SlideShare a Scribd company logo
1 of 26
Running head: UAS INTEGRATION 1
Unmanned Aircraft System Integration: Research into Surveying and Land Management
Applications
Tyler Summerlin, Dakota Freshman, Chasen Newland, Grady Roth
Embry-Riddle Aeronautical University
UAS INTEGRATION 2
Abstract
In this paper the two primary projects completed in the AS475 capstone course
will be overviewed in detail. These projects involved assisting Nexus Southwest with
small Unmanned Aerial Systems (sUAS) integration for surveying and conducting
operations in Bagdad, AZ at the Bridle Creek Habitat to determine the possibility of
differentiating plants and mapping erosion. The group members involved were Dakota
Freshman, Tyler Summerlin, Chasen Newland, and Grady Roth; each having specific
roles in each project. Integrating sUAS operations into Nexus Southwest involved a trial
run using both sUAS and current surveying techniques to determine the viability of
replacing conventional methods. Using the DJI Phantom 4, UAV aerial imagery was
captured and processed using Pix4D and ArcGIS to create orthomosaics and digital
surface models (DSM) with layered contouring. The resulting deliverables proved to be
of a greater quality with a much lower cost and time investment than the current methods
used by surveyors. The mission in Bagdad was of a larger scope, requiring processed
imagery covering approximately 70 acres. After multiple collection flights, the images
were stitched together and combined to create a DSM which shows both erosion and
elevation changes on the river, while the generated orthomosaic was of a high enough
quality to differentiate plant species through imagery. For future projects, datasets
overtime could map changes in erosion and vegetation, creating valuable data for the city
of Bagdad.
UAS INTEGRATION 3
Table of Contents
Abstract……………………………………………………………………………….2
Introduction……………………………………………….…………………………..5
Team Members/Positions…………………………………………………….........5
Nexus Southwest LLC Mission…………………………………………………….…6
Concept of Operations (CONOP) – Nexus Southwest……………..………..…….6
Limitations…………………………………….……….…………………………..7
Data Analysis…………………………………………..…………………………..7
Incorporating sUAS into Nexus Southwest……………….……………………….9
Costs and Hardware Requirements……………………………………………..9
sUAS Software/Hardware…….………………………………………………..11
Qualified sUAS Pilots…..……………………………………………………...11
Findings – Nexus Southwest………………….…………………………………...12
Bagdad, AZ Mission…………………………..……………………………………...13
Concept of Operations (CONOP) – Bagdad, AZ……….…………………………14
Data Analysis…….………………………………………………………………..15
Limitations/Risk Analysis…………………………………………………………15
Non-Participating People in the Flight Area…………………………………...17
UAS INTEGRATION 4
Power Lines……………..……………………………………………………...17
Wildlife/Airport…………..…………………………………………………….18
Weather………………………..………………………………………………..18
Distance to Area of Operations/Time Constraints.……………………………..18
Waypoints………………………………………...…………………………….19
Results……………………………………………………………………………..19
Future Outlook – Bagdad, AZ……………………………………………………..21
Lessons Learned………………………….…………………………………………...21
Conclusion………………………………..…………………………………………...22
References………………………………..…………………………………………...23
Appendix A…………………………………………………………………………...24
Appendix B……………………………………………………………………………25
Appendix C……………………………………………………………………………26
UAS INTEGRATION 5
Introduction
The AS 475 Unmanned Aircraft System Mission Execution capstone course is
designed to take skills that students have learned in the classroom and use them in the
real world. Throughout this semester, Group 2 has used these skills to gather data and
information from small unmanned aircraft systems (sUAS) in the field for two separate
customers. The first mission involved surveying a property for Nexus Southwest LLC, a
leading land surveying company in the Prescott area. The other mission took place in
Bagdad, AZ gathering data and surveying the Bridle Creek Riparian Habitat. Throughout
the semester, Group 2’s main goal was to show the customers how sUAS can be used to
help simplify their workflow; as well as providing the members of Group 2 the
opportunities to get real world experience with not only sUAS operations, but also
experience with companies/individuals who are looking to utilize UAS as an additional
tool.
Team Members/Positions
The following individuals consisted of Group 2:
 Dakota Freshman – Team Leader(Bagdad)/Pilot-In-Command
(PIC)
 Grady Roth – Team Leader (Nexus Southwest)/Visual
Observer/Scribe/Safety Pilot
 Tyler Summerlin – Data Analyst/Safety Pilot
 Chasen Newland – Visual Observer/Personal Relations
UAS INTEGRATION 6
Nexus Southwest LLC Mission
To assist Nexus Southwest with research into sUAS integration with their current
business practices. To complete this, Group 2 joined Nexus Southwest surveyor, Adam
Haywood, out to a client’s personal home to assess the approximate nine acres to
determine boundary lines in order for the client to add to their personal home. This
mission would act as a trial run to see if sUAS is a tool that Nexus Southwest could
invest in for future business endeavors.
Concept of Operations (CONOP) – Nexus Southwest
For this mission, Group 2 made the decision to perform the flight in two sections
due to an elevation change on the property which would affect the ground sampling
distance (GSD); which in turn would impact the accuracy of the final product. With the
help of Adam Haywood and his personal surveying equipment, Group 2 was also able to
acquire ground control points (GCP) with the intention to use them to help anchor the
captured images to the geographic location.
Due to the size of the area being captured, it was decided that the distribution of
visual observers (VO) throughout the property was unnecessary. Seeing as how the
property was small in comparison to other projects performed prior for the capstone class,
as well as the fact that the unmanned aircraft would be flown at an altitude that could be
easily seen from one central location.
UAS INTEGRATION 7
Limitations
For this project, the largest limitation that Group 2 faced was the unknown failure
of the unmanned aircraft’s GPS. This would then lead to inaccuracy when processing the
captured images in Pix4D. While it did affect measurement capabilities to an extent,
ultimately Nexus Southwest found the most valuable piece of rendered data was the
orthomosaic; which the GPS failure had no real effect on.
Data Analysis
Upon completion of capturing the data on site, Group 2 returned to the Embry-
Riddle campus and proceeded to process the images with Pix4D. With over 400 images
collected and uploaded into the software, a clear and concise orthomosaic was able to be
rendered as seen in
Figure 1. This alone
can prove beneficial
to Nexus Southwest
with the
orthomosaic’s
capability of high
detail within any desired area, in
addition to being within a one-centimeter accuracy. The point cloud can also be used to
measure distances and areas which is essential in surveying.
Figure 1. Nexus Orthomosaic
UAS INTEGRATION 8
In addition, DSM was generated to show the rapid elevation change near the
property, as shown in Figure 2. Both the DSM and Orthomosaic were then exported as
.tiff files and opened in ESRI’s ArcMap, where 1-foot contours were generated, shown in
Figure 3. By using ArcGIS additional data can be derived and shown from the Pix4D
outputs, such as layering of data, spatial analysis, and more detailed maps. While ArcGIS
was not strictly necessary, it was
used to provide better
deliverables to Nexus Southwest.
There was only one main issue
that came up during processing;
the Phantom 4 Group 2 used had
an unknown error with the GPS,
which resulted in the z-axis having an error of ~50% after the first processing pass. After
a second trip to the site both
sets of images were
combined using the best fit
images to reduce the error.
This dataset was used to
create the deliverables and
resulted in a much more
accurate product.
Figure 2. Nexus DSM
Figure 3. Nexus 1-Foot Contour
UAS INTEGRATION 9
Incorporating sUAS Into Nexus Southwest
After processing all the necessary data, Group 2 took it upon themselves to visit
Nexus Southwest at their home office and observe how their day-to-day business is
conducted. The goal of this visit was to determine how Nexus Southwest would need to
change their business to incorporate sUAS into their operations. Upon reviewing their
operation, Group 2 came to the consensus that the following would need to happen.
Costs and Hardware Requirements
If Nexus Southwest is interested in having sUAS being integrated into their
surveying business, the company will have to make some of the following purchases in
order to perform successfully:
 One/two up to date computers
 Contain the necessary software to produce the images (Pix4D)
 An unmanned aircraft to perform the missions
The tables below contain the specifications that Group 2 would recommend, the
price of subscriptions for Pix4D (see Appendix A), and the price for each computer.
Pix4D requires specific system requirements depending on the size of the project (see
Appendix B). With the listed minimum/recommended system requirements and the
experience from using the software, Group 2 came up with estimations of what would be
deemed the best system requirements while maintaining a reasonable budget. With a
