SlideShare a Scribd company logo
1 of 5
Download to read offline
Haplotypes Affecting Fertility and their Impact on Dairy Cattle Breeding Programs 
                                              Dr. Kent A. Weigel 
                             Professor and Chair, Department of Dairy Science 
                                     University of Wisconsin – Madison 
                                               August 5, 2011 
                                                        
New tools in genomics have provided an unprecedented look at the inner workings of the cattle genome 
and the relationship between variation in DNA sequences and differences in the conformation, health, 
fertility, and performance of dairy cattle.  Genetic selection has become genomic selection, and terms 
such as single nucleotide polymorphism (SNP), imputation, and haplotype have become part of our 
everyday vocabulary.  Many leading dairy countries have developed large reference populations of bulls 
and cows with extensive phenotypes and low‐density (3K), medium‐density (50K), or high‐density (777K) 
genotypes.  Data from these reference populations can be used to identify associations between DNA 
sequence differences at various locations in the genome and performance of these animals or their 
progeny for traits such as milk yield, udder depth, or female fertility.  These “SNP effects” form the basis 
of genomic breeding values, because they are matched with the genotypes of young bulls and heifers to 
facilitate accurate selection decisions among animals that are too young to have phenotypes of their 
own.  Genomic selection is now common practice, and dairy cattle breeding will never be the same. 
As genetic selection has given way to genomic selection, research scientists, industry workers, and dairy 
farmers have had to re‐think the ways in which genetic information is interpreted and used.  Predicted 
transmitting ability (PTA), which was once for a mature animal with lactation records or milk‐recorded 
offspring, has been replaced by genomic predicted transmitting ability (GPTA), which can be assigned to 
a newborn calf.  Inbreeding, which was once estimated from pedigree records provided by the farmer, 
has been replaced by homozygosity, which can be measured from a DNA sample.  A sire analyst, who 
once carried production records and lists of genetic predictions, now carries envelopes of hair. 
We are not only faced with the task of re‐thinking the way that information about an animal’s entire 
genome is interpreted and used in genomic selection, but also the way that information about specific 
genes, markers, or chromosomal segments is interpreted and used in breeding decisions.  In the past, 
the process of identifying specific genes with adverse effects on an animal’s appearance, health, or 
performance was lengthy and expensive.  Success occurred when years of field reports, veterinary 
examinations, planned matings, and studies of similar abnormalities in other species led to an 
understanding of the condition at the biological level, knowledge regarding its mode of inheritance, and 
a reliable test for identification of carriers.  The strategy for using this information, which may have been 
reasonable given our limited understanding of the cattle genome, typically involved an attempt to 
eliminate the condition by eradicating animals that were known or suspected carriers.  Even then, many 
realized that attempted eradication of such a condition was often accompanied by the culling of many 
animals that could have contributed significantly to genetic progress for other key traits.  In fact, in a 
discussion of the weaver condition in Brown Swiss nearly two decades ago, one dairy geneticist argued 
strongly against efforts to remove all carriers of the weaver gene, recognizing that the collective 
economic value of their genetic superiority far exceeded the likely costs associated with this disorder. 
Times have changed, and today we recognize that such inherited conditions are not rare anomalies that 
occur once in a decade in a handful of genetically unfit animals.  Armed with a much deeper 
understanding of the genomes of cattle and other food animal species, scientists now believe that it is 
likely that every individual carries several genes that, if expressed in homozygous form, would lead to a 
severely impaired or lethal phenotype.  



                                                      1 
 
This brings us to a recent research study by scientists at the USDA‐ARS Animal Improvement Programs 
Laboratory who, along with their colleagues at the USDA‐ARS Bovine Functional Genomics Laboratory, 
are at the forefront of genomics research in dairy cattle.  In this study, VanRaden and colleagues (2011) 
describe a method for using genotypes from the 50K SNP array to identify regions of the genome that 
may be associated with failed conception or embryonic loss in dairy cattle.  This approach starts with 
conversion of SNP genotypes, which represent the number of alleles of a particular form (A, C, T, or G) at 
a given location in the genome, to haplotypes, which represent strings of adjacent SNP alleles that are 
inherited together as a group from the sire or dam.  For example, an animal’s SNP genotype at some 
point in the genome might be 0, 1, or 2, corresponding to the number of copies of the “A” allele that 
were inherited from its parents.  On the other hand, an animal’s haplotype in a small region of the 
genome might be “AATCCATCGTTGACG” from its sire and “TATCCGATTCAAAGC” from its dam.  
Thousands of different haplotypes are represented on each chromosome, and using advanced computer 
software scientists can track the inheritance of these haplotypes across generations in an animal’s 
pedigree.  The SNP markers that make up these haplotypes are not in genes, and changes in the SNP 
genotype or haplotype don’t directly cause changes in the phenotype.  However, these markers are 
evenly spaced throughout the genome, and between them are the actual genes that affect key traits.  
Because these markers and genes are usually inherited together, we can follow the inheritance of 
different forms (good, bad, or neutral) of the gene by tracking inheritance of the corresponding marker. 
Haplotypes can have positive, neutral, or negative effects on any trait, depending on the genes that are 
located within a given chromosomal region and the effects that changes in DNA sequence within these 
genes have on the biological processes underlying each trait.  In an earlier project in the same 
laboratory, Cole (2011) showed that a hypothetical animal with favorable haplotypes at every location in 
the genome would have a breeding value 3.5‐fold greater than the best animal alive today – a result that 
would take 77 years to achieve through genetic selection.  Obviously no animal will have all of the 
favorable haplotypes, so in practice we try to select bulls and cows that have inherited more good 
haplotypes than bad.  For example, when selecting animals with superior genetic merit for protein yield, 
we might choose one for which two‐thirds of the haplotypes are favorable and one‐third are 
unfavorable.  Because we are trying to improve several traits simultaneously, we might choose an 
animal with many favorable haplotypes for protein yield but fewer favorable haplotypes for udder 
depth.  Over time, this process of balanced selection increases the frequency of favorable haplotypes, 
and the genes that are inherited with them, and the performance of the population is enhanced. 
In the VanRaden et al. (2011) study, haplotypes represented strings of 17 to 74 consecutive SNP markers 
at various locations in the genome.  More than 75,000 Holstein, Jersey, and Brown Swiss animals that 
had been genotyped with the 50K SNP array were included, and the objective was to identify haplotypes 
that are never found in a homozygous state (homozygous means that the same haplotype was inherited 
from both the sire and dam).  There are many rare haplotypes for which we wouldn’t expect to find an 
animal with two copies, but in this study the scientists found several haplotypes that were common in 
the population but not in a homozygous state, even when present on the maternal and paternal sides of 
the pedigree.  Next, they compared the average conception rate for matings in which the sire and 
maternal grandsire carried the same haplotype with that of other matings in the national database.  Five 
haplotypes were identified that were missing in homozygous state and associated with below average 
conception rate and 60‐day non‐return rate.  They repeated this analysis for stillbirth rate, and no 
differences were found.  Based on this evidence, the authors concluded that they had identified five 
“haplotypes affecting fertility”, one in Brown Swiss, three in Holsteins, and one in Jerseys.  The specific 
genes located within these chromosomal regions and their roles in biological pathways related to 
fertilization and embryo development are unknown, but it appears that the union of an egg and sperm 
carrying identical haplotypes results in failed conception or early embryonic loss.  These haplotypes 

