Music Information Retrieval

Alberto De Bortoli
Alberto De BortoliPrincipal iOS Software Engineer at Just Eat
Base concepts
                 The ideas
                   Shazam
               Conclusions




Music Information Retrieval (MIR)
Approaches for content-based music retrieval


               Alberto De Bortoli


               December 1, 2009




         Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts
                                           Music language
                              The ideas
                                           The formats
                                Shazam
                                           The users
                            Conclusions


What is MIR?

      Music information retrieval or MIR is the interdisciplinary
      science of retrieving information from music
      This includes:
          Computational methods for classification, clustering, and
          modelling
          Formal methods and databases
          Software for music information retrieval
          Human-computer interaction and interfaces
          Music perception, cognition, affect, and emotions
          Music analysis and knowledge representation
          Music archives, libraries, and digital collections
          Intellectual property and rights
          Sociology and Economy of music


                      Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts
                                             Music language
                                The ideas
                                             The formats
                                  Shazam
                                             The users
                              Conclusions


Dealing with Music

   Music is different from text, we have to deal with its
   characteristics:
          Pitch which is related to the perception of the fundamental
                frequency of a sound; pitch is said to range from low
                or deep to high or acute sounds.
       Intensity which is related to the amplitude, and thus to the
                 energy, of the vibration; textual labels for intensity
                 range from soft to loud; the intensity is also defined
                 loudness.
        Timbre which is defined as the sound characteristics that
               allow listeners to perceive as different two sounds
               with same pitch and same intensity.

                        Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts
                                          Music language
                             The ideas
                                          The formats
                               Shazam
                                          The users
                           Conclusions


Dimensions of the Music Language (1)

      Timbre depends on the perception of the quality of sounds.
      Orchestration is due to the composers and performers
      choices in selecting which musical instruments are to be
      employed.
      Acoustics can be considered as the contribution of room
      acoustics, background noise, audio post-processing, filtering,
      and equalization.
      Rhythm is related to the periodic repetition, with possible
      small variants.
      Melody is made of a sequence of tones with a similar timbre
      that have a recognizable pitch within a small frequency range.


                     Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts
                                          Music language
                             The ideas
                                          The formats
                               Shazam
                                          The users
                           Conclusions


Dimensions of the Music Language (2)
      Harmony is the organization, along the time axis, of
      simultaneous sounds with a recognizable pitch.
      Structure is a horizontal dimension whose time scale is
      different from the previous ones, being related to macro-level
      features such as repetitions, interleaving of themes and
      choruses, presence of breaks, changes of time signatures, and
      so on.




                     Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts
                                           Music language
                              The ideas
                                           The formats
                                Shazam
                                           The users
                            Conclusions


Formats of Musical Documents
   Apart from the peculiar characteristics of the forms, different
   formats are able to capture only a reduced number of dimensions.
   The formats MIR deals with are:
       Audio formats (MP3, WAV...)
       Symbolic format (score, MIDI files, MPEG7)




                      Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts
                                            Music language
                               The ideas
                                            The formats
                                 Shazam
                                            The users
                             Conclusions


The Role of the User (1)



   Its all about Information Need. There are three main reasons why
   users may want to access digital music:
    1. listening to a particular performance or musical work;
    2. building a collection of music (playlist);
    3. verifying or identifying works.




                       Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts
                                            Music language
                               The ideas
                                            The formats
                                 Shazam
                                            The users
                             Conclusions


The Role of the User (2)


   Potential users of MIR systems are divided in three categories:
    1. casual users want to enjoy music, listening and collecting the
       music they like and discovering new good music;
    2. professional users need music suitable for particular usages
       related to their activities, which may be in media production
       or for advertisements;
    3. music scholars, music theorists, musicologists, and musicians
       are interested in studying music.




                       Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts
                                            Music language
                               The ideas
                                            The formats
                                 Shazam
                                            The users
                             Conclusions


The Casual User



   Maybe the most important kind of user, queries as follow:
    1. Find me a song that sounds like this
    2. Given that I like these songs, find me more songs that I may
       enjoy
    3. I need to organize my personal collection of digital music
       (stored in my hard drive, portable device, MP3 player, cell
       phone, etc...)




                       Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts
                                            Music language
                               The ideas
                                            The formats
                                 Shazam
                                            The users
                             Conclusions


The Professional User



   Users may need to access music collections because of their
   professional activity.
    1. I am looking for a suitable soundtrack for...
    2. Retrieve musical works that have a rhythm (melody, harmony,
       orchestration) similar to this one




                       Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts
                                            Music language
                               The ideas
                                            The formats
                                 Shazam
                                            The users
                             Conclusions


Music Theorists, Musicians


   Differently from casual and professional users, these users are
   interested mostly in obtaining information from the musical works,
   which is the subject of their study, rather than obtaining the
   musical work itself.
    1. access musical scores in order to develop or refine theories on
       the music language;
    2. interested in the work of composers, performers, the role of
       tradition, the cultural interchanges;
    3. retrieve scores to be performed and to listen to how renowned
       musicians interpreted particular passages or complete works



                       Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts    The approaches
                             The ideas    Melody extraction
                               Shazam     Pitch contour
                           Conclusions    Audio elaboration


Metadata approach




      Simple I.R. queries
      Often absent (ID3 TAG), or not reliable (MPEG7)
      Not pure Music Retrieval, but something like Text Retrieval
      on Audio Metadata.




                     Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts    The approaches
                              The ideas    Melody extraction
                                Shazam     Pitch contour
                            Conclusions    Audio elaboration


Content-based approach


      Dealing with intrinsic characteristics of the sounds.
      The main form is usually known by the MIR community as
      query-by-humming (QbH), the term has been introduced in
      1995 (A. Ghias, J. Logan, D. Chamberlin, and B.C. Smith.
      Query by humming: musical information retrieval in an audio
      database).
      The interaction through the audio channel is an error-prone
      process. The query may be dramatically different from the
      original song that it is intended to represent, and also different
      from the users intentions.