previous meeting at the headquarters of Nexus Southwest located in downtown Prescott,
they determined that the orthomosaic that Pix4D is able to produce can sell in their
business at an estimated $5,000.
UAS INTEGRATION 10
The ideal situation that Group 2 came up with to help start Nexus Southwest LLC
integrate drones into their business would be the following. Once the company has
upgraded one or two of the computers to the recommended system requirements, along
with purchasing the recommended sUAS, Nexus can download the software and start a
two-week trial that is offered before making a final decision on purchasing the license
that the company believes would fit their needs. Once they are able to perform a few jobs
with the drone, given the operators of the sUAS are licensed under 14 CFR Part 107 –
Small Unmanned Aircraft Systems, and receiving net profit for those two weeks,
depending on the amount of jobs performed and orthomosaics sold would potentially pay
for not only the drone and the insurance of the aircraft, but would potentially cover the
Perpetual License and the cost of upgrading the one or two computers. When referencing
Table 2, if the estimations of the Nexus worker is correct (selling an orthomosaic for
$5,000 for each job) it would take a total of three jobs to not only recoup money spent on
upgrading equipment and obtaining the necessary hard/software, there would be a net
surplus of between $1,500-$3,000 that could go into upgrading more equipment in the
field or back at the headquarters.
Table 1
Recommended Hardware
Intel 8th Generation Core i7-8700K
Nvidia GeForce GTX 1060 4GB
32-64 GB Random Access Memory (RAM)
1TB Solid State Drive (SSD)
Accessories (Monitor, keyboard, mouse, etc)
Estimated Total of Computer (Each Unit): $2,200-$3,500
UAS INTEGRATION 11
sUAS Software Requirements
The largest area of concern for Nexus Southwest to integrate sUAS operations
into their surveying business would be the use of computer software that has proven to be
efficient when it comes to data collected from unmanned aircraft. The two main pieces
of software that Group 2 believes will give Nexus Southwest the most benefit would be
Pix4D and ArcGIS. Pix4D can generate an orthomosaic representation of the area that
was surveyed as well as a DTM and DSM. These files can then be exported into ArcGIS
and other software that is used by Nexus Southwest.
Qualified sUAS Pilots
As with any type of commercial aviation operation, proper certification is a
necessity. Unmanned aircraft operations are no different. If Nexus Southwest wishes to
proceed with sUAS as part of their arsenal, then a priority for them would to have either
all, or designated employees, acquire the 14 CFR Part 107 – Small Unmanned Aircraft
Systems license. With this, Nexus Southwest would then be able to conduct sUAS
operations in conjunction with their surveying missions.
Table 2
Total Necessary Equipment
Phantom 4 Pro (with accessories): $1,499
DJI Care Refresh: $139
Computer Upgrade (Per Unit): $2,200-$3,500
Pix4D Perpetual License: $8,700
Total Cost: $12,538 - $13,838
UAS INTEGRATION 12
Findings – Nexus Southwest
With the information gathered throughout the project, Nexus Southwest can see
huge benefits with the implementation of sUAS. Unmanned aircraft have the capability
to not only expand Nexus Southwest’s operations, but also save them time and money in
the process. However, for the implementation of sUAS in the surveying field certain
changes must be made.
First, for Nexus Southwest to see the benefits of sUAS in their current operations
a key change that must be made is the update of both computer software and hardware.
As stated prior, with the cost an orthomosaic is valued at Nexus would be able to
recuperate any expenses spent on sUAS implementation; this alone shows the value that a
company like Nexus Southwest can find in unmanned aviation.
If Nexus Southwest were to make these changes to their current business
practices, they could see the returns on their expenses almost instantly. As both Group 2
and Adam Haywood experienced first-hand, time on site can be shorten greatly. With
this project, Adam explained how a site such as that one would require him to spend
approximately two to three hours at the site collecting the data points that he would later
input into their surveying software; which would require an additional two to four hours
processing.
With an unmanned aircraft, Group 2 was able to perform the data collection
portion in only 30 to 45 minutes; collecting all the necessary data points needed later for
processing. As Nexus Southwest explained, the current process for creating an
orthomosaic will include the following:
UAS INTEGRATION 13
 Hiring a pilot/Rent a plane
 Filing a flight plan
 Flying to the site from an airport and capturing the images
 Processing the captured images to create an orthomosaic
In total, the process takes approximately a week to complete from capturing
images to producing the final product; with an estimated cost of $5,000, as discussed
prior with Nexus employees. As evident from Group 2’s participation, an unmanned
aircraft and the proper software/hardware can cut this time in half and save Nexus
Southwest money while at the same time producing a product that is worth just as much,
if not more.
Bagdad, AZ Mission
Conduct sUAS operations in Bagdad, AZ at the Bridle Creek Habitat to “provide
adequate vegetation and land feature data from missions to assist in the monitoring of
changes to both over time. This data should be detailed enough to possibly illustrate
growth rates of trees from year to year as well as erosion and/or deposition of land
features” (Eiker, 2018, p. 1).
UAS INTEGRATION 14
Concept of Operations (CONOP) – Bagdad, AZ
For this project, Group 2 came to the consensus that the best course to take for
efficient operations was to plan multiple routes throughout the Bridle Creek Habitat. To
accomplish this, routes and
waypoints were pre-loaded into
both iPads so that if the rare
occurrence that one would fail a
back-up would be ready to go.
As seen in Figure 4, the area of
operations consisted of
approximately 70 acres.
Due to constraints from
both the terrain and current Federal Aviation Administration (FAA) regulations, it was
decided to split the area of operations in to three sections. With this in mind, Group 2
was cognizant of ensuring that proper overlapping was performed so that not a single
piece of land would be missed when conducting the data analysis. In addition, it was also
decided to have multiple visual observers placed throughout the area so that the sUAS
would never be out of visual line of sight (VLOS), as per 14 CFR Part 107 – Small
Unmanned Aircraft Systems.
Figure 4. Bagdad, AZ. Reprinted from Google Maps,
2018, Retrieved from www.google.com/maps
UAS INTEGRATION 15
Data Analysis
After performing multiple flights over the course of three weeks, a DTM, a DSM,
and an orthomosaic representation were made
in Pix4D. The three datasets were run on the
highest settings and combined using 20 GCPs,
which stitched the datasets into one map, as
shown in Figure 5. The processing time for the
initial project was around 36 hours, and the
resulting DSM was large enough that the .tiff
image could not be opened without issues.
To combat this, the project was re-run on low-
medium settings to result in a lower file size while keeping the same detail as on the
highest settings. There were some issues with the DSM, since the last two datasets were
taken in overcast conditions the elevations were showing an upslope were there should
have been a decrease in elevation. The last flight was also taken 10 meters higher to
avoid power lines, which also threw the data off. The ray cloud showed the camera GPS
positions in completely wrong locations, as shown in Figure 6. This did not noticeably
affect the orthomosaic, however, the DSM and DTM were not properly drawn, as shown
in Figure 7. To combat this, the image properties were edited to have the same elevation,
and the last dataset to have a 10-meter higher elevation.
Figure 5. Image Overlap
UAS INTEGRATION 16
Limitations/Risk Analysis
During the mission in Bagdad, Arizona, Group 2 had a list of risks and a minimal
amount of limitations that they were able to mitigate either immediately or had to wait
depending on the situation. Most of the limitations were due to technical difficulties.
Since the iPads and tablets had no service due to Verizon being the sole service provider
in the area, the group had issues getting a connection to the maps and uploading them to
the mission under the GSP app. The group was able to prepare for this situation by
downloading the maps and route patterns before leaving the school and uploading the
routes onto the app before takeoff. Other limitations included small areas for safe takeoff
Figure 7. Digital Surface Model (Incorrect)
Figure 6. Ray Cloud
UAS INTEGRATION 17
and landing. However, Group 2 was able to find larger areas for the safety of the aircraft
and the crew members. Due to the layout of the terrain, there were certain points where
the operators could potentially lose sight of the aircraft. To prevent the lost sight, the
group had two visual observers on the mountain side hiking trail to keep visual line of
sight (VLOS) of the unmanned aircraft at all times.
