Index Scan using pgbench_branches_pkey on pgbench_branches b (cost=0.29..16.60 rows=2 width=8) • Index Cond: (bid = ANY ('{1,4}'::integer[])) • -> Bitmap Heap Scan on pgbench_history h (cost=12.39..1891.47 rows=154 width=8) • Recheck Cond: (bid = b.bid) • Filter: ((mtime >= (now() - '01:00:00'::interval)) AND (mtime <= (now() - '00:30:00'::interval))) • -> Bitmap Index Scan on i_p_bid (cost=0.00..12.35 rows=522 width=0) • Index Cond: (bid = b.bid) After • Aggregate (cost=171092.96..171092.97 rows=1 width=16) • -> Hash Join (cost=329.02..171091.42 rows=307 width=8) • Hash Cond: (h.bid = b.bid) • -> Seq Scan on pgbench_history h (cost=0.00..166712.20 rows=1542280 width=8) • Filter: ((mtime >= (now() - '01:00:00'::interval)) AND (mtime <= (now() - '00:30:00'::interval))) • -> Hash (cost=329.00..329.00 rows=2 width=8) • -> Seq Scan on pgbench_branches b (cost=0.00..329.00 rows=2 width=8) • Filter: (bid = ANY ('{1,4}'::integer[])) • enable_bitmapscan=off • enable_indexscan=off • stats change? • index change? • config change?
  • 25. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 1. Capture plans 2. Approve plans Use baseline 3. Evolve Unapproved plans Compare 4. Re-test Approved plans and possibly change to Preferred or Rejected Automatically happens if query runs more than once If an Unapproved plan is faster (slower), Approve (Reject) it. First captured plan is automatically approved 5. See the effect of changing an optimizer setting for any set of statements, without risk of plan regression. Any new plans are created with status ‘Unapproved’. Using query plan stability and evolution
  • 26. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Plan selection process
  • 27. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. QPM – Use plan baselines
  • 28. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Performance Features Amazon Aurora Parallel Query (MySQL) Query Plan Management (PostgreSQL) Cluster Cache Management (PostgreSQL) Logical Replication Cache (PostgreSQL)
  • 29. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Cluster Cache Management • The cluster cache management (CCM) feature improves the performance of the new primary/writer instance after failover occurs • With CCM, you can designate a specific Aurora PostgreSQL replica as the failover target • CCM ensures that data in the designated replica’s cache is synchronized with the data in the primary DB instance’s cache • If a failover occurs, the designated reader uses values in its warm cache immediately when it is promoted to the new writer DB instance
  • 30. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Availability Zone 3 RO Reporting Application Cluster Cache Management (CCM) Feature RW Application RO Application Async Invalidation & Update Availability Zone 1 Availability Zone 2 RO RO RO RO Failover Priority 1 or higher apg_ccm_enabled=on bloom filter - replica cache block addresses to load Failover Priority 0 Failover Priority 0 Distributed Log Based Storage
  • 31. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Failover behavior with Cluster Cache Management 0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 Transactions per Second (TPS) Seconds PGBench 20X RO / 1X RW 160GB Cached - Failover at 600 Seconds Baseline CCM Enabled 32 seconds 340 seconds
  • 32. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Performance Features Amazon Aurora Parallel Query (MySQL) Query Plan Management (PostgreSQL) Cluster Cache Management (PostgreSQL) Logical Replication Cache (PostgreSQL)
  • 33. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Aurora PostgreSQL – Logical replication cache Aurora storage Amazon Aurora write wal log (needed for logical decoding) write transaction log Users / Applications INSERT logical decoding AWS Database Migration Service (AWS DMS) INSERT read wal log (needed for logical decoding) wal log cache cache read
  • 34. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Performance Features Amazon Aurora Parallel Query (MySQL) Query Plan Management (PostgreSQL) Cluster Cache Management (PostgreSQL) Logical Replication Cache (PostgreSQL)
  • 35. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Driving down query latency using Parallel Query (PQ) • Use cases: • HTAP, light analytics (aggregations) • Scheduled reporting jobs on OLTP data • What it is: • Aurora storage fleet has thousands of CPUs • Push down and parallelize query processing using the storage fleet • Moving processing close to data reduces network traffic and latency DATABASE NODE STORAGE NODES PUSH DOWN PREDICATES AGGREGATE RESULTS
