SlideShare a Scribd company logo
1 of 12
Download to read offline
MAGNETIC EFFECT OF CURRENT - I
1. Magnetic Effect of Current – Oersted’s Experiment
2. Ampere’s Swimming Rule
3. Maxwell’s Cork Screw Rule
4. Right Hand Thumb Rule
5. Biot – Savart’s Law
6. Magnetic Field due to Infinitely Long Straight Current –
carrying Conductor
7. Magnetic Field due to a Circular Loop carrying current
8. Magnetic Field due to a Solenoid
Created by C. Mani, Principal, K V No.1, AFS, Jalahalli West, Bangalore
N
Magnetic Effect of Current:
An electric current (i.e. flow of electric charge) produces magnetic effect in
the space around the conductor called strength of Magnetic field or simply
Magnetic field.
Oersted’s Experiment:
When current was allowed to flow through a
wire placed parallel to the axis of a magnetic
needle kept directly below the wire, the needle
was found to deflect from its normal position.
E
K
I
N
K
I
E
When current was reversed through the wire,
the needle was found to deflect in the
opposite direction to the earlier case.
B
B
N
Rules to determine the direction of magnetic field:
Ampere’s Swimming Rule:
Imagining a man who swims in the
direction of current from south to north
facing a magnetic needle kept under
him such that current enters his feet
then the North pole of the needle will
deflect towards his left hand, i.e.
towards West.
Maxwell’s Cork Screw Rule or Right
Hand Screw Rule:
If the forward motion of an imaginary
right handed screw is in the direction of
the current through a linear conductor,
then the direction of rotation of the
screw gives the direction of the
magnetic lines of force around the
conductor.
S
N
W
I
I I
x
Right Hand Thumb Rule or Curl Rule:
If a current carrying conductor is imagined to be
held in the right hand such that the thumb points
in the direction of the current, then the tips of the
fingers encircling the conductor will give the
direction of the magnetic lines of force.
I
Biot – Savart’s Law:
The strength of magnetic field dB due to a small
current element dl carrying a current I at a point
P distant r from the element is directly
proportional to I, dl, sin θ and inversely
proportional to the square of the distance (r2
)
where θ is the angle between dl and r.
θ
P
dl
r
i) dB α I
ii) dB α dl
iii) dB α sin θ
iv) dB α 1 / r2
dB α
I dl sin θ
r2
dB =
μ0 I dl sin θ
4π r2
P’
B
I
Biot – Savart’s Law in vector form:
dB =
μ0 I dl x r
4π r2
dB =
μ0 I dl x r
4π r3
Value of μ0 = 4π x 10-7
Tm A-1
or Wb m-1
A-1
Direction of dB is same as that of direction of dl x r which can be
determined by Right Hand Screw Rule.
It is emerging at P’ and entering at P into the plane of the diagram.
Current element is a vector quantity whose magnitude is the vector
product of current and length of small element having the direction of the
flow of current. ( I dl)
x
Magnetic Field due to a Straight Wire carrying current:
P
θ
r
a
I
Ф2
Ф1
Ф
l
According to Biot – Savart’s law
dB =
μ0 I dl sin θ
4π r2
sin θ = a / r = cos Ф
or r = a / cos Ф