Non-Participating People in the Flight Area
 Two of the days of operation, there were students observing how the operations
are handled in these types of situations. The risk was mitigated by making the
students and teachers aware to maintain a good distance away from the aircraft
while flying away from those individuals.
 Another mission included other non-participants (hikers) in the area. The
operators stopped the mission temporarily and alerted the non-participants of the
situation and waited until the people left the area.
Power Lines
 Roughly around half of the operating area was surrounded by power lines that
could have caused major damage to the aircraft (towers were about 125 feet).
The risk was mitigated by alerting the operator to fly at an altitude of 170 - 200
feet in order to keep a safe and consistent distance from the power lines. In
addition, whenever the unmanned aircraft would fly anywhere near the power
lines the visual observers kept a constant visual to ensure operations were within
Part 107 regulations.
UAS INTEGRATION 18
Wildlife/Airport
 There was very minimal wildlife located during the missions. In such an event
when there was wildlife, the group would pause the mission and wait until the
wildlife were out of the area of operations.
 Due to the location of the Bridle Creek Habitat, Bagdad Airport-E51 was well
within the operating area. To ensure proper safety precautions, Group 2 made it
a point to always call the airport to inform them of the missions being conducted,
as well as being cognizant of the unmanned aircraft’s altitude while in the air;
ensuring that it never flew into controlled airspace and remained below 400 feet.
Weather
 Weather for the most part was consistent with mostly clear skies with some
scattered clouds between days of operations. On one occasion, the weather had
small amounts of precipitation along with higher winds up to 18 mph gusting. In
order to mitigate that risk, wind speeds were consistently measured throughout
the operation to ensure that speeds never exceeded the DJI Phantom 4’s wind
limitations. When it came to the inconsistent precipitation, the group made the
decision to wait out the rain and when it seemed like conditions were good to fly
continued with the mission.
Distance to Area of Operations/Time Constraints
 Due to the nature of the operation, Group 2 faced a limitation in the form of both
travel distance and time. With hours of operations limited to 12:00 – 5:00, as
UAS INTEGRATION 19
well as taking into consideration the distance from Prescott to Bagdad
(approximately an hour and a half), the common window that Group 2 was able
to fly was greatly limited to roughly an hour and a half to two hours.
Unfortunately, there was not much that Group 2 could do to combat this
predicament. With this in mind, the group was always cognizant of the situation
and tried to perform as efficiently as possible. When it appeared that the time
constraints could greatly affect the operations, Group 2 took it upon themselves
to travel to Bagdad on their own time to finish the data collection process.
Waypoints
 At the beginning of the project, Group 2 made a consensus that the best course to
take, in terms of aircraft, would be to use the DJI Phantom 4. Due to this
decision, the group was limited by the Phantom 4’s capabilities; the best example
of this is the inability to create more than 100 waypoints within one route. To
combat this, Group 2 would end up creating multiple routes throughout each
section so that the number of waypoints would no longer be a factor for the
project.
Results
Throughout flying the sUAS, Group 2 was able to gain some vital data for the
customer. Part of the mission requirement was to be able to get pictures of the ground to
show erosion of the area while the deciduous trees had no leaves. The lack of leaves
would allow for the Electro-Optical (EO) sensor to be able to see the ground without
being obscured. This requirement led the group to make an orthomosaic and a DSM
UAS INTEGRATION 20
representation of the 70-acre area in Pix4D, as shown in Figure 8; which gave a clear
view of its entirety at a much better scale than satellite images or airplane mounted
cameras. High resolution satellites, such as GeoEye-1 and Airbus’ Pleiades only give
around a 30 cm GSD, with airplane mounted cameras giving around a 15 cm GSD.
Group 2 was able to get a 1.99 cm GSD average across the area. Having such a low GSD
allows for the product given to the customer to be a higher resolution, which can be more
valuable to the customer. In addition to the orthomosaic, a DSM and a DTM were made
as well. These two models allow for the differences between the ground elevations to be
represented with a color gradient. The colors range from red, the highest points, to a deep
blue which represent the lowest areas. This is very helpful data for this mission because
the customer is able to see where the water will be flowing and where the eroded
materials will eventually settle.
Figure 8. Orthomosaic and DSM
UAS INTEGRATION 21
Future Outlook – Bagdad, AZ
With all the baseline data collected, Group 2’s intent was to venture back out to
Bagdad, AZ later in the year to collect the same set of data so that a comparative analysis
can be performed. With a full understanding of what needs to be accomplished, Group 2
hoped to provide more data with the use of a multispectral camera, the MicaSense
RedEdge; which will provide both the group and the customer with a Normalized
Difference Vegetation Index (NDVI). Unfortunately, both time and weather conditions
prevented the group from conducting further research into the Bridle Creek Riparian
Habitat before the conclusion of the semester. However, since the purpose of the project
was meant for research, Group 2 has set up the project in a way that allows for future AS
475 classes to continue the research and allows the customer to see the area’s
vegetation/erosion change in the years to come.
Lessons Learned
Over the spring semester, Group 2 learned many lessons from working in Bagdad,
AZ and with Nexus Southwest that could not be taught in a classroom environment.
Planning ahead was one of the most crucial aspects that the group had to deal with
throughout the semester. It was very difficult at times to coordinate between group
members as well as the commercial participants. Group 2 had to deal with other aspects
such as weather and wind conditions that impacted not only the availability of flying, but
the quality of the images that were produced through the Pix4D software. Specific
aircraft selection for the missions represented the second lesson that Group 2 learned
after the Bagdad project. It is noted that for the mission in Bagdad, the group decided to
use the DJI Phantom 4 for the mission and planned six flights to get the most amount of
UAS INTEGRATION 22
overlap possible while taking an estimated four days of flight to be able to finish that
mission. This specific mission could have potentially been done within a less amount of
time and a lesser amount of days spent out in Bagdad using the Lynx aircraft which could
have possibly finished the entire mission within one day and about 30 minutes of flight
time. Using physical and easily noticeable ground control points proved to be a very
beneficial tool when creating the orthomosaic, DSM and DTM in Pix4D due to the GCPs
acting as an anchor helping solidify the final products.
Conclusion
The AS 475 Mission Execution class has proven an invaluable asset to the degree
program and to the UAS students who are hoping to have a better understanding of how
the commercial side of UAS operations are conducted. With the conclusion of both
projects, Group 2 was able to successfully gain real world experience in the world of
unmanned aircraft operations; in addition to knowledge of where this degree can see the
most benefit and opportunity in untapped markets.
UAS INTEGRATION 23
References
Eiker, D. (2018). Bridle Creek Wildlife Habitat Enhancement Area Project [Class
Handout]. Prescott, AZ: Embry-Riddle Aeronautical University, 3221.
n.a. (2018). Retrieved from
https://www.google.com/maps/place/Bagdad,+AZ+86321/@34.5831216,-
113.1735107,1328m/data=!3m1!1e3!4m5!3m4!1s0x80d2e63e3e46f32b:0xf35a06
f021c31358!8m2!3d34.5768849!4d-113.1764033?hl=en
n.a. (2018). Retrieved from https://store.dji.com/product/phantom-4-pro
n.a. (2018). Retrieved from https://support.pix4d.com/hc/en-us/articles/202557289-
System-requirements-Minimum-and-recommended-computer-specifications
UAS INTEGRATION 24
Appendix A
Pix4Dmapper Cost. Reprinted from Pix4D, 2018, Retrieved from
https://support.pix4d.com/hc/en-us/articles/202557289-System-requirements-Minimum-
and-recommended-computer-specifications
UAS INTEGRATION 25
Appendix B
Minimum Hardware Requirements. Reprinted from Pix4D, 2018, Retrieved from
https://support.pix4d.com/hc/en-us/articles/202557289-System-requirements-
Minimum-and-recommended-computer-specifications
Pix4D Recommended Hardware. Reprinted from Pix4D, 2018, Retrieved from
https://support.pix4d.com/hc/en-us/articles/202557289-System-requirements-
Minimum-and-recommended-computer-specifications
UAS INTEGRATION 26
Appendix C
Phantom 4 PRO. Reprinted from DJI Store, 2018, Retrieved
from https://store.dji.com/product/phantom-4-pro