  • 36. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Working with Parallel Query How it works: • DB instance has max. number of PQ threads, based on type • Available for any DB cluster versions >=1.23 (5.6), >=2.09 (5.7) , 3.0 • Enable/disable PQ at session and global level • EXPLAIN plan will show if PQ is used (“Using parallel query” under ”Extra”) • Make sure to enable hash joins optimization • Improved parallel query support for Aurora MySQL 3 Limitations: • Row format COMPACT and DYNAMIC only • Partitioned tables not supported(Supported in Aurora MySQL3) • Blobs, spatial, queries with data on external pages not supported • Not available with
  • 37. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. PQ performance results
  • 38. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Aurora MySQL Enhancements
  • 39. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Aurora MySQL enhanced binlog Binlog Enhanced Binlog • greatly reduced overhead for enabling binlog • reduced cost to read binlogs for cdc
  • 40. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Instant DDL – Aurora MySQL 3 (8.0) • Supersedes “Lab Mode” Fast DDL. • Compatible with the instant DDL from community MySQL 8.0 • ALGORITHM=INSTANT with the ALTER TABLE statement. • Only modifies metadata in the data dictionary. No exclusive metadata locks. • Not all operations are supported https://dev.mysql.com/doc/refman/8.0/en/innodb-online-ddl-operations.html • Limitations* – • No temp table support • No compressed row format support • Only adds last column *Inherited from MySQL and apply to both Aurora and MySQL Community
  • 41. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Aurora Serverless
  • 42. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Aurora Serverless On-demand and automatically scaling configuration Automatically scales capacity based on application needs Simple pay-per-use pricing per second Scales instantly to support demanding applications Worry-free database capacity management
  • 43. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Instant, in-place scaling • Scales in place in under a second by adding more CPU and memory resources and billed by the second • No impact due to scaling even when running hundreds of thousands of transactions AWS Lambda Amazon Aurora
  • 44. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Aurora – challenging workload example db.r6g.4xlarge
  • 45. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Aurora - challenging workload example db.r6g.4xlarge
  • 46. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Aurora Serverless – CPU scaling db.serverless per second scale up by 8% of max ACU configured (128)
  • 47. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Aurora - challenging workload example db.r6g.4xlarge Aurora - challenging workload example
  • 48. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Aurora - challenging workload example db.r6g.4xlarge point select canary query 10X increase in average latency Aurora - challenging workload example
  • 49. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Aurora - challenging workload example db.r6g.4xlarge Aurora - challenging workload example
  • 50. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Aurora Serverless – memory and CPU scaling serverless scales up providing additional memory and CPU db.serverless
  • 51. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Aurora Serverless – memory scaling 8X reduction in latency point select canary query
  • 52. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Buffer pool resizing Buffer pool Access frequency Storage volume Page read Page read Evict cold pages Shrink memory Reads Default memory allocation: 75% for buffer pool and 25% for heap Buffer pool size scaled along with capacity Parameters automatically adjusted: MySQL: innodb_buffer_pool_size PostgreSQL: shared_buffers Buffer pool scaled down through a combination of least frequently used (LFU) and least recently used (LRU) algorithms
  • 53. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Blue/Green Deployment
  • 54. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. How does Amazon RDS Blue/Green Deployment work? Users / Applications DB endpoint Logical replication from ‘blue’ to ‘green’ Blue Primary Green Primary Future Production Current Production AWS Cloud Amazon RDS • Creates a mirrored copy of the current production environment (blue) as the green environment (future production) • Sets up logical replication between blue primary and green primary • Modify green, add/remove replicas, and test changes in green environment before switchover
  • 55. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Aurora Blue/Green Deployments Region Availability Zone 3 Availability Zone 1 Availability Zone 2 Aurora storage RW Users / Applications db cluster endpoint RO Source mycluster Aurora MySQL 2.10.2 (5.7) Aurora storage RO RW RO Target mycluster-green-x1234 Aurora MySQL 2.10.2 (5.7) • Major/Minor Upgrades • Schema Changes • Static Parameter Changes • Maintenance Updates create-blue-green-deployment RO RO RO RO switchover-blue-green-deployment delete-blue-green-deployment Target mycluster-green-x1234 Aurora MySQL 3.02.2 (8.0) AVAILABLE SWITCHOVER_IN_PROGRESS SWITCHOVER_COMPLETED Target mycluster Aurora MySQL 3.02.2 (8.0) Source mycluster-old1 Aurora MySQL 2.10.2 (5.7) customer verification