                                                     2 
 
were labeled as Brown Swiss haplotype 1 (BH1), Holstein haplotypes 1, 2, and 3 (HH1, HH2, and HH3), 
and Jersey haplotype 1 (JH1).  This labeling system reflects our lack of knowledge about the underlying 
biological mechanisms associated with these haplotypes, as well as our expectation that more 
haplotypes will be identified each year.  A summary of these haplotypes, including their locations, 
frequencies among North American animals that have been genotyped to date, estimated effects on 
conception rate (CR) and 60‐day non‐return rate (NR60) when present in the sire and maternal 
grandsire, and the earliest known ancestor in which they were found, is given below: 

Haplotype    Chromosome  Frequency        Earliest Known Ancestor(s)     Impact on CR     Impact on NR60 

    BH1           7           14.0%      West Lawn Stretch Improver          ‐3.4%             ‐2.5% 

    HH1           5            4.5%      Pawnee Farm Arlinda Chief           ‐3.1%             ‐1.1% 

    HH2           1            4.6%      Willowholme Mark Anthony            ‐3.0%             ‐1.7% 
                                         Gray View Skyliner
    HH3           8            4.7%                                          ‐3.2%             ‐3.1% 
                                         Glendell Arlinda Chief 
    JH1           15          23.4%      Observer Chocolate Soldier          ‐3.7%             ‐3.7% 

Because these are common haplotypes, they are known to exist in thousands of bulls, cows, heifers, and 
calves that have been genotyped with the 50K SNP array.  In addition, they are suspected to exist in 
thousands of animals that have been genotyped with the 3K SNP array – this tool is about 95% as 
accurate as the 50K array and can lead to inconclusive results for some animals.  More importantly, 
these haplotypes are carried by millions of bulls, cows, heifers, and calves around the world that have 
not been genotyped, as well as thousands of animals that have been genotyped in countries that don’t 
yet report this information.  Lack of a genotype does not equate to absence of these haplotypes, just as 
throwing away the pedigree of an inbred animal does not make it an outcross.   
The next step is to determine how to effectively use information about these haplotypes, along with 
knowledge regarding the identity of their carriers, in practical breeding programs.  The strategy of 
eradicating all animals that carry these haplotypes is neither feasible nor desirable.  Imagine the genetic 
progress in milk yield, milk composition, conformation, health, and even fertility that would be lost by 
discarding thousands of haplotypes that are favorable for these traits while trying to eliminate the five 
aforementioned haplotypes affecting fertility!  An attempt to fully eradicate these haplotypes would be 
no different from an attempt to eradicate all haplotypes that lead to low milk production, undesirable 
milk composition, unattractive conformation, or suboptimal health.  If such a process were undertaken, 
we would soon have no animals left in our breeding programs, genetic progress would slow to a halt, 
and consumers would face a shortage of dairy products.  Plus, just as we prepared to congratulate 
ourselves for eradicating one unfavorable haplotype, another would be discovered.  For these reasons, 
breeding companies should not remove outstanding genome‐tested bulls or progeny tested bulls that 
carry these haplotypes from their programs, and farmers who have valuable cows, heifers, and calves 
with these haplotypes should neither cull these animals nor be afraid to use them as breeding stock. 
A more proactive approach is to use the information about undesirable haplotypes to make informed 
breeding decisions.  Two types of decisions must be made: selection of the best males and females to 
serve as parents of the next generation, and identification of the optimal mating combinations among 
these males and females.  With regard to selection decisions, one must recognize that national genetic 
evaluations already exist for male fertility, in the form of service sire conception rate (SCR), and female 
fertility, in the form of daughter pregnancy rate (DPR).  Bulls with these haplotypes affecting fertility 
have already been mated to thousands of cows that possess the same haplotypes.  Because 25% of 