More Related Content

Similar to Embry-Riddle 2018 Unmanned Aircraft Systems Capstone

Path Finding In Hazad Terrain
Path Finding In Hazad TerrainPath Finding In Hazad Terrain
Path Finding In Hazad TerrainOren Koler
 
Operations Plan E Tilmans
Operations Plan E TilmansOperations Plan E Tilmans
Operations Plan E Tilmansahmad bassiouny
 
Unmanned Aerial Systems (UAS) Data Quality and Accuracy Realities
Unmanned Aerial Systems (UAS) Data Quality and Accuracy RealitiesUnmanned Aerial Systems (UAS) Data Quality and Accuracy Realities
Unmanned Aerial Systems (UAS) Data Quality and Accuracy RealitiesUAS Colorado
 
Best practices for_managing_geospatial_data1
Best practices for_managing_geospatial_data1Best practices for_managing_geospatial_data1
Best practices for_managing_geospatial_data1Leng Kim Leng
 
Person Detection in Maritime Search And Rescue Operations
Person Detection in Maritime Search And Rescue OperationsPerson Detection in Maritime Search And Rescue Operations
Person Detection in Maritime Search And Rescue OperationsIRJET Journal
 
Person Detection in Maritime Search And Rescue Operations
Person Detection in Maritime Search And Rescue OperationsPerson Detection in Maritime Search And Rescue Operations
Person Detection in Maritime Search And Rescue OperationsIRJET Journal
 
AI and Space: finally, no more arguing with the GPS
AI and Space: finally, no more arguing with the GPSAI and Space: finally, no more arguing with the GPS
AI and Space: finally, no more arguing with the GPSSpeck&Tech
 
IRJET - Drone Delivery System: A Review
IRJET - Drone Delivery System: A ReviewIRJET - Drone Delivery System: A Review
IRJET - Drone Delivery System: A ReviewIRJET Journal
 
The Truth About Drones in Mapping and Surveying
The Truth About Drones in Mapping and SurveyingThe Truth About Drones in Mapping and Surveying
The Truth About Drones in Mapping and SurveyingPeter Sydoruk, P.Eng.
 
#EarthOnAWS | AWS Public Sector Summit 2017
#EarthOnAWS | AWS Public Sector Summit 2017#EarthOnAWS | AWS Public Sector Summit 2017
#EarthOnAWS | AWS Public Sector Summit 2017Amazon Web Services
 
IRJET- Proposed Design for 3D Map Generation using UAV
IRJET- Proposed Design for 3D Map Generation using UAVIRJET- Proposed Design for 3D Map Generation using UAV
IRJET- Proposed Design for 3D Map Generation using UAVIRJET Journal
 
MO3.L10 - STATUS OF PRE-LAUNCH ACTIVITIES FOR THE NPOESS COMMUNITY COLLABORAT...
MO3.L10 - STATUS OF PRE-LAUNCH ACTIVITIES FOR THE NPOESS COMMUNITY COLLABORAT...MO3.L10 - STATUS OF PRE-LAUNCH ACTIVITIES FOR THE NPOESS COMMUNITY COLLABORAT...
MO3.L10 - STATUS OF PRE-LAUNCH ACTIVITIES FOR THE NPOESS COMMUNITY COLLABORAT...grssieee
 
the hybrid cloud[1] World Pipeline Magazine
the hybrid cloud[1]  World Pipeline Magazinethe hybrid cloud[1]  World Pipeline Magazine
the hybrid cloud[1] World Pipeline MagazineLayne Tucker
 
Field Data Collecting, Processing and Sharing: Using web Service Technologies
Field Data Collecting, Processing and Sharing: Using web Service TechnologiesField Data Collecting, Processing and Sharing: Using web Service Technologies
Field Data Collecting, Processing and Sharing: Using web Service TechnologiesNiroshan Sanjaya
 
World Pipelines - Better Together - SCADA and GIS
World Pipelines - Better Together - SCADA and GISWorld Pipelines - Better Together - SCADA and GIS
World Pipelines - Better Together - SCADA and GISsmrobb
 
National Polar-orbiting Operational Environmental Satellite System (NPOESS)
National Polar-orbiting Operational Environmental Satellite System (NPOESS)National Polar-orbiting Operational Environmental Satellite System (NPOESS)
National Polar-orbiting Operational Environmental Satellite System (NPOESS)The HDF-EOS Tools and Information Center
 
Airborne Data Processing And Analysis Software Package
Airborne Data Processing And Analysis Software PackageAirborne Data Processing And Analysis Software Package
Airborne Data Processing And Analysis Software PackageJanelle Martinez
 
BARCoMmS Ground Station Testing System
BARCoMmS Ground Station Testing SystemBARCoMmS Ground Station Testing System
BARCoMmS Ground Station Testing SystemRiley Waite
 

Similar to Embry-Riddle 2018 Unmanned Aircraft Systems Capstone (20)

Path Finding In Hazad Terrain
Path Finding In Hazad TerrainPath Finding In Hazad Terrain
Path Finding In Hazad Terrain
 
Geoinformatics handbook
Geoinformatics handbookGeoinformatics handbook
Geoinformatics handbook
 
Operations Plan E Tilmans
Operations Plan E TilmansOperations Plan E Tilmans
Operations Plan E Tilmans
 
Unmanned Aerial Systems (UAS) Data Quality and Accuracy Realities
Unmanned Aerial Systems (UAS) Data Quality and Accuracy RealitiesUnmanned Aerial Systems (UAS) Data Quality and Accuracy Realities
Unmanned Aerial Systems (UAS) Data Quality and Accuracy Realities
 
Best practices for_managing_geospatial_data1
Best practices for_managing_geospatial_data1Best practices for_managing_geospatial_data1
Best practices for_managing_geospatial_data1
 
Person Detection in Maritime Search And Rescue Operations
Person Detection in Maritime Search And Rescue OperationsPerson Detection in Maritime Search And Rescue Operations
Person Detection in Maritime Search And Rescue Operations
 
Person Detection in Maritime Search And Rescue Operations
Person Detection in Maritime Search And Rescue OperationsPerson Detection in Maritime Search And Rescue Operations
Person Detection in Maritime Search And Rescue Operations
 
AI and Space: finally, no more arguing with the GPS
AI and Space: finally, no more arguing with the GPSAI and Space: finally, no more arguing with the GPS
AI and Space: finally, no more arguing with the GPS
 
IRJET - Drone Delivery System: A Review
IRJET - Drone Delivery System: A ReviewIRJET - Drone Delivery System: A Review
IRJET - Drone Delivery System: A Review
 
The Truth About Drones in Mapping and Surveying
The Truth About Drones in Mapping and SurveyingThe Truth About Drones in Mapping and Surveying
The Truth About Drones in Mapping and Surveying
 
#EarthOnAWS | AWS Public Sector Summit 2017
#EarthOnAWS | AWS Public Sector Summit 2017#EarthOnAWS | AWS Public Sector Summit 2017
#EarthOnAWS | AWS Public Sector Summit 2017
 
IRJET- Proposed Design for 3D Map Generation using UAV
IRJET- Proposed Design for 3D Map Generation using UAVIRJET- Proposed Design for 3D Map Generation using UAV
IRJET- Proposed Design for 3D Map Generation using UAV
 
MO3.L10 - STATUS OF PRE-LAUNCH ACTIVITIES FOR THE NPOESS COMMUNITY COLLABORAT...
MO3.L10 - STATUS OF PRE-LAUNCH ACTIVITIES FOR THE NPOESS COMMUNITY COLLABORAT...MO3.L10 - STATUS OF PRE-LAUNCH ACTIVITIES FOR THE NPOESS COMMUNITY COLLABORAT...
MO3.L10 - STATUS OF PRE-LAUNCH ACTIVITIES FOR THE NPOESS COMMUNITY COLLABORAT...
 
the hybrid cloud[1] World Pipeline Magazine
the hybrid cloud[1]  World Pipeline Magazinethe hybrid cloud[1]  World Pipeline Magazine
the hybrid cloud[1] World Pipeline Magazine
 
Andrew Fage presentation
Andrew Fage   presentationAndrew Fage   presentation
Andrew Fage presentation
 
Field Data Collecting, Processing and Sharing: Using web Service Technologies
Field Data Collecting, Processing and Sharing: Using web Service TechnologiesField Data Collecting, Processing and Sharing: Using web Service Technologies
Field Data Collecting, Processing and Sharing: Using web Service Technologies
 