                      Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts    The approaches
                         The ideas    Melody extraction
                           Shazam     Pitch contour
                       Conclusions    Audio elaboration


A MIR Architecture




                 Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts    The approaches
                             The ideas    Melody extraction
                               Shazam     Pitch contour
                           Conclusions    Audio elaboration


Lexical Semantical Units
      Can we treat musical notes as “words”?
      No! Notes are relative, notes are not context-free.
      What about the musical pitch intervals? Is there an analogy
      to the “words”?
      No! The abstraction level is too low, pitch intervals are
      something like characters.
      And what about pitch intervals sequences?
      In a certain way they are “word”!
      Pauses or rests do not play the same role of blanks in text
      documents.
      Vague concept of “stop words”.
      In general, music do not depend on intonation or on single
      notes!
                     Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts    The approaches
                             The ideas    Melody extraction
                               Shazam     Pitch contour
                           Conclusions    Audio elaboration


Extraction of the main melody
      The main melody of a piece is a good representation of it.
      The computation of melodic information from a monophonic
      score is straightforward.
      A slightly more difficult task is given by a polyphonic score
      made of several monophonic voices.
      It is assumed that there is only a relevant melodic line.




                     Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts    The approaches
                             The ideas    Melody extraction
                               Shazam     Pitch contour
                           Conclusions    Audio elaboration


Melody Segmentation: N-grams


      A simple segmentation approach consists on the extraction
      from a melody of all the subsequences of exactly N notes,
      called N-grams.
      The idea underlying this approach is that the effect of
      musically irrelevant N-grams will be compensated by the
      presence of all the relevant ones.
      Each sequence, of any length, that is repeated at least K
      times can be used as a content descriptor of the melodic
      information.



                     Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts    The approaches
                             The ideas    Melody extraction
                               Shazam     Pitch contour
                           Conclusions    Audio elaboration


The Pitch Contour (1)

      A simple but effective approach for searching melodies.
      The Parsons Code is a simple notation used to identify a
      piece of music through melodic motion.
          u = “up” if the note is higher than the previous note
          d = “down” if the note is lower than the previous note
          r = “repeat” if the note is the same as the previous note
          * = first tone as reference
      Examples:
          “Love Me Tender”: *uduududdduu
          First verse in Madonna’s “Like a Virgin”: *rrurddrdrrurdud
          First verse in “We Are the World”: *rduduururdrddrududuu
      Boyer & Moore, KMP algorithms or Suffix Tree structures can
      be used.

                     Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts    The approaches
                             The ideas    Melody extraction
                               Shazam     Pitch contour
                           Conclusions    Audio elaboration


The Pitch Contour (2)

   http://themefinder.com




                     Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts    The approaches
                             The ideas    Melody extraction
                               Shazam     Pitch contour
                           Conclusions    Audio elaboration


Audio form
      Fourier transform is one of the most frequently used tools for
      the analysis of audio.
      A common way to represent an audio excerpt is the
      spectrogram.
      Spectrograms are not suitable content descriptors, because of
      their high dimensionality.




                     Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts    The approaches
                               The ideas    Melody extraction
                                 Shazam     Pitch contour
                             Conclusions    Audio elaboration


Self Similarity Matrix
       vi is the vector of the musical characteristics at time i.
       The self-similarity matrix M = (mij ) is defined as follow:
       mij = s(vi , vj ).
       s is some similarity metric choosen.
       M is symmetric along the diagonal.




                       Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts    What is about?
                             The ideas    The process
                               Shazam     Some considerations
                           Conclusions    Other systems


Shazam: magic?
  Desiderata
      providing a service that could connect people to music by
      recognizing music by using their mobile phones;
      The algorithm had to be able to recognize a short audio
      sample of music (15 sec) that had been broadcast, mixed with
      heavy ambient noise, subject to reverb;
      The algorithm also had to perform the recognition quickly
      over a large database of music.




                     Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts    What is about?
                             The ideas    The process
                               Shazam     Some considerations
                           Conclusions    Other systems


The process (1)

      Each audio file is fingerprinted, a process in which
      reproducible hash tokens are extracted;
      Both database and sample audio files are subjected to the
      same analysis;
      The fingerprints from the unknown sample are matched
      against a large set of fingerprints derived from the music
      database;
      The candidate matches are subsequently evaluated for
      correctness of match;
      Each fingerprint hash is calculated using audio samples near a
      corresponding point in time, so that distant events do not
      affect the hash;

                     Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts    What is about?
                             The ideas    The process
                               Shazam     Some considerations
                           Conclusions    Other systems


The process (2)

      Fingerprint hashes derived from corresponding matching
      content are reproducible independent of position within an
      audio file;
      Robustness means that hashes generated from the original
      clean database track should be reproducible from a degraded
      copy of the audio;
      Consider spectrogram peaks, due to their robustness in the
      presence of noise;
      A time-frequency point is a candidate peak if it has a higher
      energy content than all its neighbors in a region centered
      around the point;
      Generate a costellation map of peaks;

                     Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts    What is about?
                             The ideas    The process
                               Shazam     Some considerations
                           Conclusions    Other systems


The process (3)


      Fingerprint hashes are formed from the constellation map, in
      which pairs of time-frequency points are combinatorially
      associated;
      Anchor points are chosen, each anchor point having a target
      zone associated with it;
      A set of hash (anchor frequency, target point frequency, time
      offset) records is generated;
      Create a database index: the above operation is carried out on
      each track in a database to generate a corresponding list of
      hashes and their associated offset times.


                     Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts    What is about?
                          The ideas    The process
                            Shazam     Some considerations
                        Conclusions    Other systems


The process (4)




                  Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts    What is about?
                          The ideas    The process
                            Shazam     Some considerations
                        Conclusions    Other systems


The process (5)




                  Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts    What is about?
                               The ideas    The process
                                 Shazam     Some considerations
                             Conclusions    Other systems


The process (6)

   The corresponding times of matching features between matching
   files have the relationship

                              tk = tk + offset

   where tk is the time coordinate of the feature in the matching
   (clean) database soundfile and tk is the time coordinate of the
   corresponding feature in the sample soundfile to be identified. For
   each (tk , tk) coordinate in the scatterplot, we calculate

                                δtk = tk − tk

   Then we calculate a histogram of these δtk values and scan for a
   peak. This may be done by sorting the set of δtk values.