                                                      3 
 
these matings resulted in failed conception or early embryonic loss, this information is reflected in lower 
SCR evaluations.  Bulls with an undesirable haplotype that is common in the population will have greater 
reductions in SCR than bulls with an uncommon haplotype, because the chance that these bulls will be 
mated to cows with the same haplotype is greater.  Likewise, Holstein bulls with two of the five 
undesirable haplotypes will have poorer SCR evaluations than bulls with one undesirable haplotype, 
because their data will include failed matings to cows with either (or both) haplotype(s).  The impact of 
these haplotypes on a bull’s DPR is smaller than for SCR, because the breeding events of his daughters 
occur one generation later.  A bull with one such haplotype will transmit it to 50% of his daughters, and 
they will transmit it to 25% of their eggs.  Thus, when the daughter of a bull with BH1, HH1, HH2, HH3, 
or JH1 is mated to a bull that is known to have the same haplotype, 12.5% of the matings will end in 
failed conception or embryonic loss.  Again, this information is already reflected in the bull’s genetic 
evaluation for DPR, and if we try to avoid purchasing semen of bulls that carry these haplotypes, we will 
be double‐counting their effects.   
The USDA‐ARS Animal Improvement Programs Laboratory routinely publishes the Lifetime Net Merit 
(LNM$) index, which weights every trait according to its economic value; bulls that carry BH1, HH1, 
HH2, HH3, or JH1 have already been penalized in LNM$.  The magnitude of this penalty depends on 
the frequency of the haplotype within the breed.  For example, let’s assume that the cost of one extra 
day open is $2, homozygous embryos are lost at 5 to 10 days of gestation, and 20% of cows in the 
population have a given haplotype.  If we make 100 matings, 20 will be to cows with this haplotype, 
10 of their eggs will carry the haplotype, 5 will encounter a sperm with the haplotype, and each of 
those 5 cows will have an increase of roughly 30 days open.  The total economic loss for all 100 
matings will be 5 cows x 30 days per cow x $2 per day = $300, or about $3 per mating.  Now assume 
that this bull’s Lifetime Net Merit evaluation is +$600, and we decided to buy semen from another 
bull that was +$500 instead – we just gave up $97 in our attempt to save $3.  Plus, that $3 was already 
included in the first bull’s LNM$ evaluation.  
With respect to mating decisions, this is where we can use our new information powerfully.  Hundreds 
of thousands of cows (maybe millions) are already mated with computerized programs every year, for 
the purpose of correcting faults in their physical conformation and avoiding inbreeding depression in 
their offspring.  In the previous example, the cost of the undesirable haplotype was $3 per mating, 
because the bull was mated to a random group of cows whose haplotypes were unknown.  If the bull 
were mated to 100 genotyped cows that were known to carry the same haplotype, 50 eggs would carry 
the haplotype, and 25 would encounter sperm that would lead to failed conception or early embryonic 
loss, for a total cost of $1500, or $15 per mating.  If the bull were mated to 100 daughters of other 
genotyped bulls that carried the same haplotype, 50 of his mates would have the same haplotype, 25 
eggs would carry the haplotype, and 12.5 matings would be affected, for a total cost of $750, or $7.50 
per mating.   
Few cows on commercial farms have been genotyped, so we can rarely foresee the mating of a bull and 
cow that are known to carry the same haplotype.  However, nearly every sire whose semen is marketed 
for artificial insemination (AI) has been genotyped, so the genotypes of the service sire and sire of the 
cow are usually known.  Therefore, in herds that rely heavily on AI, it is possible to foresee almost every 
potential mating of a daughter of a bull with a given undesirable haplotype to a service sire with the 
same haplotype.  Right now, breeding companies and breed associations are modifying their mating 
programs to include an adjustment for the approximate economic loss associated with mating service 
sires that are carriers of BH1, HH1, HH2, HH3, or JH1 to genotyped cows (or daughters of genotyped 
bulls) that carry the same haplotype.  As we learn more about these conditions, we can calculate precise 
estimates of the actual costs incurred when each haplotype is expressed in the homozygous state. 


                                                     4 
 
 
Take‐home points 
 
1) The term “haplotype” refers to a group of SNP markers that are located at adjacent positions on the 
chromosome and are usually inherited together. 
2) Modern genomics tools have been used to identify thousands of haplotypes on each chromosome, 
and each has a positive, neutral, or negative association with production, conformation, health, and 
fertility. 
3) Scientists have identified five haplotypes that haven’t been found in a homozygous state in 
genotyped animals and have a negative effect on conception rate when present in the sire and 
maternal grandsire. 
4) The exact genes and their underlying biological roles in fertilization and embryo development are 
unknown, but it is assumed that the outcome of inheriting the same haplotype from both parents is 
failed conception or early embryonic loss. 
5) The reactive approach of attempting to eradicate every animal with an undesirable haplotype is not 
recommended in light of their economic impact, and is not practical given the likelihood that many 
more undesirable haplotypes will be found. 
6) The impact of these haplotypes is already reflected in published evaluations for sire conception rate 
and daughter pregnancy rate, as well as the Lifetime Net Merit index. 
7) Producers should neither avoid using bulls with these haplotypes nor cull cows, heifers, and calves 
that are carriers, because this will lead to significant economic losses in other important traits. 
8) Computerized mating programs offer a simple, inexpensive solution for avoiding affected matings, 
so producers should use these programs and follow through on the mating recommendations. 
  