World Pipelines - Better Together - SCADA and GIS
World Pipelines - Better Together - SCADA and GISWorld Pipelines - Better Together - SCADA and GIS
World Pipelines - Better Together - SCADA and GIS
 
National Polar-orbiting Operational Environmental Satellite System (NPOESS)
National Polar-orbiting Operational Environmental Satellite System (NPOESS)National Polar-orbiting Operational Environmental Satellite System (NPOESS)
National Polar-orbiting Operational Environmental Satellite System (NPOESS)
 
Airborne Data Processing And Analysis Software Package
Airborne Data Processing And Analysis Software PackageAirborne Data Processing And Analysis Software Package
Airborne Data Processing And Analysis Software Package
 
BARCoMmS Ground Station Testing System
BARCoMmS Ground Station Testing SystemBARCoMmS Ground Station Testing System
BARCoMmS Ground Station Testing System
 

Recently uploaded

Call Girls In Noida City Center Metro 24/7✡️9711147426✡️ Escorts Service
Call Girls In Noida City Center Metro 24/7✡️9711147426✡️ Escorts ServiceCall Girls In Noida City Center Metro 24/7✡️9711147426✡️ Escorts Service
Call Girls In Noida City Center Metro 24/7✡️9711147426✡️ Escorts Servicejennyeacort
 
From idea to production in a day – Leveraging Azure ML and Streamlit to build...
From idea to production in a day – Leveraging Azure ML and Streamlit to build...From idea to production in a day – Leveraging Azure ML and Streamlit to build...
From idea to production in a day – Leveraging Azure ML and Streamlit to build...Florian Roscheck
 
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...dajasot375
 
20240419 - Measurecamp Amsterdam - SAM.pdf
20240419 - Measurecamp Amsterdam - SAM.pdf20240419 - Measurecamp Amsterdam - SAM.pdf
20240419 - Measurecamp Amsterdam - SAM.pdfHuman37
 
꧁❤ Greater Noida Call Girls Delhi ❤꧂ 9711199171 ☎️ Hard And Sexy Vip Call
꧁❤ Greater Noida Call Girls Delhi ❤꧂ 9711199171 ☎️ Hard And Sexy Vip Call꧁❤ Greater Noida Call Girls Delhi ❤꧂ 9711199171 ☎️ Hard And Sexy Vip Call
꧁❤ Greater Noida Call Girls Delhi ❤꧂ 9711199171 ☎️ Hard And Sexy Vip Callshivangimorya083
 
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
dokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.ppt
dokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.pptdokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.ppt
dokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.pptSonatrach
 
Full night 🥵 Call Girls Delhi New Friends Colony {9711199171} Sanya Reddy ✌️o...
Full night 🥵 Call Girls Delhi New Friends Colony {9711199171} Sanya Reddy ✌️o...Full night 🥵 Call Girls Delhi New Friends Colony {9711199171} Sanya Reddy ✌️o...
Full night 🥵 Call Girls Delhi New Friends Colony {9711199171} Sanya Reddy ✌️o...shivangimorya083
 
Industrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdfIndustrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdfLars Albertsson
 
Brighton SEO | April 2024 | Data Storytelling
Brighton SEO | April 2024 | Data StorytellingBrighton SEO | April 2024 | Data Storytelling
Brighton SEO | April 2024 | Data StorytellingNeil Barnes
 
VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130
VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130
VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Ukraine War presentation: KNOW THE BASICS
Ukraine War presentation: KNOW THE BASICSUkraine War presentation: KNOW THE BASICS
Ukraine War presentation: KNOW THE BASICSAishani27
 
Schema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdfSchema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdfLars Albertsson
 
{Pooja: 9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...
{Pooja:  9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...{Pooja:  9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...
{Pooja: 9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...Pooja Nehwal
 
B2 Creative Industry Response Evaluation.docx
B2 Creative Industry Response Evaluation.docxB2 Creative Industry Response Evaluation.docx
B2 Creative Industry Response Evaluation.docxStephen266013
 
RA-11058_IRR-COMPRESS Do 198 series of 1998
RA-11058_IRR-COMPRESS Do 198 series of 1998RA-11058_IRR-COMPRESS Do 198 series of 1998
RA-11058_IRR-COMPRESS Do 198 series of 1998YohFuh
 

Recently uploaded (20)

Call Girls In Noida City Center Metro 24/7✡️9711147426✡️ Escorts Service
Call Girls In Noida City Center Metro 24/7✡️9711147426✡️ Escorts ServiceCall Girls In Noida City Center Metro 24/7✡️9711147426✡️ Escorts Service
Call Girls In Noida City Center Metro 24/7✡️9711147426✡️ Escorts Service
 
From idea to production in a day – Leveraging Azure ML and Streamlit to build...
From idea to production in a day – Leveraging Azure ML and Streamlit to build...From idea to production in a day – Leveraging Azure ML and Streamlit to build...
From idea to production in a day – Leveraging Azure ML and Streamlit to build...
 
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
 
20240419 - Measurecamp Amsterdam - SAM.pdf
20240419 - Measurecamp Amsterdam - SAM.pdf20240419 - Measurecamp Amsterdam - SAM.pdf
20240419 - Measurecamp Amsterdam - SAM.pdf
 
꧁❤ Greater Noida Call Girls Delhi ❤꧂ 9711199171 ☎️ Hard And Sexy Vip Call
꧁❤ Greater Noida Call Girls Delhi ❤꧂ 9711199171 ☎️ Hard And Sexy Vip Call꧁❤ Greater Noida Call Girls Delhi ❤꧂ 9711199171 ☎️ Hard And Sexy Vip Call
꧁❤ Greater Noida Call Girls Delhi ❤꧂ 9711199171 ☎️ Hard And Sexy Vip Call
 
Delhi 99530 vip 56974 Genuine Escort Service Call Girls in Kishangarh
Delhi 99530 vip 56974 Genuine Escort Service Call Girls in  KishangarhDelhi 99530 vip 56974 Genuine Escort Service Call Girls in  Kishangarh
Delhi 99530 vip 56974 Genuine Escort Service Call Girls in Kishangarh
 
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
 
dokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.ppt
dokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.pptdokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.ppt
dokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.ppt
 
Full night 🥵 Call Girls Delhi New Friends Colony {9711199171} Sanya Reddy ✌️o...
Full night 🥵 Call Girls Delhi New Friends Colony {9711199171} Sanya Reddy ✌️o...Full night 🥵 Call Girls Delhi New Friends Colony {9711199171} Sanya Reddy ✌️o...
Full night 🥵 Call Girls Delhi New Friends Colony {9711199171} Sanya Reddy ✌️o...
 
Industrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdfIndustrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdf
 
Brighton SEO | April 2024 | Data Storytelling
Brighton SEO | April 2024 | Data StorytellingBrighton SEO | April 2024 | Data Storytelling
Brighton SEO | April 2024 | Data Storytelling
 
VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130
VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130
VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130
 
꧁❤ Aerocity Call Girls Service Aerocity Delhi ❤꧂ 9999965857 ☎️ Hard And Sexy ...
꧁❤ Aerocity Call Girls Service Aerocity Delhi ❤꧂ 9999965857 ☎️ Hard And Sexy ...꧁❤ Aerocity Call Girls Service Aerocity Delhi ❤꧂ 9999965857 ☎️ Hard And Sexy ...
꧁❤ Aerocity Call Girls Service Aerocity Delhi ❤꧂ 9999965857 ☎️ Hard And Sexy ...
 
Ukraine War presentation: KNOW THE BASICS
Ukraine War presentation: KNOW THE BASICSUkraine War presentation: KNOW THE BASICS
Ukraine War presentation: KNOW THE BASICS
 
Schema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdfSchema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdf
 
{Pooja: 9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...
{Pooja:  9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...{Pooja:  9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...
{Pooja: 9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...
 