                       Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts    What is about?
                          The ideas    The process
                            Shazam     Some considerations
                        Conclusions    Other systems


The process (7)




                  Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts    What is about?
                               The ideas    The process
                                 Shazam     Some considerations
                             Conclusions    Other systems


Error probability
       If each constellation point is taken to be an anchor point, and
       if the target zone has a fan-out of size F = 10, then the
       number of hashes is equal to F times the number of
       constellation points extracted from the file.
       Note that the combinatorial hashing squares the probability of
       point survival.
       The surviving probability of at least one hash surviving for a
       given anchor point would be the joint probability of the anchor
       point and at least one target point in its target zone surviving.
       p = probability of survival for all points involved
       p ∗ (1 − (1 − p)F ) = probability of at least one hash surviving
       per anchor point
       p ≈ p ∗ (1 − (1 − p)F ) for large values of F , e.g. F > 10, and
       reasonable values of p, e.g. p > 0.1.
                       Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts    What is about?
                              The ideas    The process
                                Shazam     Some considerations
                            Conclusions    Other systems


An example



      64 frequency bins and delta time quantized to 6 bits
      Hash (f1, f2, delta) is 18 bits
      Fan-out = 10
      Peaks/sec = 3
      450 hashes/sample (15 sec)
      450 raw hashes are about 1 kbyte




                      Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts    What is about?
                             The ideas    The process
                               Shazam     Some considerations
                           Conclusions    Other systems


Considerations




      Good for music where frequencies are clearly defined.
      Totally unacceptable for organic sounds and rumors (not the
      supposed



                     Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts    What is about?
                            The ideas    The process
                              Shazam     Some considerations
                          Conclusions    Other systems


Other systems (1)

      http://www.bored.com/songtapper/




                    Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts    What is about?
                             The ideas    The process
                               Shazam     Some considerations
                           Conclusions    Other systems


Other systems (2)

      www.midomi.com
      Sing, humming, state-of-art of QbH.
      Possible errors due to wrong-key, poor vocal performance,
      missing notes.




                     Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts
                               MIR Map
                  The ideas
                               MIREX 2005
                    Shazam
                               Bibliography
                Conclusions


MIR Map




          Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts
                                        MIR Map
                           The ideas
                                        MIREX 2005
                             Shazam
                                        Bibliography
                         Conclusions


MIREX 2005

     A project for the evaluation of MIR tasks.
     The campaign has been called Music Information Retrieval
     Evaluation eXchange (MIREX).
     There have been nine different tasks during the MIREX 2005
     campaign, six on the audio form and three on thesymbolic
     form.




                   Alberto De Bortoli   Music Information Retrieval (MIR)
Base concepts
                                           MIR Map
                              The ideas
                                           MIREX 2005
                                Shazam
                                           Bibliography
                            Conclusions


Bibliography

      Nicola Orio. Music Retrieval: A Tutorial and Review.
      Avery Li-Chun Wang. An Industrial-Strength Audio Search
      Algorithm.
      James P. Ogle and Daniel P.W. Ellis. Fingerprinting to identify
      repeated sound events in long-duration personal audio
      recordings.
      Roberto Basili. Introduzione al Music Information Retrieval.
      Michael Fingerhut. Music Information Retrieval, or how to
      search for (and maybe find) music and do away with incipits.
      Progetto M.I.R.E.X.: http://www.music-ir.org.

                      Alberto De Bortoli   Music Information Retrieval (MIR)
1 of 37

Recommended

Introduction to Music Information Retrieval by
Introduction to Music Information RetrievalIntroduction to Music Information Retrieval
Introduction to Music Information RetrievalAndrea Gazzarini
11K views28 slides
Bases de Dados, Metadados e Formatos de intercâmbio de dados by
Bases de Dados, Metadados e Formatos de intercâmbio de dadosBases de Dados, Metadados e Formatos de intercâmbio de dados
Bases de Dados, Metadados e Formatos de intercâmbio de dadosPriscyla Patrício
767 views37 slides
CS6007 information retrieval - 5 units notes by
CS6007   information retrieval - 5 units notesCS6007   information retrieval - 5 units notes
CS6007 information retrieval - 5 units notesAnandh Arumugakan
7.6K views55 slides
Automatic indexing by
Automatic indexingAutomatic indexing
Automatic indexingdhatchayaninandu
11.9K views8 slides
Ontology Building and its Application using Hozo by
Ontology Building and its Application using HozoOntology Building and its Application using Hozo
Ontology Building and its Application using HozoKouji Kozaki
4.6K views101 slides
R programming advantages and disadvantages by
R programming advantages and disadvantagesR programming advantages and disadvantages
R programming advantages and disadvantagesPrwaTech
337 views4 slides

More Related Content

What's hot

Search: Probabilistic Information Retrieval by
Search: Probabilistic Information RetrievalSearch: Probabilistic Information Retrieval
Search: Probabilistic Information RetrievalVipul Munot
919 views27 slides
Precision and Recall by
Precision and RecallPrecision and Recall
Precision and RecallJohannes Schildgen
1.7K views23 slides
Information retrieval introduction by
Information retrieval introductionInformation retrieval introduction
Information retrieval introductionnimmyjans4
2.8K views48 slides
Information retrival system and PageRank algorithm by
Information retrival system and PageRank algorithmInformation retrival system and PageRank algorithm
Information retrival system and PageRank algorithmRupali Bhatnagar
4.6K views37 slides
SingleLecture.pdf by
SingleLecture.pdfSingleLecture.pdf
SingleLecture.pdfMastroQUU
22 views119 slides
Lectures 1,2,3 by
Lectures 1,2,3Lectures 1,2,3
Lectures 1,2,3alaa223
8.5K views68 slides

What's hot(20)

