SlideShare a Scribd company logo
1 of 77
1. For 𝑓 𝑥 =
7−x
3− 𝑥+2
, evaluate:
a. lim
𝑥→5
𝑓(𝑥) b. lim
𝑥→5+
𝑓(𝑥) c. lim
𝑥→5−
𝑓(𝑥)
lim
𝑥→5
𝑓 𝑥 =
7 − x
3 − 𝑥 + 2
=
𝟕 − 𝒙
𝟑 − 𝒙 + 𝟐
∙
𝟑 + 𝒙 + 𝟐
𝟑 + 𝒙 + 𝟐
=
𝟕 − 𝒙 𝟑 + 𝒙 + 𝟐
𝟗 − 𝒙 − 𝟐
=
𝟕 − 𝒙 𝟑 + 𝒙 + 𝟐
𝟕 − 𝒙
= 𝟑 + 𝒙 + 𝟐
a. lim
𝑥→5
𝑓(𝑥)= 𝟑 + 𝒙 + 𝟐 = lim
𝑥→5
𝟑 + 𝒙 + 𝟐 = 𝟑 + 𝟓 + 𝟐 = 𝟑 + 𝟕
= 𝟑 + 𝟐. 𝟔𝟓 = 𝟓. 𝟔𝟓
x → 𝟓+ 6 7 8
f(x) =𝟑 + 𝒙 + 𝟐 𝟓. 𝟔𝟓 𝟓. 𝟖𝟑 𝟔 𝟔. 𝟏𝟔
𝒍𝒊𝒎
𝒙→𝟓+
𝒇 𝒙 = 𝐥𝐢𝐦
𝒙→𝟓+
𝟑 + 𝒙 + 𝟐 = 𝟑 + 𝟔 + 𝟐
b. lim
𝑥→5+
𝑓(𝑥) = 𝟑 + 𝒙 + 𝟐
= 𝟑 + 𝟖 = 𝟑 + 𝟐. 𝟖𝟑 = 𝟓. 𝟖𝟑
𝒍𝒊𝒎
𝒙→𝟓+
𝒇 𝒙 = 𝐥𝐢𝐦
𝒙→𝟓+
𝟑 + 𝒙 + 𝟐 = 𝟑 + 𝟕 + 𝟐 = 𝟑 + 𝟗 = 𝟑 + 𝟑 = 𝟔
𝒍𝒊𝒎
𝒙→𝟓+
𝒇 𝒙 = 𝐥𝐢𝐦
𝒙→𝟓+
𝟑 + 𝒙 + 𝟐 = 𝟑 + 𝟖 + 𝟐 = 𝟑 + 𝟏𝟎 = 𝟑 + 𝟑. 𝟏𝟔 = 𝟔. 𝟏𝟔
x 2 3 4 → 𝟓−
f(x) =𝟑 + 𝒙 + 𝟐 𝟓. 𝟔𝟓𝟓 𝟓. 𝟐𝟒 𝟓. 𝟒𝟓
𝒍𝒊𝒎
𝒙→𝟓−
𝒇 𝒙 = 𝐥𝐢𝐦
𝒙→𝟓−
𝟑 + 𝒙 + 𝟐 = 𝟑 + 𝟐 + 𝟐
c. lim
𝑥→5−
𝑓 𝑥 = 𝟑 + 𝒙 + 𝟐
= 𝟑 + 𝟒 = 𝟑 + 𝟐 = 𝟓
𝒍𝒊𝒎
𝒙→𝟓−
𝒇 𝒙 = 𝐥𝐢𝐦
𝒙→𝟓−
𝟑 + 𝒙 + 𝟐 = 𝟑 + 𝟑 + 𝟐 = 𝟑 + 𝟓 = 𝟑 + 𝟐. 𝟐𝟒 = 𝟓. 𝟐𝟒
𝒍𝒊𝒎
𝒙→𝟓−
𝒇 𝒙 = 𝐥𝐢𝐦
𝒙→𝟓−
𝟑 + 𝒙 + 𝟐 = 𝟑 + 𝟒 + 𝟐 = 𝟑 + 𝟔 = 𝟑 + 𝟐. 𝟒𝟓 = 𝟓. 𝟒𝟓
𝐥𝐢𝐦
𝒙→𝟓+
𝟑 + 𝒙 + 𝟐 𝐥𝐢𝐦
𝒙→𝟓−
𝟑 + 𝒙 + 𝟐=
x → 𝟓+
6 7 8
f(x) =𝟑 + 𝒙 + 𝟐 𝟓. 𝟔𝟓 𝟓. 𝟖𝟑 𝟔 𝟔. 𝟏𝟔
x 2 3 4 → 𝟓−
f(x) =𝟑 + 𝒙 + 𝟐 𝟓. 𝟔𝟓𝟓 𝟓. 𝟐𝟒 𝟓. 𝟒𝟓
2. For 𝑓 𝑥 =
1
x
−
1
11
x−11
, evaluate:
a. lim
𝑥→11
𝑓(𝑥) b. lim
𝑥→11+
𝑓(𝑥) c. lim
𝑥→11−
𝑓(𝑥)
a. lim
𝑥→11
𝑓(𝑥) =
1
x
−
1
11
x − 11
=
11 − 𝑥
11𝑥
x − 11
=
−(𝑥 − 11)
11𝑥
x − 11
∙
1
𝑥 − 11
1
𝑥 − 11
=
−𝟏
𝟏𝟏𝒙
a. 𝒍𝒊𝒎
𝐱→𝟏𝟏
𝐟(𝐱) = −
𝟏
𝟏𝟏𝐱
= −
𝟏
𝟏𝟏(𝟏𝟏)
= −
𝟏
𝟏𝟐𝟏
𝒐𝒓 − 𝟎. 𝟎𝟎𝟖
x → 𝟏𝟏+ 12 13 14
f(x) =−
𝟏
𝟏𝟏𝒙
−
𝟏
𝟏𝟐𝟏
−
𝟏
𝟏𝟑𝟐
−
𝟏
𝟏𝟒𝟑
−
𝟏
𝟏𝟓𝟒
𝒍𝒊𝒎
𝒙→𝟏𝟏+
𝒇 𝒙 = 𝐥𝐢𝐦
𝒙→𝟏𝟏+
−
𝟏
𝟏𝟏𝒙
b. lim
𝑥→11+
𝑓 𝑥 = −
𝟏
𝟏𝟏𝒙
= −
𝟏
𝟏𝟏(𝟏𝟐)
= −
𝟏
𝟏𝟑𝟐
𝒍𝒊𝒎
𝒙→𝟏𝟏+
𝒇 𝒙 = 𝐥𝐢𝐦
𝒙→𝟏𝟏+
−
𝟏
𝟏𝟏𝒙
= −
𝟏
𝟏𝟏(𝟏𝟑)
= −
𝟏
𝟏𝟒𝟑
𝒍𝒊𝒎
𝒙→𝟏𝟏+
𝒇 𝒙 = 𝐥𝐢𝐦
𝒙→𝟏𝟏+
−
𝟏
𝟏𝟏𝒙
= −
𝟏
𝟏𝟏(𝟏𝟒)
= −
𝟏
𝟏𝟓𝟒
x 8 9 10 → 𝟏𝟏−
f(x) =−
𝟏
𝟏𝟏𝒙
−
𝟏
𝟏𝟐𝟏
−
𝟏
𝟖𝟖
−
𝟏
𝟗𝟗
−
𝟏
𝟏𝟏𝟎
𝒍𝒊𝒎
𝒙→𝟏𝟏−
𝒇 𝒙 = 𝐥𝐢𝐦
𝒙→𝟏𝟏−
−
𝟏
𝟏𝟏𝒙
c. lim
𝑥→11−
𝑓 𝑥 = −
𝟏
𝟏𝟏𝒙
= −
𝟏
𝟏𝟏(𝟖)
= −
𝟏
𝟖𝟖
𝒍𝒊𝒎
𝒙→𝟏𝟏−
𝒇 𝒙 = 𝐥𝐢𝐦
𝒙→𝟏𝟏−
−
𝟏
𝟏𝟏𝒙
= −
𝟏
𝟏𝟏(𝟗)
= −
𝟏
𝟗𝟗
𝒍𝒊𝒎
𝒙→𝟏𝟏−
𝒇 𝒙 = 𝐥𝐢𝐦
𝒙→𝟏𝟏−
−
𝟏
𝟏𝟏𝒙
= −
𝟏
𝟏𝟏(𝟏𝟎)
= −
𝟏
𝟏𝟏𝟎
lim
𝑥→11−
−
𝟏
𝟏𝟏𝒙
=
x → 𝟏𝟏+ 12 13 14
f(x) =−
𝟏
𝟏𝟏𝒙
−
𝟏
𝟏𝟐𝟏
−
𝟏
𝟏𝟑𝟐
−
𝟏
𝟏𝟒𝟑
−
𝟏
𝟏𝟓𝟒
x 8 9 10 → 𝟏𝟏−
f(x) =−
𝟏
𝟏𝟏𝒙
−
𝟏
𝟏𝟐𝟏
−
𝟏
𝟖𝟖
−
𝟏
𝟗𝟗
−
𝟏
𝟏𝟏𝟎
lim
𝑥→11+
−
𝟏
𝟏𝟏𝒙
3. For 𝑓 𝑥 =
x−7 2−49
𝑥
, evaluate:
a. lim
𝑥→0
𝑓(𝑥) b. lim
𝑥→0+
𝑓(𝑥) c. lim
𝑥→0−
𝑓(𝑥)
a. 𝒍𝒊𝒎
𝐱→𝟎
𝐟(𝐱) =
𝐱 − 𝟕 𝟐 − 𝟒𝟗
𝒙
=
𝒙 𝟐 − 𝟏𝟒𝒙 + 𝟒𝟗 − 𝟒𝟗
𝒙
=
𝒙 𝟐 − 𝟏𝟒𝒙
𝒙
=
𝒙(𝒙 − 𝟏𝟒)
𝒙
= 𝒙 − 𝟏𝟒
a. 𝒍𝒊𝒎
𝐱→𝟎
𝐟(𝐱) = 𝒙 − 𝟏𝟒 = 𝟎 − 𝟏𝟒 = −𝟏𝟒
x → 𝟎+ 1 2 3
f(x) =−
𝟏
𝟏𝟏𝒙
−𝟏𝟒 −𝟏𝟑 −𝟏𝟐 −𝟏𝟏
b. 𝒍𝒊𝒎
𝐱→𝟎+
𝐟(𝐱) = 𝒙 − 𝟏𝟒
b. 𝒍𝒊𝒎
𝐱→𝟎+
𝐟(𝐱) = 𝒙 − 𝟏𝟒 = 𝟏 − 𝟏𝟒 = −𝟏𝟑
b. 𝒍𝒊𝒎
𝐱→𝟎+
𝐟(𝐱) = 𝒙 − 𝟏𝟒 = 𝟐 − 𝟏𝟒 = −𝟏𝟐
b. 𝒍𝒊𝒎
𝐱→𝟎+
𝐟(𝐱) = 𝒙 − 𝟏𝟒 = 𝟑 − 𝟏𝟒 = −𝟏𝟏
x -3 -2 -1 → 𝟎−
f(x) =−
𝟏
𝟏𝟏𝒙
−𝟏𝟒−𝟏𝟕 −𝟏𝟔 −𝟏𝟓
c. 𝒍𝒊𝒎
𝐱→𝟎−
𝐟(𝐱) = 𝒙 − 𝟏𝟒
b. 𝒍𝒊𝒎
𝐱→𝟎−
𝐟(𝐱) = 𝒙 − 𝟏𝟒 = −𝟑 − 𝟏𝟒 = −𝟏𝟕
b. 𝒍𝒊𝒎
𝐱→𝟎−
𝐟(𝐱) = 𝒙 − 𝟏𝟒 = −𝟐 − 𝟏𝟒 = −𝟏𝟔
b. 𝒍𝒊𝒎
𝐱→𝟎−
𝐟(𝐱) = 𝒙 − 𝟏𝟒 = −𝟏 − 𝟏𝟒 = −𝟏𝟓
lim
𝑥→0−
𝒙 − 𝟏𝟒=lim
𝑥→0+
𝒙 − 𝟏𝟒
x -3 -2 -1 → 𝟎−
f(x) =−
𝟏
𝟏𝟏𝒙
−𝟏𝟒−𝟏𝟕 −𝟏𝟔 −𝟏𝟓
x → 𝟎+
1 2 3
f(x) =−
𝟏
𝟏𝟏𝒙
−𝟏𝟒 −𝟏𝟑 −𝟏𝟐 −𝟏𝟏
𝐥𝐢𝐦
𝒙→𝟎
𝟒 + 𝒙 𝟐 − 𝟏𝟔
𝒙
𝐥𝐢𝐦
𝒙→𝟒
𝟐𝒙 𝟐
− 𝟏𝟐𝒙 − 𝟏𝟔
𝒙 𝟐 − 𝒙 − 𝟏𝟐
𝐥𝐢𝐦
𝒙→𝟑𝟔
𝟔 − 𝒙
𝟑𝟔 − 𝒙
𝐥𝐢𝐦
𝒙→𝟑𝟔
𝟔 − 𝒙
𝟑𝟔 − 𝒙
Get the value of 𝐥𝐢𝐦
𝒙→𝟑−
𝒇(𝒙 + 𝟑) using a
table of function values.
x 2.9 2.99 2.999 → 𝟑−
f(x) = x+3
𝒍𝒊𝒎
𝒙→𝟑−
)𝒇(𝒙 + 𝟑 = lim
𝑥→3−
)𝑓(2.9 + 3 = 2.9 + 3 = 5.9
𝒍𝒊𝒎
𝒙→𝟑−
)𝒇(𝒙 + 𝟑
𝟓. 𝟗
= lim
𝑥→3−
)𝑓(2.9𝟗 + 3 = 2. 𝟗9 + 3 = 5.9𝟗
𝟓. 𝟗𝟗
𝒍𝒊𝒎
𝒙→𝟑−
)𝒇(𝒙 + 𝟑 = lim
𝑥→3−
)𝑓(2.9𝟗𝟗 + 3 = 2. 𝟗9𝟗 + 3 = 5.9𝟗𝟗
𝟓. 𝟗𝟗9
𝒍𝒊𝒎
𝒙→𝟑−
)𝒇(𝒙 + 𝟑 = lim
𝑥→3−
)𝑓(𝟑 + 3 = 𝟑 + 3 = 𝟔
𝟔
Get the value of 𝐥𝐢𝐦
𝒙→𝟑+
𝒇(𝒙 + 𝟑) using a
table of function values.
x → 𝟑+ 3.001 3.01 3.1
f(x) = x+3
𝒍𝒊𝒎
𝒙→𝟑+
)𝒇(𝒙 + 𝟑 = lim
𝑥→3+
)𝑓(𝟑 + 3 = 𝟑 + 3 = 𝟔
𝒍𝒊𝒎
𝒙→𝟑+
)𝒇(𝒙 + 𝟑
𝟔
= lim
𝑥→3+
)𝑓(𝟑. 𝟎𝟎𝟏 + 3 = 𝟑. 𝟎𝟎𝟏 + 3 = 𝟔. 𝟎𝟎𝟏
𝟔. 𝟎𝟎𝟏
𝒍𝒊𝒎
𝒙→𝟑+
