Vibration Measurements In Wind Power Turbines

1,252 views

Published on

This presentation shows how to use National Instruments products (hardware and software) in order to prevent Wind power turbine faults

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,252
On SlideShare
0
From Embeds
0
Number of Embeds
10
Actions
Shares
0
Downloads
92
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • Resampling and Comparison Setup—Contains the following options:Interpolation type—Contains the following options:Coerce—Sets each output sample value to equal the input sample value that is closest to it in time.Linear—(Default) Sets each output sample value to be a linear interpolation between the two input samples that are closest to it in time.Spline—Uses the spline interpolation algorithm to compute the resampled values.Filter based—Uses an interpolation method based on the convolution of the signal with a finite impulse response (FIR) filter.Operation—Specifies the arithmetic operation to perform. You can select from the following options:Add—(Default) Adds the input signals.Subtract—Subtracts the second input from the first.Multiply—Multiplies the first input by the second input.Divide—Divides the first input by the second input.FIR Filter Specifications—Contains the following options:Normalized bandwidth—[Interpolation type: Filter based] The normalized cut-off frequency of the FIR filter to use. The default is 0.4000.Alias rejection (dB)—[Interpolation type: Filter based] The minimum stopband attenuation of the FIR filter to use. The default is 80 dB.
  • Vibration Measurements In Wind Power Turbines

    1. 1. Vibration measurements in wind power turbines<br />Alex Lollio<br />Nov, 2010<br />
    2. 2. Agenda<br />Why vibration measurements?<br />National Instruments solution<br />Hardware<br />Software<br />Positioning vs competition<br />Conclusions<br />
    3. 3. Introduction:damage due to structural vibrations<br />1940: Tacoma bridge disaster<br /><ul><li> Resonance problems
    4. 4. High mechanical stress</li></li></ul><li>Introduction:damage due to high rotational speed<br />2009: Denmark Wind Turbine Failure<br /><ul><li> High rotational speed generates high vibrations
    5. 5. High mechanical stress</li></li></ul><li>Vibrations in wind power turbines<br />Possible causes: rotor, engines, blades, transmission<br />10 kg<br />10.1 kg<br />Example:<br />blades imbalance problem<br /><ul><li>Torque momentum
    6. 6. High vibration level</li></ul>10 kg<br />Mechanical stress<br />Noise emission<br />
    7. 7. How to monitor the system vibrations?<br />Mounting a 3D accelerometer<br /><ul><li> It is useful to monitor the machine condition and prevent faults
    8. 8. It needs a PC or PLC to collect data</li></ul>Key point : System integration<br />
    9. 9. Agenda<br />Why vibration measurements<br />National Instruments solution<br />Hardware<br />Software<br />Positioning vs competition<br />Conclusions<br />
    10. 10. NI Hardware Platform<br />Multi-Chassis<br />Application Complexity<br />PXI<br />PXI-Laptop<br />cDAQ<br />USB<br />Channel Count<br />
    11. 11. The simplest NI hardware solutions<br />NI 9234 (4-channels, 24 bit IEPE, 51kS/s)<br />Price: 1564 €<br />+<br />Carrier USB 9162<br />Carrier WLS-9163<br />+<br />+<br />Carrier ENET-9163<br />Price: 251 €<br />Price: 443 €<br />Price: 342 €<br />
    12. 12. The best NI hardware solutions<br />NI cRIO-9025<br />Real-Time Controller: 800 MHz, 512 MB DRAM, 4 GB Storage<br /><ul><li> Embedded controller runs LabVIEW Real-Time for deterministic control, data logging, and analysis
    13. 13. 800 MHz processor, 4 GB nonvolatile storage, 512 MB DDR2 memory
    14. 14. Dual Ethernet ports with embedded Web and file servers for remote user interfacing
    15. 15. Hi-Speed USB host port for connection to USB flash and memory devices
    16. 16. RS232 serial port for connection to peripherals; dual 9 to 35 VDC supply input</li></ul>Price: 4190 €<br />
    17. 17. Software: LabVIEWSound and Vibration Meas. Suite<br />Vibration Level<br />Spectrum Analysis (baseband, zoom, subset FFTs)<br />Frequency Response (broadband, swept-sine, impact, shock-response)<br />Short-time Frequency Analysis (STFT)<br />Over 60 examples using both hardware and simulated data<br />Hardware independent (but has example support for all DAQmx devices)<br />UNI/EN standard<br />Price: 3887 €<br />
    18. 18. Labview Order Analysis Toolkit:What is Order Analysis?<br /><ul><li> For analysis of mechanical systems with rotating components (engines, gearbox, rotors, turbines)</li></ul>Many noise and vibration signal components are directly related to running (rotating) speed<br />Order analysis normalizes the measurements to the rotating speed to better dissect these signal components<br />
    19. 19. Example: Power Spectrum<br />Rotating Speed:<br />60 Hz<br />(3600 RPM)<br />Frequency components shift with speed change<br />Rotating Speed:<br />50 Hz<br />(3000 RPM)<br />
    20. 20. Order Power Spectrum<br />Rotating Speed:<br />60 Hz<br />(3600 RPM)<br />Order components remain fixed with speed change<br />Rotating Speed:<br />50 Hz<br />(3000 RPM)<br />
    21. 21. Relationship of Orders and Faults<br />We can diagnose machine faults by knowing the order:<br />Imbalance<br />Misalignment<br />Loose Coupling<br />Valve Noise<br />Bearing Defects / Wear<br />Blade Pass Frequency<br />Gear Mesh<br />Low Order<br />High Order<br />
    22. 22. Relationship of Orders and Faults<br />We can diagnose machine faults by knowing the order:<br />3 blades wind turbine<br />3TH order component associated with blades mismatch<br />
    23. 23. Overview of the Order Analysis Toolkit<br />Calculate and examine rotational speed<br />Measure power in the order domain as a function of rotational speed<br />Extract individual orders<br />Measure magnitude and phase of any order component as a function of rotational speed<br />Present data in a waterfall, orbit, or polar plot<br />UNI/EN standard<br />
    24. 24. Resampling<br /><ul><li>Data is converted to angular domain from time domain</li></li></ul><li>Resampling:post processing samples extrapolation<br />NI hardware acquire the signal using a fixed sampling rate:<br />FS= highest RPM * highest order to measure * 2,56<br />Interpolation type:<br /><ul><li> Coerce
    25. 25. Linear (default)
    26. 26. Spline
    27. 27. Filter based</li></ul>Samples extrapolation<br />(8 samples per period)<br />Result:<br />Sample at constant angle<br />
    28. 28. Agenda<br />Why vibration measurements?<br />National Instruments solution<br />Hardware<br />Software<br />Positioning vs competition<br />Conclusions<br />
    29. 29. Positioning vs Competition<br />NI Strengths<br />Less expensive per channel (NI: € 270-770; Others: € 770-3900)<br />More expandable – up to 5000 channels in a distributed architecture<br />Compliance with ANSI and IEC Standards – Competition will try to say we don’t meet these standards <br />UNI/EN certification<br />More flexible software (LabVIEW support for custom analysis and mixed signal)<br />
    30. 30. Conclusions<br /><ul><li> NI platform for vibration analysis is flexible and modular
    31. 31. Easy to integrate into existing systems
    32. 32. NI Sound and Vibration Measurement Suite is not hardware dependent
    33. 33. UNI/EN cerfitication</li>

    ×