B2 Creative Industry Response Evaluation.docx
B2 Creative Industry Response Evaluation.docxB2 Creative Industry Response Evaluation.docx
B2 Creative Industry Response Evaluation.docx
 
E-Commerce Order PredictionShraddha Kamble.pptx
E-Commerce Order PredictionShraddha Kamble.pptxE-Commerce Order PredictionShraddha Kamble.pptx
E-Commerce Order PredictionShraddha Kamble.pptx
 
RA-11058_IRR-COMPRESS Do 198 series of 1998
RA-11058_IRR-COMPRESS Do 198 series of 1998RA-11058_IRR-COMPRESS Do 198 series of 1998
RA-11058_IRR-COMPRESS Do 198 series of 1998
 
Russian Call Girls Dwarka Sector 15 💓 Delhi 9999965857 @Sabina Modi VVIP MODE...
Russian Call Girls Dwarka Sector 15 💓 Delhi 9999965857 @Sabina Modi VVIP MODE...Russian Call Girls Dwarka Sector 15 💓 Delhi 9999965857 @Sabina Modi VVIP MODE...
Russian Call Girls Dwarka Sector 15 💓 Delhi 9999965857 @Sabina Modi VVIP MODE...
 

Embry-Riddle 2018 Unmanned Aircraft Systems Capstone

  • 1. Running head: UAS INTEGRATION 1 Unmanned Aircraft System Integration: Research into Surveying and Land Management Applications Tyler Summerlin, Dakota Freshman, Chasen Newland, Grady Roth Embry-Riddle Aeronautical University
  • 2. UAS INTEGRATION 2 Abstract In this paper the two primary projects completed in the AS475 capstone course will be overviewed in detail. These projects involved assisting Nexus Southwest with small Unmanned Aerial Systems (sUAS) integration for surveying and conducting operations in Bagdad, AZ at the Bridle Creek Habitat to determine the possibility of differentiating plants and mapping erosion. The group members involved were Dakota Freshman, Tyler Summerlin, Chasen Newland, and Grady Roth; each having specific roles in each project. Integrating sUAS operations into Nexus Southwest involved a trial run using both sUAS and current surveying techniques to determine the viability of replacing conventional methods. Using the DJI Phantom 4, UAV aerial imagery was captured and processed using Pix4D and ArcGIS to create orthomosaics and digital surface models (DSM) with layered contouring. The resulting deliverables proved to be of a greater quality with a much lower cost and time investment than the current methods used by surveyors. The mission in Bagdad was of a larger scope, requiring processed imagery covering approximately 70 acres. After multiple collection flights, the images were stitched together and combined to create a DSM which shows both erosion and elevation changes on the river, while the generated orthomosaic was of a high enough quality to differentiate plant species through imagery. For future projects, datasets overtime could map changes in erosion and vegetation, creating valuable data for the city of Bagdad.
  • 3. UAS INTEGRATION 3 Table of Contents Abstract……………………………………………………………………………….2 Introduction……………………………………………….…………………………..5 Team Members/Positions…………………………………………………….........5 Nexus Southwest LLC Mission…………………………………………………….…6 Concept of Operations (CONOP) – Nexus Southwest……………..………..…….6 Limitations…………………………………….……….…………………………..7 Data Analysis…………………………………………..…………………………..7 Incorporating sUAS into Nexus Southwest……………….……………………….9 Costs and Hardware Requirements……………………………………………..9 sUAS Software/Hardware…….………………………………………………..11 Qualified sUAS Pilots…..……………………………………………………...11 Findings – Nexus Southwest………………….…………………………………...12 Bagdad, AZ Mission…………………………..……………………………………...13 Concept of Operations (CONOP) – Bagdad, AZ……….…………………………14 Data Analysis…….………………………………………………………………..15 Limitations/Risk Analysis…………………………………………………………15 Non-Participating People in the Flight Area…………………………………...17
  • 4. UAS INTEGRATION 4 Power Lines……………..……………………………………………………...17 Wildlife/Airport…………..…………………………………………………….18 Weather………………………..………………………………………………..18 Distance to Area of Operations/Time Constraints.……………………………..18 Waypoints………………………………………...…………………………….19 Results……………………………………………………………………………..19 Future Outlook – Bagdad, AZ……………………………………………………..21 Lessons Learned………………………….…………………………………………...21 Conclusion………………………………..…………………………………………...22 References………………………………..…………………………………………...23 Appendix A…………………………………………………………………………...24 Appendix B……………………………………………………………………………25 Appendix C……………………………………………………………………………26
  • 5. UAS INTEGRATION 5 Introduction The AS 475 Unmanned Aircraft System Mission Execution capstone course is designed to take skills that students have learned in the classroom and use them in the real world. Throughout this semester, Group 2 has used these skills to gather data and information from small unmanned aircraft systems (sUAS) in the field for two separate customers. The first mission involved surveying a property for Nexus Southwest LLC, a leading land surveying company in the Prescott area. The other mission took place in Bagdad, AZ gathering data and surveying the Bridle Creek Riparian Habitat. Throughout the semester, Group 2’s main goal was to show the customers how sUAS can be used to help simplify their workflow; as well as providing the members of Group 2 the opportunities to get real world experience with not only sUAS operations, but also experience with companies/individuals who are looking to utilize UAS as an additional tool. Team Members/Positions The following individuals consisted of Group 2:  Dakota Freshman – Team Leader(Bagdad)/Pilot-In-Command (PIC)  Grady Roth – Team Leader (Nexus Southwest)/Visual Observer/Scribe/Safety Pilot  Tyler Summerlin – Data Analyst/Safety Pilot  Chasen Newland – Visual Observer/Personal Relations
  • 6. UAS INTEGRATION 6 Nexus Southwest LLC Mission To assist Nexus Southwest with research into sUAS integration with their current business practices. To complete this, Group 2 joined Nexus Southwest surveyor, Adam Haywood, out to a client’s personal home to assess the approximate nine acres to determine boundary lines in order for the client to add to their personal home. This mission would act as a trial run to see if sUAS is a tool that Nexus Southwest could invest in for future business endeavors. Concept of Operations (CONOP) – Nexus Southwest For this mission, Group 2 made the decision to perform the flight in two sections due to an elevation change on the property which would affect the ground sampling distance (GSD); which in turn would impact the accuracy of the final product. With the help of Adam Haywood and his personal surveying equipment, Group 2 was also able to acquire ground control points (GCP) with the intention to use them to help anchor the captured images to the geographic location. Due to the size of the area being captured, it was decided that the distribution of visual observers (VO) throughout the property was unnecessary. Seeing as how the property was small in comparison to other projects performed prior for the capstone class, as well as the fact that the unmanned aircraft would be flown at an altitude that could be easily seen from one central location.
  • 7. UAS INTEGRATION 7 Limitations For this project, the largest limitation that Group 2 faced was the unknown failure of the unmanned aircraft’s GPS. This would then lead to inaccuracy when processing the captured images in Pix4D. While it did affect measurement capabilities to an extent, ultimately Nexus Southwest found the most valuable piece of rendered data was the orthomosaic; which the GPS failure had no real effect on. Data Analysis Upon completion of capturing the data on site, Group 2 returned to the Embry- Riddle campus and proceeded to process the images with Pix4D. With over 400 images collected and uploaded into the software, a clear and concise orthomosaic was able to be rendered as seen in Figure 1. This alone can prove beneficial to Nexus Southwest with the orthomosaic’s capability of high detail within any desired area, in addition to being within a one-centimeter accuracy. The point cloud can also be used to measure distances and areas which is essential in surveying. Figure 1. Nexus Orthomosaic
  • 8. UAS INTEGRATION 8 In addition, DSM was generated to show the rapid elevation change near the property, as shown in Figure 2. Both the DSM and Orthomosaic were then exported as .tiff files and opened in ESRI’s ArcMap, where 1-foot contours were generated, shown in Figure 3. By using ArcGIS additional data can be derived and shown from the Pix4D outputs, such as layering of data, spatial analysis, and more detailed maps. While ArcGIS was not strictly necessary, it was used to provide better deliverables to Nexus Southwest. There was only one main issue that came up during processing; the Phantom 4 Group 2 used had an unknown error with the GPS, which resulted in the z-axis having an error of ~50% after the first processing pass. After a second trip to the site both sets of images were combined using the best fit images to reduce the error. This dataset was used to create the deliverables and resulted in a much more accurate product. Figure 2. Nexus DSM Figure 3. Nexus 1-Foot Contour