)𝒇(𝒙 + 𝟑 = lim
𝑥→3+
)𝑓(𝟑. 𝟎𝟏 + 3 = 𝟑. 𝟎𝟏 + 3 = 𝟔. 𝟎𝟏
𝟔. 𝟎𝟏
𝒍𝒊𝒎
𝒙→𝟑+
)𝒇(𝒙 + 𝟑 = lim
𝑥→3+
)𝑓(𝟑. 𝟏 + 3 = 𝟑. 𝟏 + 3 = 𝟔. 𝟏
𝟔.1
x → 𝟑+ 3.001 3.01 3.1
f(x) = x+3
𝒍𝒊𝒎
𝒙→𝟑+
)𝒇(𝒙 + 𝟑
x 2.9 2.99 2.999 → 𝟑−
f(x) = x+3
𝒍𝒊𝒎
𝒙→𝟑−
)𝒇(𝒙 + 𝟑
𝟓. 𝟗 𝟓. 𝟗𝟗 𝟓. 𝟗𝟗9 𝟔
𝟔 𝟔. 𝟎𝟎𝟏 𝟔. 𝟎𝟏 𝟔.1
𝒍𝒊𝒎
𝒙→𝟑−
)𝒇(𝒙 + 𝟑 𝒍𝒊𝒎
𝒙→𝟑+
)𝒇(𝒙 + 𝟑=
For 𝑓 𝑥 =
9
𝑥−3 5, evaluate:
a. lim
𝑥→3
𝑓(𝑥) b. lim
𝑥→3+
𝑓(𝑥) c.
lim
𝑥→3−
𝑓(𝑥)
a. lim
𝑥→3
𝑓 𝑥 = lim
𝑥→3
𝑓
9
𝑥 − 3 5
=
𝟗
𝟑−𝟑 𝟓
=
9
0 5 =
9
0
Get the value of 𝐥𝐢𝐦
𝒙→𝟑+
𝒇
9
𝑥−3
5 using a table of
function values.
x → 𝟑+ 4 5 6
f(x) =
9
𝑥−3 5 𝐃𝐍𝐄 𝟗 𝟎. 𝟐𝟖 𝟎. 𝟎𝟑𝟕
𝒍𝒊𝒎
𝒙→𝟑+
𝒇 𝒙 = 𝐥𝐢𝐦
𝒙→𝟑+
𝒇
𝟗
𝒙 − 𝟑 𝟓
=
9
4 − 3 5 =
9
1 5
=
9
1 = 9
𝒍𝒊𝒎
𝒙→𝟑+
𝒇 𝒙 = 𝐥𝐢𝐦
𝒙→𝟑+
𝒇
𝟗
𝒙 − 𝟑 𝟓
=
9
𝟓 − 3 5 =
9
𝟐 5
=
9
𝟑𝟐 = 𝟎. 𝟐𝟖
𝒍𝒊𝒎
𝒙→𝟑+
𝒇 𝒙 = 𝐥𝐢𝐦
𝒙→𝟑+
𝒇
𝟗
𝒙 − 𝟑 𝟓
=
9
𝟔 − 3 5 =
9
𝟑 5
=
9
𝟐𝟒𝟑
=
𝟏
𝟐𝟕
𝐨𝐫 𝟎. 𝟎𝟑𝟕
Get the value of 𝐥𝐢𝐦
𝒙→𝟑−
𝒇
9
𝑥−3
5 using a table of
function values.
x 0 1 2 → 𝟑−
f(x) =
9
𝑥−3 5 𝐃𝐍𝐄−𝟎. 𝟐𝟖 −𝟗−𝟎. 𝟎𝟑𝟕
𝒍𝒊𝒎
𝒙→𝟑−
𝒇 𝒙 = 𝐥𝐢𝐦
𝒙→𝟑−
𝒇
𝟗
𝒙 − 𝟑 𝟓
=
9
𝟐 − 3 5 =
9
−1 5
=
9
−1 = −9
𝒍𝒊𝒎
𝒙→𝟑−
𝒇 𝒙 = 𝐥𝐢𝐦
𝒙→𝟑−
𝒇
𝟗
𝒙 − 𝟑 𝟓
=
9
𝟏 − 3 5 =
9
−𝟐 5
=
9
−𝟑𝟐 = −𝟎. 𝟐𝟖
𝒍𝒊𝒎
𝒙→𝟑−
𝒇 𝒙 = 𝐥𝐢𝐦
𝒙→𝟑−
𝒇
𝟗
𝒙 − 𝟑 𝟓
=
9
𝟎 − 3 5 =
9
−𝟑 5
=
9
−𝟐𝟒𝟑
=
−𝟏
𝟐𝟕
𝐨𝐫
−𝟎. 𝟎𝟑𝟕
𝐥𝐢𝐦
𝒙→𝟑+
𝒇
𝟗
𝒙 − 𝟑 𝟓
𝐥𝐢𝐦
𝒙→𝟑−
𝒇
𝟗
𝒙 − 𝟑 𝟓≠
x 0 1 2 → 𝟑−
f(x) =
9
𝑥−3 5 𝐃𝐍𝐄−𝟎. 𝟐𝟖 −𝟗−𝟎. 𝟎𝟑𝟕
𝐥𝐢𝐦
𝒙→𝟑−
𝒇
𝟗
𝒙 − 𝟑 𝟓
𝐥𝐢𝐦
𝒙→𝟑+
𝒇
𝟗
𝒙 − 𝟑 𝟓
x → 𝟑+ 4 5 6
f(x) =
9
𝑥−3 5 𝐃𝐍𝐄 𝟗 𝟎. 𝟐𝟖 𝟎. 𝟎𝟑𝟕
For 𝑓 𝑥 = 𝑥2
− 3𝑥 + 4,
evaluate:a. lim
𝑥→1
𝑓(𝑥) b. lim
𝑥→1+
𝑓(𝑥) c.
lim
𝑥→1−
𝑓(𝑥)
a. lim
𝑥→1
𝑓 𝑥 = lim
𝑥→1
𝑥2
− 3𝑥 + 4
=(1)2
−3(1) + 4 = 𝟏 − 𝟑 + 𝟒
Get the value of 𝐥𝐢𝐦
𝒙→𝟏+
𝑥2
− 3𝑥 + 4, using a table
of function values.
x → 𝟏+ 2 3 4
f(x) = 𝑥2 − 3𝑥 + 4 𝟐 𝟐 𝟒 𝟖
𝒍𝒊𝒎
𝒙→𝟏+
𝒇 𝒙 = 𝐥𝐢𝐦
𝒙→𝟏+
𝒙 𝟐 − 𝟑𝒙 + 𝟒 = (𝟐) 𝟐−𝟑(𝟐) + 𝟒 = 𝟐= 𝟒 − 𝟔 + 𝟒
𝒍𝒊𝒎
𝒙→𝟏+
𝒇 𝒙 = 𝐥𝐢𝐦
𝒙→𝟏+
𝒙 𝟐 − 𝟑𝒙 + 𝟒
𝒍𝒊𝒎
𝒙→𝟏+
𝒇 𝒙 = 𝐥𝐢𝐦
𝒙→𝟏+
𝒙 𝟐
− 𝟑𝒙 + 𝟒
= (𝟑) 𝟐−𝟑(𝟑) + 𝟒 = 𝟒= 𝟗 − 𝟗 + 𝟒
= (𝟒) 𝟐−𝟑(𝟒) + 𝟒 = 𝟖=16-12+4
Get the value of 𝐥𝐢𝐦
𝒙→𝟏−
𝑥2
− 3𝑥 + 4, using a table
of function values.
x -4 -3 -2 → 𝟏−
f(x) = 𝑥2 − 3𝑥 + 4
𝟑𝟐 𝟐𝟐 𝟏𝟒 𝟐
𝒍𝒊𝒎
𝒙→𝟏−
𝒇 𝒙 = 𝐥𝐢𝐦
𝒙→𝟏−
𝒙 𝟐 − 𝟑𝒙 + 𝟒 = (−𝟐) 𝟐−𝟑(−𝟐) + 𝟒 =14= 𝟒 + 𝟔 + 𝟒
𝒍𝒊𝒎
𝒙→𝟏−
𝒇 𝒙 = 𝐥𝐢𝐦
𝒙→𝟏−
𝒙 𝟐 − 𝟑𝒙 + 𝟒
𝒍𝒊𝒎
𝒙→𝟏−
𝒇 𝒙 = 𝐥𝐢𝐦
𝒙→𝟏−
𝒙 𝟐
− 𝟑𝒙 + 𝟒
= (−𝟑) 𝟐−𝟑(−𝟑) + 𝟒 = 𝟐𝟐= 𝟗 + 𝟗 + 𝟒
= (−𝟒) 𝟐−𝟑(−𝟒) + 𝟒 = 𝟑𝟐= 𝟏𝟔 + 𝟏𝟐 + 𝟒
≠
x -4 -3 -2 → 𝟏−
f(x) = 𝑥2 − 3𝑥 + 4
𝟐𝟐𝟐 𝟏𝟒𝟑𝟐
𝐥𝐢𝐦
𝒙→𝟏−
𝒙 𝟐
− 𝟑𝒙 + 𝟒
𝐥𝐢𝐦
𝒙→𝟏+
𝒙 𝟐
− 𝟑𝒙 + 𝟒
x → 𝟏+ 2 3 4
f(x) = 𝑥2 − 3𝑥 + 4
2 𝟐 𝟒 𝟖
𝐥𝐢𝐦
𝒙→𝟏+
𝒙 𝟐 − 𝟑𝒙 + 𝟒 𝐥𝐢𝐦
𝒙→𝟏−
𝒙 𝟐 − 𝟑𝒙 + 𝟒
1. For 𝑓 𝑥 =
7−x
3− 𝑥+2
, evaluate:
a. lim
𝑥→5
𝑓(𝑥) b. lim
𝑥→5+
𝑓(𝑥) c. lim
𝑥→5−
𝑓(𝑥)
2. For 𝑓 𝑥 =
1
x
−
1
11
x−11
, evaluate:
a. lim
𝑥→11
𝑓(𝑥) b. lim
𝑥→11+
𝑓(𝑥) c. lim
𝑥→11−
𝑓(𝑥)
3. For 𝑓 𝑥 =
x−7 2−49
𝑥
, evaluate:
a. lim
𝑥→0
𝑓(𝑥) b. lim
𝑥→0+
𝑓(𝑥) c. lim
𝑥→0−
𝑓(𝑥)
QUIZ #2
a. lim
𝑥→5
𝑓(𝑥) b. lim
𝑥→5+
𝑓(𝑥) c. lim
𝑥→5−
𝑓(𝑥)
First, assume that 𝒍𝒊𝒎
𝒙→𝒂
𝒇 𝒙 and 𝒍𝒊𝒎
𝒙→𝒂
𝒈 𝒙 exist, and c
is any constant. Then,
𝟏. 𝐥𝐢𝐦
𝒙→𝒂
𝒄𝒇 𝒙 = 𝒄 𝐥𝐢𝐦
𝒙→𝒂
𝒇 𝒙
In other words, we can “factor” a multiplicative
constant out of a limit.
𝟏. 𝐥𝐢𝐦
𝒙→𝒂
𝒄𝒇 𝒙 = 𝒄 𝐥𝐢𝐦
𝒙→𝒂
𝒇 𝒙
𝐥𝐢𝐦
𝒙→𝟐
𝟑𝒙 𝟐
= 𝟑 𝐥𝐢𝐦
𝒙→𝟐
𝒙 𝟐
= 𝟑 𝟐 𝟐
= 𝟑(𝟒)
= 𝟏𝟐
𝟐. 𝐥𝐢𝐦
𝒙→𝒂
)𝒇 𝒙 ± 𝒈(𝒙 = 𝐥𝐢𝐦
𝒙→𝒂
𝒇 𝒙 ± 𝐥𝐢𝐦
𝒙→𝒂
𝒈 𝒙
So, to take the limit of a sum or difference all we need to
do is take the limit of the individual parts and then put
them back together with the appropriate sign. This is also
not limited to two functions. This fact will work no matter
how many functions we’ve got separated by “+” or “-”.
𝒇 𝒙 = 𝒙 𝟐
− 𝒙 − 𝟔; 𝒈 𝒙 = 𝒙 𝟐
− 𝟐𝒙 − 𝟑
𝟐. 𝐥𝐢𝐦
𝒙→𝒂
)𝒇 𝒙 ± 𝒈(𝒙 = 𝐥𝐢𝐦
𝒙→𝒂
𝒇 𝒙 ± 𝐥𝐢𝐦
𝒙→𝒂
𝒈 𝒙
Given the 𝐥𝐢𝐦
𝒙→𝟑
𝒇 𝒙 ± 𝒈(𝒙)
𝐥𝐢𝐦
𝒙→3
)𝒇 𝒙 + 𝒈(𝒙 = 𝐥𝐢𝐦
𝒙→3
𝒙2
− 𝒙 − 6 + 𝐥𝐢𝐦
𝒙→3
𝒙2
− 2𝒙 − 3
= 𝐥𝐢𝐦
𝒙→3
(𝒙2
−𝒙 − 6) + ( 𝒙2