Search: Probabilistic Information Retrieval by Vipul Munot
Search: Probabilistic Information RetrievalSearch: Probabilistic Information Retrieval
Search: Probabilistic Information Retrieval
Vipul Munot919 views
Information retrieval introduction by nimmyjans4
Information retrieval introductionInformation retrieval introduction
Information retrieval introduction
nimmyjans42.8K views
Information retrival system and PageRank algorithm by Rupali Bhatnagar
Information retrival system and PageRank algorithmInformation retrival system and PageRank algorithm
Information retrival system and PageRank algorithm
Rupali Bhatnagar4.6K views
SingleLecture.pdf by MastroQUU
SingleLecture.pdfSingleLecture.pdf
SingleLecture.pdf
MastroQUU22 views
Lectures 1,2,3 by alaa223
Lectures 1,2,3Lectures 1,2,3
Lectures 1,2,3
alaa2238.5K views
Practical Natural Language Processing From Theory to Industrial Applications by Jaganadh Gopinadhan
Practical Natural Language Processing From Theory to Industrial Applications Practical Natural Language Processing From Theory to Industrial Applications
Practical Natural Language Processing From Theory to Industrial Applications
Jaganadh Gopinadhan3.2K views
Introduction to Ontology Concepts and Terminology by Steven Miller
Introduction to Ontology Concepts and TerminologyIntroduction to Ontology Concepts and Terminology
Introduction to Ontology Concepts and Terminology
Steven Miller6K views
Data Mining : Concepts and Techniques by DeepaR42
Data Mining : Concepts and TechniquesData Mining : Concepts and Techniques
Data Mining : Concepts and Techniques
DeepaR42265 views
Introduction to Metadata by EUDAT
Introduction to MetadataIntroduction to Metadata
Introduction to Metadata
EUDAT9.9K views
Information retrieval s by silambu111
Information retrieval sInformation retrieval s
Information retrieval s
silambu11139K views
Vector space model of information retrieval by Nanthini Dominique
Vector space model of information retrievalVector space model of information retrieval
Vector space model of information retrieval
Nanthini Dominique9.6K views
Tutorial on Question Answering Systems by Saeedeh Shekarpour
Tutorial on Question Answering Systems Tutorial on Question Answering Systems
Tutorial on Question Answering Systems
Saeedeh Shekarpour11.6K views
1.2 steps and functionalities by Rajendran
1.2 steps and functionalities1.2 steps and functionalities
1.2 steps and functionalities
Rajendran 366 views
Aula 01 - Recuperação da Informação by Nilton Heck
Aula 01 - Recuperação da InformaçãoAula 01 - Recuperação da Informação
Aula 01 - Recuperação da Informação
Nilton Heck10.4K views
Web_Mining_Overview_Nfaoui_El_Habib by El Habib NFAOUI
Web_Mining_Overview_Nfaoui_El_HabibWeb_Mining_Overview_Nfaoui_El_Habib
Web_Mining_Overview_Nfaoui_El_Habib
El Habib NFAOUI2.4K views
Data Science - Part XI - Text Analytics by Derek Kane
Data Science - Part XI - Text AnalyticsData Science - Part XI - Text Analytics
Data Science - Part XI - Text Analytics
Derek Kane11.7K views
The Role of Natural Language Processing in Information Retrieval by Tony Russell-Rose
The Role of Natural Language Processing in Information RetrievalThe Role of Natural Language Processing in Information Retrieval
The Role of Natural Language Processing in Information Retrieval
Tony Russell-Rose14.3K views
How to describe a dataset. Interoperability issues by Valeria Pesce
How to describe a dataset. Interoperability issuesHow to describe a dataset. Interoperability issues
How to describe a dataset. Interoperability issues
Valeria Pesce2.7K views

Viewers also liked

Audio Processing and Music Recognition by
Audio Processing and Music RecognitionAudio Processing and Music Recognition
Audio Processing and Music RecognitionMrinmoy Dalal
3.4K views37 slides
Cross platform mobile development by
Cross platform mobile development Cross platform mobile development
Cross platform mobile development Alberto De Bortoli
527 views20 slides
Automatic Recognition of Musical Instruments by
Automatic Recognition of Musical InstrumentsAutomatic Recognition of Musical Instruments
Automatic Recognition of Musical InstrumentsJuan Alberto Castro Mayorgas
433 views21 slides
Human Perception and Recognition of Musical Instruments: A Review by
Human Perception and Recognition of Musical Instruments: A ReviewHuman Perception and Recognition of Musical Instruments: A Review
Human Perception and Recognition of Musical Instruments: A ReviewEditor IJCATR
523 views4 slides
Comparison of features for musical instrument recognition by
Comparison of features for musical instrument recognitionComparison of features for musical instrument recognition
Comparison of features for musical instrument recognitionchakravarthy Gopi
725 views4 slides
Digital Audio & Signal Processing (Elad Gariany) by
Digital Audio & Signal Processing (Elad Gariany)Digital Audio & Signal Processing (Elad Gariany)
Digital Audio & Signal Processing (Elad Gariany)Ron Reiter
2.7K views34 slides

Viewers also liked(13)

Audio Processing and Music Recognition by Mrinmoy Dalal
Audio Processing and Music RecognitionAudio Processing and Music Recognition
Audio Processing and Music Recognition
Mrinmoy Dalal3.4K views
Human Perception and Recognition of Musical Instruments: A Review by Editor IJCATR
Human Perception and Recognition of Musical Instruments: A ReviewHuman Perception and Recognition of Musical Instruments: A Review
Human Perception and Recognition of Musical Instruments: A Review
Editor IJCATR523 views
Comparison of features for musical instrument recognition by chakravarthy Gopi
Comparison of features for musical instrument recognitionComparison of features for musical instrument recognition
Comparison of features for musical instrument recognition
chakravarthy Gopi725 views
Digital Audio & Signal Processing (Elad Gariany) by Ron Reiter
Digital Audio & Signal Processing (Elad Gariany)Digital Audio & Signal Processing (Elad Gariany)
Digital Audio & Signal Processing (Elad Gariany)
Ron Reiter2.7K views
From Music Information Retrieval to Music Emotion Recognition by Rui Pedro Paiva
From Music Information Retrieval to Music Emotion RecognitionFrom Music Information Retrieval to Music Emotion Recognition
From Music Information Retrieval to Music Emotion Recognition
Rui Pedro Paiva5.4K views
MOODetector: A System for Mood-based Classification and Retrieval of Audio Mu... by Rui Pedro Paiva
MOODetector: A System for Mood-based Classification and Retrieval of Audio Mu...MOODetector: A System for Mood-based Classification and Retrieval of Audio Mu...
MOODetector: A System for Mood-based Classification and Retrieval of Audio Mu...
Rui Pedro Paiva959 views
Introduction of my research histroy: From instrument recognition to support o... by kthrlab
Introduction of my research histroy: From instrument recognition to support o...Introduction of my research histroy: From instrument recognition to support o...
Introduction of my research histroy: From instrument recognition to support o...
kthrlab208 views
Sound analysis and processing with MATLAB by Tan Hoang Luu
Sound analysis and processing with MATLABSound analysis and processing with MATLAB
Sound analysis and processing with MATLAB
Tan Hoang Luu6.4K views
Music Information Retrieval: Overview and Current Trends 2008 by Rui Pedro Paiva
Music Information Retrieval: Overview and Current Trends 2008Music Information Retrieval: Overview and Current Trends 2008
Music Information Retrieval: Overview and Current Trends 2008
Rui Pedro Paiva1.6K views
ARC201 Microservices Architecture @ AWS re:Invent 2015 by Mitoc Group
ARC201 Microservices Architecture @ AWS re:Invent 2015ARC201 Microservices Architecture @ AWS re:Invent 2015
ARC201 Microservices Architecture @ AWS re:Invent 2015
Mitoc Group6.4K views