tan Ф = l / a
or l = a tan Ф
dl = a sec2
Ф dФ
Substituting for r and dl in dB,
dB =
μ0 I cos Ф dФ
4π a
Magnetic field due to whole conductor is obtained by integrating with limits
- Ф1 to Ф2. ( Ф1 is taken negative since it is anticlockwise)
μ0 I cos Ф dФ
4π a
B = ∫dB = ∫
-Ф1
Ф2
B =
μ0 I (sin Ф1 + sin Ф2)
4πa
dl
x B
If the straight wire is infinitely long,
then Ф1 = Ф2 = π / 2
B =
μ0 2I
4πa
B =
μ0 I
2πa
or
B
a
a 0
B B
Direction of B is same as that of direction of dl x r which can be
determined by Right Hand Screw Rule.
It is perpendicular to the plane of the diagram and entering into
the plane at P.
Magnetic Field Lines:
I I
Magnetic Field due to a Circular Loop carrying current:
1) At a point on the axial line:
O
a
r
dB
dB
dB cosФ
dB sinФ
I I
dl
C
X Y
dl
D
X’ Y’
90°
Ф
Ф
Ф
Ф
x
The plane of the coil is considered perpendicular to the plane of the
diagram such that the direction of magnetic field can be visualized on
the plane of the diagram.
At C and D current elements XY and X’Y’ are considered such that
current at C emerges out and at D enters into the plane of the diagram.
P
dB cosФ
dB sinФ
dB =
μ0 I dl sin θ
4π r2
dB =
μ0 I dl
4π r2
μ0 I dl sinФ
4π r2
B = ∫dB sin Ф = ∫ or B =
μ0 I (2πa) a
4π (a2
+ x2
) (a2
+ x2
)½
B =
μ0 I a2
2(a2
+ x2
)3/2
(μ0 , I, a, sinФ are constants, ∫dl = 2πa and r & sinФ are
replaced with measurable and constant values.)
or
The angle θ between dl and r is 90° because the radius of the loop is very
small and since sin 90° = 1
The semi-vertical angle made by r to the loop is Ф and the angle between r
and dB is 90° . Therefore, the angle between vertical axis and dB is also Ф.
dB is resolved into components dB cosФ and dB sinФ .
Due to diametrically opposite current elements, cosФ
components are always opposite to each other and hence they
cancel out each other.
SinФ components due to all current elements dl get added up
along the same direction (in the direction away from the loop).
I
I I
Different views of direction of current and magnetic field due to circular loop of
a coil:
B
x
x 0
ii) If the observation point is far away from
the coil, then a << x. So, a2
can be neglected
in comparison with x2
.
B =
μ0 I a2
2 x3
Special Cases:
i) At the centre O, x = 0. B =
μ0 I
2a
I
B B
B
x
2) B at the centre of the loop:
dB
The plane of the coil is lying on the plane
of the diagram and the direction of current
is clockwise such that the direction of
magnetic field is perpendicular and into
the plane.
dB =
μ0 I dl sin θ
4π a2
I
I
dl
90°
dB =
μ0 I dl
4π a2
The angle θ between dl and a is
90° because the radius of the
loop is very small and since
sin 90° = 1
B = ∫dB = ∫
μ0 I dl
4π a2
B =
μ0 I
2a
(μ0 , I, a are constants and ∫dl = 2πa )
a
O
B
a
0
Magnetic Field due to a Solenoid:
I I
x
x
x
x
x x
x
TIP:
When we look at any end of the coil carrying current, if the current is in
anti-clockwise direction then that end of coil behaves like North Pole
and if the current is in clockwise direction then that end of the coil
behaves like South Pole.
B