  • 9. UAS INTEGRATION 9 Incorporating sUAS Into Nexus Southwest After processing all the necessary data, Group 2 took it upon themselves to visit Nexus Southwest at their home office and observe how their day-to-day business is conducted. The goal of this visit was to determine how Nexus Southwest would need to change their business to incorporate sUAS into their operations. Upon reviewing their operation, Group 2 came to the consensus that the following would need to happen. Costs and Hardware Requirements If Nexus Southwest is interested in having sUAS being integrated into their surveying business, the company will have to make some of the following purchases in order to perform successfully:  One/two up to date computers  Contain the necessary software to produce the images (Pix4D)  An unmanned aircraft to perform the missions The tables below contain the specifications that Group 2 would recommend, the price of subscriptions for Pix4D (see Appendix A), and the price for each computer. Pix4D requires specific system requirements depending on the size of the project (see Appendix B). With the listed minimum/recommended system requirements and the experience from using the software, Group 2 came up with estimations of what would be deemed the best system requirements while maintaining a reasonable budget. With a previous meeting at the headquarters of Nexus Southwest located in downtown Prescott, they determined that the orthomosaic that Pix4D is able to produce can sell in their business at an estimated $5,000.
  • 10. UAS INTEGRATION 10 The ideal situation that Group 2 came up with to help start Nexus Southwest LLC integrate drones into their business would be the following. Once the company has upgraded one or two of the computers to the recommended system requirements, along with purchasing the recommended sUAS, Nexus can download the software and start a two-week trial that is offered before making a final decision on purchasing the license that the company believes would fit their needs. Once they are able to perform a few jobs with the drone, given the operators of the sUAS are licensed under 14 CFR Part 107 – Small Unmanned Aircraft Systems, and receiving net profit for those two weeks, depending on the amount of jobs performed and orthomosaics sold would potentially pay for not only the drone and the insurance of the aircraft, but would potentially cover the Perpetual License and the cost of upgrading the one or two computers. When referencing Table 2, if the estimations of the Nexus worker is correct (selling an orthomosaic for $5,000 for each job) it would take a total of three jobs to not only recoup money spent on upgrading equipment and obtaining the necessary hard/software, there would be a net surplus of between $1,500-$3,000 that could go into upgrading more equipment in the field or back at the headquarters. Table 1 Recommended Hardware Intel 8th Generation Core i7-8700K Nvidia GeForce GTX 1060 4GB 32-64 GB Random Access Memory (RAM) 1TB Solid State Drive (SSD) Accessories (Monitor, keyboard, mouse, etc) Estimated Total of Computer (Each Unit): $2,200-$3,500
  • 11. UAS INTEGRATION 11 sUAS Software Requirements The largest area of concern for Nexus Southwest to integrate sUAS operations into their surveying business would be the use of computer software that has proven to be efficient when it comes to data collected from unmanned aircraft. The two main pieces of software that Group 2 believes will give Nexus Southwest the most benefit would be Pix4D and ArcGIS. Pix4D can generate an orthomosaic representation of the area that was surveyed as well as a DTM and DSM. These files can then be exported into ArcGIS and other software that is used by Nexus Southwest. Qualified sUAS Pilots As with any type of commercial aviation operation, proper certification is a necessity. Unmanned aircraft operations are no different. If Nexus Southwest wishes to proceed with sUAS as part of their arsenal, then a priority for them would to have either all, or designated employees, acquire the 14 CFR Part 107 – Small Unmanned Aircraft Systems license. With this, Nexus Southwest would then be able to conduct sUAS operations in conjunction with their surveying missions. Table 2 Total Necessary Equipment Phantom 4 Pro (with accessories): $1,499 DJI Care Refresh: $139 Computer Upgrade (Per Unit): $2,200-$3,500 Pix4D Perpetual License: $8,700 Total Cost: $12,538 - $13,838
  • 12. UAS INTEGRATION 12 Findings – Nexus Southwest With the information gathered throughout the project, Nexus Southwest can see huge benefits with the implementation of sUAS. Unmanned aircraft have the capability to not only expand Nexus Southwest’s operations, but also save them time and money in the process. However, for the implementation of sUAS in the surveying field certain changes must be made. First, for Nexus Southwest to see the benefits of sUAS in their current operations a key change that must be made is the update of both computer software and hardware. As stated prior, with the cost an orthomosaic is valued at Nexus would be able to recuperate any expenses spent on sUAS implementation; this alone shows the value that a company like Nexus Southwest can find in unmanned aviation. If Nexus Southwest were to make these changes to their current business practices, they could see the returns on their expenses almost instantly. As both Group 2 and Adam Haywood experienced first-hand, time on site can be shorten greatly. With this project, Adam explained how a site such as that one would require him to spend approximately two to three hours at the site collecting the data points that he would later input into their surveying software; which would require an additional two to four hours processing. With an unmanned aircraft, Group 2 was able to perform the data collection portion in only 30 to 45 minutes; collecting all the necessary data points needed later for processing. As Nexus Southwest explained, the current process for creating an orthomosaic will include the following:
  • 13. UAS INTEGRATION 13  Hiring a pilot/Rent a plane  Filing a flight plan  Flying to the site from an airport and capturing the images  Processing the captured images to create an orthomosaic In total, the process takes approximately a week to complete from capturing images to producing the final product; with an estimated cost of $5,000, as discussed prior with Nexus employees. As evident from Group 2’s participation, an unmanned aircraft and the proper software/hardware can cut this time in half and save Nexus Southwest money while at the same time producing a product that is worth just as much, if not more. Bagdad, AZ Mission Conduct sUAS operations in Bagdad, AZ at the Bridle Creek Habitat to “provide adequate vegetation and land feature data from missions to assist in the monitoring of changes to both over time. This data should be detailed enough to possibly illustrate growth rates of trees from year to year as well as erosion and/or deposition of land features” (Eiker, 2018, p. 1).
  • 14. UAS INTEGRATION 14 Concept of Operations (CONOP) – Bagdad, AZ For this project, Group 2 came to the consensus that the best course to take for efficient operations was to plan multiple routes throughout the Bridle Creek Habitat. To accomplish this, routes and waypoints were pre-loaded into both iPads so that if the rare occurrence that one would fail a back-up would be ready to go. As seen in Figure 4, the area of operations consisted of approximately 70 acres. Due to constraints from both the terrain and current Federal Aviation Administration (FAA) regulations, it was decided to split the area of operations in to three sections. With this in mind, Group 2 was cognizant of ensuring that proper overlapping was performed so that not a single piece of land would be missed when conducting the data analysis. In addition, it was also decided to have multiple visual observers placed throughout the area so that the sUAS would never be out of visual line of sight (VLOS), as per 14 CFR Part 107 – Small Unmanned Aircraft Systems. Figure 4. Bagdad, AZ. Reprinted from Google Maps, 2018, Retrieved from www.google.com/maps
  • 15. UAS INTEGRATION 15 Data Analysis After performing multiple flights over the course of three weeks, a DTM, a DSM, and an orthomosaic representation were made in Pix4D. The three datasets were run on the highest settings and combined using 20 GCPs, which stitched the datasets into one map, as shown in Figure 5. The processing time for the initial project was around 36 hours, and the resulting DSM was large enough that the .tiff image could not be opened without issues. To combat this, the project was re-run on low- medium settings to result in a lower file size while keeping the same detail as on the highest settings. There were some issues with the DSM, since the last two datasets were taken in overcast conditions the elevations were showing an upslope were there should have been a decrease in elevation. The last flight was also taken 10 meters higher to avoid power lines, which also threw the data off. The ray cloud showed the camera GPS positions in completely wrong locations, as shown in Figure 6. This did not noticeably affect the orthomosaic, however, the DSM and DTM were not properly drawn, as shown in Figure 7. To combat this, the image properties were edited to have the same elevation, and the last dataset to have a 10-meter higher elevation. Figure 5. Image Overlap
  • 16. UAS INTEGRATION 16 Limitations/Risk Analysis During the mission in Bagdad, Arizona, Group 2 had a list of risks and a minimal amount of limitations that they were able to mitigate either immediately or had to wait depending on the situation. Most of the limitations were due to technical difficulties. Since the iPads and tablets had no service due to Verizon being the sole service provider in the area, the group had issues getting a connection to the maps and uploading them to the mission under the GSP app. The group was able to prepare for this situation by downloading the maps and route patterns before leaving the school and uploading the routes onto the app before takeoff. Other limitations included small areas for safe takeoff Figure 7. Digital Surface Model (Incorrect) Figure 6. Ray Cloud