− 2𝒙 − 3) = 𝐥𝐢𝐦
𝒙→3
𝟐𝒙 𝟐
− 𝟑𝒙 − 𝟗
= 𝟐 𝟑 𝟐
− 𝟑 𝟑 − 𝟗 = 𝟏𝟖 − 𝟗 − 𝟗
𝐥𝐢𝐦
𝒙→3
)𝒇 𝒙 + 𝒈(𝒙 = 𝟎
𝒇 𝒙 = 𝒙 𝟐
− 𝒙 − 𝟔; 𝒈 𝒙 = 𝒙 𝟐
− 𝟐𝒙 − 𝟑
𝟐. 𝐥𝐢𝐦
𝒙→𝒂
)𝒇 𝒙 ± 𝒈(𝒙 = 𝐥𝐢𝐦
𝒙→𝒂
𝒇 𝒙 ± 𝐥𝐢𝐦
𝒙→𝒂
𝒈 𝒙
Given the 𝐥𝐢𝐦
𝒙→𝟑
𝒇 𝒙 ± 𝒈(𝒙)
𝐥𝐢𝐦
𝒙→3
)𝒇 𝒙 − 𝒈(𝒙 = 𝐥𝐢𝐦
𝒙→3
𝒙2
− 𝒙 − 6 − 𝐥𝐢𝐦
𝒙→3
𝒙2
− 2𝒙 − 3
= 𝐥𝐢𝐦
𝒙→3
(𝒙2
−𝒙 − 6) − ( 𝒙2
− 2𝒙 − 3) = 𝐥𝐢𝐦
𝒙→3
𝒙2
− 𝒙 − 6 − 𝒙 𝟐
+ 𝟐𝒙 + 𝟑
= 𝟑 − 𝟑
𝐥𝐢𝐦
𝒙→3
)𝒇 𝒙 + 𝒈(𝒙 = 𝟎
= 𝐥𝐢𝐦
𝒙→3
𝒙 − 𝟑
3. 𝐥𝐢𝐦
𝒙→𝒂
)𝒇 𝒙 ∙ 𝒈(𝒙 = 𝐥𝐢𝐦
𝒙→𝒂
𝒇 𝒙 ∙ 𝐥𝐢𝐦
𝒙→𝒂
𝒈 𝒙
We take the limits of products in the same way that we
can take the limit of sums or differences. Just take the
limit of the pieces and then put them back together.
Also, as with sums or differences, this fact is not
limited to just two functions.
𝒇 𝒙 = 𝒙 𝟐
− 𝒙 − 𝟔; 𝒈 𝒙 = 𝒙 𝟐
− 𝟐𝒙 − 𝟑
Given the 𝐥𝐢𝐦
𝒙→𝟑
𝒇 𝒙 ∙ 𝒈(𝒙)
𝐥𝐢𝐦
𝒙→3
)𝒇 𝒙 ∙ 𝒈(𝒙 = (𝐥𝐢𝐦
𝒙→3
𝒙2 − 𝒙 − 6)(𝐥𝐢𝐦
𝒙→3
𝒙2 − 2𝒙 − 3)
𝐥𝐢𝐦
𝒙→3
)𝒇 𝒙 ∙ 𝒈(𝒙 = 𝟎
3. 𝐥𝐢𝐦
𝒙→𝒂
)𝒇 𝒙 ∙ 𝒈(𝒙 = 𝐥𝐢𝐦
𝒙→𝒂
𝒇 𝒙 ∙ 𝐥𝐢𝐦
𝒙→𝒂
𝒈 𝒙
= 𝐥𝐢𝐦
𝒙→3
(𝒙 𝟐 − 𝒙 − 𝟔)(𝒙 𝟐 − 𝟐𝒙 − 𝟑)
= 𝐥𝐢𝐦
𝒙→3
𝒙2
𝒙2
− 2𝒙 − 3 + −𝒙 𝒙2
− 2𝒙 − 3 + −6 𝒙2
− 2𝒙 − 3
= 𝐥𝐢𝐦
𝒙→3
[(𝒙 𝟒
= 𝐥𝐢𝐦
𝒙→3
𝒙4 − 3𝒙3 − 𝟕𝒙2 + 15𝒙 + 18 = 𝟑 𝟒 − 𝟑 𝟑 𝟑 − 𝟕 𝟑 𝟐 + 𝟏𝟓 𝟑 + 𝟏𝟖
= 𝟖𝟏 − 𝟖𝟏 − 𝟔𝟑 + 𝟒𝟓 + 𝟏𝟖
−𝟐𝒙 𝟑
−𝟑𝒙 𝟐
)+(−𝒙 𝟑+𝟐𝒙 𝟐
+𝟑𝒙)+(−𝟔𝒙 𝟐 +𝟏𝟐𝒙 +𝟏𝟖)
4. 𝐥𝐢𝐦
𝒙→𝒂
𝒇 𝒙
𝒈 𝒙
=
𝐥𝐢𝐦
𝒙→𝒂
𝒇 𝒙
𝐥𝐢𝐦
𝒙→𝒂
𝒈 𝒙
Provided that 𝒍𝒊𝒎
𝒙→𝒂
𝒈 𝒙 ≠ 𝟎
As noted in the statement we only need to worry about the limit
in the denominator being zero when we do the limit of a
quotient. If it were zero we would end up with a division by zero
error and we need to avoid that.
𝒇 𝒙 = 𝒙 𝟐
− 𝒙 − 𝟔;
𝒈 𝒙 = 𝒙 𝟐
− 𝟐𝒙 − 𝟑
Given the 𝐥𝐢𝐦
𝒙→𝟑
𝒇 𝒙 /𝒈(𝒙)
4. 𝐥𝐢𝐦
𝒙→𝒂
𝒇 𝒙
𝒈 𝒙
=
𝐥𝐢𝐦
𝒙→𝒂
𝒇 𝒙
𝐥𝐢𝐦
𝒙→𝒂
𝒈 𝒙
= 𝐥𝐢𝐦
𝒙→𝟑
𝒙 𝟐
− 𝒙 − 𝟔
𝒙 𝟐 − 𝟐𝒙 − 𝟑
= 𝐥𝐢𝐦
𝒙→𝟑
𝒙 − 𝟑)(𝒙 + 𝟐
𝒙 − 𝟑)(𝒙 + 𝟏
= 𝐥𝐢𝐦
𝒙→𝟑
𝒙 + 𝟐
𝒙 + 𝟏
=
𝟑 + 𝟐
𝟑 + 𝟏
𝐥𝐢𝐦
𝒙→3
𝒇 𝒙
𝒈 𝒙
=
5
4
𝒐𝒓 1
1
4
𝒐𝒓 1.25
5. 𝐥𝐢𝐦
𝒙→𝒂
𝒇 𝒙 𝒏
= [ 𝐥𝐢𝐦
𝒙→𝒂
𝒇 𝒙 𝒏
Where n is any real number.
In this property n can be any real number (positive, negative, integer,
fraction, irrational, zero, etc.). That n is an integer this rule can be
thought of as an extended case of 3.
For example, consider the case of n=2.
𝒍𝒊𝒎
𝒙→𝒂
𝒇 𝒙 𝟐 = [𝒍𝒊𝒎
𝒙→𝒂
𝒇 𝒙 𝟐
= 𝒍𝒊𝒎
𝒙→𝒂
𝒇 𝒙 ∙ 𝒍𝒊𝒎
𝒙→𝒂
𝒇 𝒙
𝒇 𝒙 = 𝒙 + 𝟑;
Given the 𝐥𝐢𝐦
𝒙→𝟑
𝒇 𝒙 𝟐
5. 𝐥𝐢𝐦
𝒙→𝒂
𝒇 𝒙 𝒏
= [ 𝐥𝐢𝐦
𝒙→𝒂
𝒇 𝒙 𝒏
= 𝐥𝐢𝐦
𝒙→𝟑
𝒙 + 𝟑 𝟐
= 𝐥𝐢𝐦
𝒙→𝟑
𝒙 + 𝟑 ∙ 𝐥𝐢𝐦
𝒙→𝟑
𝒙 + 𝟑 = 𝐥𝐢𝐦
𝒙→𝟑
(𝒙 + 𝟑)(𝒙 + 𝟑
= 𝐥𝐢𝐦
𝒙→𝟑
𝒙 𝟐 + 𝟔𝒙 + 𝟗 = 𝐥𝐢𝐦
𝒙→𝟑
𝒙 𝟐 + 𝐥𝐢𝐦
𝒙→𝟑
𝟔𝒙 + 𝐥𝐢𝐦
𝒙→𝟑
𝟗 = 𝟑 𝟐 + 𝟔 𝟑 + 𝟗
= 𝟗 + 𝟏𝟖 + 𝟗 𝐥𝐢𝐦
𝒙→3
𝒇 𝒙 2
= 36
𝟔. 𝐥𝐢𝐦
𝒙→𝒂
[
𝒏
𝒇(𝒙) = 𝒏
𝐥𝐢𝐦
𝒙→𝒂
𝒇(𝒙)
This is just a special case of the previous example.
𝐥𝐢𝐦
𝒙→𝒂
[
𝒏
𝒇(𝒙) = 𝒏
𝐥𝐢𝐦
𝒙→𝒂
𝒇(𝒙)
=[lim
𝑥→𝑎
𝒇(𝒙)
𝟏
𝒏
𝒇 𝒙 = 𝒙 𝟐
+ 𝟔𝒙 + 𝟗;
Given the 𝐥𝐢𝐦
𝒙→𝟑
𝒇 𝒙
𝟏
𝟐 = 𝐥𝐢𝐦
𝒙→𝟑
𝒇 𝒙
𝟔. 𝐥𝐢𝐦
𝒙→𝒂
[
𝒏
𝒇(𝒙) = 𝒏
𝐥𝐢𝐦
𝒙→𝒂
𝒇(𝒙)
= 𝐥𝐢𝐦
𝒙→𝟑
𝒙 𝟐 + 𝟔𝒙 + 𝟗 = lim
𝒙→𝟑
𝒙 𝟐 + 𝟔𝒙 + 𝟗
= lim
𝒙→𝟑
𝒙 + 𝟑 𝟐 = lim
𝒙→𝟑
𝒙 + 𝟑 = 𝟑 + 𝟑
𝐥𝐢𝐦
𝒙→𝟑
𝒇 𝒙
𝟏
𝟐 = 𝟔
𝟕. 𝐥𝐢𝐦
𝒙→𝒂
𝒄 = 𝒄
In other words, the limit of a constant is just the constant. You
should be able to convince yourself of this by drawing the
graph of f(x) = c.
Example: 𝒇 𝒙 = 𝟗 Given the 𝐥𝐢𝐦
𝒙→𝟑
𝒇(𝒙)
𝒍𝐢𝐦
𝒙→𝟑
𝟗 = 𝟗
𝟖. 𝐥𝐢𝐦
𝒙→𝒂
𝒙 = 𝒂
As with the last one you should be able to convince yourself of
this by drawing the graph of f(x) = x.
Example: 𝒇 𝒙 = 𝒙 Given the 𝐥𝐢𝐦
𝒙→𝟑
𝒇(𝒙)
𝒍𝐢𝐦
𝒙→𝟑
𝐱 = 𝟑= 𝐥𝐢𝐦
𝒙→𝟑
𝒙 = 𝐥𝐢𝐦
𝒙→3
3
𝟗. 𝐥𝐢𝐦
𝒙→𝒂
𝒙 𝒏
= 𝒂 𝒏
This is really just a special case of property 5 using f(x) = x.
Example: 𝒇 𝒙 = 𝒙 𝟑 Given the 𝐥𝐢𝐦
𝒙→𝟑
𝒇(𝒙)
𝒍𝐢𝐦
𝒙→𝟑
𝐱 𝐧
= 𝟗= 𝐥𝐢𝐦
𝒙→𝟑
𝒙 𝟑
= 𝐥𝐢𝐦
𝒙→3
3 𝟑
For 𝒇 𝒙 = 𝟏𝟔𝒙 𝟐
− 𝟐𝟒𝒙 + 𝟗 𝒂𝒏𝒅 𝒈 𝒙 = 𝟒𝒙 𝟐
+ 𝒙 − 𝟑;
evaluate the following limits.
𝒂. lim
𝒙→𝟏
𝒇 𝒙 + 𝒈(𝒙)
𝒃. lim
𝒙→𝟏
𝒇 𝒙 − 𝒈(𝒙)
𝒄. lim
𝒙→𝟐
𝒇 𝒙
𝒈 𝒙
𝒅. lim
𝒙→𝟑
𝒈 𝒙 𝟐
𝒆. lim
𝒙→𝟏
𝒇 𝒙 ∙ 𝒈(𝒙)
𝒇. lim
𝒙→𝟐𝟏
𝒇 𝒙
𝟏
𝟐