Similar to Music Information Retrieval

Media language1 by
Media language1Media language1
Media language1Angela Pearson
353 views29 slides
Media language1 by
Media language1Media language1
Media language1WhiteBoiThsallyLover
5.5K views30 slides
Mnri web page by
Mnri web pageMnri web page
Mnri web pageAlberto Casas Rodriguez
303 views36 slides
Marc-André Rappaz - Metaphors, gestures, and emotions in music by
Marc-André Rappaz - Metaphors, gestures, and emotions in musicMarc-André Rappaz - Metaphors, gestures, and emotions in music
Marc-André Rappaz - Metaphors, gestures, and emotions in musicswissnex San Francisco
2K views31 slides
CSTalks - Music Information Retrieval - 23 Feb by
CSTalks - Music Information Retrieval - 23 FebCSTalks - Music Information Retrieval - 23 Feb
CSTalks - Music Information Retrieval - 23 Febcstalks
1.3K views39 slides
20211026 taicca 1 intro to mir by
20211026 taicca 1 intro to mir20211026 taicca 1 intro to mir
20211026 taicca 1 intro to mirYi-Hsuan Yang
648 views57 slides

Similar to Music Information Retrieval(10)

Recently uploaded

Digital Personal Data Protection (DPDP) Practical Approach For CISOs by
Digital Personal Data Protection (DPDP) Practical Approach For CISOsDigital Personal Data Protection (DPDP) Practical Approach For CISOs
Digital Personal Data Protection (DPDP) Practical Approach For CISOsPriyanka Aash
158 views59 slides
Confidence in CloudStack - Aron Wagner, Nathan Gleason - Americ by
Confidence in CloudStack - Aron Wagner, Nathan Gleason - AmericConfidence in CloudStack - Aron Wagner, Nathan Gleason - Americ
Confidence in CloudStack - Aron Wagner, Nathan Gleason - AmericShapeBlue
130 views9 slides
Mitigating Common CloudStack Instance Deployment Failures - Jithin Raju - Sha... by
Mitigating Common CloudStack Instance Deployment Failures - Jithin Raju - Sha...Mitigating Common CloudStack Instance Deployment Failures - Jithin Raju - Sha...
Mitigating Common CloudStack Instance Deployment Failures - Jithin Raju - Sha...ShapeBlue
180 views18 slides
Ransomware is Knocking your Door_Final.pdf by
Ransomware is Knocking your Door_Final.pdfRansomware is Knocking your Door_Final.pdf
Ransomware is Knocking your Door_Final.pdfSecurity Bootcamp
96 views46 slides
Keynote Talk: Open Source is Not Dead - Charles Schulz - Vates by
Keynote Talk: Open Source is Not Dead - Charles Schulz - VatesKeynote Talk: Open Source is Not Dead - Charles Schulz - Vates
Keynote Talk: Open Source is Not Dead - Charles Schulz - VatesShapeBlue
252 views15 slides
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R... by
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...ShapeBlue
173 views15 slides

Recently uploaded(20)