More Related Content

What's hot

Magnetic field and trajectory of movig charges
Magnetic field and trajectory of movig chargesMagnetic field and trajectory of movig charges
Magnetic field and trajectory of movig chargesYashu Chhabra
 
Lect10 handout
Lect10 handoutLect10 handout
Lect10 handoutnomio0703
 
Lect09 handout
Lect09 handoutLect09 handout
Lect09 handoutnomio0703
 
Lect08 handout
Lect08 handoutLect08 handout
Lect08 handoutnomio0703
 
Magnetic Effects Of Current Class 12 Part-3
Magnetic Effects Of Current Class 12 Part-3Magnetic Effects Of Current Class 12 Part-3
Magnetic Effects Of Current Class 12 Part-3Self-employed
 
ALL ABOUT MAGNET
ALL ABOUT MAGNETALL ABOUT MAGNET
ALL ABOUT MAGNETKANNAN
 
Semiconductor Devices Class 12 Part-3
Semiconductor Devices Class 12 Part-3Semiconductor Devices Class 12 Part-3
Semiconductor Devices Class 12 Part-3Self-employed
 
Lecture 21 applications of moving charge in magnetic field
Lecture 21   applications of moving charge in magnetic fieldLecture 21   applications of moving charge in magnetic field
Lecture 21 applications of moving charge in magnetic fieldAlbania Energy Association
 
Lecture 8 3_n_8_4_magnetic_force
Lecture 8 3_n_8_4_magnetic_forceLecture 8 3_n_8_4_magnetic_force
Lecture 8 3_n_8_4_magnetic_forceKhairul Azhar
 
MAGNETIC FIELD INTENSITY
MAGNETIC FIELD INTENSITYMAGNETIC FIELD INTENSITY
MAGNETIC FIELD INTENSITYSitaram Appari
 
Modelling Power Systems 3
Modelling Power Systems 3Modelling Power Systems 3
Modelling Power Systems 3Alex_5991
 
Lecture 20 magnetic field, field lines, moving chages.
Lecture 20   magnetic field, field lines, moving chages.Lecture 20   magnetic field, field lines, moving chages.
Lecture 20 magnetic field, field lines, moving chages.Albania Energy Association
 
Magnetic Effects Of Current Class 12 Part-2
Magnetic Effects Of Current Class 12 Part-2Magnetic Effects Of Current Class 12 Part-2
Magnetic Effects Of Current Class 12 Part-2Self-employed
 

What's hot (20)

Ampere's Law
Ampere's LawAmpere's Law
Ampere's Law
 
Magnetic field and trajectory of movig charges
Magnetic field and trajectory of movig chargesMagnetic field and trajectory of movig charges
Magnetic field and trajectory of movig charges
 
Ampere’s circuital law
Ampere’s circuital lawAmpere’s circuital law
Ampere’s circuital law
 
Lect10 handout
Lect10 handoutLect10 handout
Lect10 handout
 
Biot savart law
Biot savart lawBiot savart law
Biot savart law
 
Lect09 handout
Lect09 handoutLect09 handout
Lect09 handout
 
Lect08 handout
Lect08 handoutLect08 handout
Lect08 handout
 
Lecture 25 induction. faradays law. lenz law
Lecture 25   induction. faradays law. lenz lawLecture 25   induction. faradays law. lenz law
Lecture 25 induction. faradays law. lenz law
 
Magnetic Effects Of Current Class 12 Part-3
Magnetic Effects Of Current Class 12 Part-3Magnetic Effects Of Current Class 12 Part-3
Magnetic Effects Of Current Class 12 Part-3
 
ALL ABOUT MAGNET
ALL ABOUT MAGNETALL ABOUT MAGNET
ALL ABOUT MAGNET
 
Magnetic effect-of-current
Magnetic effect-of-currentMagnetic effect-of-current
Magnetic effect-of-current
 
Semiconductor Devices Class 12 Part-3
Semiconductor Devices Class 12 Part-3Semiconductor Devices Class 12 Part-3
Semiconductor Devices Class 12 Part-3
 
Lecture 21 applications of moving charge in magnetic field
Lecture 21   applications of moving charge in magnetic fieldLecture 21   applications of moving charge in magnetic field
Lecture 21 applications of moving charge in magnetic field
 
Lecture 8 3_n_8_4_magnetic_force
Lecture 8 3_n_8_4_magnetic_forceLecture 8 3_n_8_4_magnetic_force
Lecture 8 3_n_8_4_magnetic_force
 
MAGNETIC FIELD INTENSITY
MAGNETIC FIELD INTENSITYMAGNETIC FIELD INTENSITY
MAGNETIC FIELD INTENSITY
 
Modelling Power Systems 3
Modelling Power Systems 3Modelling Power Systems 3
Modelling Power Systems 3
 
Lecture 20 magnetic field, field lines, moving chages.
Lecture 20   magnetic field, field lines, moving chages.Lecture 20   magnetic field, field lines, moving chages.
Lecture 20 magnetic field, field lines, moving chages.
 