More Related Content

What's hot

Multinomial distribution
Multinomial distributionMultinomial distribution
Multinomial distributionNadeem Uddin
 
L4 one sided limits limits at infinity
L4 one sided limits limits at infinityL4 one sided limits limits at infinity
L4 one sided limits limits at infinityJames Tagara
 
Evaluating Functions
Evaluating FunctionsEvaluating Functions
Evaluating Functionsarielrogon
 
General Mathematics - Composition of Functions
General Mathematics - Composition of FunctionsGeneral Mathematics - Composition of Functions
General Mathematics - Composition of FunctionsJuan Miguel Palero
 
Basic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation RulesBasic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation RulesJuan Miguel Palero
 
Limits of a Function
Limits of a FunctionLimits of a Function
Limits of a FunctionJesusDel2
 
Evaluating functions basic rules
Evaluating functions   basic rulesEvaluating functions   basic rules
Evaluating functions basic rulesjulienorman80065
 
General Math Lesson 3
General Math Lesson 3General Math Lesson 3
General Math Lesson 3alicelagajino
 
8.1 intro to functions
8.1 intro to functions8.1 intro to functions
8.1 intro to functionsBarbara Knab
 
Evaluating functions
Evaluating functionsEvaluating functions
Evaluating functionsEFREN ARCHIDE
 
Lecture 8 derivative rules
Lecture 8   derivative rulesLecture 8   derivative rules
Lecture 8 derivative rulesnjit-ronbrown
 
Remainder & Factor Theorems
Remainder & Factor TheoremsRemainder & Factor Theorems
Remainder & Factor TheoremsLori Rapp
 
Lesson 2: Limits and Limit Laws
Lesson 2: Limits and Limit LawsLesson 2: Limits and Limit Laws
Lesson 2: Limits and Limit LawsMatthew Leingang
 
Lesson 13: Exponential and Logarithmic Functions (slides)
Lesson 13: Exponential and Logarithmic Functions (slides)Lesson 13: Exponential and Logarithmic Functions (slides)
Lesson 13: Exponential and Logarithmic Functions (slides)Matthew Leingang
 
2.7 chain rule short cuts
2.7 chain rule short cuts2.7 chain rule short cuts
2.7 chain rule short cutsmath265
 
Lesson 10: Derivatives of Trigonometric Functions
Lesson 10: Derivatives of Trigonometric FunctionsLesson 10: Derivatives of Trigonometric Functions
Lesson 10: Derivatives of Trigonometric FunctionsMatthew Leingang
 

What's hot (20)

Multinomial distribution
Multinomial distributionMultinomial distribution
Multinomial distribution
 
L4 one sided limits limits at infinity
L4 one sided limits limits at infinityL4 one sided limits limits at infinity
L4 one sided limits limits at infinity
 
Evaluating Functions
Evaluating FunctionsEvaluating Functions
Evaluating Functions
 
General Mathematics - Composition of Functions
General Mathematics - Composition of FunctionsGeneral Mathematics - Composition of Functions
General Mathematics - Composition of Functions
 
Geometric Sequence
Geometric SequenceGeometric Sequence
Geometric Sequence
 
Lesson 3: Limit Laws
Lesson 3: Limit LawsLesson 3: Limit Laws
Lesson 3: Limit Laws
 
Basic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation RulesBasic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation Rules
 
Harmonic sequence
Harmonic sequenceHarmonic sequence
Harmonic sequence
 
Limits of a Function
Limits of a FunctionLimits of a Function
Limits of a Function
 
Evaluating functions basic rules
Evaluating functions   basic rulesEvaluating functions   basic rules
Evaluating functions basic rules
 
General Math Lesson 3
General Math Lesson 3General Math Lesson 3
General Math Lesson 3
 
8.1 intro to functions
8.1 intro to functions8.1 intro to functions
8.1 intro to functions
 
Evaluating functions
Evaluating functionsEvaluating functions
Evaluating functions
 
Lecture 8 derivative rules
Lecture 8   derivative rulesLecture 8   derivative rules
Lecture 8 derivative rules
 
Remainder & Factor Theorems
Remainder & Factor TheoremsRemainder & Factor Theorems
Remainder & Factor Theorems
 
Lesson 2: Limits and Limit Laws
Lesson 2: Limits and Limit LawsLesson 2: Limits and Limit Laws
Lesson 2: Limits and Limit Laws
 
Lesson 13: Exponential and Logarithmic Functions (slides)
Lesson 13: Exponential and Logarithmic Functions (slides)Lesson 13: Exponential and Logarithmic Functions (slides)
Lesson 13: Exponential and Logarithmic Functions (slides)
 
2.7 chain rule short cuts
2.7 chain rule short cuts2.7 chain rule short cuts
2.7 chain rule short cuts
 
One-to-one Functions.pptx
One-to-one Functions.pptxOne-to-one Functions.pptx
One-to-one Functions.pptx
 
Lesson 10: Derivatives of Trigonometric Functions
Lesson 10: Derivatives of Trigonometric FunctionsLesson 10: Derivatives of Trigonometric Functions
Lesson 10: Derivatives of Trigonometric Functions
 

More from alicelagajino

TLE 7 Lesson 5 - 2nd Quarter
TLE 7 Lesson 5 - 2nd QuarterTLE 7 Lesson 5 - 2nd Quarter
TLE 7 Lesson 5 - 2nd Quarteralicelagajino
 
TLE 7 Lesson 4 - 2nd Quarter
TLE 7 Lesson 4 - 2nd QuarterTLE 7 Lesson 4 - 2nd Quarter
TLE 7 Lesson 4 - 2nd Quarteralicelagajino
 
TLE 7 Lesson 3 - 2nd Quarter
TLE 7 Lesson 3 - 2nd QuarterTLE 7 Lesson 3 - 2nd Quarter
TLE 7 Lesson 3 - 2nd Quarteralicelagajino
 
TLE 7 Lesson 2 - 2nd Quarter
TLE 7 Lesson 2 - 2nd QuarterTLE 7 Lesson 2 - 2nd Quarter
TLE 7 Lesson 2 - 2nd Quarteralicelagajino
 
TLE 7 Lesson 1 - 2nd Quarter
TLE 7 Lesson 1 - 2nd QuarterTLE 7 Lesson 1 - 2nd Quarter
TLE 7 Lesson 1 - 2nd Quarteralicelagajino
 
TLE 7 Lesson 6 - 1st Quarter
TLE 7 Lesson 6 - 1st QuarterTLE 7 Lesson 6 - 1st Quarter
TLE 7 Lesson 6 - 1st Quarteralicelagajino
 
TLE 7 Lesson 5 - 1st Quarter
TLE 7 Lesson 5 - 1st QuarterTLE 7 Lesson 5 - 1st Quarter
TLE 7 Lesson 5 - 1st Quarteralicelagajino
 
TLE 7 Lesson 4 - 1st Quarter
TLE 7 Lesson 4 - 1st QuarterTLE 7 Lesson 4 - 1st Quarter
TLE 7 Lesson 4 - 1st Quarteralicelagajino
 
TLE 7 Lesson 3 - 1st Quarter
TLE 7 Lesson 3 - 1st QuarterTLE 7 Lesson 3 - 1st Quarter
TLE 7 Lesson 3 - 1st Quarteralicelagajino
 