Digital Personal Data Protection (DPDP) Practical Approach For CISOs by Priyanka Aash
Digital Personal Data Protection (DPDP) Practical Approach For CISOsDigital Personal Data Protection (DPDP) Practical Approach For CISOs
Digital Personal Data Protection (DPDP) Practical Approach For CISOs
Priyanka Aash158 views
Confidence in CloudStack - Aron Wagner, Nathan Gleason - Americ by ShapeBlue
Confidence in CloudStack - Aron Wagner, Nathan Gleason - AmericConfidence in CloudStack - Aron Wagner, Nathan Gleason - Americ
Confidence in CloudStack - Aron Wagner, Nathan Gleason - Americ
ShapeBlue130 views
Mitigating Common CloudStack Instance Deployment Failures - Jithin Raju - Sha... by ShapeBlue
Mitigating Common CloudStack Instance Deployment Failures - Jithin Raju - Sha...Mitigating Common CloudStack Instance Deployment Failures - Jithin Raju - Sha...
Mitigating Common CloudStack Instance Deployment Failures - Jithin Raju - Sha...
ShapeBlue180 views
Keynote Talk: Open Source is Not Dead - Charles Schulz - Vates by ShapeBlue
Keynote Talk: Open Source is Not Dead - Charles Schulz - VatesKeynote Talk: Open Source is Not Dead - Charles Schulz - Vates
Keynote Talk: Open Source is Not Dead - Charles Schulz - Vates
ShapeBlue252 views
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R... by ShapeBlue
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...
ShapeBlue173 views
Import Export Virtual Machine for KVM Hypervisor - Ayush Pandey - University ... by ShapeBlue
Import Export Virtual Machine for KVM Hypervisor - Ayush Pandey - University ...Import Export Virtual Machine for KVM Hypervisor - Ayush Pandey - University ...
Import Export Virtual Machine for KVM Hypervisor - Ayush Pandey - University ...
ShapeBlue119 views
Hypervisor Agnostic DRS in CloudStack - Brief overview & demo - Vishesh Jinda... by ShapeBlue
Hypervisor Agnostic DRS in CloudStack - Brief overview & demo - Vishesh Jinda...Hypervisor Agnostic DRS in CloudStack - Brief overview & demo - Vishesh Jinda...
Hypervisor Agnostic DRS in CloudStack - Brief overview & demo - Vishesh Jinda...
ShapeBlue161 views
Backup and Disaster Recovery with CloudStack and StorPool - Workshop - Venko ... by ShapeBlue
Backup and Disaster Recovery with CloudStack and StorPool - Workshop - Venko ...Backup and Disaster Recovery with CloudStack and StorPool - Workshop - Venko ...
Backup and Disaster Recovery with CloudStack and StorPool - Workshop - Venko ...
ShapeBlue184 views
CloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlue by ShapeBlue
CloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlueCloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlue
CloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlue
ShapeBlue135 views
Migrating VMware Infra to KVM Using CloudStack - Nicolas Vazquez - ShapeBlue by ShapeBlue
Migrating VMware Infra to KVM Using CloudStack - Nicolas Vazquez - ShapeBlueMigrating VMware Infra to KVM Using CloudStack - Nicolas Vazquez - ShapeBlue
Migrating VMware Infra to KVM Using CloudStack - Nicolas Vazquez - ShapeBlue
ShapeBlue218 views
Enabling DPU Hardware Accelerators in XCP-ng Cloud Platform Environment - And... by ShapeBlue
Enabling DPU Hardware Accelerators in XCP-ng Cloud Platform Environment - And...Enabling DPU Hardware Accelerators in XCP-ng Cloud Platform Environment - And...
Enabling DPU Hardware Accelerators in XCP-ng Cloud Platform Environment - And...
ShapeBlue106 views
Backroll, News and Demo - Pierre Charton, Matthias Dhellin, Ousmane Diarra - ... by ShapeBlue
Backroll, News and Demo - Pierre Charton, Matthias Dhellin, Ousmane Diarra - ...Backroll, News and Demo - Pierre Charton, Matthias Dhellin, Ousmane Diarra - ...
Backroll, News and Demo - Pierre Charton, Matthias Dhellin, Ousmane Diarra - ...
ShapeBlue186 views
DRBD Deep Dive - Philipp Reisner - LINBIT by ShapeBlue
DRBD Deep Dive - Philipp Reisner - LINBITDRBD Deep Dive - Philipp Reisner - LINBIT
DRBD Deep Dive - Philipp Reisner - LINBIT
ShapeBlue180 views
What’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlue by ShapeBlue
What’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlueWhat’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlue
What’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlue
ShapeBlue263 views
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas... by Bernd Ruecker
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...
Bernd Ruecker54 views
Business Analyst Series 2023 - Week 4 Session 7 by DianaGray10
Business Analyst Series 2023 -  Week 4 Session 7Business Analyst Series 2023 -  Week 4 Session 7
Business Analyst Series 2023 - Week 4 Session 7
DianaGray10139 views
Live Demo Showcase: Unveiling Dell PowerFlex’s IaaS Capabilities with Apache ... by ShapeBlue
Live Demo Showcase: Unveiling Dell PowerFlex’s IaaS Capabilities with Apache ...Live Demo Showcase: Unveiling Dell PowerFlex’s IaaS Capabilities with Apache ...
Live Demo Showcase: Unveiling Dell PowerFlex’s IaaS Capabilities with Apache ...
ShapeBlue126 views
Centralized Logging Feature in CloudStack using ELK and Grafana - Kiran Chava... by ShapeBlue
Centralized Logging Feature in CloudStack using ELK and Grafana - Kiran Chava...Centralized Logging Feature in CloudStack using ELK and Grafana - Kiran Chava...
Centralized Logging Feature in CloudStack using ELK and Grafana - Kiran Chava...
ShapeBlue145 views