 
References 
Cole, J. B., and P. M. VanRaden.  2011.  Use of haplotypes to estimate Mendelian sampling effects and 
selection limits.  Journal of Animal Breeding and Genetics (doi:10.1111/j.1439‐0388.2011.00922.x). 
VanRaden, P. M., K. M. Olson, D. J. Null, and J. L. Hutchison.  2011.  Detection of harmful recessive 
effects on fertility and stillbirth by absence of homozygous haplotypes.  Journal of Dairy Science (in 
review). 
                                                        




                                                     5 
 

More Related Content

What's hot

New Tools for Genomic Selection of Livestock
New Tools for Genomic Selection of LivestockNew Tools for Genomic Selection of Livestock
New Tools for Genomic Selection of LivestockJohn B. Cole, Ph.D.
 
Genomic Selection in Plants
Genomic Selection in PlantsGenomic Selection in Plants
Genomic Selection in PlantsPrakash Narayan
 
Using Genomic Selection in Barley to Improve Disease Resistance
Using Genomic Selection in Barley to Improve Disease ResistanceUsing Genomic Selection in Barley to Improve Disease Resistance
Using Genomic Selection in Barley to Improve Disease ResistanceBorlaug Global Rust Initiative
 
Biotechnology in livestock improvement
Biotechnology in livestock improvementBiotechnology in livestock improvement
Biotechnology in livestock improvementRameswar Panda
 
Genomic selection with weighted GBLUP and APY single step
Genomic selection with weighted GBLUP and APY single stepGenomic selection with weighted GBLUP and APY single step
Genomic selection with weighted GBLUP and APY single stepILRI
 
Estimation of Inbreeding Depression for Complex Traits: A Review
Estimation of Inbreeding Depression for Complex Traits: A ReviewEstimation of Inbreeding Depression for Complex Traits: A Review
Estimation of Inbreeding Depression for Complex Traits: A ReviewPremier Publishers
 
Genomic selection in small holder systems: Challenges and opportunities
Genomic selection in small holder systems: Challenges and opportunitiesGenomic selection in small holder systems: Challenges and opportunities
Genomic selection in small holder systems: Challenges and opportunitiesILRI
 
2 agdew bekele final_paper--10
2 agdew bekele final_paper--102 agdew bekele final_paper--10
2 agdew bekele final_paper--10Alexander Decker
 
Proceeding of FAVA: In Vivo Embryo Production at Cipelang Livestock Embryo Ce...
Proceeding of FAVA: In Vivo Embryo Production at Cipelang Livestock Embryo Ce...Proceeding of FAVA: In Vivo Embryo Production at Cipelang Livestock Embryo Ce...
Proceeding of FAVA: In Vivo Embryo Production at Cipelang Livestock Embryo Ce...anbiocore
 
Genomic Selection in Dairy Cattle
Genomic Selection in Dairy CattleGenomic Selection in Dairy Cattle
Genomic Selection in Dairy CattleJohn B. Cole, Ph.D.
 
Association mapping identifies loci for canopy coverage in diverse soybean ge...
Association mapping identifies loci for canopy coverage in diverse soybean ge...Association mapping identifies loci for canopy coverage in diverse soybean ge...
Association mapping identifies loci for canopy coverage in diverse soybean ge...Avjinder (Avi) Kaler
 
Genetic Variability, Heritability and Genetic Advance Analysis in Upland Rice...
Genetic Variability, Heritability and Genetic Advance Analysis in Upland Rice...Genetic Variability, Heritability and Genetic Advance Analysis in Upland Rice...
Genetic Variability, Heritability and Genetic Advance Analysis in Upland Rice...Premier Publishers
 
Heritability , genetic advance
Heritability , genetic advanceHeritability , genetic advance
Heritability , genetic advancePawan Nagar
 

What's hot (20)

TL III_Genetic gains_ICRISAT
TL III_Genetic gains_ICRISATTL III_Genetic gains_ICRISAT
TL III_Genetic gains_ICRISAT
 
New Tools for Genomic Selection of Livestock
New Tools for Genomic Selection of LivestockNew Tools for Genomic Selection of Livestock
New Tools for Genomic Selection of Livestock
 
Genomic Selection in Plants
Genomic Selection in PlantsGenomic Selection in Plants
Genomic Selection in Plants
 
Kaler et al 2018 euphytica
Kaler et al 2018 euphyticaKaler et al 2018 euphytica
Kaler et al 2018 euphytica
 
Using Genomic Selection in Barley to Improve Disease Resistance
Using Genomic Selection in Barley to Improve Disease ResistanceUsing Genomic Selection in Barley to Improve Disease Resistance
Using Genomic Selection in Barley to Improve Disease Resistance
 
Biotechnology in livestock improvement
Biotechnology in livestock improvementBiotechnology in livestock improvement
Biotechnology in livestock improvement
 
Third Year Project
Third Year ProjectThird Year Project
Third Year Project
 
Genomic selection with weighted GBLUP and APY single step
Genomic selection with weighted GBLUP and APY single stepGenomic selection with weighted GBLUP and APY single step
Genomic selection with weighted GBLUP and APY single step
 
Estimation of Inbreeding Depression for Complex Traits: A Review
Estimation of Inbreeding Depression for Complex Traits: A ReviewEstimation of Inbreeding Depression for Complex Traits: A Review
Estimation of Inbreeding Depression for Complex Traits: A Review
 
Genomic selection in small holder systems: Challenges and opportunities
Genomic selection in small holder systems: Challenges and opportunitiesGenomic selection in small holder systems: Challenges and opportunities
Genomic selection in small holder systems: Challenges and opportunities
 
2 agdew bekele final_paper--10
2 agdew bekele final_paper--102 agdew bekele final_paper--10
2 agdew bekele final_paper--10
 
Proceeding of FAVA: In Vivo Embryo Production at Cipelang Livestock Embryo Ce...
Proceeding of FAVA: In Vivo Embryo Production at Cipelang Livestock Embryo Ce...Proceeding of FAVA: In Vivo Embryo Production at Cipelang Livestock Embryo Ce...
Proceeding of FAVA: In Vivo Embryo Production at Cipelang Livestock Embryo Ce...
 