TLE 7 Lesson 2 - 1st Quarter
TLE 7 Lesson 2 - 1st QuarterTLE 7 Lesson 2 - 1st Quarter
TLE 7 Lesson 2 - 1st Quarteralicelagajino
 
TLE 7 Lesson 1 - 1st Quarter
TLE 7 Lesson 1 - 1st QuarterTLE 7 Lesson 1 - 1st Quarter
TLE 7 Lesson 1 - 1st Quarteralicelagajino
 
Math 8 Lesson 3 - 2nd Quarter
Math 8 Lesson 3 - 2nd QuarterMath 8 Lesson 3 - 2nd Quarter
Math 8 Lesson 3 - 2nd Quarteralicelagajino
 
Math 8 Lesson 2 - 2nd Quarter
Math 8 Lesson 2 - 2nd QuarterMath 8 Lesson 2 - 2nd Quarter
Math 8 Lesson 2 - 2nd Quarteralicelagajino
 
Math 8 Lesson 1 - 2nd Quarter
Math 8 Lesson 1 - 2nd QuarterMath 8 Lesson 1 - 2nd Quarter
Math 8 Lesson 1 - 2nd Quarteralicelagajino
 
Math 8 Lesson 3 - 1st Quarter
Math 8 Lesson 3 - 1st QuarterMath 8 Lesson 3 - 1st Quarter
Math 8 Lesson 3 - 1st Quarteralicelagajino
 
Math 8 Lesson 2 - 1st Quarter
Math 8 Lesson 2 - 1st QuarterMath 8 Lesson 2 - 1st Quarter
Math 8 Lesson 2 - 1st Quarteralicelagajino
 
Math 8 Lesson 1 - 1st Quarter
Math 8 Lesson 1 - 1st QuarterMath 8 Lesson 1 - 1st Quarter
Math 8 Lesson 1 - 1st Quarteralicelagajino
 
General Math Lesson 1
General Math Lesson 1General Math Lesson 1
General Math Lesson 1alicelagajino
 
Empowerment Technology Lesson 5
Empowerment Technology Lesson 5Empowerment Technology Lesson 5
Empowerment Technology Lesson 5alicelagajino
 
Empowerment Technology Lesson 4
Empowerment Technology Lesson 4Empowerment Technology Lesson 4
Empowerment Technology Lesson 4alicelagajino
 

More from alicelagajino (20)

TLE 7 Lesson 5 - 2nd Quarter
TLE 7 Lesson 5 - 2nd QuarterTLE 7 Lesson 5 - 2nd Quarter
TLE 7 Lesson 5 - 2nd Quarter
 
TLE 7 Lesson 4 - 2nd Quarter
TLE 7 Lesson 4 - 2nd QuarterTLE 7 Lesson 4 - 2nd Quarter
TLE 7 Lesson 4 - 2nd Quarter
 
TLE 7 Lesson 3 - 2nd Quarter
TLE 7 Lesson 3 - 2nd QuarterTLE 7 Lesson 3 - 2nd Quarter
TLE 7 Lesson 3 - 2nd Quarter
 
TLE 7 Lesson 2 - 2nd Quarter
TLE 7 Lesson 2 - 2nd QuarterTLE 7 Lesson 2 - 2nd Quarter
TLE 7 Lesson 2 - 2nd Quarter
 
TLE 7 Lesson 1 - 2nd Quarter
TLE 7 Lesson 1 - 2nd QuarterTLE 7 Lesson 1 - 2nd Quarter
TLE 7 Lesson 1 - 2nd Quarter
 
TLE 7 Lesson 6 - 1st Quarter
TLE 7 Lesson 6 - 1st QuarterTLE 7 Lesson 6 - 1st Quarter
TLE 7 Lesson 6 - 1st Quarter
 
TLE 7 Lesson 5 - 1st Quarter
TLE 7 Lesson 5 - 1st QuarterTLE 7 Lesson 5 - 1st Quarter
TLE 7 Lesson 5 - 1st Quarter
 
TLE 7 Lesson 4 - 1st Quarter
TLE 7 Lesson 4 - 1st QuarterTLE 7 Lesson 4 - 1st Quarter
TLE 7 Lesson 4 - 1st Quarter
 
TLE 7 Lesson 3 - 1st Quarter
TLE 7 Lesson 3 - 1st QuarterTLE 7 Lesson 3 - 1st Quarter
TLE 7 Lesson 3 - 1st Quarter
 
TLE 7 Lesson 2 - 1st Quarter
TLE 7 Lesson 2 - 1st QuarterTLE 7 Lesson 2 - 1st Quarter
TLE 7 Lesson 2 - 1st Quarter
 
TLE 7 Lesson 1 - 1st Quarter
TLE 7 Lesson 1 - 1st QuarterTLE 7 Lesson 1 - 1st Quarter
TLE 7 Lesson 1 - 1st Quarter
 
Math 8 Lesson 3 - 2nd Quarter
Math 8 Lesson 3 - 2nd QuarterMath 8 Lesson 3 - 2nd Quarter
Math 8 Lesson 3 - 2nd Quarter
 
Math 8 Lesson 2 - 2nd Quarter
Math 8 Lesson 2 - 2nd QuarterMath 8 Lesson 2 - 2nd Quarter
Math 8 Lesson 2 - 2nd Quarter
 
Math 8 Lesson 1 - 2nd Quarter
Math 8 Lesson 1 - 2nd QuarterMath 8 Lesson 1 - 2nd Quarter
Math 8 Lesson 1 - 2nd Quarter
 
Math 8 Lesson 3 - 1st Quarter
Math 8 Lesson 3 - 1st QuarterMath 8 Lesson 3 - 1st Quarter
Math 8 Lesson 3 - 1st Quarter
 
Math 8 Lesson 2 - 1st Quarter
Math 8 Lesson 2 - 1st QuarterMath 8 Lesson 2 - 1st Quarter
Math 8 Lesson 2 - 1st Quarter
 
Math 8 Lesson 1 - 1st Quarter
Math 8 Lesson 1 - 1st QuarterMath 8 Lesson 1 - 1st Quarter
Math 8 Lesson 1 - 1st Quarter
 
General Math Lesson 1
General Math Lesson 1General Math Lesson 1
General Math Lesson 1
 
Empowerment Technology Lesson 5
Empowerment Technology Lesson 5Empowerment Technology Lesson 5
Empowerment Technology Lesson 5
 
Empowerment Technology Lesson 4
Empowerment Technology Lesson 4Empowerment Technology Lesson 4
Empowerment Technology Lesson 4
 