Music Information Retrieval

  • 1. Base concepts The ideas Shazam Conclusions Music Information Retrieval (MIR) Approaches for content-based music retrieval Alberto De Bortoli December 1, 2009 Alberto De Bortoli Music Information Retrieval (MIR)
  • 2. Base concepts Music language The ideas The formats Shazam The users Conclusions What is MIR? Music information retrieval or MIR is the interdisciplinary science of retrieving information from music This includes: Computational methods for classification, clustering, and modelling Formal methods and databases Software for music information retrieval Human-computer interaction and interfaces Music perception, cognition, affect, and emotions Music analysis and knowledge representation Music archives, libraries, and digital collections Intellectual property and rights Sociology and Economy of music Alberto De Bortoli Music Information Retrieval (MIR)
  • 3. Base concepts Music language The ideas The formats Shazam The users Conclusions Dealing with Music Music is different from text, we have to deal with its characteristics: Pitch which is related to the perception of the fundamental frequency of a sound; pitch is said to range from low or deep to high or acute sounds. Intensity which is related to the amplitude, and thus to the energy, of the vibration; textual labels for intensity range from soft to loud; the intensity is also defined loudness. Timbre which is defined as the sound characteristics that allow listeners to perceive as different two sounds with same pitch and same intensity. Alberto De Bortoli Music Information Retrieval (MIR)
  • 4. Base concepts Music language The ideas The formats Shazam The users Conclusions Dimensions of the Music Language (1) Timbre depends on the perception of the quality of sounds. Orchestration is due to the composers and performers choices in selecting which musical instruments are to be employed. Acoustics can be considered as the contribution of room acoustics, background noise, audio post-processing, filtering, and equalization. Rhythm is related to the periodic repetition, with possible small variants. Melody is made of a sequence of tones with a similar timbre that have a recognizable pitch within a small frequency range. Alberto De Bortoli Music Information Retrieval (MIR)
  • 5. Base concepts Music language The ideas The formats Shazam The users Conclusions Dimensions of the Music Language (2) Harmony is the organization, along the time axis, of simultaneous sounds with a recognizable pitch. Structure is a horizontal dimension whose time scale is different from the previous ones, being related to macro-level features such as repetitions, interleaving of themes and choruses, presence of breaks, changes of time signatures, and so on. Alberto De Bortoli Music Information Retrieval (MIR)
  • 6. Base concepts Music language The ideas The formats Shazam The users Conclusions Formats of Musical Documents Apart from the peculiar characteristics of the forms, different formats are able to capture only a reduced number of dimensions. The formats MIR deals with are: Audio formats (MP3, WAV...) Symbolic format (score, MIDI files, MPEG7) Alberto De Bortoli Music Information Retrieval (MIR)
  • 7. Base concepts Music language The ideas The formats Shazam The users Conclusions The Role of the User (1) Its all about Information Need. There are three main reasons why users may want to access digital music: 1. listening to a particular performance or musical work; 2. building a collection of music (playlist); 3. verifying or identifying works. Alberto De Bortoli Music Information Retrieval (MIR)
  • 8. Base concepts Music language The ideas The formats Shazam The users Conclusions The Role of the User (2) Potential users of MIR systems are divided in three categories: 1. casual users want to enjoy music, listening and collecting the music they like and discovering new good music; 2. professional users need music suitable for particular usages related to their activities, which may be in media production or for advertisements; 3. music scholars, music theorists, musicologists, and musicians are interested in studying music. Alberto De Bortoli Music Information Retrieval (MIR)
  • 9. Base concepts Music language The ideas The formats Shazam The users Conclusions The Casual User Maybe the most important kind of user, queries as follow: 1. Find me a song that sounds like this 2. Given that I like these songs, find me more songs that I may enjoy 3. I need to organize my personal collection of digital music (stored in my hard drive, portable device, MP3 player, cell phone, etc...) Alberto De Bortoli Music Information Retrieval (MIR)
  • 10. Base concepts Music language The ideas The formats Shazam The users Conclusions The Professional User Users may need to access music collections because of their professional activity. 1. I am looking for a suitable soundtrack for... 2. Retrieve musical works that have a rhythm (melody, harmony, orchestration) similar to this one Alberto De Bortoli Music Information Retrieval (MIR)
  • 11. Base concepts Music language The ideas The formats Shazam The users Conclusions Music Theorists, Musicians Differently from casual and professional users, these users are interested mostly in obtaining information from the musical works, which is the subject of their study, rather than obtaining the musical work itself. 1. access musical scores in order to develop or refine theories on the music language; 2. interested in the work of composers, performers, the role of tradition, the cultural interchanges; 3. retrieve scores to be performed and to listen to how renowned musicians interpreted particular passages or complete works Alberto De Bortoli Music Information Retrieval (MIR)
  • 12. Base concepts The approaches The ideas Melody extraction Shazam Pitch contour Conclusions Audio elaboration Metadata approach Simple I.R. queries Often absent (ID3 TAG), or not reliable (MPEG7) Not pure Music Retrieval, but something like Text Retrieval on Audio Metadata. Alberto De Bortoli Music Information Retrieval (MIR)
  • 13. Base concepts The approaches The ideas Melody extraction Shazam Pitch contour Conclusions Audio elaboration Content-based approach Dealing with intrinsic characteristics of the sounds. The main form is usually known by the MIR community as query-by-humming (QbH), the term has been introduced in 1995 (A. Ghias, J. Logan, D. Chamberlin, and B.C. Smith. Query by humming: musical information retrieval in an audio database). The interaction through the audio channel is an error-prone process. The query may be dramatically different from the original song that it is intended to represent, and also different from the users intentions. Alberto De Bortoli Music Information Retrieval (MIR)
  • 14. Base concepts The approaches The ideas Melody extraction Shazam Pitch contour Conclusions Audio elaboration A MIR Architecture Alberto De Bortoli Music Information Retrieval (MIR)
  • 15. Base concepts The approaches The ideas Melody extraction Shazam Pitch contour Conclusions Audio elaboration Lexical Semantical Units Can we treat musical notes as “words”? No! Notes are relative, notes are not context-free. What about the musical pitch intervals? Is there an analogy to the “words”? No! The abstraction level is too low, pitch intervals are something like characters. And what about pitch intervals sequences? In a certain way they are “word”! Pauses or rests do not play the same role of blanks in text documents. Vague concept of “stop words”. In general, music do not depend on intonation or on single notes! Alberto De Bortoli Music Information Retrieval (MIR)
  • 16. Base concepts The approaches The ideas Melody extraction Shazam Pitch contour Conclusions Audio elaboration Extraction of the main melody The main melody of a piece is a good representation of it. The computation of melodic information from a monophonic score is straightforward. A slightly more difficult task is given by a polyphonic score made of several monophonic voices. It is assumed that there is only a relevant melodic line. Alberto De Bortoli Music Information Retrieval (MIR)
  • 17. Base concepts The approaches The ideas Melody extraction Shazam Pitch contour Conclusions Audio elaboration Melody Segmentation: N-grams A simple segmentation approach consists on the extraction from a melody of all the subsequences of exactly N notes, called N-grams. The idea underlying this approach is that the effect of musically irrelevant N-grams will be compensated by the presence of all the relevant ones. Each sequence, of any length, that is repeated at least K times can be used as a content descriptor of the melodic information. Alberto De Bortoli Music Information Retrieval (MIR)