Developments in Oat Molecular Biology
Developments in Oat Molecular BiologyDevelopments in Oat Molecular Biology
Developments in Oat Molecular Biology
 
Sow Lifetime Productivity
Sow Lifetime ProductivitySow Lifetime Productivity
Sow Lifetime Productivity
 
Genomic Selection in Dairy Cattle
Genomic Selection in Dairy CattleGenomic Selection in Dairy Cattle
Genomic Selection in Dairy Cattle
 
Genomic selection
Genomic  selectionGenomic  selection
Genomic selection
 
Association mapping identifies loci for canopy coverage in diverse soybean ge...
Association mapping identifies loci for canopy coverage in diverse soybean ge...Association mapping identifies loci for canopy coverage in diverse soybean ge...
Association mapping identifies loci for canopy coverage in diverse soybean ge...
 
Genetic Variability, Heritability and Genetic Advance Analysis in Upland Rice...
Genetic Variability, Heritability and Genetic Advance Analysis in Upland Rice...Genetic Variability, Heritability and Genetic Advance Analysis in Upland Rice...
Genetic Variability, Heritability and Genetic Advance Analysis in Upland Rice...
 
Np.full
Np.fullNp.full
Np.full
 
Heritability , genetic advance
Heritability , genetic advanceHeritability , genetic advance
Heritability , genetic advance
 

Viewers also liked

Precatalogo1 881
Precatalogo1 881Precatalogo1 881
Precatalogo1 881AgriPoint
 
Fotos dias de campo
Fotos dias de campoFotos dias de campo
Fotos dias de campoAgriPoint
 
Ron St. John
Ron St. JohnRon St. John
Ron St. JohnAgriPoint
 
E book-animaisjovens-final
E book-animaisjovens-finalE book-animaisjovens-final
E book-animaisjovens-finalAgriPoint
 
Novo top tpi rank
Novo top tpi rankNovo top tpi rank
Novo top tpi rankAgriPoint
 
Catalogo tropical genetica e produção
Catalogo tropical genetica e produçãoCatalogo tropical genetica e produção
Catalogo tropical genetica e produçãoAgriPoint
 
Video Games: Positive Agents Of Socializaiton
Video Games:  Positive Agents Of SocializaitonVideo Games:  Positive Agents Of Socializaiton
Video Games: Positive Agents Of SocializaitonYurij Bryndzia
 
Cafe sustentavel
Cafe sustentavelCafe sustentavel
Cafe sustentavelAgriPoint
 
放感情做設計@Womany
放感情做設計@Womany放感情做設計@Womany
放感情做設計@WomanyKang Wen Lin
 
Relatório FAO
Relatório FAO Relatório FAO
Relatório FAO AgriPoint
 
Artigo israel
Artigo israelArtigo israel
Artigo israelAgriPoint
 
Computer Software System.Ppt Cardoza
Computer Software System.Ppt CardozaComputer Software System.Ppt Cardoza
Computer Software System.Ppt CardozaGlexcie
 
Medicamentos
MedicamentosMedicamentos
MedicamentosAgriPoint
 

Viewers also liked (16)

Dow folder
Dow folderDow folder
Dow folder
 
Precatalogo1 881
Precatalogo1 881Precatalogo1 881
Precatalogo1 881
 
Fotos dias de campo
Fotos dias de campoFotos dias de campo
Fotos dias de campo
 
Ron St. John
Ron St. JohnRon St. John
Ron St. John
 
E book-animaisjovens-final
E book-animaisjovens-finalE book-animaisjovens-final
E book-animaisjovens-final
 
Novo top tpi rank
Novo top tpi rankNovo top tpi rank
Novo top tpi rank
 
EDP111
EDP111EDP111
EDP111
 
Catalogo tropical genetica e produção
Catalogo tropical genetica e produçãoCatalogo tropical genetica e produção
Catalogo tropical genetica e produção
 
Video Games: Positive Agents Of Socializaiton
Video Games:  Positive Agents Of SocializaitonVideo Games:  Positive Agents Of Socializaiton
Video Games: Positive Agents Of Socializaiton
 
Cafe sustentavel
Cafe sustentavelCafe sustentavel
Cafe sustentavel
 
放感情做設計@Womany
放感情做設計@Womany放感情做設計@Womany
放感情做設計@Womany
 
Dez mil 2gg
Dez mil 2ggDez mil 2gg
Dez mil 2gg
 
Relatório FAO
Relatório FAO Relatório FAO
Relatório FAO
 
Artigo israel
Artigo israelArtigo israel
Artigo israel
 
Computer Software System.Ppt Cardoza
Computer Software System.Ppt CardozaComputer Software System.Ppt Cardoza
Computer Software System.Ppt Cardoza
 
Medicamentos
MedicamentosMedicamentos
Medicamentos
 

Similar to K weigel haplotypes-affecting-fertility

Genetic Transfer of gene slide shared ppt
Genetic Transfer of gene  slide shared pptGenetic Transfer of gene  slide shared ppt
Genetic Transfer of gene slide shared pptrahul343481
 
Genetic Transfer og gene PPT slide shared
Genetic Transfer og gene  PPT slide sharedGenetic Transfer og gene  PPT slide shared
Genetic Transfer og gene PPT slide sharedrahul343481
 
GeneticTransferP bacteria PT.ppt presentation
GeneticTransferP bacteria PT.ppt presentationGeneticTransferP bacteria PT.ppt presentation
GeneticTransferP bacteria PT.ppt presentationrahul343481
 