Basic Calculus Lesson 2

  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27. 1. For 𝑓 𝑥 = 7−x 3− 𝑥+2 , evaluate: a. lim 𝑥→5 𝑓(𝑥) b. lim 𝑥→5+ 𝑓(𝑥) c. lim 𝑥→5− 𝑓(𝑥) lim 𝑥→5 𝑓 𝑥 = 7 − x 3 − 𝑥 + 2 = 𝟕 − 𝒙 𝟑 − 𝒙 + 𝟐 ∙ 𝟑 + 𝒙 + 𝟐 𝟑 + 𝒙 + 𝟐 = 𝟕 − 𝒙 𝟑 + 𝒙 + 𝟐 𝟗 − 𝒙 − 𝟐 = 𝟕 − 𝒙 𝟑 + 𝒙 + 𝟐 𝟕 − 𝒙 = 𝟑 + 𝒙 + 𝟐 a. lim 𝑥→5 𝑓(𝑥)= 𝟑 + 𝒙 + 𝟐 = lim 𝑥→5 𝟑 + 𝒙 + 𝟐 = 𝟑 + 𝟓 + 𝟐 = 𝟑 + 𝟕 = 𝟑 + 𝟐. 𝟔𝟓 = 𝟓. 𝟔𝟓
  • 28. x → 𝟓+ 6 7 8 f(x) =𝟑 + 𝒙 + 𝟐 𝟓. 𝟔𝟓 𝟓. 𝟖𝟑 𝟔 𝟔. 𝟏𝟔 𝒍𝒊𝒎 𝒙→𝟓+ 𝒇 𝒙 = 𝐥𝐢𝐦 𝒙→𝟓+ 𝟑 + 𝒙 + 𝟐 = 𝟑 + 𝟔 + 𝟐 b. lim 𝑥→5+ 𝑓(𝑥) = 𝟑 + 𝒙 + 𝟐 = 𝟑 + 𝟖 = 𝟑 + 𝟐. 𝟖𝟑 = 𝟓. 𝟖𝟑 𝒍𝒊𝒎 𝒙→𝟓+ 𝒇 𝒙 = 𝐥𝐢𝐦 𝒙→𝟓+ 𝟑 + 𝒙 + 𝟐 = 𝟑 + 𝟕 + 𝟐 = 𝟑 + 𝟗 = 𝟑 + 𝟑 = 𝟔 𝒍𝒊𝒎 𝒙→𝟓+ 𝒇 𝒙 = 𝐥𝐢𝐦 𝒙→𝟓+ 𝟑 + 𝒙 + 𝟐 = 𝟑 + 𝟖 + 𝟐 = 𝟑 + 𝟏𝟎 = 𝟑 + 𝟑. 𝟏𝟔 = 𝟔. 𝟏𝟔
  • 29. x 2 3 4 → 𝟓− f(x) =𝟑 + 𝒙 + 𝟐 𝟓. 𝟔𝟓𝟓 𝟓. 𝟐𝟒 𝟓. 𝟒𝟓 𝒍𝒊𝒎 𝒙→𝟓− 𝒇 𝒙 = 𝐥𝐢𝐦 𝒙→𝟓− 𝟑 + 𝒙 + 𝟐 = 𝟑 + 𝟐 + 𝟐 c. lim 𝑥→5− 𝑓 𝑥 = 𝟑 + 𝒙 + 𝟐 = 𝟑 + 𝟒 = 𝟑 + 𝟐 = 𝟓 𝒍𝒊𝒎 𝒙→𝟓− 𝒇 𝒙 = 𝐥𝐢𝐦 𝒙→𝟓− 𝟑 + 𝒙 + 𝟐 = 𝟑 + 𝟑 + 𝟐 = 𝟑 + 𝟓 = 𝟑 + 𝟐. 𝟐𝟒 = 𝟓. 𝟐𝟒 𝒍𝒊𝒎 𝒙→𝟓− 𝒇 𝒙 = 𝐥𝐢𝐦 𝒙→𝟓− 𝟑 + 𝒙 + 𝟐 = 𝟑 + 𝟒 + 𝟐 = 𝟑 + 𝟔 = 𝟑 + 𝟐. 𝟒𝟓 = 𝟓. 𝟒𝟓
  • 30. 𝐥𝐢𝐦 𝒙→𝟓+ 𝟑 + 𝒙 + 𝟐 𝐥𝐢𝐦 𝒙→𝟓− 𝟑 + 𝒙 + 𝟐= x → 𝟓+ 6 7 8 f(x) =𝟑 + 𝒙 + 𝟐 𝟓. 𝟔𝟓 𝟓. 𝟖𝟑 𝟔 𝟔. 𝟏𝟔 x 2 3 4 → 𝟓− f(x) =𝟑 + 𝒙 + 𝟐 𝟓. 𝟔𝟓𝟓 𝟓. 𝟐𝟒 𝟓. 𝟒𝟓
  • 31. 2. For 𝑓 𝑥 = 1 x − 1 11 x−11 , evaluate: a. lim 𝑥→11 𝑓(𝑥) b. lim 𝑥→11+ 𝑓(𝑥) c. lim 𝑥→11− 𝑓(𝑥) a. lim 𝑥→11 𝑓(𝑥) = 1 x − 1 11 x − 11 = 11 − 𝑥 11𝑥 x − 11 = −(𝑥 − 11) 11𝑥 x − 11 ∙ 1 𝑥 − 11 1 𝑥 − 11 = −𝟏 𝟏𝟏𝒙 a. 𝒍𝒊𝒎 𝐱→𝟏𝟏 𝐟(𝐱) = − 𝟏 𝟏𝟏𝐱 = − 𝟏 𝟏𝟏(𝟏𝟏) = − 𝟏 𝟏𝟐𝟏 𝒐𝒓 − 𝟎. 𝟎𝟎𝟖
  • 32. x → 𝟏𝟏+ 12 13 14 f(x) =− 𝟏 𝟏𝟏𝒙 − 𝟏 𝟏𝟐𝟏 − 𝟏 𝟏𝟑𝟐 − 𝟏 𝟏𝟒𝟑 − 𝟏 𝟏𝟓𝟒 𝒍𝒊𝒎 𝒙→𝟏𝟏+ 𝒇 𝒙 = 𝐥𝐢𝐦 𝒙→𝟏𝟏+ − 𝟏 𝟏𝟏𝒙 b. lim 𝑥→11+ 𝑓 𝑥 = − 𝟏 𝟏𝟏𝒙 = − 𝟏 𝟏𝟏(𝟏𝟐) = − 𝟏 𝟏𝟑𝟐 𝒍𝒊𝒎 𝒙→𝟏𝟏+ 𝒇 𝒙 = 𝐥𝐢𝐦 𝒙→𝟏𝟏+ − 𝟏 𝟏𝟏𝒙 = − 𝟏 𝟏𝟏(𝟏𝟑) = − 𝟏 𝟏𝟒𝟑 𝒍𝒊𝒎 𝒙→𝟏𝟏+ 𝒇 𝒙 = 𝐥𝐢𝐦 𝒙→𝟏𝟏+ − 𝟏 𝟏𝟏𝒙 = − 𝟏 𝟏𝟏(𝟏𝟒) = − 𝟏 𝟏𝟓𝟒
  • 33. x 8 9 10 → 𝟏𝟏− f(x) =− 𝟏 𝟏𝟏𝒙 − 𝟏 𝟏𝟐𝟏 − 𝟏 𝟖𝟖 − 𝟏 𝟗𝟗 − 𝟏 𝟏𝟏𝟎 𝒍𝒊𝒎 𝒙→𝟏𝟏− 𝒇 𝒙 = 𝐥𝐢𝐦 𝒙→𝟏𝟏− − 𝟏 𝟏𝟏𝒙 c. lim 𝑥→11− 𝑓 𝑥 = − 𝟏 𝟏𝟏𝒙 = − 𝟏 𝟏𝟏(𝟖) = − 𝟏 𝟖𝟖 𝒍𝒊𝒎 𝒙→𝟏𝟏− 𝒇 𝒙 = 𝐥𝐢𝐦 𝒙→𝟏𝟏− − 𝟏 𝟏𝟏𝒙 = − 𝟏 𝟏𝟏(𝟗) = − 𝟏 𝟗𝟗 𝒍𝒊𝒎 𝒙→𝟏𝟏− 𝒇 𝒙 = 𝐥𝐢𝐦 𝒙→𝟏𝟏− − 𝟏 𝟏𝟏𝒙 = − 𝟏 𝟏𝟏(𝟏𝟎) = − 𝟏 𝟏𝟏𝟎
  • 34. lim 𝑥→11− − 𝟏 𝟏𝟏𝒙 = x → 𝟏𝟏+ 12 13 14 f(x) =− 𝟏 𝟏𝟏𝒙 − 𝟏 𝟏𝟐𝟏 − 𝟏 𝟏𝟑𝟐 − 𝟏 𝟏𝟒𝟑 − 𝟏 𝟏𝟓𝟒 x 8 9 10 → 𝟏𝟏− f(x) =− 𝟏 𝟏𝟏𝒙 − 𝟏 𝟏𝟐𝟏 − 𝟏 𝟖𝟖 − 𝟏 𝟗𝟗 − 𝟏 𝟏𝟏𝟎 lim 𝑥→11+ − 𝟏 𝟏𝟏𝒙
  • 35. 3. For 𝑓 𝑥 = x−7 2−49 𝑥 , evaluate: a. lim 𝑥→0 𝑓(𝑥) b. lim 𝑥→0+ 𝑓(𝑥) c. lim 𝑥→0− 𝑓(𝑥) a. 𝒍𝒊𝒎 𝐱→𝟎 𝐟(𝐱) = 𝐱 − 𝟕 𝟐 − 𝟒𝟗 𝒙 = 𝒙 𝟐 − 𝟏𝟒𝒙 + 𝟒𝟗 − 𝟒𝟗 𝒙 = 𝒙 𝟐 − 𝟏𝟒𝒙 𝒙 = 𝒙(𝒙 − 𝟏𝟒) 𝒙 = 𝒙 − 𝟏𝟒 a. 𝒍𝒊𝒎 𝐱→𝟎 𝐟(𝐱) = 𝒙 − 𝟏𝟒 = 𝟎 − 𝟏𝟒 = −𝟏𝟒
  • 36. x → 𝟎+ 1 2 3 f(x) =− 𝟏 𝟏𝟏𝒙 −𝟏𝟒 −𝟏𝟑 −𝟏𝟐 −𝟏𝟏 b. 𝒍𝒊𝒎 𝐱→𝟎+ 𝐟(𝐱) = 𝒙 − 𝟏𝟒 b. 𝒍𝒊𝒎 𝐱→𝟎+ 𝐟(𝐱) = 𝒙 − 𝟏𝟒 = 𝟏 − 𝟏𝟒 = −𝟏𝟑 b. 𝒍𝒊𝒎 𝐱→𝟎+ 𝐟(𝐱) = 𝒙 − 𝟏𝟒 = 𝟐 − 𝟏𝟒 = −𝟏𝟐 b. 𝒍𝒊𝒎 𝐱→𝟎+ 𝐟(𝐱) = 𝒙 − 𝟏𝟒 = 𝟑 − 𝟏𝟒 = −𝟏𝟏
  • 37. x -3 -2 -1 → 𝟎− f(x) =− 𝟏 𝟏𝟏𝒙 −𝟏𝟒−𝟏𝟕 −𝟏𝟔 −𝟏𝟓 c. 𝒍𝒊𝒎 𝐱→𝟎− 𝐟(𝐱) = 𝒙 − 𝟏𝟒 b. 𝒍𝒊𝒎 𝐱→𝟎− 𝐟(𝐱) = 𝒙 − 𝟏𝟒 = −𝟑 − 𝟏𝟒 = −𝟏𝟕 b. 𝒍𝒊𝒎 𝐱→𝟎− 𝐟(𝐱) = 𝒙 − 𝟏𝟒 = −𝟐 − 𝟏𝟒 = −𝟏𝟔 b. 𝒍𝒊𝒎 𝐱→𝟎− 𝐟(𝐱) = 𝒙 − 𝟏𝟒 = −𝟏 − 𝟏𝟒 = −𝟏𝟓
  • 38. lim 𝑥→0− 𝒙 − 𝟏𝟒=lim 𝑥→0+ 𝒙 − 𝟏𝟒 x -3 -2 -1 → 𝟎− f(x) =− 𝟏 𝟏𝟏𝒙 −𝟏𝟒−𝟏𝟕 −𝟏𝟔 −𝟏𝟓 x → 𝟎+ 1 2 3 f(x) =− 𝟏 𝟏𝟏𝒙 −𝟏𝟒 −𝟏𝟑 −𝟏𝟐 −𝟏𝟏
  • 39.
  • 40. 𝐥𝐢𝐦 𝒙→𝟎 𝟒 + 𝒙 𝟐 − 𝟏𝟔 𝒙 𝐥𝐢𝐦 𝒙→𝟒 𝟐𝒙 𝟐 − 𝟏𝟐𝒙 − 𝟏𝟔 𝒙 𝟐 − 𝒙 − 𝟏𝟐 𝐥𝐢𝐦 𝒙→𝟑𝟔 𝟔 − 𝒙 𝟑𝟔 − 𝒙 𝐥𝐢𝐦 𝒙→𝟑𝟔 𝟔 − 𝒙 𝟑𝟔 − 𝒙
  • 41.
  • 42.
  • 43.
  • 44.
  • 45. Get the value of 𝐥𝐢𝐦 𝒙→𝟑− 𝒇(𝒙 + 𝟑) using a table of function values. x 2.9 2.99 2.999 → 𝟑− f(x) = x+3 𝒍𝒊𝒎 𝒙→𝟑− )𝒇(𝒙 + 𝟑 = lim 𝑥→3− )𝑓(2.9 + 3 = 2.9 + 3 = 5.9 𝒍𝒊𝒎 𝒙→𝟑− )𝒇(𝒙 + 𝟑 𝟓. 𝟗 = lim 𝑥→3− )𝑓(2.9𝟗 + 3 = 2. 𝟗9 + 3 = 5.9𝟗 𝟓. 𝟗𝟗 𝒍𝒊𝒎 𝒙→𝟑− )𝒇(𝒙 + 𝟑 = lim 𝑥→3− )𝑓(2.9𝟗𝟗 + 3 = 2. 𝟗9𝟗 + 3 = 5.9𝟗𝟗 𝟓. 𝟗𝟗9 𝒍𝒊𝒎 𝒙→𝟑− )𝒇(𝒙 + 𝟑 = lim 𝑥→3− )𝑓(𝟑 + 3 = 𝟑 + 3 = 𝟔 𝟔
  • 46. Get the value of 𝐥𝐢𝐦 𝒙→𝟑+ 𝒇(𝒙 + 𝟑) using a table of function values. x → 𝟑+ 3.001 3.01 3.1 f(x) = x+3 𝒍𝒊𝒎 𝒙→𝟑+ )𝒇(𝒙 + 𝟑 = lim 𝑥→3+ )𝑓(𝟑 + 3 = 𝟑 + 3 = 𝟔 𝒍𝒊𝒎 𝒙→𝟑+ )𝒇(𝒙 + 𝟑 𝟔 = lim 𝑥→3+ )𝑓(𝟑. 𝟎𝟎𝟏 + 3 = 𝟑. 𝟎𝟎𝟏 + 3 = 𝟔. 𝟎𝟎𝟏 𝟔. 𝟎𝟎𝟏 𝒍𝒊𝒎 𝒙→𝟑+ )𝒇(𝒙 + 𝟑 = lim 𝑥→3+ )𝑓(𝟑. 𝟎𝟏 + 3 = 𝟑. 𝟎𝟏 + 3 = 𝟔. 𝟎𝟏 𝟔. 𝟎𝟏 𝒍𝒊𝒎 𝒙→𝟑+ )𝒇(𝒙 + 𝟑 = lim 𝑥→3+ )𝑓(𝟑. 𝟏 + 3 = 𝟑. 𝟏 + 3 = 𝟔. 𝟏 𝟔.1