Unit-3:Magnetostatics
Unit-3:MagnetostaticsUnit-3:Magnetostatics
Unit-3:Magnetostatics
 
Magnetic Effects Of Current Class 12 Part-2
Magnetic Effects Of Current Class 12 Part-2Magnetic Effects Of Current Class 12 Part-2
Magnetic Effects Of Current Class 12 Part-2
 
Ppt19 magnetic-potential
Ppt19  magnetic-potentialPpt19  magnetic-potential
Ppt19 magnetic-potential
 

Similar to Magnetic Effect of Current: Key Concepts

1_magnetic_effect_of_current_1%20(2).pptx
1_magnetic_effect_of_current_1%20(2).pptx1_magnetic_effect_of_current_1%20(2).pptx
1_magnetic_effect_of_current_1%20(2).pptxKarthickAnnamalai7
 
magnetic effect of current class 12th physics ppt
magnetic effect of current class 12th physics pptmagnetic effect of current class 12th physics ppt
magnetic effect of current class 12th physics pptArpit Meena
 
1_magnetic_effect_of_current_1.ppt
1_magnetic_effect_of_current_1.ppt1_magnetic_effect_of_current_1.ppt
1_magnetic_effect_of_current_1.pptRemyaRajesh10
 
MAGNETIC EFFECTS OF CURRENT MAGNETISM.pdf
MAGNETIC EFFECTS OF CURRENT MAGNETISM.pdfMAGNETIC EFFECTS OF CURRENT MAGNETISM.pdf
MAGNETIC EFFECTS OF CURRENT MAGNETISM.pdfdivyanshudaranga
 
3m magnetic-effects-of-current-magnetism
3m magnetic-effects-of-current-magnetism3m magnetic-effects-of-current-magnetism
3m magnetic-effects-of-current-magnetismPrayash Mohapatra
 
Medan magnet dari aliran listrik
Medan magnet dari aliran listrikMedan magnet dari aliran listrik
Medan magnet dari aliran listrikIntan Megawati
 
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdfmelihbulut1
 
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdfmelihbulut1
 
[L2 Sambhav] Electro magnetic induction.pdf
[L2 Sambhav] Electro magnetic induction.pdf[L2 Sambhav] Electro magnetic induction.pdf
[L2 Sambhav] Electro magnetic induction.pdfSaptakPaul
 
physics121_lecture10.ppt
physics121_lecture10.pptphysics121_lecture10.ppt
physics121_lecture10.pptPapuKumarNaik1
 
physics121_lecture10.ppt
physics121_lecture10.pptphysics121_lecture10.ppt
physics121_lecture10.pptPapuKumarNaik1
 

Similar to Magnetic Effect of Current: Key Concepts (18)

1_magnetic_effect_of_current_1%20(2).pptx
1_magnetic_effect_of_current_1%20(2).pptx1_magnetic_effect_of_current_1%20(2).pptx
1_magnetic_effect_of_current_1%20(2).pptx
 
magnetic effect of current class 12th physics ppt
magnetic effect of current class 12th physics pptmagnetic effect of current class 12th physics ppt
magnetic effect of current class 12th physics ppt
 
1_magnetic_effect_of_current_1.ppt
1_magnetic_effect_of_current_1.ppt1_magnetic_effect_of_current_1.ppt
1_magnetic_effect_of_current_1.ppt
 
MAGNETIC EFFECTS OF CURRENT MAGNETISM.pdf
MAGNETIC EFFECTS OF CURRENT MAGNETISM.pdfMAGNETIC EFFECTS OF CURRENT MAGNETISM.pdf
MAGNETIC EFFECTS OF CURRENT MAGNETISM.pdf
 