  • 17. UAS INTEGRATION 17 and landing. However, Group 2 was able to find larger areas for the safety of the aircraft and the crew members. Due to the layout of the terrain, there were certain points where the operators could potentially lose sight of the aircraft. To prevent the lost sight, the group had two visual observers on the mountain side hiking trail to keep visual line of sight (VLOS) of the unmanned aircraft at all times. Non-Participating People in the Flight Area  Two of the days of operation, there were students observing how the operations are handled in these types of situations. The risk was mitigated by making the students and teachers aware to maintain a good distance away from the aircraft while flying away from those individuals.  Another mission included other non-participants (hikers) in the area. The operators stopped the mission temporarily and alerted the non-participants of the situation and waited until the people left the area. Power Lines  Roughly around half of the operating area was surrounded by power lines that could have caused major damage to the aircraft (towers were about 125 feet). The risk was mitigated by alerting the operator to fly at an altitude of 170 - 200 feet in order to keep a safe and consistent distance from the power lines. In addition, whenever the unmanned aircraft would fly anywhere near the power lines the visual observers kept a constant visual to ensure operations were within Part 107 regulations.
  • 18. UAS INTEGRATION 18 Wildlife/Airport  There was very minimal wildlife located during the missions. In such an event when there was wildlife, the group would pause the mission and wait until the wildlife were out of the area of operations.  Due to the location of the Bridle Creek Habitat, Bagdad Airport-E51 was well within the operating area. To ensure proper safety precautions, Group 2 made it a point to always call the airport to inform them of the missions being conducted, as well as being cognizant of the unmanned aircraft’s altitude while in the air; ensuring that it never flew into controlled airspace and remained below 400 feet. Weather  Weather for the most part was consistent with mostly clear skies with some scattered clouds between days of operations. On one occasion, the weather had small amounts of precipitation along with higher winds up to 18 mph gusting. In order to mitigate that risk, wind speeds were consistently measured throughout the operation to ensure that speeds never exceeded the DJI Phantom 4’s wind limitations. When it came to the inconsistent precipitation, the group made the decision to wait out the rain and when it seemed like conditions were good to fly continued with the mission. Distance to Area of Operations/Time Constraints  Due to the nature of the operation, Group 2 faced a limitation in the form of both travel distance and time. With hours of operations limited to 12:00 – 5:00, as
  • 19. UAS INTEGRATION 19 well as taking into consideration the distance from Prescott to Bagdad (approximately an hour and a half), the common window that Group 2 was able to fly was greatly limited to roughly an hour and a half to two hours. Unfortunately, there was not much that Group 2 could do to combat this predicament. With this in mind, the group was always cognizant of the situation and tried to perform as efficiently as possible. When it appeared that the time constraints could greatly affect the operations, Group 2 took it upon themselves to travel to Bagdad on their own time to finish the data collection process. Waypoints  At the beginning of the project, Group 2 made a consensus that the best course to take, in terms of aircraft, would be to use the DJI Phantom 4. Due to this decision, the group was limited by the Phantom 4’s capabilities; the best example of this is the inability to create more than 100 waypoints within one route. To combat this, Group 2 would end up creating multiple routes throughout each section so that the number of waypoints would no longer be a factor for the project. Results Throughout flying the sUAS, Group 2 was able to gain some vital data for the customer. Part of the mission requirement was to be able to get pictures of the ground to show erosion of the area while the deciduous trees had no leaves. The lack of leaves would allow for the Electro-Optical (EO) sensor to be able to see the ground without being obscured. This requirement led the group to make an orthomosaic and a DSM
  • 20. UAS INTEGRATION 20 representation of the 70-acre area in Pix4D, as shown in Figure 8; which gave a clear view of its entirety at a much better scale than satellite images or airplane mounted cameras. High resolution satellites, such as GeoEye-1 and Airbus’ Pleiades only give around a 30 cm GSD, with airplane mounted cameras giving around a 15 cm GSD. Group 2 was able to get a 1.99 cm GSD average across the area. Having such a low GSD allows for the product given to the customer to be a higher resolution, which can be more valuable to the customer. In addition to the orthomosaic, a DSM and a DTM were made as well. These two models allow for the differences between the ground elevations to be represented with a color gradient. The colors range from red, the highest points, to a deep blue which represent the lowest areas. This is very helpful data for this mission because the customer is able to see where the water will be flowing and where the eroded materials will eventually settle. Figure 8. Orthomosaic and DSM
  • 21. UAS INTEGRATION 21 Future Outlook – Bagdad, AZ With all the baseline data collected, Group 2’s intent was to venture back out to Bagdad, AZ later in the year to collect the same set of data so that a comparative analysis can be performed. With a full understanding of what needs to be accomplished, Group 2 hoped to provide more data with the use of a multispectral camera, the MicaSense RedEdge; which will provide both the group and the customer with a Normalized Difference Vegetation Index (NDVI). Unfortunately, both time and weather conditions prevented the group from conducting further research into the Bridle Creek Riparian Habitat before the conclusion of the semester. However, since the purpose of the project was meant for research, Group 2 has set up the project in a way that allows for future AS 475 classes to continue the research and allows the customer to see the area’s vegetation/erosion change in the years to come. Lessons Learned Over the spring semester, Group 2 learned many lessons from working in Bagdad, AZ and with Nexus Southwest that could not be taught in a classroom environment. Planning ahead was one of the most crucial aspects that the group had to deal with throughout the semester. It was very difficult at times to coordinate between group members as well as the commercial participants. Group 2 had to deal with other aspects such as weather and wind conditions that impacted not only the availability of flying, but the quality of the images that were produced through the Pix4D software. Specific aircraft selection for the missions represented the second lesson that Group 2 learned after the Bagdad project. It is noted that for the mission in Bagdad, the group decided to use the DJI Phantom 4 for the mission and planned six flights to get the most amount of
  • 22. UAS INTEGRATION 22 overlap possible while taking an estimated four days of flight to be able to finish that mission. This specific mission could have potentially been done within a less amount of time and a lesser amount of days spent out in Bagdad using the Lynx aircraft which could have possibly finished the entire mission within one day and about 30 minutes of flight time. Using physical and easily noticeable ground control points proved to be a very beneficial tool when creating the orthomosaic, DSM and DTM in Pix4D due to the GCPs acting as an anchor helping solidify the final products. Conclusion The AS 475 Mission Execution class has proven an invaluable asset to the degree program and to the UAS students who are hoping to have a better understanding of how the commercial side of UAS operations are conducted. With the conclusion of both projects, Group 2 was able to successfully gain real world experience in the world of unmanned aircraft operations; in addition to knowledge of where this degree can see the most benefit and opportunity in untapped markets.
  • 23. UAS INTEGRATION 23 References Eiker, D. (2018). Bridle Creek Wildlife Habitat Enhancement Area Project [Class Handout]. Prescott, AZ: Embry-Riddle Aeronautical University, 3221. n.a. (2018). Retrieved from https://www.google.com/maps/place/Bagdad,+AZ+86321/@34.5831216,- 113.1735107,1328m/data=!3m1!1e3!4m5!3m4!1s0x80d2e63e3e46f32b:0xf35a06 f021c31358!8m2!3d34.5768849!4d-113.1764033?hl=en n.a. (2018). Retrieved from https://store.dji.com/product/phantom-4-pro n.a. (2018). Retrieved from https://support.pix4d.com/hc/en-us/articles/202557289- System-requirements-Minimum-and-recommended-computer-specifications
  • 24. UAS INTEGRATION 24 Appendix A Pix4Dmapper Cost. Reprinted from Pix4D, 2018, Retrieved from https://support.pix4d.com/hc/en-us/articles/202557289-System-requirements-Minimum- and-recommended-computer-specifications
  • 25. UAS INTEGRATION 25 Appendix B Minimum Hardware Requirements. Reprinted from Pix4D, 2018, Retrieved from https://support.pix4d.com/hc/en-us/articles/202557289-System-requirements- Minimum-and-recommended-computer-specifications Pix4D Recommended Hardware. Reprinted from Pix4D, 2018, Retrieved from https://support.pix4d.com/hc/en-us/articles/202557289-System-requirements- Minimum-and-recommended-computer-specifications
  • 26. UAS INTEGRATION 26 Appendix C Phantom 4 PRO. Reprinted from DJI Store, 2018, Retrieved from https://store.dji.com/product/phantom-4-pro