  • 47. x → 𝟑+ 3.001 3.01 3.1 f(x) = x+3 𝒍𝒊𝒎 𝒙→𝟑+ )𝒇(𝒙 + 𝟑 x 2.9 2.99 2.999 → 𝟑− f(x) = x+3 𝒍𝒊𝒎 𝒙→𝟑− )𝒇(𝒙 + 𝟑 𝟓. 𝟗 𝟓. 𝟗𝟗 𝟓. 𝟗𝟗9 𝟔 𝟔 𝟔. 𝟎𝟎𝟏 𝟔. 𝟎𝟏 𝟔.1 𝒍𝒊𝒎 𝒙→𝟑− )𝒇(𝒙 + 𝟑 𝒍𝒊𝒎 𝒙→𝟑+ )𝒇(𝒙 + 𝟑=
  • 48. For 𝑓 𝑥 = 9 𝑥−3 5, evaluate: a. lim 𝑥→3 𝑓(𝑥) b. lim 𝑥→3+ 𝑓(𝑥) c. lim 𝑥→3− 𝑓(𝑥) a. lim 𝑥→3 𝑓 𝑥 = lim 𝑥→3 𝑓 9 𝑥 − 3 5 = 𝟗 𝟑−𝟑 𝟓 = 9 0 5 = 9 0
  • 49. Get the value of 𝐥𝐢𝐦 𝒙→𝟑+ 𝒇 9 𝑥−3 5 using a table of function values. x → 𝟑+ 4 5 6 f(x) = 9 𝑥−3 5 𝐃𝐍𝐄 𝟗 𝟎. 𝟐𝟖 𝟎. 𝟎𝟑𝟕 𝒍𝒊𝒎 𝒙→𝟑+ 𝒇 𝒙 = 𝐥𝐢𝐦 𝒙→𝟑+ 𝒇 𝟗 𝒙 − 𝟑 𝟓 = 9 4 − 3 5 = 9 1 5 = 9 1 = 9 𝒍𝒊𝒎 𝒙→𝟑+ 𝒇 𝒙 = 𝐥𝐢𝐦 𝒙→𝟑+ 𝒇 𝟗 𝒙 − 𝟑 𝟓 = 9 𝟓 − 3 5 = 9 𝟐 5 = 9 𝟑𝟐 = 𝟎. 𝟐𝟖 𝒍𝒊𝒎 𝒙→𝟑+ 𝒇 𝒙 = 𝐥𝐢𝐦 𝒙→𝟑+ 𝒇 𝟗 𝒙 − 𝟑 𝟓 = 9 𝟔 − 3 5 = 9 𝟑 5 = 9 𝟐𝟒𝟑 = 𝟏 𝟐𝟕 𝐨𝐫 𝟎. 𝟎𝟑𝟕
  • 50. Get the value of 𝐥𝐢𝐦 𝒙→𝟑− 𝒇 9 𝑥−3 5 using a table of function values. x 0 1 2 → 𝟑− f(x) = 9 𝑥−3 5 𝐃𝐍𝐄−𝟎. 𝟐𝟖 −𝟗−𝟎. 𝟎𝟑𝟕 𝒍𝒊𝒎 𝒙→𝟑− 𝒇 𝒙 = 𝐥𝐢𝐦 𝒙→𝟑− 𝒇 𝟗 𝒙 − 𝟑 𝟓 = 9 𝟐 − 3 5 = 9 −1 5 = 9 −1 = −9 𝒍𝒊𝒎 𝒙→𝟑− 𝒇 𝒙 = 𝐥𝐢𝐦 𝒙→𝟑− 𝒇 𝟗 𝒙 − 𝟑 𝟓 = 9 𝟏 − 3 5 = 9 −𝟐 5 = 9 −𝟑𝟐 = −𝟎. 𝟐𝟖 𝒍𝒊𝒎 𝒙→𝟑− 𝒇 𝒙 = 𝐥𝐢𝐦 𝒙→𝟑− 𝒇 𝟗 𝒙 − 𝟑 𝟓 = 9 𝟎 − 3 5 = 9 −𝟑 5 = 9 −𝟐𝟒𝟑 = −𝟏 𝟐𝟕 𝐨𝐫 −𝟎. 𝟎𝟑𝟕
  • 51. 𝐥𝐢𝐦 𝒙→𝟑+ 𝒇 𝟗 𝒙 − 𝟑 𝟓 𝐥𝐢𝐦 𝒙→𝟑− 𝒇 𝟗 𝒙 − 𝟑 𝟓≠ x 0 1 2 → 𝟑− f(x) = 9 𝑥−3 5 𝐃𝐍𝐄−𝟎. 𝟐𝟖 −𝟗−𝟎. 𝟎𝟑𝟕 𝐥𝐢𝐦 𝒙→𝟑− 𝒇 𝟗 𝒙 − 𝟑 𝟓 𝐥𝐢𝐦 𝒙→𝟑+ 𝒇 𝟗 𝒙 − 𝟑 𝟓 x → 𝟑+ 4 5 6 f(x) = 9 𝑥−3 5 𝐃𝐍𝐄 𝟗 𝟎. 𝟐𝟖 𝟎. 𝟎𝟑𝟕
  • 52. For 𝑓 𝑥 = 𝑥2 − 3𝑥 + 4, evaluate:a. lim 𝑥→1 𝑓(𝑥) b. lim 𝑥→1+ 𝑓(𝑥) c. lim 𝑥→1− 𝑓(𝑥) a. lim 𝑥→1 𝑓 𝑥 = lim 𝑥→1 𝑥2 − 3𝑥 + 4 =(1)2 −3(1) + 4 = 𝟏 − 𝟑 + 𝟒
  • 53. Get the value of 𝐥𝐢𝐦 𝒙→𝟏+ 𝑥2 − 3𝑥 + 4, using a table of function values. x → 𝟏+ 2 3 4 f(x) = 𝑥2 − 3𝑥 + 4 𝟐 𝟐 𝟒 𝟖 𝒍𝒊𝒎 𝒙→𝟏+ 𝒇 𝒙 = 𝐥𝐢𝐦 𝒙→𝟏+ 𝒙 𝟐 − 𝟑𝒙 + 𝟒 = (𝟐) 𝟐−𝟑(𝟐) + 𝟒 = 𝟐= 𝟒 − 𝟔 + 𝟒 𝒍𝒊𝒎 𝒙→𝟏+ 𝒇 𝒙 = 𝐥𝐢𝐦 𝒙→𝟏+ 𝒙 𝟐 − 𝟑𝒙 + 𝟒 𝒍𝒊𝒎 𝒙→𝟏+ 𝒇 𝒙 = 𝐥𝐢𝐦 𝒙→𝟏+ 𝒙 𝟐 − 𝟑𝒙 + 𝟒 = (𝟑) 𝟐−𝟑(𝟑) + 𝟒 = 𝟒= 𝟗 − 𝟗 + 𝟒 = (𝟒) 𝟐−𝟑(𝟒) + 𝟒 = 𝟖=16-12+4
  • 54. Get the value of 𝐥𝐢𝐦 𝒙→𝟏− 𝑥2 − 3𝑥 + 4, using a table of function values. x -4 -3 -2 → 𝟏− f(x) = 𝑥2 − 3𝑥 + 4 𝟑𝟐 𝟐𝟐 𝟏𝟒 𝟐 𝒍𝒊𝒎 𝒙→𝟏− 𝒇 𝒙 = 𝐥𝐢𝐦 𝒙→𝟏− 𝒙 𝟐 − 𝟑𝒙 + 𝟒 = (−𝟐) 𝟐−𝟑(−𝟐) + 𝟒 =14= 𝟒 + 𝟔 + 𝟒 𝒍𝒊𝒎 𝒙→𝟏− 𝒇 𝒙 = 𝐥𝐢𝐦 𝒙→𝟏− 𝒙 𝟐 − 𝟑𝒙 + 𝟒 𝒍𝒊𝒎 𝒙→𝟏− 𝒇 𝒙 = 𝐥𝐢𝐦 𝒙→𝟏− 𝒙 𝟐 − 𝟑𝒙 + 𝟒 = (−𝟑) 𝟐−𝟑(−𝟑) + 𝟒 = 𝟐𝟐= 𝟗 + 𝟗 + 𝟒 = (−𝟒) 𝟐−𝟑(−𝟒) + 𝟒 = 𝟑𝟐= 𝟏𝟔 + 𝟏𝟐 + 𝟒
  • 55. ≠ x -4 -3 -2 → 𝟏− f(x) = 𝑥2 − 3𝑥 + 4 𝟐𝟐𝟐 𝟏𝟒𝟑𝟐 𝐥𝐢𝐦 𝒙→𝟏− 𝒙 𝟐 − 𝟑𝒙 + 𝟒 𝐥𝐢𝐦 𝒙→𝟏+ 𝒙 𝟐 − 𝟑𝒙 + 𝟒 x → 𝟏+ 2 3 4 f(x) = 𝑥2 − 3𝑥 + 4 2 𝟐 𝟒 𝟖 𝐥𝐢𝐦 𝒙→𝟏+ 𝒙 𝟐 − 𝟑𝒙 + 𝟒 𝐥𝐢𝐦 𝒙→𝟏− 𝒙 𝟐 − 𝟑𝒙 + 𝟒
  • 56.
  • 57. 1. For 𝑓 𝑥 = 7−x 3− 𝑥+2 , evaluate: a. lim 𝑥→5 𝑓(𝑥) b. lim 𝑥→5+ 𝑓(𝑥) c. lim 𝑥→5− 𝑓(𝑥) 2. For 𝑓 𝑥 = 1 x − 1 11 x−11 , evaluate: a. lim 𝑥→11 𝑓(𝑥) b. lim 𝑥→11+ 𝑓(𝑥) c. lim 𝑥→11− 𝑓(𝑥) 3. For 𝑓 𝑥 = x−7 2−49 𝑥 , evaluate: a. lim 𝑥→0 𝑓(𝑥) b. lim 𝑥→0+ 𝑓(𝑥) c. lim 𝑥→0− 𝑓(𝑥)
  • 58. QUIZ #2 a. lim 𝑥→5 𝑓(𝑥) b. lim 𝑥→5+ 𝑓(𝑥) c. lim 𝑥→5− 𝑓(𝑥)
  • 59.
  • 60. First, assume that 𝒍𝒊𝒎 𝒙→𝒂 𝒇 𝒙 and 𝒍𝒊𝒎 𝒙→𝒂 𝒈 𝒙 exist, and c is any constant. Then, 𝟏. 𝐥𝐢𝐦 𝒙→𝒂 𝒄𝒇 𝒙 = 𝒄 𝐥𝐢𝐦 𝒙→𝒂 𝒇 𝒙 In other words, we can “factor” a multiplicative constant out of a limit.
  • 61. 𝟏. 𝐥𝐢𝐦 𝒙→𝒂 𝒄𝒇 𝒙 = 𝒄 𝐥𝐢𝐦 𝒙→𝒂 𝒇 𝒙 𝐥𝐢𝐦 𝒙→𝟐 𝟑𝒙 𝟐 = 𝟑 𝐥𝐢𝐦 𝒙→𝟐 𝒙 𝟐 = 𝟑 𝟐 𝟐 = 𝟑(𝟒) = 𝟏𝟐
  • 62. 𝟐. 𝐥𝐢𝐦 𝒙→𝒂 )𝒇 𝒙 ± 𝒈(𝒙 = 𝐥𝐢𝐦 𝒙→𝒂 𝒇 𝒙 ± 𝐥𝐢𝐦 𝒙→𝒂 𝒈 𝒙 So, to take the limit of a sum or difference all we need to do is take the limit of the individual parts and then put them back together with the appropriate sign. This is also not limited to two functions. This fact will work no matter how many functions we’ve got separated by “+” or “-”.
  • 63. 𝒇 𝒙 = 𝒙 𝟐 − 𝒙 − 𝟔; 𝒈 𝒙 = 𝒙 𝟐 − 𝟐𝒙 − 𝟑 𝟐. 𝐥𝐢𝐦 𝒙→𝒂 )𝒇 𝒙 ± 𝒈(𝒙 = 𝐥𝐢𝐦 𝒙→𝒂 𝒇 𝒙 ± 𝐥𝐢𝐦 𝒙→𝒂 𝒈 𝒙 Given the 𝐥𝐢𝐦 𝒙→𝟑 𝒇 𝒙 ± 𝒈(𝒙) 𝐥𝐢𝐦 𝒙→3 )𝒇 𝒙 + 𝒈(𝒙 = 𝐥𝐢𝐦 𝒙→3 𝒙2 − 𝒙 − 6 + 𝐥𝐢𝐦 𝒙→3 𝒙2 − 2𝒙 − 3 = 𝐥𝐢𝐦 𝒙→3 (𝒙2 −𝒙 − 6) + ( 𝒙2 − 2𝒙 − 3) = 𝐥𝐢𝐦 𝒙→3 𝟐𝒙 𝟐 − 𝟑𝒙 − 𝟗 = 𝟐 𝟑 𝟐 − 𝟑 𝟑 − 𝟗 = 𝟏𝟖 − 𝟗 − 𝟗 𝐥𝐢𝐦 𝒙→3 )𝒇 𝒙 + 𝒈(𝒙 = 𝟎