Use of sexed semen for genetic improvement of indigenous and buffaloes produc...
Use of sexed semen for genetic improvement of indigenous and buffaloes produc...Use of sexed semen for genetic improvement of indigenous and buffaloes produc...
Use of sexed semen for genetic improvement of indigenous and buffaloes produc...PallaviMali14
 
Biotechnology for the livestock improvements and phb degradation
Biotechnology for the livestock improvements and phb degradationBiotechnology for the livestock improvements and phb degradation
Biotechnology for the livestock improvements and phb degradationDr. Naveen Gaurav srivastava
 
Biotechnology for the livestock improvements and phb degradation
Biotechnology for the livestock improvements and phb degradationBiotechnology for the livestock improvements and phb degradation
Biotechnology for the livestock improvements and phb degradationDr. Naveen Gaurav srivastava
 
Genetics as a tool to improve flock health
Genetics as a tool to improve flock healthGenetics as a tool to improve flock health
Genetics as a tool to improve flock healthSusan Schoenian
 
Fundamentals of animal genetics.pptx
Fundamentals of animal genetics.pptxFundamentals of animal genetics.pptx
Fundamentals of animal genetics.pptxElizabeth Philip
 
An Overview of Genomic Selection and Fertility
An Overview of Genomic Selection and FertilityAn Overview of Genomic Selection and Fertility
An Overview of Genomic Selection and FertilityDAIReXNET
 
Innovations & Breakthrough in IVF PART 3
Innovations & Breakthrough in IVF PART 3Innovations & Breakthrough in IVF PART 3
Innovations & Breakthrough in IVF PART 3Lifecare Centre
 
Factors influencing the somatic cell counts in goat milk in kenya
Factors influencing the somatic cell counts in goat milk in kenyaFactors influencing the somatic cell counts in goat milk in kenya
Factors influencing the somatic cell counts in goat milk in kenyaAlexander Decker
 
Transgenic animals by Ashish
 Transgenic animals by Ashish  Transgenic animals by Ashish
Transgenic animals by Ashish AshishVerma571
 
qpcr 1 s2.0-s0015028213005499-main (1)
qpcr           1 s2.0-s0015028213005499-main (1)qpcr           1 s2.0-s0015028213005499-main (1)
qpcr 1 s2.0-s0015028213005499-main (1)鋒博 蔡
 
1 s2.0-s0015028213005499-main (1)
1 s2.0-s0015028213005499-main (1)1 s2.0-s0015028213005499-main (1)
1 s2.0-s0015028213005499-main (1)鋒博 蔡
 
I Jornada Actualización en Genética Reproductiva y Fertilidad
I Jornada Actualización en Genética Reproductiva y Fertilidad I Jornada Actualización en Genética Reproductiva y Fertilidad
I Jornada Actualización en Genética Reproductiva y Fertilidad TECNALIA Research & Innovation
 
1 s2.0-s1472648313005798-main
1 s2.0-s1472648313005798-main1 s2.0-s1472648313005798-main
1 s2.0-s1472648313005798-main鋒博 蔡
 

Similar to K weigel haplotypes-affecting-fertility (20)

Genetic Transfer of gene slide shared ppt
Genetic Transfer of gene  slide shared pptGenetic Transfer of gene  slide shared ppt
Genetic Transfer of gene slide shared ppt
 
Genetic Transfer og gene PPT slide shared
Genetic Transfer og gene  PPT slide sharedGenetic Transfer og gene  PPT slide shared
Genetic Transfer og gene PPT slide shared
 
GeneticTransferP bacteria PT.ppt presentation
GeneticTransferP bacteria PT.ppt presentationGeneticTransferP bacteria PT.ppt presentation
GeneticTransferP bacteria PT.ppt presentation
 
Use of sexed semen for genetic improvement of indigenous and buffaloes produc...
Use of sexed semen for genetic improvement of indigenous and buffaloes produc...Use of sexed semen for genetic improvement of indigenous and buffaloes produc...
Use of sexed semen for genetic improvement of indigenous and buffaloes produc...
 
Biotechnology for the livestock improvements and phb degradation
Biotechnology for the livestock improvements and phb degradationBiotechnology for the livestock improvements and phb degradation
Biotechnology for the livestock improvements and phb degradation
 
Biotechnology for the livestock improvements and phb degradation
Biotechnology for the livestock improvements and phb degradationBiotechnology for the livestock improvements and phb degradation
Biotechnology for the livestock improvements and phb degradation
 
YaleTranscriptome
YaleTranscriptomeYaleTranscriptome
YaleTranscriptome
 
Biosketch RVL
Biosketch RVLBiosketch RVL
Biosketch RVL
 
Genetics as a tool to improve flock health
Genetics as a tool to improve flock healthGenetics as a tool to improve flock health
Genetics as a tool to improve flock health
 
Fundamentals of animal genetics.pptx
Fundamentals of animal genetics.pptxFundamentals of animal genetics.pptx
Fundamentals of animal genetics.pptx
 
An Overview of Genomic Selection and Fertility
An Overview of Genomic Selection and FertilityAn Overview of Genomic Selection and Fertility
An Overview of Genomic Selection and Fertility
 
Genetics as a tool to improve flock health
Genetics as a tool to improve flock healthGenetics as a tool to improve flock health
Genetics as a tool to improve flock health
 