  • 56. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Aurora I/O-Optimized Feature
  • 57. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Compute Storage I/O Backup Data transfer Aurora Global Database Aurora Backtrack Export to S3 Aurora Parallel Query* Fast Database Cloning* Amazon RDS Blue/Green Deployments* Every DB Cluster Most DB Cluster Use case or feature dependent Cluster cache management* The Aurora bill has several components
  • 58. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Cost Monitoring Cost Optimization Read I/O Unit : Number of Physical Page reads (from Aurora Storage) Read I/O Cost : Per 1 million requests (example: $0.20 per 1 million requests for AWS us-east-1 region) CloudWatch Metrics: [Billed] Volume Read IOPS (Count) ✓ Tune SQL queries to optimize read operations and avoid additional or full/ large rows scan on table. ✓ Scale DB Instance to optimize read I/O (monitor CloudWatch metrics Buffer Cache Hit Ratio (Percent)) ✓ Tune autovacuum process on Aurora PostgreSQL for tables with high DML operations to avoid bloated tables/indexes access ✓ Use logical backup only when it’s required to avoid full table scan for every table backup ✓ Understand Aurora I/O usage impact while using Aurora specific features like Aurora Parallel Query (Aurora MySQL) and Aurora Cluster Cache Management (Aurora PostgreSQL) I/O cost costs are generated when reading from Aurora
  • 59. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Writer Read replica Read replica Read replica Shared distributed storage volume AZ3 AZ2 AZ1 A p p Read I/O’s depends on DB Cache size i.e. DB instance size Where rows are stored physically Data access pattern Configuration changes can make I/O costs change
  • 60. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Writer Read replica Read replica AZ3 AZ2 AZ1 A p p No cost for redo log record replication Write I/O cost for one copy of data only Includes explicit & implicit write operations by SQL query or DB engine process Aurora write I/O cost
  • 61. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. SQL query access pattern & Aurora I/O • Difference between rows examined and rows sent may incur additional I/O’s • Extra 8 rows may cause 8 or less number of data pages access • Review SQL query execution plan for efficient index utilization Efficient SQL query pattern & Aurora I/O rows examined rows sent extra rows processing 10 2 8 SQL query execution rows examined rows sent extra rows processing 2 2 0 SQL query execution The way queries are structured can affect I/O costs
  • 62. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. P R E D I C T A B L E P R I C E F O R A L L W O R K L O A D S I M P R O V E D P R I C E - P E R F O R M A N C E F O R I / O H E A V Y W O R K L O A D S New cluster configuration that allows customers to pay for compute and storage only, with no charges for read/write IOs Predictable price for all workloads Improved price-performance with up to 40% cost savings when I/O spend exceeds 25% of total Aurora database spend. Available for Aurora PostgreSQL and Aurora MySQL across Aurora Serverless v2, On-Demand, and Reserved Instances With Reserved Instances, customers get additional I/O savings Amazon Aurora I/O-Optimized
  • 63. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. • Aurora I/O-Optimized is a cluster storage configuration • Aurora cluster can modify storage option (standard to I/O-Optimized) once in a month and switch back anytime. • Available from Aurora PostgreSQL 13.x and Aurora MySQL 3.0.3.1 onwards. • Compatible with Intel-based Aurora database instance types such as t3, r5, r6i Graviton-based database instance types such as t4g, r6g, and x2g Aurora Serverless v2 • Aurora Global database cluster can have different Aurora storage config at cluster level i.e. primary & secondary clusters can configure with different configuration. I/O-Optimized can be configured at a cluster level
  • 64. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Aurora Aurora Standard Aurora I/O-Optimized • Compute (On-demand / RI ) • Storage (standard – pay-per-use ) • I/O (Pay-per-request) • Other cost components • Compute (On-demand / RI) + 30% • Storage (Standard – pay-per-use) + 125% • I/O – No additional charges for read and write I/Os* • Other cost components *Aurora I/O cost applicable for Aurora cluster using standard I/O configuration while using Aurora Global DB and no Aurora I/O cost for primary or secondary cluster is using IO-optimized. Customers now have more flexibility to choose based on their price predictability and price-performance needs … Aurora I/O-Optimized is available alongside Aurora Standard
  • 65. AWS DATA ROADSHOW 2023 © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Thank you!