3m magnetic-effects-of-current-magnetism
3m magnetic-effects-of-current-magnetism3m magnetic-effects-of-current-magnetism
3m magnetic-effects-of-current-magnetism
 
Medan magnet dari aliran listrik
Medan magnet dari aliran listrikMedan magnet dari aliran listrik
Medan magnet dari aliran listrik
 
class13.ppt
class13.pptclass13.ppt
class13.ppt
 
Magnetic effects
Magnetic effectsMagnetic effects
Magnetic effects
 
Physics
PhysicsPhysics
Physics
 
moving charges and magnetism class 12 pdf download
moving charges and magnetism class 12 pdf downloadmoving charges and magnetism class 12 pdf download
moving charges and magnetism class 12 pdf download
 
Lect09 handout
Lect09 handoutLect09 handout
Lect09 handout
 
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
 
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
 
[L2 Sambhav] Electro magnetic induction.pdf
[L2 Sambhav] Electro magnetic induction.pdf[L2 Sambhav] Electro magnetic induction.pdf
[L2 Sambhav] Electro magnetic induction.pdf
 
2 magnetic effect_of_current_2
2 magnetic effect_of_current_22 magnetic effect_of_current_2
2 magnetic effect_of_current_2
 
B.Sc.I- Magnetism.pptx
B.Sc.I- Magnetism.pptxB.Sc.I- Magnetism.pptx
B.Sc.I- Magnetism.pptx
 
physics121_lecture10.ppt
physics121_lecture10.pptphysics121_lecture10.ppt
physics121_lecture10.ppt
 
physics121_lecture10.ppt
physics121_lecture10.pptphysics121_lecture10.ppt
physics121_lecture10.ppt
 

More from UmeshPatil149

Unit VI Engineering Materials and Catalysis.pdf
Unit VI Engineering Materials and Catalysis.pdfUnit VI Engineering Materials and Catalysis.pdf
Unit VI Engineering Materials and Catalysis.pdfUmeshPatil149
 
FY-ALL-BRANCH-SEM1-BSC-311305.pdf
FY-ALL-BRANCH-SEM1-BSC-311305.pdfFY-ALL-BRANCH-SEM1-BSC-311305.pdf
FY-ALL-BRANCH-SEM1-BSC-311305.pdfUmeshPatil149
 
1_electromagnetic_induction.ppt
1_electromagnetic_induction.ppt1_electromagnetic_induction.ppt
1_electromagnetic_induction.pptUmeshPatil149
 
solids_and_semiconductor_devices_4.ppt
solids_and_semiconductor_devices_4.pptsolids_and_semiconductor_devices_4.ppt
solids_and_semiconductor_devices_4.pptUmeshPatil149
 
CHAVAN TEJAS SHAMRAO.pdf
CHAVAN TEJAS SHAMRAO.pdfCHAVAN TEJAS SHAMRAO.pdf
CHAVAN TEJAS SHAMRAO.pdfUmeshPatil149
 
BORKAR SANKET DHANAJI.pdf
BORKAR SANKET DHANAJI.pdfBORKAR SANKET DHANAJI.pdf
BORKAR SANKET DHANAJI.pdfUmeshPatil149
 
BHOJANE SARTHAK RAJENDRA.pdf
BHOJANE SARTHAK RAJENDRA.pdfBHOJANE SARTHAK RAJENDRA.pdf
BHOJANE SARTHAK RAJENDRA.pdfUmeshPatil149
 

More from UmeshPatil149 (8)

Unit VI Engineering Materials and Catalysis.pdf
Unit VI Engineering Materials and Catalysis.pdfUnit VI Engineering Materials and Catalysis.pdf
Unit VI Engineering Materials and Catalysis.pdf
 
FY-ALL-BRANCH-SEM1-BSC-311305.pdf
FY-ALL-BRANCH-SEM1-BSC-311305.pdfFY-ALL-BRANCH-SEM1-BSC-311305.pdf
FY-ALL-BRANCH-SEM1-BSC-311305.pdf
 