Innovations & Breakthrough in IVF PART 3
Innovations & Breakthrough in IVF PART 3Innovations & Breakthrough in IVF PART 3
Innovations & Breakthrough in IVF PART 3
 
iMGE Test™
iMGE Test™iMGE Test™
iMGE Test™
 
Factors influencing the somatic cell counts in goat milk in kenya
Factors influencing the somatic cell counts in goat milk in kenyaFactors influencing the somatic cell counts in goat milk in kenya
Factors influencing the somatic cell counts in goat milk in kenya
 
Transgenic animals by Ashish
 Transgenic animals by Ashish  Transgenic animals by Ashish
Transgenic animals by Ashish
 
qpcr 1 s2.0-s0015028213005499-main (1)
qpcr           1 s2.0-s0015028213005499-main (1)qpcr           1 s2.0-s0015028213005499-main (1)
qpcr 1 s2.0-s0015028213005499-main (1)
 
1 s2.0-s0015028213005499-main (1)
1 s2.0-s0015028213005499-main (1)1 s2.0-s0015028213005499-main (1)
1 s2.0-s0015028213005499-main (1)
 
I Jornada Actualización en Genética Reproductiva y Fertilidad
I Jornada Actualización en Genética Reproductiva y Fertilidad I Jornada Actualización en Genética Reproductiva y Fertilidad
I Jornada Actualización en Genética Reproductiva y Fertilidad
 
1 s2.0-s1472648313005798-main
1 s2.0-s1472648313005798-main1 s2.0-s1472648313005798-main
1 s2.0-s1472648313005798-main
 

More from AgriPoint

Abordagem inovadora no tratamento das mastites
Abordagem inovadora no tratamento das mastitesAbordagem inovadora no tratamento das mastites
Abordagem inovadora no tratamento das mastitesAgriPoint
 
RESUMO DE MERCADO: PREÇOS NOMINAIS - CADEIA PRODUTIVA
RESUMO DE MERCADO: PREÇOS NOMINAIS - CADEIA PRODUTIVARESUMO DE MERCADO: PREÇOS NOMINAIS - CADEIA PRODUTIVA
RESUMO DE MERCADO: PREÇOS NOMINAIS - CADEIA PRODUTIVAAgriPoint
 
Relatório de Chance de Mastite Clínica
Relatório de Chance de Mastite ClínicaRelatório de Chance de Mastite Clínica
Relatório de Chance de Mastite ClínicaAgriPoint
 
REGULAMENTO E CONDIÇÕES GERAIS DE VENDA E COMPRA POR LEILÕES PROMOVIDOS POR E...
REGULAMENTO E CONDIÇÕES GERAIS DE VENDA E COMPRA POR LEILÕES PROMOVIDOS POR E...REGULAMENTO E CONDIÇÕES GERAIS DE VENDA E COMPRA POR LEILÕES PROMOVIDOS POR E...
REGULAMENTO E CONDIÇÕES GERAIS DE VENDA E COMPRA POR LEILÕES PROMOVIDOS POR E...AgriPoint
 
Boletim Técnico Vol. 1 - Verminoses x Desenv. Gl. Mamária
Boletim Técnico Vol. 1 - Verminoses x Desenv. Gl. MamáriaBoletim Técnico Vol. 1 - Verminoses x Desenv. Gl. Mamária
Boletim Técnico Vol. 1 - Verminoses x Desenv. Gl. MamáriaAgriPoint
 
INTERNATIONAL WORKSHOP ON ADVANCES OF PROBIOTICS AND PREBIOTICS (IWAPP)
INTERNATIONAL WORKSHOP ON ADVANCES OF PROBIOTICS AND PREBIOTICS (IWAPP) INTERNATIONAL WORKSHOP ON ADVANCES OF PROBIOTICS AND PREBIOTICS (IWAPP)
INTERNATIONAL WORKSHOP ON ADVANCES OF PROBIOTICS AND PREBIOTICS (IWAPP) AgriPoint
 
Iniciando no Leite - Nutrição
Iniciando no Leite - NutriçãoIniciando no Leite - Nutrição
Iniciando no Leite - NutriçãoAgriPoint
 
Ebook - Top100 2020
Ebook - Top100 2020Ebook - Top100 2020
Ebook - Top100 2020AgriPoint
 
Manual técnico - Boostin
Manual técnico - BoostinManual técnico - Boostin
Manual técnico - BoostinAgriPoint
 
CASAMENTO DE INTERESSES: A utilização de Essential traz benefícios financeiro...
CASAMENTO DE INTERESSES: A utilização de Essential traz benefícios financeiro...CASAMENTO DE INTERESSES: A utilização de Essential traz benefícios financeiro...
CASAMENTO DE INTERESSES: A utilização de Essential traz benefícios financeiro...AgriPoint
 
Manual Técnico Boostin
Manual Técnico BoostinManual Técnico Boostin
Manual Técnico BoostinAgriPoint
 
Manual de Resíduos de Antibióticos no leite
Manual de Resíduos de Antibióticos no leiteManual de Resíduos de Antibióticos no leite
Manual de Resíduos de Antibióticos no leiteAgriPoint
 
A internet como disseminadora da informação
A internet como disseminadora da informaçãoA internet como disseminadora da informação
A internet como disseminadora da informaçãoAgriPoint
 
E book gratuito - Vacas em transição
E book gratuito - Vacas em transiçãoE book gratuito - Vacas em transição
E book gratuito - Vacas em transiçãoAgriPoint
 
10 DICAS PARA FALAR EM PÚBLICO
10 DICAS PARA FALAR EM PÚBLICO10 DICAS PARA FALAR EM PÚBLICO
10 DICAS PARA FALAR EM PÚBLICOAgriPoint
 
5C's da Criação de Bezerras
5C's da Criação de Bezerras5C's da Criação de Bezerras
5C's da Criação de BezerrasAgriPoint
 