  • 18. Base concepts The approaches The ideas Melody extraction Shazam Pitch contour Conclusions Audio elaboration The Pitch Contour (1) A simple but effective approach for searching melodies. The Parsons Code is a simple notation used to identify a piece of music through melodic motion. u = “up” if the note is higher than the previous note d = “down” if the note is lower than the previous note r = “repeat” if the note is the same as the previous note * = first tone as reference Examples: “Love Me Tender”: *uduududdduu First verse in Madonna’s “Like a Virgin”: *rrurddrdrrurdud First verse in “We Are the World”: *rduduururdrddrududuu Boyer & Moore, KMP algorithms or Suffix Tree structures can be used. Alberto De Bortoli Music Information Retrieval (MIR)
  • 19. Base concepts The approaches The ideas Melody extraction Shazam Pitch contour Conclusions Audio elaboration The Pitch Contour (2) http://themefinder.com Alberto De Bortoli Music Information Retrieval (MIR)
  • 20. Base concepts The approaches The ideas Melody extraction Shazam Pitch contour Conclusions Audio elaboration Audio form Fourier transform is one of the most frequently used tools for the analysis of audio. A common way to represent an audio excerpt is the spectrogram. Spectrograms are not suitable content descriptors, because of their high dimensionality. Alberto De Bortoli Music Information Retrieval (MIR)
  • 21. Base concepts The approaches The ideas Melody extraction Shazam Pitch contour Conclusions Audio elaboration Self Similarity Matrix vi is the vector of the musical characteristics at time i. The self-similarity matrix M = (mij ) is defined as follow: mij = s(vi , vj ). s is some similarity metric choosen. M is symmetric along the diagonal. Alberto De Bortoli Music Information Retrieval (MIR)
  • 22. Base concepts What is about? The ideas The process Shazam Some considerations Conclusions Other systems Shazam: magic? Desiderata providing a service that could connect people to music by recognizing music by using their mobile phones; The algorithm had to be able to recognize a short audio sample of music (15 sec) that had been broadcast, mixed with heavy ambient noise, subject to reverb; The algorithm also had to perform the recognition quickly over a large database of music. Alberto De Bortoli Music Information Retrieval (MIR)
  • 23. Base concepts What is about? The ideas The process Shazam Some considerations Conclusions Other systems The process (1) Each audio file is fingerprinted, a process in which reproducible hash tokens are extracted; Both database and sample audio files are subjected to the same analysis; The fingerprints from the unknown sample are matched against a large set of fingerprints derived from the music database; The candidate matches are subsequently evaluated for correctness of match; Each fingerprint hash is calculated using audio samples near a corresponding point in time, so that distant events do not affect the hash; Alberto De Bortoli Music Information Retrieval (MIR)
  • 24. Base concepts What is about? The ideas The process Shazam Some considerations Conclusions Other systems The process (2) Fingerprint hashes derived from corresponding matching content are reproducible independent of position within an audio file; Robustness means that hashes generated from the original clean database track should be reproducible from a degraded copy of the audio; Consider spectrogram peaks, due to their robustness in the presence of noise; A time-frequency point is a candidate peak if it has a higher energy content than all its neighbors in a region centered around the point; Generate a costellation map of peaks; Alberto De Bortoli Music Information Retrieval (MIR)
  • 25. Base concepts What is about? The ideas The process Shazam Some considerations Conclusions Other systems The process (3) Fingerprint hashes are formed from the constellation map, in which pairs of time-frequency points are combinatorially associated; Anchor points are chosen, each anchor point having a target zone associated with it; A set of hash (anchor frequency, target point frequency, time offset) records is generated; Create a database index: the above operation is carried out on each track in a database to generate a corresponding list of hashes and their associated offset times. Alberto De Bortoli Music Information Retrieval (MIR)
  • 26. Base concepts What is about? The ideas The process Shazam Some considerations Conclusions Other systems The process (4) Alberto De Bortoli Music Information Retrieval (MIR)
  • 27. Base concepts What is about? The ideas The process Shazam Some considerations Conclusions Other systems The process (5) Alberto De Bortoli Music Information Retrieval (MIR)
  • 28. Base concepts What is about? The ideas The process Shazam Some considerations Conclusions Other systems The process (6) The corresponding times of matching features between matching files have the relationship tk = tk + offset where tk is the time coordinate of the feature in the matching (clean) database soundfile and tk is the time coordinate of the corresponding feature in the sample soundfile to be identified. For each (tk , tk) coordinate in the scatterplot, we calculate δtk = tk − tk Then we calculate a histogram of these δtk values and scan for a peak. This may be done by sorting the set of δtk values. Alberto De Bortoli Music Information Retrieval (MIR)
  • 29. Base concepts What is about? The ideas The process Shazam Some considerations Conclusions Other systems The process (7) Alberto De Bortoli Music Information Retrieval (MIR)
  • 30. Base concepts What is about? The ideas The process Shazam Some considerations Conclusions Other systems Error probability If each constellation point is taken to be an anchor point, and if the target zone has a fan-out of size F = 10, then the number of hashes is equal to F times the number of constellation points extracted from the file. Note that the combinatorial hashing squares the probability of point survival. The surviving probability of at least one hash surviving for a given anchor point would be the joint probability of the anchor point and at least one target point in its target zone surviving. p = probability of survival for all points involved p ∗ (1 − (1 − p)F ) = probability of at least one hash surviving per anchor point p ≈ p ∗ (1 − (1 − p)F ) for large values of F , e.g. F > 10, and reasonable values of p, e.g. p > 0.1. Alberto De Bortoli Music Information Retrieval (MIR)
  • 31. Base concepts What is about? The ideas The process Shazam Some considerations Conclusions Other systems An example 64 frequency bins and delta time quantized to 6 bits Hash (f1, f2, delta) is 18 bits Fan-out = 10 Peaks/sec = 3 450 hashes/sample (15 sec) 450 raw hashes are about 1 kbyte Alberto De Bortoli Music Information Retrieval (MIR)
  • 32. Base concepts What is about? The ideas The process Shazam Some considerations Conclusions Other systems Considerations Good for music where frequencies are clearly defined. Totally unacceptable for organic sounds and rumors (not the supposed Alberto De Bortoli Music Information Retrieval (MIR)
  • 33. Base concepts What is about? The ideas The process Shazam Some considerations Conclusions Other systems Other systems (1) http://www.bored.com/songtapper/ Alberto De Bortoli Music Information Retrieval (MIR)
  • 34. Base concepts What is about? The ideas The process Shazam Some considerations Conclusions Other systems Other systems (2) www.midomi.com Sing, humming, state-of-art of QbH. Possible errors due to wrong-key, poor vocal performance, missing notes. Alberto De Bortoli Music Information Retrieval (MIR)
  • 35. Base concepts MIR Map The ideas MIREX 2005 Shazam Bibliography Conclusions MIR Map Alberto De Bortoli Music Information Retrieval (MIR)
  • 36. Base concepts MIR Map The ideas MIREX 2005 Shazam Bibliography Conclusions MIREX 2005 A project for the evaluation of MIR tasks. The campaign has been called Music Information Retrieval Evaluation eXchange (MIREX). There have been nine different tasks during the MIREX 2005 campaign, six on the audio form and three on thesymbolic form. Alberto De Bortoli Music Information Retrieval (MIR)
  • 37. Base concepts MIR Map The ideas MIREX 2005 Shazam Bibliography Conclusions Bibliography Nicola Orio. Music Retrieval: A Tutorial and Review. Avery Li-Chun Wang. An Industrial-Strength Audio Search Algorithm. James P. Ogle and Daniel P.W. Ellis. Fingerprinting to identify repeated sound events in long-duration personal audio recordings. Roberto Basili. Introduzione al Music Information Retrieval. Michael Fingerhut. Music Information Retrieval, or how to search for (and maybe find) music and do away with incipits. Progetto M.I.R.E.X.: http://www.music-ir.org. Alberto De Bortoli Music Information Retrieval (MIR)