1_electromagnetic_induction.ppt
1_electromagnetic_induction.ppt1_electromagnetic_induction.ppt
1_electromagnetic_induction.ppt
 
solids_and_semiconductor_devices_4.ppt
solids_and_semiconductor_devices_4.pptsolids_and_semiconductor_devices_4.ppt
solids_and_semiconductor_devices_4.ppt
 
CHAVAN TEJAS SHAMRAO.pdf
CHAVAN TEJAS SHAMRAO.pdfCHAVAN TEJAS SHAMRAO.pdf
CHAVAN TEJAS SHAMRAO.pdf
 
BORKAR SANKET DHANAJI.pdf
BORKAR SANKET DHANAJI.pdfBORKAR SANKET DHANAJI.pdf
BORKAR SANKET DHANAJI.pdf
 
BHOJANE SARTHAK RAJENDRA.pdf
BHOJANE SARTHAK RAJENDRA.pdfBHOJANE SARTHAK RAJENDRA.pdf
BHOJANE SARTHAK RAJENDRA.pdf
 
Umesh patil
Umesh patilUmesh patil
Umesh patil
 

Recently uploaded

Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxJiesonDelaCerna
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupJonathanParaisoCruz
 

Recently uploaded (20)

Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptx
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized Group
 

Magnetic Effect of Current: Key Concepts

  • 1. MAGNETIC EFFECT OF CURRENT - I 1. Magnetic Effect of Current – Oersted’s Experiment 2. Ampere’s Swimming Rule 3. Maxwell’s Cork Screw Rule 4. Right Hand Thumb Rule 5. Biot – Savart’s Law 6. Magnetic Field due to Infinitely Long Straight Current – carrying Conductor 7. Magnetic Field due to a Circular Loop carrying current 8. Magnetic Field due to a Solenoid Created by C. Mani, Principal, K V No.1, AFS, Jalahalli West, Bangalore
  • 2. N Magnetic Effect of Current: An electric current (i.e. flow of electric charge) produces magnetic effect in the space around the conductor called strength of Magnetic field or simply Magnetic field. Oersted’s Experiment: When current was allowed to flow through a wire placed parallel to the axis of a magnetic needle kept directly below the wire, the needle was found to deflect from its normal position. E K I N K I E When current was reversed through the wire, the needle was found to deflect in the opposite direction to the earlier case.
  • 3. B B N Rules to determine the direction of magnetic field: Ampere’s Swimming Rule: Imagining a man who swims in the direction of current from south to north facing a magnetic needle kept under him such that current enters his feet then the North pole of the needle will deflect towards his left hand, i.e. towards West. Maxwell’s Cork Screw Rule or Right Hand Screw Rule: If the forward motion of an imaginary right handed screw is in the direction of the current through a linear conductor, then the direction of rotation of the screw gives the direction of the magnetic lines of force around the conductor. S N W I I I
  • 4. x Right Hand Thumb Rule or Curl Rule: If a current carrying conductor is imagined to be held in the right hand such that the thumb points in the direction of the current, then the tips of the fingers encircling the conductor will give the direction of the magnetic lines of force. I Biot – Savart’s Law: The strength of magnetic field dB due to a small current element dl carrying a current I at a point P distant r from the element is directly proportional to I, dl, sin θ and inversely proportional to the square of the distance (r2 ) where θ is the angle between dl and r. θ P dl r i) dB α I ii) dB α dl iii) dB α sin θ iv) dB α 1 / r2 dB α I dl sin θ r2 dB = μ0 I dl sin θ 4π r2 P’ B I