5CS da criação de bezerras
5CS da criação de bezerras5CS da criação de bezerras
5CS da criação de bezerrasAgriPoint
 
Unopar - Guia para o consumidor de leite e derivados
Unopar - Guia para o consumidor de leite e derivados Unopar - Guia para o consumidor de leite e derivados
Unopar - Guia para o consumidor de leite e derivados AgriPoint
 
Ebook Minerphos - Como minimizar prejuízos referentes a acidose e micotoxinas...
Ebook Minerphos - Como minimizar prejuízos referentes a acidose e micotoxinas...Ebook Minerphos - Como minimizar prejuízos referentes a acidose e micotoxinas...
Ebook Minerphos - Como minimizar prejuízos referentes a acidose e micotoxinas...AgriPoint
 

More from AgriPoint (20)

Abordagem inovadora no tratamento das mastites
Abordagem inovadora no tratamento das mastitesAbordagem inovadora no tratamento das mastites
Abordagem inovadora no tratamento das mastites
 
RESUMO DE MERCADO: PREÇOS NOMINAIS - CADEIA PRODUTIVA
RESUMO DE MERCADO: PREÇOS NOMINAIS - CADEIA PRODUTIVARESUMO DE MERCADO: PREÇOS NOMINAIS - CADEIA PRODUTIVA
RESUMO DE MERCADO: PREÇOS NOMINAIS - CADEIA PRODUTIVA
 
Relatório de Chance de Mastite Clínica
Relatório de Chance de Mastite ClínicaRelatório de Chance de Mastite Clínica
Relatório de Chance de Mastite Clínica
 
REGULAMENTO E CONDIÇÕES GERAIS DE VENDA E COMPRA POR LEILÕES PROMOVIDOS POR E...
REGULAMENTO E CONDIÇÕES GERAIS DE VENDA E COMPRA POR LEILÕES PROMOVIDOS POR E...REGULAMENTO E CONDIÇÕES GERAIS DE VENDA E COMPRA POR LEILÕES PROMOVIDOS POR E...
REGULAMENTO E CONDIÇÕES GERAIS DE VENDA E COMPRA POR LEILÕES PROMOVIDOS POR E...
 
Boletim Técnico Vol. 1 - Verminoses x Desenv. Gl. Mamária
Boletim Técnico Vol. 1 - Verminoses x Desenv. Gl. MamáriaBoletim Técnico Vol. 1 - Verminoses x Desenv. Gl. Mamária
Boletim Técnico Vol. 1 - Verminoses x Desenv. Gl. Mamária
 
INTERNATIONAL WORKSHOP ON ADVANCES OF PROBIOTICS AND PREBIOTICS (IWAPP)
INTERNATIONAL WORKSHOP ON ADVANCES OF PROBIOTICS AND PREBIOTICS (IWAPP) INTERNATIONAL WORKSHOP ON ADVANCES OF PROBIOTICS AND PREBIOTICS (IWAPP)
INTERNATIONAL WORKSHOP ON ADVANCES OF PROBIOTICS AND PREBIOTICS (IWAPP)
 
Iniciando no Leite - Nutrição
Iniciando no Leite - NutriçãoIniciando no Leite - Nutrição
Iniciando no Leite - Nutrição
 
Ebook - Top100 2020
Ebook - Top100 2020Ebook - Top100 2020
Ebook - Top100 2020
 
Manual técnico - Boostin
Manual técnico - BoostinManual técnico - Boostin
Manual técnico - Boostin
 
CASAMENTO DE INTERESSES: A utilização de Essential traz benefícios financeiro...
CASAMENTO DE INTERESSES: A utilização de Essential traz benefícios financeiro...CASAMENTO DE INTERESSES: A utilização de Essential traz benefícios financeiro...
CASAMENTO DE INTERESSES: A utilização de Essential traz benefícios financeiro...
 
Manual Técnico Boostin
Manual Técnico BoostinManual Técnico Boostin
Manual Técnico Boostin
 
Manual de Resíduos de Antibióticos no leite
Manual de Resíduos de Antibióticos no leiteManual de Resíduos de Antibióticos no leite
Manual de Resíduos de Antibióticos no leite
 
A internet como disseminadora da informação
A internet como disseminadora da informaçãoA internet como disseminadora da informação
A internet como disseminadora da informação
 
E book gratuito - Vacas em transição
E book gratuito - Vacas em transiçãoE book gratuito - Vacas em transição
E book gratuito - Vacas em transição
 
10 DICAS PARA FALAR EM PÚBLICO
10 DICAS PARA FALAR EM PÚBLICO10 DICAS PARA FALAR EM PÚBLICO
10 DICAS PARA FALAR EM PÚBLICO
 
5C's da Criação de Bezerras
5C's da Criação de Bezerras5C's da Criação de Bezerras
5C's da Criação de Bezerras
 
5CS da criação de bezerras
5CS da criação de bezerras5CS da criação de bezerras
5CS da criação de bezerras
 
Unopar - Guia para o consumidor de leite e derivados
Unopar - Guia para o consumidor de leite e derivados Unopar - Guia para o consumidor de leite e derivados
Unopar - Guia para o consumidor de leite e derivados
 
Top100 2018
Top100 2018Top100 2018
Top100 2018
 
Ebook Minerphos - Como minimizar prejuízos referentes a acidose e micotoxinas...
Ebook Minerphos - Como minimizar prejuízos referentes a acidose e micotoxinas...Ebook Minerphos - Como minimizar prejuízos referentes a acidose e micotoxinas...
Ebook Minerphos - Como minimizar prejuízos referentes a acidose e micotoxinas...
 

K weigel haplotypes-affecting-fertility