  • 64. 𝒇 𝒙 = 𝒙 𝟐 − 𝒙 − 𝟔; 𝒈 𝒙 = 𝒙 𝟐 − 𝟐𝒙 − 𝟑 𝟐. 𝐥𝐢𝐦 𝒙→𝒂 )𝒇 𝒙 ± 𝒈(𝒙 = 𝐥𝐢𝐦 𝒙→𝒂 𝒇 𝒙 ± 𝐥𝐢𝐦 𝒙→𝒂 𝒈 𝒙 Given the 𝐥𝐢𝐦 𝒙→𝟑 𝒇 𝒙 ± 𝒈(𝒙) 𝐥𝐢𝐦 𝒙→3 )𝒇 𝒙 − 𝒈(𝒙 = 𝐥𝐢𝐦 𝒙→3 𝒙2 − 𝒙 − 6 − 𝐥𝐢𝐦 𝒙→3 𝒙2 − 2𝒙 − 3 = 𝐥𝐢𝐦 𝒙→3 (𝒙2 −𝒙 − 6) − ( 𝒙2 − 2𝒙 − 3) = 𝐥𝐢𝐦 𝒙→3 𝒙2 − 𝒙 − 6 − 𝒙 𝟐 + 𝟐𝒙 + 𝟑 = 𝟑 − 𝟑 𝐥𝐢𝐦 𝒙→3 )𝒇 𝒙 + 𝒈(𝒙 = 𝟎 = 𝐥𝐢𝐦 𝒙→3 𝒙 − 𝟑
  • 65. 3. 𝐥𝐢𝐦 𝒙→𝒂 )𝒇 𝒙 ∙ 𝒈(𝒙 = 𝐥𝐢𝐦 𝒙→𝒂 𝒇 𝒙 ∙ 𝐥𝐢𝐦 𝒙→𝒂 𝒈 𝒙 We take the limits of products in the same way that we can take the limit of sums or differences. Just take the limit of the pieces and then put them back together. Also, as with sums or differences, this fact is not limited to just two functions.
  • 66. 𝒇 𝒙 = 𝒙 𝟐 − 𝒙 − 𝟔; 𝒈 𝒙 = 𝒙 𝟐 − 𝟐𝒙 − 𝟑 Given the 𝐥𝐢𝐦 𝒙→𝟑 𝒇 𝒙 ∙ 𝒈(𝒙) 𝐥𝐢𝐦 𝒙→3 )𝒇 𝒙 ∙ 𝒈(𝒙 = (𝐥𝐢𝐦 𝒙→3 𝒙2 − 𝒙 − 6)(𝐥𝐢𝐦 𝒙→3 𝒙2 − 2𝒙 − 3) 𝐥𝐢𝐦 𝒙→3 )𝒇 𝒙 ∙ 𝒈(𝒙 = 𝟎 3. 𝐥𝐢𝐦 𝒙→𝒂 )𝒇 𝒙 ∙ 𝒈(𝒙 = 𝐥𝐢𝐦 𝒙→𝒂 𝒇 𝒙 ∙ 𝐥𝐢𝐦 𝒙→𝒂 𝒈 𝒙 = 𝐥𝐢𝐦 𝒙→3 (𝒙 𝟐 − 𝒙 − 𝟔)(𝒙 𝟐 − 𝟐𝒙 − 𝟑) = 𝐥𝐢𝐦 𝒙→3 𝒙2 𝒙2 − 2𝒙 − 3 + −𝒙 𝒙2 − 2𝒙 − 3 + −6 𝒙2 − 2𝒙 − 3 = 𝐥𝐢𝐦 𝒙→3 [(𝒙 𝟒 = 𝐥𝐢𝐦 𝒙→3 𝒙4 − 3𝒙3 − 𝟕𝒙2 + 15𝒙 + 18 = 𝟑 𝟒 − 𝟑 𝟑 𝟑 − 𝟕 𝟑 𝟐 + 𝟏𝟓 𝟑 + 𝟏𝟖 = 𝟖𝟏 − 𝟖𝟏 − 𝟔𝟑 + 𝟒𝟓 + 𝟏𝟖 −𝟐𝒙 𝟑 −𝟑𝒙 𝟐 )+(−𝒙 𝟑+𝟐𝒙 𝟐 +𝟑𝒙)+(−𝟔𝒙 𝟐 +𝟏𝟐𝒙 +𝟏𝟖)
  • 67. 4. 𝐥𝐢𝐦 𝒙→𝒂 𝒇 𝒙 𝒈 𝒙 = 𝐥𝐢𝐦 𝒙→𝒂 𝒇 𝒙 𝐥𝐢𝐦 𝒙→𝒂 𝒈 𝒙 Provided that 𝒍𝒊𝒎 𝒙→𝒂 𝒈 𝒙 ≠ 𝟎 As noted in the statement we only need to worry about the limit in the denominator being zero when we do the limit of a quotient. If it were zero we would end up with a division by zero error and we need to avoid that.
  • 68. 𝒇 𝒙 = 𝒙 𝟐 − 𝒙 − 𝟔; 𝒈 𝒙 = 𝒙 𝟐 − 𝟐𝒙 − 𝟑 Given the 𝐥𝐢𝐦 𝒙→𝟑 𝒇 𝒙 /𝒈(𝒙) 4. 𝐥𝐢𝐦 𝒙→𝒂 𝒇 𝒙 𝒈 𝒙 = 𝐥𝐢𝐦 𝒙→𝒂 𝒇 𝒙 𝐥𝐢𝐦 𝒙→𝒂 𝒈 𝒙 = 𝐥𝐢𝐦 𝒙→𝟑 𝒙 𝟐 − 𝒙 − 𝟔 𝒙 𝟐 − 𝟐𝒙 − 𝟑 = 𝐥𝐢𝐦 𝒙→𝟑 𝒙 − 𝟑)(𝒙 + 𝟐 𝒙 − 𝟑)(𝒙 + 𝟏 = 𝐥𝐢𝐦 𝒙→𝟑 𝒙 + 𝟐 𝒙 + 𝟏 = 𝟑 + 𝟐 𝟑 + 𝟏 𝐥𝐢𝐦 𝒙→3 𝒇 𝒙 𝒈 𝒙 = 5 4 𝒐𝒓 1 1 4 𝒐𝒓 1.25
  • 69. 5. 𝐥𝐢𝐦 𝒙→𝒂 𝒇 𝒙 𝒏 = [ 𝐥𝐢𝐦 𝒙→𝒂 𝒇 𝒙 𝒏 Where n is any real number. In this property n can be any real number (positive, negative, integer, fraction, irrational, zero, etc.). That n is an integer this rule can be thought of as an extended case of 3. For example, consider the case of n=2. 𝒍𝒊𝒎 𝒙→𝒂 𝒇 𝒙 𝟐 = [𝒍𝒊𝒎 𝒙→𝒂 𝒇 𝒙 𝟐 = 𝒍𝒊𝒎 𝒙→𝒂 𝒇 𝒙 ∙ 𝒍𝒊𝒎 𝒙→𝒂 𝒇 𝒙
  • 70. 𝒇 𝒙 = 𝒙 + 𝟑; Given the 𝐥𝐢𝐦 𝒙→𝟑 𝒇 𝒙 𝟐 5. 𝐥𝐢𝐦 𝒙→𝒂 𝒇 𝒙 𝒏 = [ 𝐥𝐢𝐦 𝒙→𝒂 𝒇 𝒙 𝒏 = 𝐥𝐢𝐦 𝒙→𝟑 𝒙 + 𝟑 𝟐 = 𝐥𝐢𝐦 𝒙→𝟑 𝒙 + 𝟑 ∙ 𝐥𝐢𝐦 𝒙→𝟑 𝒙 + 𝟑 = 𝐥𝐢𝐦 𝒙→𝟑 (𝒙 + 𝟑)(𝒙 + 𝟑 = 𝐥𝐢𝐦 𝒙→𝟑 𝒙 𝟐 + 𝟔𝒙 + 𝟗 = 𝐥𝐢𝐦 𝒙→𝟑 𝒙 𝟐 + 𝐥𝐢𝐦 𝒙→𝟑 𝟔𝒙 + 𝐥𝐢𝐦 𝒙→𝟑 𝟗 = 𝟑 𝟐 + 𝟔 𝟑 + 𝟗 = 𝟗 + 𝟏𝟖 + 𝟗 𝐥𝐢𝐦 𝒙→3 𝒇 𝒙 2 = 36
  • 71. 𝟔. 𝐥𝐢𝐦 𝒙→𝒂 [ 𝒏 𝒇(𝒙) = 𝒏 𝐥𝐢𝐦 𝒙→𝒂 𝒇(𝒙) This is just a special case of the previous example. 𝐥𝐢𝐦 𝒙→𝒂 [ 𝒏 𝒇(𝒙) = 𝒏 𝐥𝐢𝐦 𝒙→𝒂 𝒇(𝒙) =[lim 𝑥→𝑎 𝒇(𝒙) 𝟏 𝒏
  • 72. 𝒇 𝒙 = 𝒙 𝟐 + 𝟔𝒙 + 𝟗; Given the 𝐥𝐢𝐦 𝒙→𝟑 𝒇 𝒙 𝟏 𝟐 = 𝐥𝐢𝐦 𝒙→𝟑 𝒇 𝒙 𝟔. 𝐥𝐢𝐦 𝒙→𝒂 [ 𝒏 𝒇(𝒙) = 𝒏 𝐥𝐢𝐦 𝒙→𝒂 𝒇(𝒙) = 𝐥𝐢𝐦 𝒙→𝟑 𝒙 𝟐 + 𝟔𝒙 + 𝟗 = lim 𝒙→𝟑 𝒙 𝟐 + 𝟔𝒙 + 𝟗 = lim 𝒙→𝟑 𝒙 + 𝟑 𝟐 = lim 𝒙→𝟑 𝒙 + 𝟑 = 𝟑 + 𝟑 𝐥𝐢𝐦 𝒙→𝟑 𝒇 𝒙 𝟏 𝟐 = 𝟔
  • 73. 𝟕. 𝐥𝐢𝐦 𝒙→𝒂 𝒄 = 𝒄 In other words, the limit of a constant is just the constant. You should be able to convince yourself of this by drawing the graph of f(x) = c. Example: 𝒇 𝒙 = 𝟗 Given the 𝐥𝐢𝐦 𝒙→𝟑 𝒇(𝒙) 𝒍𝐢𝐦 𝒙→𝟑 𝟗 = 𝟗
  • 74. 𝟖. 𝐥𝐢𝐦 𝒙→𝒂 𝒙 = 𝒂 As with the last one you should be able to convince yourself of this by drawing the graph of f(x) = x. Example: 𝒇 𝒙 = 𝒙 Given the 𝐥𝐢𝐦 𝒙→𝟑 𝒇(𝒙) 𝒍𝐢𝐦 𝒙→𝟑 𝐱 = 𝟑= 𝐥𝐢𝐦 𝒙→𝟑 𝒙 = 𝐥𝐢𝐦 𝒙→3 3
  • 75. 𝟗. 𝐥𝐢𝐦 𝒙→𝒂 𝒙 𝒏 = 𝒂 𝒏 This is really just a special case of property 5 using f(x) = x. Example: 𝒇 𝒙 = 𝒙 𝟑 Given the 𝐥𝐢𝐦 𝒙→𝟑 𝒇(𝒙) 𝒍𝐢𝐦 𝒙→𝟑 𝐱 𝐧 = 𝟗= 𝐥𝐢𝐦 𝒙→𝟑 𝒙 𝟑 = 𝐥𝐢𝐦 𝒙→3 3 𝟑
  • 76.
  • 77. For 𝒇 𝒙 = 𝟏𝟔𝒙 𝟐 − 𝟐𝟒𝒙 + 𝟗 𝒂𝒏𝒅 𝒈 𝒙 = 𝟒𝒙 𝟐 + 𝒙 − 𝟑; evaluate the following limits. 𝒂. lim 𝒙→𝟏 𝒇 𝒙 + 𝒈(𝒙) 𝒃. lim 𝒙→𝟏 𝒇 𝒙 − 𝒈(𝒙) 𝒄. lim 𝒙→𝟐 𝒇 𝒙 𝒈 𝒙 𝒅. lim 𝒙→𝟑 𝒈 𝒙 𝟐 𝒆. lim 𝒙→𝟏 𝒇 𝒙 ∙ 𝒈(𝒙) 𝒇. lim 𝒙→𝟐𝟏 𝒇 𝒙 𝟏 𝟐