  • 5. Biot – Savart’s Law in vector form: dB = μ0 I dl x r 4π r2 dB = μ0 I dl x r 4π r3 Value of μ0 = 4π x 10-7 Tm A-1 or Wb m-1 A-1 Direction of dB is same as that of direction of dl x r which can be determined by Right Hand Screw Rule. It is emerging at P’ and entering at P into the plane of the diagram. Current element is a vector quantity whose magnitude is the vector product of current and length of small element having the direction of the flow of current. ( I dl) x
  • 6. Magnetic Field due to a Straight Wire carrying current: P θ r a I Ф2 Ф1 Ф l According to Biot – Savart’s law dB = μ0 I dl sin θ 4π r2 sin θ = a / r = cos Ф or r = a / cos Ф tan Ф = l / a or l = a tan Ф dl = a sec2 Ф dФ Substituting for r and dl in dB, dB = μ0 I cos Ф dФ 4π a Magnetic field due to whole conductor is obtained by integrating with limits - Ф1 to Ф2. ( Ф1 is taken negative since it is anticlockwise) μ0 I cos Ф dФ 4π a B = ∫dB = ∫ -Ф1 Ф2 B = μ0 I (sin Ф1 + sin Ф2) 4πa dl x B
  • 7. If the straight wire is infinitely long, then Ф1 = Ф2 = π / 2 B = μ0 2I 4πa B = μ0 I 2πa or B a a 0 B B Direction of B is same as that of direction of dl x r which can be determined by Right Hand Screw Rule. It is perpendicular to the plane of the diagram and entering into the plane at P. Magnetic Field Lines: I I
  • 8. Magnetic Field due to a Circular Loop carrying current: 1) At a point on the axial line: O a r dB dB dB cosФ dB sinФ I I dl C X Y dl D X’ Y’ 90° Ф Ф Ф Ф x The plane of the coil is considered perpendicular to the plane of the diagram such that the direction of magnetic field can be visualized on the plane of the diagram. At C and D current elements XY and X’Y’ are considered such that current at C emerges out and at D enters into the plane of the diagram. P dB cosФ dB sinФ
  • 9. dB = μ0 I dl sin θ 4π r2 dB = μ0 I dl 4π r2 μ0 I dl sinФ 4π r2 B = ∫dB sin Ф = ∫ or B = μ0 I (2πa) a 4π (a2 + x2 ) (a2 + x2 )½ B = μ0 I a2 2(a2 + x2 )3/2 (μ0 , I, a, sinФ are constants, ∫dl = 2πa and r & sinФ are replaced with measurable and constant values.) or The angle θ between dl and r is 90° because the radius of the loop is very small and since sin 90° = 1 The semi-vertical angle made by r to the loop is Ф and the angle between r and dB is 90° . Therefore, the angle between vertical axis and dB is also Ф. dB is resolved into components dB cosФ and dB sinФ . Due to diametrically opposite current elements, cosФ components are always opposite to each other and hence they cancel out each other. SinФ components due to all current elements dl get added up along the same direction (in the direction away from the loop).
  • 10. I I I Different views of direction of current and magnetic field due to circular loop of a coil: B x x 0 ii) If the observation point is far away from the coil, then a << x. So, a2 can be neglected in comparison with x2 . B = μ0 I a2 2 x3 Special Cases: i) At the centre O, x = 0. B = μ0 I 2a I B B B
  • 11. x 2) B at the centre of the loop: dB The plane of the coil is lying on the plane of the diagram and the direction of current is clockwise such that the direction of magnetic field is perpendicular and into the plane. dB = μ0 I dl sin θ 4π a2 I I dl 90° dB = μ0 I dl 4π a2 The angle θ between dl and a is 90° because the radius of the loop is very small and since sin 90° = 1 B = ∫dB = ∫ μ0 I dl 4π a2 B = μ0 I 2a (μ0 , I, a are constants and ∫dl = 2πa ) a O B a 0
  • 12. Magnetic Field due to a Solenoid: I I x x x x x x x TIP: When we look at any end of the coil carrying current, if the current is in anti-clockwise direction then that end of coil behaves like North Pole and if the current is in clockwise direction then that end of the coil behaves like South Pole. B